
Published as a conference paper at ICLR 2024

TIME FAIRNESS IN ONLINE KNAPSACK PROBLEMS

Adam Lechowicz
University of Massachusetts Amherst
alechowicz@cs.umass.edu

Rik Sengupta
University of Massachusetts Amherst
rsengupta@cs.umass.edu

Bo Sun
University of Waterloo
bo.sun@uwaterloo.ca

Shahin Kamali
York University
kamalis@yorku.ca

Mohammad Hajiesmaili
University of Massachusetts Amherst
hajiesmaili@cs.umass.edu

ABSTRACT

The online knapsack problem is a classic problem in the field of online algorithms.
Its canonical version asks how to pack items of different values and weights arriv-
ing online into a capacity-limited knapsack so as to maximize the total value of
the admitted items. Although optimal competitive algorithms are known for this
problem, they may be fundamentally unfair, i.e., individual items may be treated
inequitably in different ways. We formalize a practically-relevant notion of time
fairness which effectively models a trade off between static and dynamic pricing in
a motivating application such as cloud resource allocation, and show that existing
algorithms perform poorly under this metric. We propose a parameterized determin-
istic algorithm where the parameter precisely captures the Pareto-optimal trade-off
between fairness (static pricing) and competitiveness (dynamic pricing). We show
that randomization is theoretically powerful enough to be simultaneously competi-
tive and fair; however, it does not work well in experiments. To further improve
the trade-off between fairness and competitiveness, we develop a nearly-optimal
learning-augmented algorithm which is fair, consistent, and robust (competitive),
showing substantial performance improvements in numerical experiments.

1 INTRODUCTION

The online knapsack problem (OKP) is a well-studied problem in online algorithms. It models a
resource allocation process, in which one provider allocates a limited resource (i.e., the knapsack’s
capacity) to consumers (i.e., items) arriving sequentially in order to maximize the total return
(i.e., optimally pack items subject to the capacity constraint). In OKP, as in many other online
decision problems, there is a trade-off between efficiency, i.e., maximizing the value of packed items,
and fairness, i.e., ensuring equitable treatment for different items across some desirable criteria.

Example 1.1. Consider a cloud computing resource accepting heterogeneous jobs online from clients
sequentially. Each job includes a bid that the client is willing to pay, and an amount of resources
required to execute it. The resource is not sufficiently large to service all of the incoming requests.
We define the quality of a job as the ratio of the price paid by the client over the resources required.

How do we algorithmically solve the problem posed in Example 1.1? Note that the limited resource
implies that the problem of accepting and rejecting items reduces precisely to OKP. If we cared
only about the overall quality of accepted jobs, we would intuitively be solving the unconstrained
online knapsack problem. However, it might be desirable for an algorithm to apply the same quality
criteria to each job that arrives. As we will show in §2, existing optimal algorithms for OKP do
not fulfill this second requirement. In particular, although two jobs may have a priori identical
quality, the optimal algorithm discriminates between them based on their arrival time in the online
queue: a typical job, therefore, has a higher chance of being accepted if it happens to arrive earlier
rather than later. Preventing these kinds of choices while still maintaining competitive standards
of overall quality will form this work’s focus. We briefly note that solving OKP is equivalent to
designing a pricing strategy – for example, the minimum value that the online knapsack will accept
can be interpreted as a posted price (Zhang et al., 2017). The notion of fairness discussed above

1

Published as a conference paper at ICLR 2024

formalizes a design goal of static (flat-rate) pricing, which is often more desirable from an end-user
perspective, mainly due to its simplicity. A customer can price their bid at the static posted price,
having confidence that their job will be accepted. This is in contrast with existing optimal algorithms
for OKP, which correspond to dynamic (variable) pricing strategies – these are efficient in terms of
revenue maximization (Al-Roomi et al., 2013; Chakraborty et al., 2013; Borenstein et al., 2002), but
undesirable from an end-user perspective due to volatility, uncertainty, and inequity. Of note for this
work, the ridesharing industry successfully uses a hybrid model of surge pricing (Hall et al., 2015).

Precursors to this work. OKP was first studied by Marchetti-Spaccamela and Vercellis (1995), with
important optimal results following in Zhou et al. (2008). Recent work (Im et al., 2021; Zeynali et al.,
2021; Böckenhauer et al., 2014) has explored this problem with advice and/or learning augmentation,
which we also consider – in particular, we consider a prediction model which is similar to the
frequency predictions explored by Im et al. (2021). In the context of fairness, our work is most
closely aligned with the notions of time fairness recently studied for prophet inequalities (Arsenis and
Kleinberg, 2022) and the secretary problem (Buchbinder et al., 2009), which considered stochastic
and random order input arrivals. To the best of our knowledge, our work is the first to consider any
notions of fairness in OKP while considering adversarial inputs. We present a comprehensive review
of related studies on the knapsack problem and fairness in Appendix A.

