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Abstract

Modern recommender systems are typically based on deep learning (DL) models, where a
dense encoder learns representations of users and items. As a result, these systems often
suffer from the black-box nature and computational complexity of the underlying models,
making it difficult to systematically interpret their outputs and enhance their recommenda-
tion capabilities. To address this problem, we propose Probabilistic Residual User Clustering
(PRUC), a causal Bayesian recommendation model based on user clustering. Specifically, we
address this problem by (1) dividing users into clusters in an unsupervised manner and iden-
tifying causal confounders that influence latent variables, (2) developing sub-models for each
confounder given the observable variables, and (3) generating recommendations by aggregat-
ing the rating residuals under each confounder using do-calculus. Experiments demonstrate
that our plug-and-play PRUC is compatible with various base DL recommender systems,
significantly improving their performance while automatically discovering meaningful user
clusters.

1 Introduction

Over the past decade, personalized recommendations have significantly improved user experiences in domains
such as e-commerce and social media. The recommender systems driving these advancements often rely on
sophisticated deep learning (DL) models (Chung et al., 2014; Vaswani et al., 2017; Wu et al., 2019) capable of
handling vast amounts of data, enabling highly accurate predictions and personalized interactions. Despite
their effectiveness, these models often function as black boxes, lacking transparency and interpretability.
This limitation poses significant challenges, particularly when diagnosing and enhancing the performance
of recommender systems in scenarios involving domain shifts, such as changes in users’ countries. Cold-
start scenarios, a critical problem in recommendation systems, exacerbate these issues due to the presence
of heterogeneous features and the influence of diverse and spurious patterns. As a result, existing models
exhibit notably low performance in such settings.

Existing work (Yuan et al., 2020; Wu et al., 2020; Bi et al., 2020; Li et al., 2019; Hansen et al., 2020;
Liang et al., 2020; Zhu et al., 2020; Liu et al., 2020; Kweon et al., 2024) often addresses domain shift by
establishing connections across different domains through shared users or items. However, in real-world
applications, such overlap is often unavailable. For instance, when recommending distinct items to users
from different countries, there is typically no overlap in either users or items. This scenario demands more
sophisticated modeling to account for shared confounders. For example, consider position/exposure bias in
recommender systems: if the system ranks the item (e.g., an ad) higher, users are biased to rate it higher or
have a higher probability to click it. Another example is popularity bias; users have a higher probability to
click popular or trending items. A system must correct for such biases; otherwise, its accuracy will decline
significantly when previously popular items lose their popularity. Additionally, existing methods often fail
to consider latent user clusters when cluster IDs are not available in the datasets, therefore failing to model
(dis)similarities among users.

To address these problems, we propose a novel causal hierarchical Bayesian deep learning model, dubbed
Probabilistic Residual User Clustering (PRUC), as a plug-and-play framework to improve and potentially
interpret any base recommender systems. Fig. 1 shows the simplified overview of our framework. During
the training stage, given any base recommender (e.g., DLRM (Naumov et al., 2019), CDL (Wang et al.,
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Figure 1: A detailed illustration of our proposed PRUC framework, highlighting the sequential stages and key
components involved in its processing workflow. Training: Given any base recommender (e.g., DLRM (Naumov
et al., 2019), CDL (Wang et al., 2015), or NCF (He et al., 2017)), PRUC is learned by jointly (1) computing
its predicted ratings and the residual ratings (i.e., the difference between the ground-truth ratings and the base
model’s predicted ratings), (2) dividing users into latent clusters based on the residual ratings using our probabilistic
clustering method, (3) training a sub-model for each latent user cluster. Inference: Once PRUC is learned, given
a new user-item pair, PRUC can then (1) estimate the user’s cluster ID to select the proper sub-model, (2) use this
sub-model to perform causal inference to debias potential confounders and predict the residual rating, and (3) add
this predicted residual rating to the base predicted rating to obtain the final predicted rating, thereby producing the
final recommendation.

2015), or NCF (He et al., 2017)), PRUC is learned by jointly (1) computing its predicted ratings and the
residual ratings (i.e., the difference between the ground-truth ratings and the base model’s predicted ratings),
(2) dividing users into latent clusters based on the residual ratings using our probabilistic clustering method,
(3) training a sub-model for each latent user cluster. During the inference stage, once PRUC is learned,
given a new user-item pair, PRUC can then (1) estimate the user’s cluster ID to select the proper sub-model,
(2) use this sub-model to perform causal inference to debias potential confounders and predict the residual
rating, and (3) add this predicted residual rating to the base predicted rating to obtain the final predicted
rating, thereby producing the final recommendation. Notably, PRUC is plug-and-play, i.e., it is compatible
with any base DL recommendation model and can enhance the original model’s performance.

Our contributions are as follows:

• We identify the existence of user clusters in various datasets, as well as latent confounders that have
a causal effect on user and item hidden representations in DL models.

• We propose a causal Bayesian framework to discover the latent structures of users, items, and ratings.
We incorporate user clusters and causal confounders as latent variables in the causal structural model
(SCM) and perform inference via do-calculus over the confounders.

• We formulate the rating prediction problem as residual prediction, i.e., predicting the difference
between the ground-truth user ratings and the base DL model’s predicted ratings, to enhance the
performance of base DL recommenders.

• Experiments verify that our plug-and-play PRUC is compatible with various base DL recommender
systems, significantly improving their performance while automatically discovering meaningful user
clusters.
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2 Probabilistic Residual User Clustering

In this section, we describe our proposed PRUC framework.

2.1 Problem Setting and Notations

Consider a recommendation dataset containing I users and J items. A DL encoder fv(·) : Rd → Rh encodes
each item j’s raw features xv

j ∈ Rd into fv(xv
j ); assume there exists another decoder deep learning model

fx(·) : Rh → Rd, which decodes latent representation vj back to the raw item features xv
j . For a given user

i and an item j, there is a ground-truth rating Rij ∈ R, a base predicted rating R̂ij ∈ R provided by a base
recommender, and a residual rating R̃ij = Rij − R̂ij . There is a latent cluster ID k (k ∈ {1, ..., K}) that
indicates which user group user i belongs to. We assume that there exists a user latent vector ui ∈ Rh for
each user i and an item latent vector vj ∈ Rh for each item j; they are both impacted by a causal confounder
s ∈ Rg, where g ≪ h.

Our goal is to predict the final rating R using the residual R, i.e., R = R̂ + R̃, where R̂ represents the rating
from the original (base) DL recommender. When the original recommender is provided, R̂ is fixed; therefore
we only need to learn R̃ in order to predict the final rating R. For generality, we assume M domains, where
mi and mj denote the domain ID of user i and item j, respectively.

2.2 Method Overview
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Figure 2: Probabilistic graphical model of our PRUC framework.

We use a variational Bayesian framework
to learn the latent parameters. Fig. 2 il-
lustrates the corresponding probabilistic
graphical model (PGM).

Generative Process. Below we de-
scribe the generative process of PRUC
shown in Fig. 2.

For each domain m ∈ {1, 2, . . . , M}:

• Draw the confounder sm from a
prior distribution, for example,
p(s) ∼ N (0, I):

• For each user i:

– Draw the user cluster ID πi from categorical distribution π.
– Draw user latent variable ui from the πi’th Gaussian distribution, i.e., p(ui|{µk, Σk}K

k=1, s, π) ∼
N (µπi

+ Wusm, Σπi
). Notice that Wu is the learnable global parameter shared by all users.

– For each item j:
∗ Draw item latent variable vj from distribution p(vj |s) ∼ N (Wvsm, λ−1

v I), where Wv is the
learnable global parameter shared by all items, I is the identity matrix, and λv ∈ R is the
precision.

∗ Draw the residual rating R̃ij from distribution p(R̃ij |ui, vj , s) ∼ N (u⊤
i vj + w⊤

Rsm, λ−1
R̃ij

),
where wR is the learnable vector shared by all ratings and λ

R̃ij
is the precision.