Our contributions. First, we introduce a natural notion of time-independent fairness. We show
(Thm. 3.3) that the original notion (Arsenis and Kleinberg, 2022) is too restrictive for OKP, and
motivate a revised definition which is feasible. We design a deterministic algorithm to achieve the
desired fairness properties and show that it captures the Pareto-optimal trade-off between fairness and
competitiveness (Thms. 4.5, 4.6). We further investigate randomization, showing that a randomized
algorithm can achieve optimal competitiveness and fairness in theory (Thm. 4.7, Prop. 4.8); however,
in trace-driven experiments, this underperforms significantly. Motivated by this observation, we
incorporate predictions to simultaneously improve fairness and competitiveness. We introduce a fair,
deterministic learning-augmented algorithm with bounded consistency and robustness (Thms. 4.11,
4.12), and we show that improving this significantly is essentially impossible (Thm. 4.13). Finally,
we present numerical experiments evaluating our algorithms.

Our research has three primary technical contributions. First, our definition of α-conditional time-
independent fairness, which is generalizable to many online problems, captures a natural perspective
on fairness in online settings, particularly when the impacts of static or dynamic pricing are of interest.
Second, we present a constructive lower-bound technique to derive a Pareto-optimal trade-off between
fairness and competitiveness, illustrating the inherent challenges in this problem. This provides a
strong understanding of the necessary compromise between fair decision-making and efficiency in
OKP, and gives insight into the results achievable for other online problems. Lastly, we design a
nearly-optimal learning-augmented algorithm which matches existing results for learning-augmented
OKP while introducing fairness guarantees, showing that predictions can simultaneously improve an
online algorithm’s fairness and performance.

2 PROBLEM & PRELIMINARIES

Problem formulation. In the online knapsack problem (OKP), we have a knapsack (resource) with
capacity B and items arriving online. We denote an instance I of OKP as a multiset of n items,
where each item has a value and a weight. Formally, I =

[
(vj , wj)

n
j=1

]
.We assume that vj and wj

correspond to the value and weight respectively of the jth item in the arrival sequence, where j also
denotes the arrival time of this item. We denote by Ω the (infinite) set of all feasible input instances.

The objective in OKP is to accept items into the knapsack to maximize the sum of values while
not violating the capacity limit of B. As is standard in the literature on online algorithms, at each
time step j, the algorithm is presented with an item, and must immediately decide whether to
accept it (xj = 1) or reject it (xj = 0). The offline version of OKP (i.e., Knapsack) is a classical
combinatorial problem with strong connections to resource allocation. It can be summarized as
max

∑n
j=1 vjxj , s.t.

∑n
j=1 wjxj ≤ B, xj ∈ {0, 1} for all j ∈ [n].

Knapsack is a canonical NP-complete problem (strongly NP-complete for non-integral inputs (Wo-
jtczak, 2018)). There is a folklore pseudopolynomial algorithm known for the exact problem.
Knapsack is one of the hardest but most ubiquitous problems arising in applications today.

2

Published as a conference paper at ICLR 2024

Competitive analysis. OKP has been extensively studied under the framework of competitive
analysis, where the goal is to design an online algorithm that maintains a small competitive ra-
tio (Borodin et al., 1992), i.e., performs nearly as well as the offline optimal. For online algorithm
ALG and offline algorithm OPT, the competitive ratio for a maximization problem is defined as
maxI∈Ω OPT(I)/ALG(I), where OPT(I) is the optimal profit on input I , and ALG(I) is the profit
obtained by the online algorithm on the same. This ratio is always at least one, and lower is better.

Assumptions and additional notation. We assume that the set of value densities {vj/wj}j∈[n]

has bounded support, i.e., vj/wj ∈ [L,U] for all j, where L and U are known. These are standard
assumptions in the literature for many online problems, including OKP, one-way trading, and
online search; without them, the competitive ratio of any online algorithm is unbounded (Marchetti-
Spaccamela and Vercellis, 1995; Zhou et al., 2008). We also adopt an assumption from the literature
on OKP, assuming that individual item weights are sufficiently small compared to the knapsack’s
capacity (Zhou et al., 2008). This is reasonable in practice and necessary for a meaningful result. For
the rest of the paper, we will assume WLOG that B = 1. We can scale everything down by a factor
of B otherwise. Let zj ∈ [0, 1] denote the knapsack utilization when the jth item arrives, i.e. the
fraction of the knapsack’s total capacity that is currently full.

Existing results. Prior work on OKP has resulted in an optimal deterministic algorithm for the
problem described above, shown by Zhou et al. (2008) in a seminal work using the framework of
online threshold-based algorithms (OTA). In OTA, a carefully designed threshold function is used to
make decisions at each time step. This threshold is specifically designed such that greedily accepting
inputs whose values meet or exceed the threshold at each step provides competitive guarantees. The
OTA framework has seen success in the related online search and one-way trading problems (Lee
et al., 2022; Sun et al., 2021; Lorenz et al., 2008) as well as OKP (Sun et al., 2022; Yang et al., 2021).
The algorithm shown by Zhou et al. (2008) is a deterministic threshold-based algorithm that achieves
a competitive ratio of ln(U/L) + 1; they also show that this is the optimal competitive ratio for any
deterministic or randomized algorithm. We henceforth refer to this algorithm as the ZCL algorithm.
In the ZCL algorithm, items are admitted based on a monotonically increasing threshold function
Φ(z) = (Ue/L)

z
(L/e), where z ∈ [0, 1] is the current utilization (see Fig. 1(a)). The jth item in the

sequence is accepted if it satisfies vj/wj ≥ Φ(zj), where zj is the utilization at the time of the item’s
arrival. This algorithm achieves the optimal competitive ratio (Zhou et al., 2008, Thms. 3.2, 3.3).

3 TIME FAIRNESS

In Example 1.1, the infringed constraint was one of time fairness. In this section, inspired by Arsenis
and Kleinberg (2022) who explore the concept of time fairness in the context of prophet inequalities,
we formally define the notion in the context of OKP. We relegate formal proofs to Appendix B.

3.1 TIME-INDEPENDENT FAIRNESS (TIF)

In Example 1.1, it is reasonable to ask that the probability of an item’s admission into the knapsack
depend solely on its value density x, and not on its arrival time j. This is a natural generalization to
OKP of the time-independent fairness constraint, proposed by Arsenis and Kleinberg (2022).
Definition 3.1 (Time-Independent Fairness (TIF) for OKP). An OKP algorithm ALG is said to satisfy
TIF if there exists a function p : [L,U] → [0, 1] such that:

Pr [ALG accepts jth item in I | vj/wj = x] = p(x), for all I ∈ Ω, j ∈ [n], x ∈ [L,U].

In other words, the probability of admitting an item of value density x depends only on x, and not on
its arrival time. Note that this definition makes sense only in the online setting. We start by noting
that the ZCL algorithm is not TIF.
Observation 3.2. The ZCL algorithm (Zhou et al., 2008) is not TIF.

We seek to design an algorithm for OKP that satisfies TIF while being competitive against an optimal
offline solution. Given Observation 3.2, a natural question is whether any such algorithm exists that
maintains a bounded competitive ratio, perhaps in the presence of some additional information about
the input. For instance, we could seek to leverage ML predictions in the spirit of Im et al. (2021),
who present the first work, to our knowledge, that incorporates ML predictions into OKP. They use

3

Published as a conference paper at ICLR 2024

frequency predictions, which give upper and lower bounds on the total weight of items with a given
value density in the input instance. Formally, if sx :=

∑
j:vj/wj=x wj is the total weight of items

with value density x, we get a predicted pair (ℓx, ux) satisfying ℓx ≤ sx ≤ ux for all x ∈ [L,U].
The OKP instance is assumed to respect these predictions, although it can be adversarial within
these bounds. It is conceivable that additional information such as the total number of items or these
frequency predictions could enable a nontrivial OKP algorithm to guarantee TIF.

Of course, the trivial algorithm which rejects all items is TIF, as the probability of accepting any item
is zero. We now show that there is no other algorithm for OKP that achieves our desired conditions
simultaneously, even for perfect predictions, i.e., ℓx = ux = sx for all x ∈ [L,U] (i.e., the algorithm
knows each sx in advance), and even with advance knowledge of the length of the input sequence.

Theorem 3.3. There is no nontrivial algorithm for OKP that guarantees TIF without additional
information about the input. Further, even if the input length n or perfect frequency predictions as
defined in Im et al. (2021) are known in advance, no nontrivial algorithm can guarantee TIF.

Theorem 3.3 shows that TIF can be essentially closed off as a candidate for a fairness constraint on
competitive algorithms for OKP, even in the presence of reasonable information. An algorithm that
knows both n and the weights of input items is closer in spirit to an offline algorithm than an online
one. We remark that (Arsenis and Kleinberg, 2022, Thm. 6.2) shows a similar impossibility result,
wherein certain secretary problem variants which must hire at least one candidate cannot satisfy TIF.

3.2 CONDITIONAL TIME-INDEPENDENT FAIRNESS (CTIF)

Motivated by the results in §3.1, we now present a revised but still natural notion of fairness in
Definition 3.4. This notion relaxes the constraint and narrows the scope of fairness to consider items
which arrive while the knapsack’s utilization is within a subinterval of the knapsack’s capacity.