∗ Draw raw item features xv
j from distribution p(xv

j |vj) ∼ N (fx(vj), λ−1
x I), where I is the

identity matrix and λx ∈ R is the precision. fx is a parameterized function that could be
learned.
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Model Factorization. As shown in Fig. 2, we factorize the generative model into four conditional distri-
butions:

p(ui, vj , xv
j , R̃ij |{µk, Σk}K

k=1, sm, π)

= p(R̃ij |ui, vj , sm)p(ui|{µk, Σk}K
k=1, sm, π)p(xv

j |vj)p(vj |sm). (1)

Each distribution is assumed as a Gaussian distribution and is shown as follows:

p(R̃ij |ui, vj , sm) = N (u⊤
i vj + w⊤

Rsm, λ−1
R̃ij

), (2)

p(ui|{µk, Σk}K
k=1, sm, π) = N (µπi

+ Wusm, Σπi), (3)
p(xv

j |vj) = N (fx(vj), λ−1
x I), (4)

p(vj |sm) = N (Wvsm, λ−1
v I), (5)

where i and j refers to the user index and the item index, respectively. We employ an inference distribution
q(ui, vj |xv

j ) to approximate the distribution p(ui, vj |xv
j ) for the inference model.

q(ui, vj |xv
j ) = q(ui)q(vj |xv

j ). (6)

More specifically, we assumes q(vj |xv
j ) follows a gaussian distribution:

q(vj |xv
j ) = N (fv(xv

j ), Λ−1
v I). (7)

Here, j is the item index, Λv ∈ R refers to the precision, and fv is a learnable mapping function.

Learning Objective. We maximize an evidence lower bound (ELBO) as our learning objective for both
generative and inference model.

LELBO(xv
j , R̃ij)

= Eq(ui,vj |xv
j

)
[

log p(ui, vj , xv
j , R̃ij |{µk, Σk}K

k=1, sm, π)
]

− Eq(ui,vj |xv
j

)
[

log q(vj |xv
j )]. (8)

Combining Eqn. 1 and Eqn. 6, we obtain the following decomposition:

LELBO(xv
j , R̃ij)

= Eq(ui)
[

log p(ui|{µk, Σk}K
k=1, sm, π)

]
(9)

+ Eq(vj |xv
j

)
[

log p(xv
j |vj)

]
(10)

+ Eq(ui,vj |xv
j

)
[

log p(R̃ij |ui, vj , sm)
]

(11)

− DKL

(
q(vj |xv

j )∥p(vj |sm)
)
, (12)

where DKL(·∥·) is the Kullback-Leibler (KL) divergence. For Eqn. 9, we compute the log likelihood for each
cluster k as

log p(ui|{µk, Σk}, sm, π) = −1
2

∑
i∈Ik

[log |Σk| + (ui − µk − Wusm)⊤Σ−1
k (ui − µk − Wusm)] + C,

where i is the user index, Ik is the set of user index that belongs to cluster k, and C is a constant.

Similarly, all the other terms can be expanded as:

log p(xv
j |vj) = −λx

2 ∥xv
j − fx(vj)∥2 + C, (13)

log p(R̃ij |ui, vj , s) = −
λ

R̃ij

2

(
R̃ij − u⊤

i vj − w⊤
Rsm

)2
+ C, (14)

DKL

(
q(vj |xv

j )∥p(vj |sm)
)

= λv

2 ∥vj − Wvsm∥2

− Λv

2 ∥vj − fv(xv
j )∥2 + C. (15)
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Intuition for Each Term in Eqn. 8. Below, we describe the intuition of each term in Eqn. 8:

1. Regularize Latent Variable ui (Eqn. 9). Eq(ui)[p(ui|{µk, Σk}K
k=1, sm, π)] aims to regularize

user i’s latent variable ui, ensuring ui is close to the center of its corresponding user cluster πi, and
therefore close to other users’ latent embeddings in the same cluster.

2. Reconstruct Data xv
j from vj (Eqn. 10). q(vj |xv

j ) and p(xv
j |vj) are to reconstruct data xv

j from
the inferred vj , which encourage the latent variable vj to maintain as much relevant information as
possible from the raw features xv

j .

3. Predict Residual Rating R̃ij from ui and vj (Eqn. 11). p(R̃ij |ui, vj , sm) use the inferred ui,
vj , and the causal confounder sm to predict the residual rating, thereby encouraging ui and vj to
retain more information to maximize prediction performance.

4. Regularize Latent Variable vj (Eqn. 12). DKL(q(vj |xv
j )∥p(vj |sm)) is the KL divergence term

between the inference model q(·|xv
j ) and the generative model p(·|sm); this encourages the inferred

posterior q(vj |xv
j ) to be close to the prior distribution p(vj |sm).

2.3 Inference and Learning

In our framework, we need to learn several parameters, including the Gaussian parameters {µk, Σk}K
k=1,

user latent u, item latent v, and the parameters of the functions fx(·) and fv(·), as well as Wu, Wv, and
wR. The following sections detail the learning process for all these parameters. The complete algorithm is
outlined in Algorithm 1.

1) {µk, Σk}K
k=1. To optimize {µk, Σk}K

k=1, we take derivative of Eqn. 13 w.r.t. µk and Σk as follows:

∂L
∂µk

= Σ−1
k (ui − µk − Wusm) , (16)

∂L
∂Σk

= 1
2Σ−1

k

[
(ui − µk − Wusm) (ui − µk − Wusm)⊤ − Σk

]
Σ−1

k . (17)

Setting Eqn. 16 and Eqn. 17 to zero leads to the following update rules, respectively:

µk = 1
|Ik|

∑
i∈Ik

(ui − Wusm) , (18)

Σk = 1
|Ik|

∑
i∈Ik

(ui − µk − Wusm) (ui − µk − Wusm)⊤
, (19)

where Ik is the set of user index i that belongs to cluster k.

2) ui, vj . After computing the gradients of Eqn. 8 w.r.t. to ui and vj , we obtain the following update rules:

ui = (Σπi
Vλ

R̃(i,:)
V⊤ + I)−1

[
µπi

+ Wusm + Σπi
Vλ

R̃(i,:)
(R̃(i,:) − w⊤

RsmI)
]

, (20)

vj =
[
Uλ

R̃(:,j)
U⊤ + (λv − Λv)I

]−1 [
λvWvsm − Λvfv(xv

j ) + Uλ
R̃(:,j)

(R̃(:,j) − w⊤
RsmI)

]
. (21)

Note that here U and V refer to user latent matrix (ui)I
i=1 and item latent matrix (vj)J

j=1. R̃(i,:) :=
(R̃i1, · · · , R̃iJ)⊤, R̃(:,j) := (R̃1j , · · · , R̃Ij)⊤ . λ

R̃(i,:)
:= diag(λ

R̃i1
, · · · , λ

R̃iJ
), λ

R̃(:,j)
:= diag(λ

R̃1j
, · · · , λ

R̃Ij
).
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Algorithm 1 Learning Algorithm of PRUC

Input: Raw item features xv, initialized fx(·) and fv(·) parameters, Wu, Wv, wR, initialized Gaussian
parameters {µk, Σk}K

k=1, and the number of epochs T.
for t = 1 : T do

for m = 1 : M do
Update ui and vj using Eqn. 20 and Eqn. 21.
Update Wu, Wv, wR using Eqn. 22, Eqn. 23 and Eqn. 24.
Update the parameters of fv(·) using gradient ascent of L in Eqn. 8.

Update {µk, Σk}K
k=1 using Eqn. 18 and Eqn. 19, respectively; update parameters of fx(·) using gradient

ascent of L in Eqn. 8.
Output: fx(·) and fv(·) parameters, Wu, Wv, wR, and Gaussian parameters {µk, Σk}K

k=1.

3) Wu, Wv, wR. The update rules for Wu, Wv, and wR are as follows:

Wu = 1
I

(
I∑

i=1
ui −

K∑
k=1

|Ik|µk)s⊤
m(sms⊤

m)−1, (22)

Wv = 1
J

J∑
j=1

vjs⊤
m(sms⊤

m)−1, (23)

wR =

∑
i,j λ

R̃ij
(R̃ij − u⊤

i vj)∑
i,j λ

R̃ij

(sms⊤
m)−1sm. (24)

4) Parameters of fx(·) and fv(·) . We use gradient ascent of L in Eqn. 8 to update these parameters.

Inference. Inference includes the E-Step in Algorithm 1, where PRUC updates learnable parameters
Wu, Wv, wR, and the parameters of encoder model fv(·) using gradient ascent of L in Eqn. 8.

Learning. Learning includes the iteration between the E-Step and M-Step in Algorithm 1 until convergence.
In each M-Step, we update the Gaussian parameters {µk, Σk}K

k=1 following the update rule from Eqn. 18
and Eqn. 19, respectively; we also update parameters of decoder model fx(·) using gradient ascent of L
in Eqn. 8.

2.4 Plug-and-Play PRUC

Below we discuss key components of our plug-and-play PRUC after learning all parameters with Algorithm 1.

Inferring User Cluster πi. With the learned Gaussian mixture’s parameters, i.e., the mean and covariance
µk and Σk for each Gaussian component k (each Gaussian component represents one user cluster) from
Algorithm 1, PRUC infers the cluster for each user i, i.e., p(πi|R̃ij , {ui}, {vj}, {µk, Σk}K

k=1), determining
which cluster πi user i belongs to.

Isolating Causal Confounders sm. With the structured causal model (SCM), we isolate the causal
confounders sm for each domain m by approximating its posterior distribution p(sm|R̃, xv

j , {µk, Σk}K
k=1) via

variational domain indexing (VDI) (Xu et al., 2023). In this way, we can minimize the bias introduced by
the causal confounder sm when inferring ui and vj using Eqn. 20 and Eqn. 21, respectively.

Debiasing the Causal Confounders. Under our PRUC framework, for each inferred user cluster k, we
perform causal inference for each user i in this cluster to predict the residual R̃ij (for each item j) while
debiasing the causal confounders s. Specifically, with the inferred ui and vj (using Eqn. 20 and Eqn. 21)
and sm, we can predict R̃ij by do-calculus as

p(k)(R̃ij |do(ui), do(vj)) =
∑M

m=1
p(k)(R̃ij |ui, vj , sm)p(sm), (25)
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where p(k)(R̃ij |ui, vj , s) represents the k’th sub-model trained from the k’th cluster’s user data. In practice,
we use k = πi (πi is user i’s cluster) when predicting user i’s rating R̃ij .
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Figure 3: Causal inference in PRUC is equiva-
lent to cutting the the confounder s’s influence
on ui and v.

Note that performing causal inference by intervening (ui, vj)
effectively cuts the relations between the causal confounders s
and (ui, vj). Fig. 3 demonstrate the do-calculus that PRUC
performs for debiasing the causal confounder s.

Intuition behind Do-Calculus. The rationale of performing
do-calculus in PRUC is that getting interventional distributions
often requires intervening the recommender system to collect
training data, which is expensive in practice. In contrast, do-
calculus works by leveraging existing data to estimate the con-
ditional distribution p(k)(R̃ij |ui, vj , s), and therefore prevent
the potential cost (and risk) of actually intervening the sys-
tem.

Summary. To summarize, for each user i, PRUC causally
infer the residual rating R̃i as follows:

1. Infer the user cluster πi by approximating its posterior p(πi|ui, vj , xv
j , {µk, Σk}K

k=1).

2. Infer the residual rating R̃ij by causal Bayesian model averaging defined in Eqn. 25.

3. Predict the final rating as R = R̃ + R̂, where R̂ is the base recommender’s prediction.

3 Experiments

In this section, we evaluate our PRUC as a plug-and-play framework to enhance arbitrary base recommenders
on XMRec and MovieLens.

3.1 Datasets

XMRec. XMRec (Bonab et al., 2021) is a dataset encompassing 18 local markets (i.e., countries), 16 distinct
product categories, and 52.5 million user-item interactions. For each item j, we use its item descriptions from
the dataset as the item features xv

j . Users with fewer than three purchases are excluded from experiments.
We use three training-testing domain splits: France, Italy, India → Japan, Mexico; Mexico, Spain, India →
Japan, Germany; and Germany, Italy, Japan → United States, India. We use the production country of the
products as the casual confounders sm.

MovieLens. MovieLens (Harper & Konstan, 2015) features movie ratings from users of varying ages. We
use movie titles and movie plots as the item features xv

j . User features are derived from the first three films
each user rated. Users who rated fewer than five movies or whose ratings do not exceed 3 are omitted. Post-
filtering, our experiments involve 6,034 users and 3,705 items. We use two training-testing domain splits
based on user ages: 1-18, 18-25, 35-45, 45-50, 50-56, 56+ → 25-35; and 25-35 → all the previous mentioned
age groups. For brevity, we refer to each age group by the starting age, e.g., “1” for “1-18”. We use the
normalized movie released years as causal confounders sm.

In all experiments, we use a cold-start setting where each testing domain user has only one rating in the
training set, making the recommendations extremely challenging.

3.2 Base Recommenders and Baselines

Note that our PRUC method is a plug-and-play solution, compatible with any base recommenders. In this
paper, we select the following five base recommenders to demonstrate PRUC’s enhancement of state-of-the-
art recommendation models.

7
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Table 1: Performance of PRUC with different base models on XMRec. The best results are marked with bold face.

Data Method Recall@20 F1@20 MAP@20 NDCG@20 Precision@20

France, Italy, India →Japan, Mexico

CDL (Base Model) 0.0143 0.0016 0.0028 0.0009 0.0009
PRUC (Full) 0.1091 0.0128 0.0463 0.0108 0.0068

DLRM (Base Model) 0.0044 0.0004 0.0004 0.0002 0.0002
PRUC (Full) 0.0295 0.0035 0.0048 0.0018 0.0018

PerK (Base Model) 0.1098 0.0128 0.0512 0.0112 0.0068
PRUC (Full) 0.1635 0.0192 0.0637 0.0151 0.0102

NCF (Base Model) 0.0131 0.0148 0.0026 0.0008 0.0008
PRUC (Full) 0.1137 0.0137 0.0309 0.0090 0.0073

LightGCN (Base Model) 0.0182 0.0021 0.0050 0.0014 0.0011
PRUC (Full) 0.1003 0.0121 0.0316 0.0084 0.0064

Mexico, Spain, India →Japan, Germany

CDL (Base Model) 0.1127 0.0135 0.0301 0.0086 0.0072
PRUC (Full) 0.1761 0.0230 0.0593 0.0163 0.0123

DLRM (Base Model) 0.0756 0.0093 0.0085 0.0041 0.0049
PRUC (Full) 0.2017 0.0246 0.0545 0.0156 0.0131

PerK (Base Model) 0.1443 0.0177 0.0601 0.0143 0.0094
PRUC (Full) 0.2750 0.0335 0.1086 0.0263 0.0179

NCF (Base Model) 0.0096 0.0012 0.0022 0.0007 0.0007
PRUC (Full) 0.1558 0.0202 0.0280 0.0107 0.0108

LightGCN (Base Model) 0.0165 0.0022 0.0061 0.0016 0.0012
PRUC (Full) 0.1064 0.0138 0.0278 0.0087 0.0077

Germany, Italy, Japan →United States, India

CDL (Base Model) 0.0252 0.0055 0.0084 0.0040 0.0031
PRUC (Full) 0.0257 0.0058 0.0078 0.0041 0.0033

DLRM (Base Model) 0.0024 0.0006 0.0003 0.0003 0.0003
PRUC (Full) 0.0066 0.0016 0.0024 0.0012 0.0009

PerK (Base Model) 0.0148 0.0033 0.0041 0.0022 0.0018
PRUC (Full) 0.0207 0.0046 0.0060 0.0031 0.0026

NCF (Base Model) 0.0018 0.0005 0.0004 0.0003 0.0003
PRUC (Full) 0.0126 0.0033 0.0021 0.0018 0.0019

LightGCN (Base Model) 0.0016 0.0004 0.0002 0.0002 0.0003
PRUC (Full) 0.0052 0.0013 0.0013 0.0008 0.0007

• CDL (Wang et al., 2015) is a Bayesian deep framework that jointly integrates deep representation
learning of content information with collaborative filtering on the ratings (feedback) matrix within a
unified model.