Definition 3.4 (α-Conditional Time-Independent Fairness (α-CTIF) for OKP). For α ∈ [0, 1], an
OKP algorithm ALG is said to satisfy α-CTIF if there exists a subinterval A = [a, b] ⊆ [0, 1] where
b− a = α, and a function p : [L,U] → [0, 1] such that:

Pr [ALG accepts jth item in I | (vj/wj = x) and (zj + wj ∈ A)] = p(x),

for all I ∈ Ω, j ∈ [n], x ∈ [L,U].

Note that if α = 1, then A = [0, 1], and any item that arrives while the knapsack still has the capacity
to admit it is considered within this definition. (i.e., 1-CTIF is the same as TIF provided that the
knapsack has capacity remaining for the item under consideration). Furthermore, the larger the value
of α, the stronger the fairness guarantee, but even the strongest 1-CTIF is strictly weaker than TIF.
This notion circumvents the challenges of TIF and is feasible in the online setting while preserving
competitive guarantees. However, we note that the canonical ZCL algorithm still is not 1-CTIF.

Observation 3.5. The ZCL algorithm (Zhou et al., 2008) is not 1-CTIF.

In the context of Example 1.1, α-CTIF formalizes a trade-off between static (flat-rate) and dynamic
(variable) pricing schemes. For instance, a cloud resource provider could generally provide a simple,
interpretable acceptance threshold for their customers (static pricing within the fair subinterval),
then switch to a dynamic pricing strategy when the resource is highly utilized or under utilized in
order to maximize revenue. For this motivating application, the tunable value of α is a benefit to the
resource provider, who can modulate the “fairness parameter” up or down to attract customers or
manage high demand, respectively. A real-world example of such a transition between static and
dynamic pricing can be found in the surge pricing model used successfully by many ride sharing
platforms (Castillo et al., 2017). In cloud applications, dynamic pricing defines the price of Virtual
Machines (VMs) based on electricity price or demand, in contrast to the more common model of static
pricing (Alzhouri et al., 2017; Zhang et al., 2020). Our definition of α-CTIF also offers a fairness
concept that is both achievable for OKP and potentially adaptable to other online problems, such as
online search (Lorenz et al., 2008), one-way trading (El-Yaniv et al., 2001), bin-packing (Balogh
et al., 2017; Johnson et al., 1974), and single-leg revenue management (Ma et al., 2021; Balseiro et al.,
2023). We are now ready to present our main results, including deterministic and learning-augmented
algorithms which satisfy α-CTIF and provide competitive guarantees.

4

Published as a conference paper at ICLR 2024

(a) (b) (c)

Figure 1: Plotting the threshold functions for several OKP
algorithms. (a) ZCL (§2) and the baseline algorithm (see §3);
(b) ECT (§4.1); (c) LA-ECT (§4.3)

Figure 2: Trade-off for the baseline
algorithm and the Pareto-optimal
lower bound. U/L = 5.

4 ONLINE FAIR ALGORITHMS

In this section, we start with some simple fairness-competitiveness trade-offs. In §4.1, we develop
competitive algorithms which satisfy CTIF constraints. Finally, we explore the power of randomiza-
tion in §4.2 and predictions in §4.3. For the sake of brevity, we relegate most proofs to Appendix C,
but provide proof sketches in a few places. We start with a warm-up result capturing inherent trade-
offs through an examination of constant threshold-based algorithms for OKP. Such an algorithm sets
a single threshold ϕ and greedily accepts any items with value density ≥ ϕ.
Proposition 4.1. Any constant threshold-based algorithm for OKP is 1-CTIF. Furthermore, any
constant threshold-based deterministic algorithm for OKP cannot be better than (U/L)-competitive.

How does this trade-off manifest itself in the ZCL algorithm? We know from Observation 3.5 that
ZCL is not 1-CTIF. In the next result, we show that this algorithm is, in fact, α-CTIF for some α > 0.
Proposition 4.2. The ZCL algorithm is 1

ln(U/L)+1 -CTIF.

4.1 PARETO-OPTIMAL DETERMINISTIC ALGORITHMS

We present α-CTIF threshold-based deterministic algorithms which maintain competitive bounds in
terms of U , L, and α. We’ll start with a simple baseline idea to contextualize our later results.