• DLRM (Naumov et al., 2019) learns embeddings to represent both sparse and dense features by a neural
network and predicts event probability.

• PerK (Kweon et al., 2024) uses calibrated interaction probabilities to determine the expected user utility
and selects the optimal recommendation size K to maximize it.

• NCF (He et al., 2017) proposes a generalized matrix factorization framework by replacing the inner
product with a trainable neural network.

• LightGCN (He et al., 2020) simplifies the design of Graph Convolutional Networks (GCNs) for recom-
mendation tasks, making it easier to train and enhancing overall performance compared with traditional
GCNs.

Here CDL, DLRM, PerK, NCF and LightGCN serve as both (1) our baselines to compare against and
(2) our base recommenders to enhance (see Fig. 2). For more details on training configurations, see
Appendex B.2.

3.3 Metrics

We use five metrics for evaluation: Recall, Precision, mAP, F1, and NDCG.

Recall. Recall@N measures the proportion of relevant items retrieved among the top N recommended items
for user i:

Recalli@N =
∑N

n=1
reli,n/|Ji|, (26)
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Table 2: Performance of PRUC with different base models on MovieLens. The best results are marked with bold
face.

Data Method Recall@20 F1@20 MAP@20 NDCG@20 Precision@20

1, 18, 35, 45, 50, 56 →25

CDL (Base Model) 0.0179 0.0274 0.0045 0.0581 0.0587
PRUC (Full) 0.0252 0.0409 0.0072 0.1071 0.1076

DLRM (Base Model) 0.0714 0.1096 0.0285 0.2433 0.2366
PRUC (Full) 0.0716 0.1101 0.0284 0.2431 0.2372

PerK (Base Model) 0.0682 0.1029 0.0290 0.2224 0.2107
PRUC (Full) 0.0690 0.1037 0.0287 0.2190 0.2110

NCF (Base Model) 0.0050 0.0250 0.0011 0.0251 0.0251
PRUC (Full) 0.0240 0.0387 0.0057 0.0947 0.1005

LightGCN (Base Model) 0.0081 0.0132 0.0019 0.0381 0.0358
PRUC (Full) 0.0249 0.0402 0.0069 0.1076 0.1055

25 →1, 18, 35, 45, 50, 56

CDL (Base Model) 0.0576 0.0848 0.0174 0.1602 0.1716
PRUC (Full) 0.0645 0.0952 0.0202 0.1772 0.1897

DLRM (Base Model) 0.0848 0.1342 0.0382 0.3347 0.3225
PRUC (Full) 0.0903 0.1405 0.0414 0.3455 0.3319

PerK (Base Model) 0.0746 0.1164 0.0324 0.2701 0.2661
PRUC (Full) 0.0792 0.1225 0.0355 0.2821 0.2757

NCF (Base Model) 0.0140 0.0229 0.0030 0.0633 0.0652
PRUC (Full) 0.0450 0.0694 0.0144 0.1639 0.1711

LightGCN (Base Model) 0.0093 0.0157 0.0022 0.0497 0.0482
PRUC (Full) 0.0290 0.0480 0.0097 0.1493 0.1395

where reli,n is an indicator that equals 1 if the item at rank n is relevant to user i, and 0 otherwise. |Ji|
denotes the total number of relevant items for user i.

Precision. Precision@N measures the proportion of the top N recommended items that are relevant to
user i:

Precisioni@N =
∑N

n=1
reli,n/N, (27)

where reli,n is 1 if the item at rank n is relevant to user i, and 0 otherwise.

mAP. Mean Average Precision (mAP) computes the average precision over all relevant items for user i. See
Appendix B.1 for more details.

F1-score. The F1 Score@N for user i is the harmonic mean of Precision@N and Recall@N, providing a
balance between the two metrics:

F1i@N = 2 × Precisioni@N×Recalli@N/Precisioni@N+Recalli@N, (28)

where Recalli@N and Precisioni@N are defined in Eqn. 26 and Eqn. 27, respectively.

NDCG. Normalized Discounted Cumulative Gain (NDCG@N ) evaluates the quality of the ranked list by
considering the positions of the relevant items, giving higher scores to items appearing earlier in the list. See
Appendix B.1 for more details.

All metrics are computed by averaging over all users i.

3.4 Results

Results for Different Base Models. Table 1 and Table 2 show the performance of PRUC with various
base models across different metrics on both datasets. Results show that our full model (“PRUC (Full)”)
can generally boosts the base models’ performance.

Recall@N with Larger N . Fig. 4 shows Recall@N for N = 50, 100, 150, 200, 250, 300 across three base
models (CDL, DLRM, and PerK) and three training-testing domain splits. These figures indicate that PRUC
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Table 3: Comparison between PRUC w/o Causality and PRUC (Full) on a specific domain with different base models
on XMRec. The best results are marked with bold face.

Data Method Recall@20 F1@20 MAP@20 NDCG@20 Precision@20

France, Italy, India →Japan, Mexico

CDL (Base Model) 0.0143 0.0016 0.0028 0.0009 0.0009
CDL PRUC w/o Causality 0.1058 0.0126 0.0333 0.0088 0.0067

PRUC (Full) 0.1091 0.0128 0.0463 0.0108 0.0068
DLRM (Base Model) 0.0044 0.0004 0.0004 0.0002 0.0002

DLRM PRUC w/o Causality 0.0232 0.0026 0.0039 0.0014 0.0014
PRUC (Full) 0.0295 0.0035 0.0048 0.0018 0.0018

PerK (Base Model) 0.1098 0.0128 0.0512 0.0112 0.0068
PerK PRUC w/o Causality 0.1376 0.0160 0.0558 0.0129 0.0085

PRUC (Full) 0.1635 0.0192 0.0637 0.0151 0.0102
NCF (Base Model) 0.0131 0.0148 0.0026 0.0008 0.0008

NCF PRUC w/o Causality 0.1056 0.0126 0.0235 0.0074 0.0067
PRUC (Full) 0.1137 0.0137 0.0309 0.0090 0.0073

LightGCN (Base Model) 0.0182 0.0021 0.0050 0.0014 0.0011
LightGCN PRUC w/o Causality 0.0940 0.0112 0.0289 0.0076 0.0059

PRUC (Full) 0.1003 0.0121 0.0316 0.0084 0.0064

Table 4: Performance of PRUC with different base models on MovieLens. The best results are marked with bold
face.

Data Method Recall@20 F1@20 MAP@20 NDCG@20 Precision@20

1, 18, 35, 45, 50, 56 →25

CDL (Base Model) 0.0179 0.0274 0.0045 0.0581 0.0587
PRUC w/o Causality 0.0186 0.0302 0.0057 0.0863 0.0801

PRUC (Full) 0.0252 0.0409 0.0072 0.1071 0.1076
DLRM (Base Model) 0.0714 0.1096 0.0285 0.2433 0.2366
PRUC w/o Causality 0.0232 0.0026 0.0039 0.0014 0.0014

PRUC (Full) 0.0716 0.1101 0.0284 0.2431 0.2372
PerK (Base Model) 0.0682 0.1029 0.0290 0.2224 0.2107

PRUC w/o Causality 0.0582 0.0877 0.0212 0.1755 0.1787
PRUC (Full) 0.0690 0.1037 0.0287 0.2190 0.2110

NCF (Base Model) 0.0050 0.0250 0.0011 0.0251 0.0251
PRUC w/o Causality 0.0231 0.0374 0.0055 0.0927 0.0989

PRUC (Full) 0.0240 0.0387 0.0057 0.0947 0.1005
LightGCN (Base Model) 0.0081 0.0132 0.0019 0.0381 0.0358

PRUC w/o Causality 0.0248 0.0402 0.0070 0.1077 0.1053
PRUC (Full) 0.0249 0.0402 0.0069 0.1076 0.1055

surpasses the base models even without the causality component (“PRUC w/o Causality”), while full PRUC
consistently outperforms its non-causal counterpart in all settings. We observe similar results for other base
models.

Visualizations of the Clusters. Fig. 5 visualizes the user latent u for all five base models on the XMRec
dataset. Each visualization shows a distinct separation into 3 clusters, indicating successful user grouping
of our model. Furthermore, Figure 6 illustrates the relationship between user clusters and items using the
CDL-based PRUC model on the same dataset. For each user, we selected the item with the highest rating
they have given, recorded the item ID and its rating, and visualized the results. Different clusters are
represented using distinct colors, effectively showcasing the distribution and preferences of users within each
cluster. For instance, Cluster 1 (Red) shows pronounced preferences for 4-5 specific items, underscoring the
impact of user clustering on improving PRUC’s performance.

Performance of Each Clusters Discovered by PRUC. For a deeper understanding of the model
performance, we include more fine-grained results for different clusters discovered by PRUC in Appendix B.3.
Results show that our PRUC can usually improve performance in most clusters.

Ablation Study. The comparison in Table 3, Table 4, and Fig. 4 highlights the performance difference
between ‘PRUC w/o Causality’ and ‘PRUC (Full)’. The results consistently show that ‘PRUC (Full)’ outper-
forms its counterpart, ‘PRUC w/o Causality’, emphasizing the crucial role of causal inference in enhancing
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Figure 4: Recall@N on XMRec for PRUC with three base models: CDL, DLRM, and PerK.
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Figure 5: Clusters of users based on the user latent u from PRUC with base models CDL (left), DLRM (left center),
PerK (center), NCF (right center) and LightGCN (right) for the split “France, Italy, India → Japan, Mexico”.
All user latents are reduced to 2D by t-SNE.

the effectiveness of the PRUC model. Furthermore, a comparison between the base model and ‘PRUC w/o
Causality’ also reveals notable performance improvements, validating the efficacy of PRUC’s user cluster
discovery. Additional details on the ablation study for other domains can be found in Appendix B.4.

4 Related Work

Domain-Dependent Recommendation. Previous work has explored various in-domain recommenda-
tion scenarios. Early methods, such as PMF (Mnih & Salakhutdinov, 2007) and BPR (Rendle et al., 2012),
applied collaborative filtering techniques to address challenges in recommendation. Later, methods such
as GRU4Rec (Hidasi et al., 2016), SAS4Rec (Kang & McAuley, 2018), KGAT (Wang et al., 2019), and
PerK (Kweon et al., 2024) leveraged advanced deep learning models to enhance the performance of recom-
mender systems. These approaches focus on rating data between items and users but do not incorporate
item features. Collaborative deep learning (CDL) models (Wang et al., 2015; 2016; Zhang et al., 2016; Li &
She, 2017) incorporate content to enable pretrained recommenders, making them more versatile in different
contexts, e.g., cold start scenarios.

11



Under review as submission to TMLR

0 2000 4000 6000 8000 10000
Item Index

0.1

0.2

0.3

0.4

0.5

0.6

Sc
or

e
Item Scores by Cluster

Clusters
Cluster 1
Cluster 2
Cluster 3

Figure 6: Clusters of users based on their highest rated items, using the CDL-based PRUC model applied to the
XMRec dataset. X-axis indicates the item ID, while Y-axis indicates the score of the item. Clusters are distinguished
by different colors.

Despite significant advances in in-domain recommendations, cross-domain recommendation remains rela-
tively understudied. Existing work has utilized domain adaptation techniques (Xu et al., 2023; Liu et al.,
2023; Shi & Wang, 2023; Xu et al., 2022; Wang et al., 2020a; Ganin et al., 2016) to tackle this challenge,
often relying on common users or items across source (training) and target (testing) domains (Yuan et al.,
2020; Wu et al., 2020; Bi et al., 2020; Li et al., 2019; Hansen et al., 2020; Liang et al., 2020; Zhu et al., 2020;
Liu et al., 2020). On the other hand, some methods enhance recommendation performance in both source
and target domains simultaneously (Li & Tuzhilin, 2020; Hu et al., 2018; Zhao et al., 2019). In contrast to
existing approaches, our PRUC first infers user clusters and confounders before making recommendations
based on the identified user clusters, leading to improved generalization and robustness against domain shifts.

Causal Inference for Recommendation. Causal inference (Pearl, 2009) has been widely applied to model
cause-and-effect relationships between variables in the machine learning community. Recently, it has been
employed to improve the performance of recommender systems (Wang et al., 2020b). PDA (Zhang et al.,
2021) uses causal intervention to address popularity bias in recommendations, while DICE (Zheng et al., 2021)
learns representations from user interactions based on the structured causal model (SCM). Additionally, some
research focuses on debiasing recommendations without adopting a causal inference perspective (Li et al.,
2021; Wang et al., 2022; Chen et al., 2023). However, these approaches do not consider user groups within
the SCM framework. In contrast, our method divides users into clusters based on a confounder variable and
generates recommendations by aggregating user ratings through do-calculus, providing a more interpretable
and sophisticated approach.

5 Conclusion

In this paper, we address the problem of cross-domain recommendation by introducing a novel causal
Bayesian framework, named Probabilistic Residual User Clustering (PRUC). PRUC generates recommen-
dations by: (1) inferring the user cluster ID, (2) inferring the residual rating based on our causal debiasing
framework, and (3) predicting the final rating as a correction to the base model’s prediction. PRUC can
enhance the performance of any base recommenders in a plug-and-play manner, and automatically discover
meaningful user clusters. As a general probabilistic framework compatible with various recommendation
systems, PRUC can be extended to additional modalities beyond textual data in future research. Further-
more, PRUC provides interpretability by uncovering latent user preferences and biases that influence rating
predictions. Its modular design also allows seamless integration with deep learning-based recommenders,
making it a scalable and adaptable solution for diverse recommendation scenarios.
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A Appendix

B More Details on Experiments and Implementation

B.1 Metrics

mAP. mAP is defined as:

APi = 1
|Ji|

N∑
n=1

reli,n × Precisioni@n, (29)

where N is the total number of recommended items, Precisioni@n is the precision at rank n, and |Ji| is the
total number of relevant items for user i. The mean Average Precision (mAP) is then calculated by averaging
APi over all users:

mAP = 1
|I|

|I|∑
i=1

APi, (30)

where |I| is the total number of users.

NDCG. NDCG@N is computed as follows.

First, the Discounted Cumulative Gain (DCG@N ) is calculated:

DCGi@N =
N∑

n=1

2reli,n − 1
log2(n + 1) , (31)
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where reli,n denotes the relevance of the item at position n for user i. Next, the Ideal Discounted Cumulative
Gain (IDCG@N ), representing the maximum possible DCG (i.e., all relevant items ranked at the top), is
calculated as:

IDCGi@N =
min(N,|Ji|)∑

n=1

21 − 1
log2(n + 1) =

min(N,|Ji|)∑
n=1

1
log2(n + 1) , (32)

where |Ji| denotes the total number of relevant items for user i.