Baseline algorithm. Proposition 4.2 together with the competitive optimality of the ZCL algorithm
shows that we can get a competitive, α-CTIF algorithm for OKP when α ≤ 1/ln(U/L)+1. Now, let
α ∈ [1/ln(U/L)+1, 1] be a parameter capturing our desired fairness. To design a competitive α-CTIF
algorithm, we can use Proposition 4.1 and apply it to the “constant threshold” portion of the utilization
interval, as described in the proof of Proposition 4.2. The idea is to define a new threshold function
that “stretches” out the portion of the threshold from [0, 1/ln(U/L)+1] (where Φ(z) ≤ L) to our desired
length of a subinterval. The intuitive idea above is captured by function Φα(z) = (Ue/L)

z−ℓ/1−ℓ
(L/e),

where ℓ = α+ α−1/ln(U/L) (Fig. 1(a)). Note that Φα(z) ≤ L for all z ≤ α.

Theorem 4.3. For α ∈ [1/ln(U/L)+1, 1], the baseline algorithm is U [ln(U/L)+1]
Lα[ln(U/L)+1]+(U−L)(1−ℓ) -

competitive and α-CTIF for OKP.

The proof (Appendix C) relies on keeping track of the common items picked by the algorithm and
an optimal offline one, and approximating the total value obtained by the algorithm by an integral.
Although this algorithm is competitive and α-CTIF, in the following, we will demonstrate a gap
between the algorithm and the Pareto-optimal lower bound from Theorem 4.5 (Fig. 2).

Lower bound. We consider how the α-CTIF constraint impacts the achievable competitive ratio
for any online deterministic algorithm. To show such a lower bound, we first construct a family of
special instances and then show that for any α-CTIF online deterministic algorithm (which is not
necessarily threshold-based), the competitive ratio is lower bounded under the constructed special
instances. It is known that difficult instances for OKP occur when items arrive at the algorithm in a
non-decreasing order of value density (Zhou et al., 2008; Sun et al., 2020). We now formalize such a
family of instances {Ix}x∈[L,U], where Ix is called an x-continuously non-decreasing instance.
Definition 4.4. Let N,m ∈ N be sufficiently large, and δ := (U − L)/N . For x ∈ [L,U], an
instance Ix ∈ Ω is x-continuously non-decreasing if it consists of Nx := ⌈(x−L)/δ⌉+1 batches of
items and the i-th batch (i ∈ [Nx]) contains m items with value density L+ (i− 1)δ and weight 1/m.

5

Published as a conference paper at ICLR 2024

v.=L/m
w.=1/m , . . . ,

v.=L/m
w.=1/m︸ ︷︷ ︸

Batch 0 with m items

,
v.=(L+δ)/m
w.=1/m , . . . ,

v.=(L+δ)/m
w.=1/m︸ ︷︷ ︸

Batch 1 with m items

, . . .
v.=x/m
w.=1/m , . . . ,

v.=x/m
w.=1/m︸ ︷︷ ︸

Batch Nx with m items

Figure 3: Ix consists of Nx batches of items, arriving in increasing order of value density.

Note that IL is simply a stream of m items, each with weight 1/m and value density L. See Fig. 3 for
an illustration of an x-continuously non-decreasing instance.
Theorem 4.5. No α-CTIF deterministic online algorithm for OKP can achieve a competitive ratio

smaller than
W(U(1−α)

Lα)
1−α , where W (·) is the Lambert W function.

Proof sketch. Consider the “fair” utilization region of length α for any α-CTIF algorithm, and
consider the lowest value density v that it accepts in this interval. We show (Lemma C.1) that it is
sufficient to focus on v = L since the competitive ratio is strictly worst if v > L. Under an instance
Ix (for which the offline optimum is x), any β′-competitive deterministic algorithm obtains a value
of αL+

∫ x

αβ′L
udg(u), where the integrand represents the approximate value obtained from items

with value density u and weight allocation dg(u). Using Grönwall’s Inequality yields a necessary
condition for the competitive ratio β′ to be ln(U/αβ′L)/β′ = 1− α, and the result follows.

Motivated by this Pareto-optimal trade-off, in the following, we design an improved algorithm that
closes the theoretical gap between the intuitive baseline algorithm and the lower bound by developing
a new threshold function utilizing a discontinuity to be more selective outside the fair region.

Extended Constant Threshold (ECT) for OKP. Let α ∈ [1/ln(U/L)+1, 1] be a fairness parameter.
Given this α, we define a threshold function Ψα(z) on the interval z ∈ [0, 1], where z is the current
knapsack utilization. Ψα is defined as follows (Fig. 1(b)):

Ψα(z) = L for z ∈ [0, α], and Ψα(z) = Ueβ(z−1) for z ∈ (α, 1], where β =
W(U(1−α)

Lα)
1−α .

Let us call this algorithm ECT[α]. The following captures its fairness/competitiveness trade-off.
Theorem 4.6. For any α ∈ [1/ln(U/L)+1, 1], ECT[α] is β-competitive and α-CTIF.

Proof sketch. For an instance I ∈ Ω, suppose ECT[α] terminates with the utilization at zT , and let W
and V denote the total weight and total value of the common items picked by ECT[α](I) and OPT(I)
respectively. Using OPT(I) ≤ V +Ψα(zT)(1−W), we can bound the ratio OPT(I)/ECT[α](I)
by Ψα(zT)/

∑
j∈P Ψα(zj)wj , where P is the set of items picked by ECT[α]. Taking item weights

to be very small, we can approximate this denominator by
∫ zT
0

Ψα(z)dz. This quantity can be lower
bounded by Lα when zT = α, and by Ψα(zT)/β when zT > α, using some careful case analysis.
In either case, we can bound the competitive ratio by β. The α-CTIF result is by definition.

4.2 RANDOMIZATION HELPS

In a follow-up to Theorem 4.6, we can ask whether a randomized algorithm for OKP exhibits similar
trade-offs as in the deterministic setting. We refute this, showing that randomization can satisfy
1-CTIF while simultaneously obtaining the optimal competitive ratio in expectation.

Motivated by related work on randomized OKP algorithms, as well as by Theorem 4.1, we highlight
one such randomized algorithm and show that it provides the best possible fairness guarantee.
In addition to their optimal deterministic ZCL algorithm, Zhou et al. (2008) also show a related
randomized algorithm for OKP; we will henceforth refer to this algorithm as ZCL-Randomized.
ZCL-Randomized samples a constant threshold ϕ from the continuous distribution D over the
interval [0, U], with probability density function f(x) = c/x for L ≤ x ≤ U , and f(x) = c/L
for 0 ≤ x ≤ L, where c = 1/[ln(U/L) + 1]. When item j arrives, ZCL-Randomized accepts it iff
vj/wj ≥ ϕ and zj +wj ≤ 1 (i.e., the item’s value density is above the threshold, and there is enough
space for it). The following result shows the competitive optimality of ZCL-Randomized.
Theorem 4.7 (Zhou et al. (2008), Thms. 3.1, 3.3). ZCL-Randomized is ln(U/L) + 1-competitive
over every input sequence. Furthermore, no online algorithm can achieve a better competitive ratio.

ZCL-Randomized is trivially 1-CTIF by Proposition 4.1. We state this as a proposition without proof.

6

Published as a conference paper at ICLR 2024

Proposition 4.8. ZCL-Randomized is 1-CTIF.

Although ZCL-Randomized seems to provide the “best of both worlds” from a theoretical perspective,
in practice (see §5) we find that it falls short compared to the deterministic algorithms. We believe this
is consistent with empirical results for caching (Reineke, 2014), where randomized techniques are
theoretically superior but not used in practice. Motivated by this and our deterministic lower bounds,
in the next section we draw inspiration from the emerging field of learning-augmented algorithms.

4.3 PREDICTION HELPS

In this section, we explore how predictions might help to achieve a better trade-off between com-
petitiveness and fairness. We propose an algorithm, LA-ECT, which integrates predictions and
matches prior consistency-robustness bounds for learning-augmented OKP, while introducing CTIF
guarantees. We give a corresponding lower bound for the fairness-consistency-robustness trade-off
which shows LA-ECT is nearly-optimal. To start, we introduce and formalize our prediction model.

Prediction model. Consider a 1-CTIF constant threshold algorithm as highlighted in Proposition 4.1.
Although Proposition 4.1 indicates that any such an algorithm with threshold ϕ > L cannot have a
nontrivial competitive ratio; we know intuitively that increasing ϕ makes the algorithm more selective
in admitting items. The question, then, is what constant threshold minimizes the competitive ratio
on a typical instance? We build on prior work (Im et al., 2021) considering frequency predictions,
which give upper and lower bounds of value densities amongst items in a typical sequence. We show
that similar information about the optimal offline solution allows us to recover and leverage a critical
threshold value d⋆γ , which we define as follows.
Definition 4.9 (Critical threshold d⋆γ). Consider function ρI(x) : [L,U] → [0, 1]. ρI(x) describes
the fraction of the offline optimal solution’s total value contributed by items whose value density ≥ x
on a sequence I ∈ Ω. Define d⋆γ as the largest x satisfying γ/2 ≤ ρI(x) for a given γ ∈ [0, 1].

It is reasonable to assume that ρI(x) can be learned for typical instances from historical data, since a
model can calculate the hindsight optimal solutions and learn the frequencies of packed items. Such
predictions have been shown to be PAC learnable by (Canonne, 2020).
Let ρ̂−1

I (y) : y ∈ [0, 1] → [L,U] denote a black-box predictor, where ρ̂−1
I (y) is the predicted inverse

function of ρI(x). By a single query γ/2 made to the predictor, we can obtain d̂γ = ρ−1
I (γ/2),

which predicts the critical value d⋆γ . Using this prediction model, we present an online algorithm
that incorporates the prediction into its threshold function. We follow the emerging literature on
learning-augmented algorithms, where algorithms are evaluated using consistency and robustness
(Lykouris and Vassilvtiskii, 2018; Purohit et al., 2018). Consistency is defined as the competitive
ratio of the algorithm when predictions are accurate, while robustness is the worst-case competitive
ratio over any prediction errors. These metrics jointly measure how an algorithm exploits accurate
predictions and ensures bounded competitiveness with poor predictions.