Finally, the Normalized Discounted Cumulative Gain is obtained by normalizing DCG@N by IDCG@N :

NDCGi@N = DCGi@N

IDCGi@N
. (33)

Here the logarithmic term log2(n + 1) discounts the relevance based on the item’s position in the ranked list,
serving as the normalization factor.

B.2 Training Configurations

Following CDL (Wang et al., 2015), we set the hidden dimension h = 50 for all latent vectors, as well as for
the encoder and decoder networks. During training, we use AdamW (Kingma & Ba, 2015) as our optimizer,
with a learning rate of 10−3 and a batch size of 256. The base models were trained for 100 epochs, while
PRUC was trained for 150 epochs. All experiments were conducted on an NVIDIA RTX A5000 GPU.

B.3 Performance of Each Clusters Discovered by PRUC

Table 10, 11, 12, 13, 14 show PRUC’s performance across different clusters on XMRec using CDL, DLRM,
PerK, NCF, and LightGCN as base models. These results support the conclusion that PRUC improves
upon the base models even without incorporating the causality component. Furthermore, the full PRUC
consistently outperforms its non-causal counterpart across all configurations. For example, CDL, as the
base model, achieves a recall@20 of 0.0241 for User Cluster 1 in the split of “France, Italy, India → Japan,
Mexico”. When PRUC without the causal inference component is applied, recall improves to 0.0278. The
full PRUC further enhances performance for this metric, achieving a recall@20 of 0.0708.

Table 5, 6, 7, 8, 9 show PRUC’s performance across different clusters on MovieLens with the same five base
models. Even with some fluctuations, the similar improvements are consistent with the results for XMRec.

B.4 Ablation Study

The performance comparison across Table 5-14 shows that “PRUC (Full)” generally outperforms “PRUC
w/o Causality”, highlighting the effectiveness of causal inference in PRUC. Additionally, comparing the base
model with “PRUC w/o Causality” reveals performance enhancements, suggesting that PRUC’s user cluster
discovery significantly boosts performance.
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Table 5: Performance of PRUC on different user clusters with CDL as the base model on MovieLens. “-” means a
cluster contains only training-set users, i.e., no test-set users to evaluate. The best results are marked with bold
face.

Data Cluster Method Recall@20 F1@20 MAP@20 NDCG@20 Precision@20

1, 18, 35, 45, 50, 56 →25

CDL (Base Model) 0.0 0.0 0.0 0.0 0.0
1 PRUC w/o Causality 0.0 0.0 0.0 0.0 0.0

PRUC (Full) 0.0 0.0 0.0 0.0 0.0
CDL (Base Model) - - - - -

2 PRUC w/o Causality - - - - -
PRUC (Full) - - - - -

CDL (Base Model) 0.0179 0.0274 0.0045 0.0581 0.0587
3 PRUC w/o Causality 0.0186 0.0302 0.0056 0.0864 0.0802

PRUC (Full) 0.0252 0.0409 0.0072 0.1071 0.1077

25 →1, 18, 35, 45, 50, 56

CDL (Base Model) 0.0558 0.0861 0.0174 0.1758 0.1879
1 PRUC w/o Causality 0.0317 0.0528 0.0095 0.1511 0.1572

PRUC (Full) 0.0558 0.0861 0.0174 0.1759 0.1879
CDL (Base Model) 0.0651 0.0795 0.0173 0.0938 0.1020

2 PRUC w/o Causality 0.0676 0.0880 0.0183 0.1159 0.1259
PRUC (Full) 0.1016 0.1341 0.0319 0.1832 0.1972

CDL (Base Model) - - - - -
3 PRUC w/o Causality - - - - -

PRUC (Full) - - - - -

Table 6: Performance of PRUC on different user clusters with DLRM as the base model on MovieLens. “-” means
a cluster contains only training-set users, i.e., no test-set users to evaluate. The best results are marked with bold
face.

Data Cluster Method Recall@20 F1@20 MAP@20 NDCG@20 Precision@20

1, 18, 35, 45, 50, 56 →25

DLRM (Base Model) - - - - -
1 PRUC w/o Causality - - - - -

PRUC (Full) - - - - -
DLRM (Base Model) 0.0714 0.1097 0.0285 0.2433 0.2367

2 PRUC w/o Causality 0.0269 0.0434 0.0073 0.1078 0.1112
PRUC (Full) 0.0716 0.1101 0.0284 0.2431 0.2372

DLRM (Base Model) 0.0 0.0 0.0 0.0 0.0
3 PRUC w/o Causality 0.0 0.0 0.0 0.0 0.0

PRUC (Full) 0.0 0.0 0.0 0.0 0.0

25 →1, 18, 35, 45, 50, 56

DLRM (Base Model) 0.0790 0.1264 0.0343 0.3266 0.3146
1 PRUC w/o Causality 0.0328 0.0548 0.0116 0.1716 0.1656

PRUC (Full) 0.0848 0.1366 0.0396 0.3634 0.3505
DLRM (Base Model) 0.0882 0.1390 0.0405 0.3396 0.3271

2 PRUC w/o Causality 0.0975 0.1382 0.0426 0.2572 0.2374
PRUC (Full) 0.1119 0.1561 0.0486 0.2745 0.2583

DLRM (Base Model) - - - - -
3 PRUC w/o Causality - - - - -

PRUC (Full) - - - - -

17



Under review as submission to TMLR

Table 7: Performance of PRUC on different user clusters with Perk as the base model on MovieLens. “-” means a
cluster contains only training-set users, i.e., no test-set users to evaluate. The best results are marked with bold
face.

Data Cluster Method Recall@20 F1@20 MAP@20 NDCG@20 Precision@20

1, 18, 35, 45, 50, 56 →25

Perk (Base Model) - - - - -
1 PRUC w/o Causality - - - - -

PRUC (Full) - - - - -
Perk (Base Model) 0.0686 0.1040 0.0295 0.2271 0.2150

2 PRUC w/o Causality 0.0583 0.0884 0.0215 0.1788 0.1820
PRUC (Full) 0.0683 0.1036 0.0288 0.2215 0.2136

Perk (Base Model) 0.0585 0.0745 0.0173 0.1053 0.1023
3 PRUC w/o Causality 0.0550 0.0701 0.0139 0.0942 0.0967

PRUC (Full) 0.0847 0.1074 0.0277 0.1559 0.1467

25 →1, 18, 35, 45, 50, 56

Perk (Base Model) 0.0745 0.1179 0.0332 0.2868 0.2826
1 PRUC w/o Causality 0.0319 0.0530 0.0140 0.1811 0.1563

PRUC (Full) 0.0745 0.1179 0.0332 0.2870 0.2828
Perk (Base Model) 0.0750 0.1090 0.0292 0.2033 0.1995

2 PRUC w/o Causality 0.0939 0.1338 0.0367 0.2399 0.2323
PRUC (Full) 0.0984 0.1407 0.0446 0.2628 0.2469

Perk (Base Model) - - - - -
3 PRUC w/o Causality - - - - -

PRUC (Full) - - - - -

Table 8: Performance of PRUC on different user clusters with NCF as the base model on MovieLens. “-” means a
cluster contains only training-set users, i.e., no test-set users to evaluate. The best results are marked with bold
face.