Learning-Augmented Extended Constant Threshold (LA-ECT) for OKP. Fix a confidence
parameter γ ∈ [0, 1] (γ = 0 and γ = 1 correspond to untrusted and fully trusted predictions
respectively), and ρ−1

I (·) is the black-box predictor. We define a threshold function Ψγ,d̂(z) on the
utilization interval z ∈ [0, 1] as follows (see Fig. 1(c)):

Ψγ,d̂(z) =


(Ue/L)

z
1−γ (L/e) z ∈ [0, κ],

d̂γ := ρ−1
I (γ/2) z ∈ (κ, κ+ γ),

(Ue/L)
z−γ
1−γ (L/e) z ∈ [κ+ γ, 1],

(1)

where κ ∈ [0, 1] is the point where (Ue/L)(z/1−γ)(L/e) = d̂γ . Note that when γ → 1, κ → 0

and the resulting threshold function is constant at d̂γ . Call the resulting threshold-based algorithm
LA-ECT[γ]. The following results characterize the fairness of this algorithm, followed by the results
for consistency and robustness, respectively. We omit the proof for Proposition 4.10.
Proposition 4.10. LA-ECT[γ] is γ-CTIF.
Theorem 4.11. For any γ ∈ (0, 1], and any I ∈ Ω, LA-ECT[γ] is 2

γ -consistent.

Proof sketch. Assuming the black-box predictor is accurate, the consistency of the algorithm can
be analyzed against a semi-online algorithm called ORACLE⋆

γ (Lemma C.2), which we show to be

7

Published as a conference paper at ICLR 2024

within a constant factor of OPT. The idea is to compare the utilization and the total value attained
for I between ORACLE⋆

γ and LA-ECT[γ] carefully. In a case analysis, we can show that LA-ECT[γ]
accepts every item accepted by ORACLE⋆

γ , thus inheriting the same competitive upper bound.

Theorem 4.12. For any γ ∈ [0, 1], and any I ∈ Ω, LA-ECT[γ] is 1
1−γ (ln(U/L) + 1)-robust.

Proof sketch. As in the proof of Theorem 4.6, we can bound OPT(I)/LA-ECT[γ](I) for any
I ∈ Ω by Ψγ,d̂(zT)/

∑
j∈P Ψγ,d̂(zj)wj , where the notation follows from before. By assuming

that the individual weights are much smaller than 1, we can approximate this denominator by
an integral once again, and consider three cases. When zT < κ, we can bound the integral by
(1− γ)Ψγ,d̂(zT)/ ln(Ue/L), which suffices for our bound. When κ ≤ zT < κ+ γ, we can show an
improvement from the previous case, inheriting the same worst-case bound. Finally, when zT ≥ κ+γ,
we can inherit the same approximation as in the first case with a negligible additive term of d̂γ.

It is reasonable to ask whether improvements to Theorems 4.11 or 4.12 are possible, while still
maintaining fairness guarantees. We now show that the consistency and robustness of LA-ECT[γ → 1]
is nearly optimal. We relegate the proof to the appendix.

Theorem 4.13. For any learning-augmented online algorithm ALG which satisfies 1-CTIF, one of
the following holds: Either ALG’s consistency is > 2

√
U/L − 1, or ALG has unbounded robustness.

Furthermore, the consistency of any algorithm is lower bounded by 2−ε2/1+ε, where ε =
√

L/U .

5 NUMERICAL EXPERIMENTS
In this section, we present numerical experiments for OKP algorithms in the context of the online job
scheduling problem from Example 1.1. We evaluate our proposed algorithms, including ECT and
LA-ECT, against existing algorithms from the literature.1

Setup. To validate the performance of our algorithms and quantify the empirical trade-off between
fairness and efficiency (resp. static and dynamic pricing), we conduct experiments on synthetic
instances for OKP, which emulate a typical online cloud allocation task. We simulate different value
density ratios U/L ∈ {100, 500, 2500} by setting L and U accordingly. We generate value densities
for each item in the range [U,L] according to a power-law distribution (giving relatively few jobs
with very high value, and many items with average and low values). We consider a one-dimensional
knapsack (i.e., server w/ single CPU) and set the capacity to 1. Weights are assigned uniformly
randomly and are small compared to the total knapsack capacity (e.g., the maximum weight is 0.05).
We report the cumulative density functions of the empirical competitive ratios, which show the
average and the worst-case performances of several algorithms as described below.