Data Cluster Method Recall@20 F1@20 MAP@20 NDCG@20 Precision@20

1, 18, 35, 45, 50, 56 →25

NCF (Base Model) 0.0 0.0 0.0 0.0 0.0
1 PRUC w/o Causality 0.0 0.0 0.0 0.0 0.0

PRUC (Full) 0.1964 0.1325 0.0230 0.0754 0.1000
NCF (Base Model) 0.0051 0.0087 0.0011 0.0282 0.0279

2 PRUC w/o Causality 0.0271 0.0443 0.0067 0.1134 0.1210
PRUC (Full) 0.0285 0.0463 0.0070 0.1159 0.1231

NCF (Base Model) 0.0047 0.0074 0.0009 0.0172 0.0177
3 PRUC w/o Causality 0.0125 0.0192 0.0023 0.0386 0.0409

PRUC (Full) 0.0120 0.0185 0.0022 0.0389 0.0410

25 →1, 18, 35, 45, 50, 56

NCF (Base Model) 0.0149 0.0248 0.0032 0.0710 0.0729
1 PRUC w/o Causality 0.0309 0.0515 0.0088 0.1494 0.1555

PRUC (Full) 0.0306 0.0512 0.0087 0.1484 0.1551
NCF (Base Model) - - - - -

2 PRUC w/o Causality - - - - -
PRUC (Full) - - - - -

NCF (Base Model) 0.0098 0.0150 0.0021 0.0302 0.0319
3 PRUC w/o Causality 0.0941 0.1316 0.0312 0.2094 0.2185

PRUC (Full) 0.1071 0.1481 0.0392 0.2309 0.2402
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Table 9: Performance of PRUC on different user clusters with LightGCN as the base model on MovieLens. “-” means
a cluster contains only training-set users, i.e., no test-set users to evaluate. The best results are marked with bold
face.

Data Cluster Method Recall@20 F1@20 MAP@20 NDCG@20 Precision@20

1, 18, 35, 45, 50, 56 →25

LightGCN (Base Model) - - - - -
1 PRUC w/o Causality - - - - -

PRUC (Full) - - - - -
LightGCN (Base Model) 0.0081 0.0132 0.0019 0.0381 0.0358

2 PRUC w/o Causality 0.0248 0.0402 0.0070 0.1075 0.1052
PRUC (Full) 0.0248 0.0401 0.0069 0.1073 0.1053

LightGCN (Base Model) 0.0226 0.0224 0.0075 0.0227 0.0222
3 PRUC w/o Causality 0.0214 0.0378 0.0115 0.1911 0.1611

PRUC (Full) 0.0563 0.0884 0.0226 0.2219 0.2056

25 →1, 18, 35, 45, 50, 56

LightGCN (Base Model) 0.0094 0.0157 0.0022 0.0498 0.0484
1 PRUC w/o Causality 0.0300 0.0495 0.0101 0.1515 0.1416

PRUC (Full) 0.0288 0.0477 0.0097 0.1492 0.1394
LightGCN (Base Model) 0.0068 0.0110 0.0011 0.0277 0.0294

2 PRUC w/o Causality 0.0297 0.0428 0.0130 0.0953 0.0765
PRUC (Full) 0.0531 0.0793 0.0204 0.1597 0.1559

LightGCN (Base Model) - - - - -
3 PRUC w/o Causality - - - - -

PRUC (Full) - - - - -

Table 10: Performance of PRUC on different user clusters with CDL as the base model on XMRec. “-” means a
cluster contains only training-set users, i.e., no test-set users to evaluate. The best results are marked with bold
face.

Data Cluster Method Recall@20 F1@20 MAP@20 NDCG@20 Precision@20

France, Italy, India →Japan, Mexico

CDL (Base Model) 0.0241 0.0028 0.0062 0.0018 0.0015
1 PRUC w/o Causality 0.1972 0.0238 0.0905 0.0197 0.0127

PRUC (Full) 0.0708 0.0074 0.0652 0.0105 0.0039

CDL (Base Model) 0.0126 0.0014 0.0022 0.0007 0.0008
2 PRUC w/o Causality 0.0902 0.0107 0.0236 0.0069 0.0057

PRUC (Full) 0.1156 0.0138 0.0431 0.0109 0.0073

CDL (Base Model) - - - - -
3 PRUC w/o Causality - - - - -

PRUC (Full) - - - - -

Mexico, Spain, India →Japan, Germany

CDL (Base Model) 0.1742 0.0225 0.0333 0.0123 0.0120
1 PRUC w/o Causality 0.2114 0.0267 0.0707 0.0194 0.0142

PRUC (Full) 0.1665 0.0222 0.0634 0.0170 0.0119

CDL (Base Model) 0.0903 0.0102 0.0289 0.0072 0.0054
2 PRUC w/o Causality 0.1532 0.0187 0.0524 0.0136 0.0100

PRUC (Full) 0.1796 0.0233 0.0579 0.0160 0.0124

CDL (Base Model) - - - - -
3 PRUC w/o Causality - - - - -

PRUC (Full) - - - - -

Germany, Italy, Japan →United States, India

CDL (Base Model) 0.0262 0.0059 0.0079 0.0041 0.0033
1 PRUC w/o Causality 0.0261 0.0063 0.0072 0.0044 0.0036

PRUC (Full) 0.0266 0.0064 0.0062 0.0042 0.0037

CDL (Base Model) 0.0244 0.0054 0.0088 0.0042 0.0031
2 PRUC w/o Causality 0.0166 0.0037 0.0041 0.00234 0.0021

PRUC (Full) 0.0250 0.0055 0.0088 0.0042 0.0031

CDL (Base Model) 0.0277 0.0049 0.0066 0.0028 0.0027
3 PRUC w/o Causality 0.0194 0.0045 0.0049 0.0030 0.0026

PRUC (Full) 0.0278 0.0049 0.0067 0.0028 0.0027
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Table 11: Performance of PRUC on different user clusters with DLRM as the base model on XMRec. “-” means a
cluster contains only training-set users, i.e., no test-set users to evaluate. The best results are marked with bold
face.

Data Cluster Method Recall@20 F1@20 MAP@20 NDCG@20 Precision@20

France, Italy, India →Japan, Mexico

DLRM (Base Model) 0.0051 0.0005 0.0004 0.0002 0.0003
1 PRUC w/o Causality 0.0246 0.0027 0.0039 0.0014 0.0014

PRUC (Full) 0.0345 0.004 0.0056 0.0021 0.0021
DLRM (Base Model) 0.0000 0.0000 0.0000 0.0000 0.0000

2 PRUC w/o Causality 0.0150 0.0017 0.0040 0.0010 0.0009
PRUC (Full) 0.0000 0.0000 0.0000 0.0000 0.0000

DLRM (Base Model) - - - - -
3 PRUC w/o Causality - - - - -

PRUC (Full) - - - - -

Mexico, Spain, India →Japan, Germany

DLRM (Base Model) 0.0000 0.0000 0.0000 0.0000 0.0000
1 PRUC w/o Causality 0.3296 0.0416 0.0203 0.0153 0.0222

PRUC (Full) 0.3074 0.0395 0.0213 0.0152 0.0211
DLRM (Base Model) 0.0780 0.0096 0.0087 0.0042 0.0051

2 PRUC w/o Causality 0.1398 0.0174 0.0277 0.0096 0.0093
PRUC (Full) 0.1984 0.0241 0.0555 0.0157 0.0128

DLRM (Base Model) - - - - -
3 PRUC w/o Causality - - - - -

PRUC (Full) - - - - -

Germany, Italy, Japan →United States, India

DLRM (Base Model) 0.0023 0.0006 0.0003 0.0003 0.0003
1 PRUC w/o Causality 0.0042 0.0011 0.0010 0.0007 0.0007

PRUC (Full) 0.0046 0.0011 0.0009 0.0007 0.0006
DLRM (Base Model) 0.0018 0.0005 0.0003 0.0003 0.0003

2 PRUC w/o Causality 0.0045 0.0012 0.0010 0.0007 0.0007
PRUC (Full) 0.0045 0.0011 0.0012 0.0007 0.0007

DLRM (Base Model) 0.0036 0.0008 0.0005 0.0004 0.0004
3 PRUC w/o Causality 0.0052 0.0015 0.0009 0.0009 0.0009

PRUC (Full) 0.0141 0.0034 0.0075 0.0032 0.0019

Table 12: Performance of PRUC on different user clusters with PerK as the base model on XMRec. “-” means a
cluster contains only training-set users, i.e., no test-set users to evaluate. The best results are marked with bold
face.

Data Cluster Method Recall@20 F1@20 MAP@20 NDCG@20 Precision@20

France, Italy, India →Japan, Mexico

PerK (Base Model) 0.1752 0.0204 0.1152 0.022 0.0108
1 PRUC w/o Causality 0.2153 0.0260 0.1255 0.0252 0.0139

PRUC (Full) 0.1782 0.0210 0.1162 0.0226 0.0114

PerK (Base Model) 0.0986 0.0115 0.0403 0.0094 0.0061
2 PRUC w/o Causality 0.1243 0.0143 0.0440 0.0108 0.0076

PRUC (Full) 0.1629 0.0189 0.0548 0.0138 0.0100

PerK (Base Model) - - - - -
3 PRUC w/o Causality - - - - -

PRUC (Full) - - - - -

Mexico, Spain, India →Japan, Germany

PerK (Base Model) 0.1434 0.0176 0.0582 0.014 0.0094
1 PRUC w/o Causality 0.2175 0.0262 0.0913 0.0217 0.0140

PRUC (Full) 0.2905 0.0353 0.1157 0.0278 0.0188

PerK (Base Model) 0.1495 0.0184 0.0723 0.0166 0.0098
2 PRUC w/o Causality 0.2783 0.0307 0.0964 0.0232 0.0163

PRUC (Full) 0.1790 0.0224 0.0646 0.0167 0.0120

PerK (Base Model) - - - - -
3 PRUC w/o Causality - - - - -

PRUC (Full) - - - - -

Germany, Italy, Japan →United States, India

PerK (Base Model) 0.0194 0.0043 0.0057 0.003 0.0024
1 PRUC w/o Causality 0.0295 0.0066 0.0087 0.0046 0.0037

PRUC (Full) 0.0308 0.0068 0.0086 0.0046 0.0038

PerK (Base Model) 0.0126 0.0028 0.0032 0.0018 0.0016
2 PRUC w/o Causality 0.0155 0.0035 0.0040 0.0022 0.0020

PRUC (Full) 0.0162 0.0037 0.0048 0.0025 0.0021

PerK (Base Model) 0.0261 0.0035 0.0091 0.0025 0.0019
3 PRUC w/o Causality 0.0174 0.0027 0.0013 0.0012 0.0014

PRUC (Full) 0.0266 0.0041 0.0102 0.0033 0.0022
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Table 13: Performance of PRUC on different user clusters with NCF as the base model on XMRec. “-” means a
cluster contains only training-set users, i.e., no test-set users to evaluate. The best results are marked with bold
face.

Data Cluster Method Recall@20 F1@20 MAP@20 NDCG@20 Precision@20

France, Italy, India →Japan, Mexico

NCF (Base Model) 0.0090 0.0010 0.0019 0.0005 0.0005
1 PRUC w/o Causality 0.2013 0.0238 0.0537 0.0151 0.0127

PRUC (Full) 0.1581 0.0176 0.0476 0.0122 0.0093
NCF (Base Model) 0.0165 0.0019 0.0032 0.0010 0.0010

2 PRUC w/o Causality 0.0893 0.0107 0.0184 0.0061 0.0057
PRUC (Full) 0.1062 0.0130 0.0280 0.0084 0.0069

NCF (Base Model) - - - - -
3 PRUC w/o Causality - - - - -

PRUC (Full) - - - - -

Mexico, Spain, India →Japan, Germany

NCF (Base Model) 0.0097 0.0013 0.0022 0.0007 0.0007
1 PRUC w/o Causality 0.1081 0.0142 0.0181 0.0073 0.0076

PRUC (Full) 0.1560 0.0202 0.0280 0.0107 0.0108
NCF (Base Model) - - - - -

2 PRUC w/o Causality - - - - -
PRUC (Full) - - - - -

NCF (Base Model) 0.0 0.0 0.0 0.0 0.0
3 PRUC w/o Causality 0.0 0.0 0.0 0.0 0.0

PRUC (Full) 0.0 0.0 0.0 0.0 0.0

Germany, Italy, Japan →United States, India

NCF (Base Model) 0.0020 0.0005 0.0006 0.0004 0.0003
1 PRUC w/o Causality 0.0204 0.0051 0.0041 0.0030 0.0029

PRUC (Full) 0.0214 0.0055 0.0039 0.0032 0.0031
NCF (Base Model) 0.0018 0.0005 0.0003 0.0003 0.0003

2 PRUC w/o Causality 0.0064 0.0015 0.0008 0.0008 0.0009
PRUC (Full) 0.0079 0.0021 0.0011 0.0011 0.0012

NCF (Base Model) 0.0 0.0 0.0 0.0 0.0
3 PRUC w/o Causality 0.0 0.0 0.0 0.0 0.0

PRUC (Full) 0.0 0.0 0.0 0.0 0.0

Table 14: Performance of PRUC on different user clusters with LightGCN as the base model on XMRec. “-” means
a cluster contains only training-set users, i.e., no test-set users to evaluate. The best results are marked with bold
face.

Data Cluster Method Recall@20 F1@20 MAP@20 NDCG@20 Precision@20

France, Italy, India →Japan, Mexico

LightGCN (Base Model) 0.0261 0.0034 0.0028 0.0015 0.0018
1 PRUC w/o Causality 0.1742 0.0209 0.0749 0.0167 0.0111

PRUC (Full) 0.1400 0.0154 0.0482 0.0115 0.0081
LightGCN (Base Model) 0.0168 0.0019 0.0054 0.0013 0.0010

2 PRUC w/o Causality 0.0804 0.0095 0.0211 0.0060 0.0051
PRUC (Full) 0.0936 0.0115 0.0288 0.0079 0.0061

LightGCN (Base Model) - - - - -
3 PRUC w/o Causality - - - - -

PRUC (Full) - - - - -

Mexico, Spain, India →Japan, Germany

LightGCN (Base Model) 0.0093 0.0009 0.0046 0.0008 0.0005
1 PRUC w/o Causality 0.0972 0.0097 0.0129 0.0045 0.0051

PRUC (Full) 0.0 0.0 0.0 0.0 0.0
LightGCN (Base Model) 0.0170 0.0023 0.0062 0.0017 0.0012

2 PRUC w/o Causality 0.1040 0.0135 0.0215 0.0077 0.0072
PRUC (Full) 0.1790 0.0224 0.0646 0.0167 0.0120

LightGCN (Base Model) - - - - -
3 PRUC w/o Causality - - - - -

PRUC (Full) - - - - -

Germany, Italy, Japan →United States, India

LightGCN (Base Model) 0.0016 0.0005 0.0002 0.0002 0.0003
1 PRUC w/o Causality 0.0062 0.0017 0.0012 0.0010 0.0010

PRUC (Full) 0.0066 0.0017 0.0014 0.0011 0.0010
LightGCN (Base Model) 0.0 0.0 0.0 0.0 0.0

2 PRUC w/o Causality 0.0 0.0 0.0 0.0 0.0
PRUC (Full) 0.0 0.0 0.0 0.0 0.0

LightGCN (Base Model) 0.0016 0.0004 .0002 0.0002 0.0002
3 PRUC w/o Causality 0.0037 0.0009 0.0010 0.0006 0.0005

PRUC (Full) 0.0039 0.0008 0.0012 0.0006 0.0005

21


	Introduction
	Probabilistic Residual User Clustering
	Problem Setting and Notations
	Method Overview
	Inference and Learning
	Plug-and-Play PRUC

	Experiments
	Datasets
	Base Recommenders and Baselines
	Metrics
	Results

	Related Work
	Conclusion
	Appendix
	More Details on Experiments and Implementation
	Metrics
	Training Configurations
	Performance of Each Clusters Discovered by PRUC
	Ablation Study