Comparison algorithms. As a benchmark, we calculate the optimal offline solution for each instance,
allowing us to report the empirical competitive ratio for each tested algorithm. In the setting without
predictions, we compare our proposed ECT algorithm against three others: ZCL, the baseline α-CTIF
algorithm, and ZCL-Randomized (§2, §4.1, and §4.2 respectively). For ECT, we set several values
for α to show how performance degrades with more stringent fairness guarantees. In the setting with
predictions, we compare our proposed LA-ECT algorithm (§4.3) against two other algorithms: ZCL
and ECT. Simulated predictions are obtained by first solving for the actual value d⋆γ (Defn. 4.9). For
simulated prediction error, we set d̂γ = d⋆γ(1 + η), where η ∼ N (0, σ). In this setting, we fix a
single value for U/L and report results for different levels of error obtained by changing σ.

Experimental results. We report the empirical competitive ratio, and intuitively we expect worse
empirical competitiveness for algorithms which provide stronger fairness guarantees. In the first
experiment, we test algorithms for OKP in the setting without predictions, for several values of U/L. In
Fig. 4, we show the CDF of the empirical competitive ratios for each tested value of U/L. We observe
that the performance of ECT[α] exactly reflects the fairness parameter α, meaning that a greater
value of α corresponds with a worse competitive ratio, as shown in Theorems 4.5 and 4.6. Reflecting
the theoretical results, ECT[α] outperforms the baseline algorithm for α = 0.66 by an average of
20.9% across all experiments. Importantly, we also observe that ZCL-Randomized performs poorly

1Our code is available at https://github.com/adamlechowicz/fair-knapsack.

8

https://github.com/adamlechowicz/fair-knapsack

Published as a conference paper at ICLR 2024

(a) U/L = 100 (b) U/L = 500 (c) U/L = 2500

Figure 4: Numerical experiments, with varying value density fluctuation U/L.

(a) σ = 0 (perfect predictions) (b) σ = 1/2 (c) σ = 1

Figure 5: Learning-augmented experiments, with U/L = 500 and different prediction errors.

compared to the deterministic algorithms. This is a departure from the theory since Theorem 4.7
and Proposition 4.8 dictate that ZCL-Randomized should be optimally competitive and completely
fair. We attribute this gap to the “one-shot” randomization used in the design of ZCL-Randomized –
although picking a single random threshold yields good performance in expectation, the probability of
picking a bad threshold is high. Coupled with the observation that ZCL and ECT often significantly
outperform their theoretical bounds, this leaves ZCL-Randomized at a disadvantage.

In the second experiment, we investigate the impact of prediction error in the setting with predictions.
We fix U/L = 500 and vary σ, which is the standard deviation of the multiplicative error η. In
Fig. 5, we show the CDF of the empirical competitive ratios for each error regime. LA-ECT[γ]
performs very well with perfect predictions (Fig. 5(a)) – with fully trusted predictions, it is nearly
1-competitive against OPT, and all of the learning-augmented algorithms significantly outperform
both ZCL and ECT. As the prediction error increases (Figs. 5(b) and 5(c)), the tails of the CDFs
degrade accordingly. LA-ECT[γ = 1] fully trusts the prediction and has no robustness guarantee – as
such, increasing the prediction error induces an unbounded empirical competitive ratio for this case.
For other values of γ, higher error intuitively has a greater impact when the trust parameter γ is larger.
Notably, LA-ECT[γ = 0.33] maintains a worst-case competitive ratio roughly on par with ECT in
every error regime while performing better than ZCL and ECT on average across the board.

6 CONCLUSION

We study time fairness in the online knapsack problem (OKP), showing impossibility results for
existing notions, and proposing a generalizable definition of conditional time-independent fairness.
We give a deterministic algorithm achieving the Pareto-optimal fairness/efficiency trade-off, and
explore the power of randomization and predictions. Evaluating our ECT and LA-ECT algorithms,
we observe positive results for competitiveness compared to existing algorithms in exchange for
significantly improved fairness guarantees. There are several interesting directions of inquiry that we
have not considered which would be good candidates for future work. It would be interesting to apply
our notion of time fairness in other online problems such as one-way trading and bin packing, among
others (El-Yaniv et al., 2001; Lorenz et al., 2008; Balogh et al., 2017; Johnson et al., 1974; Ma et al.,
2021; Balseiro et al., 2023). Another fruitful direction is exploring the notion of group fairness (Patel
et al., 2020) in OKP, which is practically relevant beyond the settings considered in this paper.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

This research is supported by National Science Foundation grants CNS-2102963, CNS-2106299, CPS-
2136199, CCF-1908849, NGSDI-2105494, CAREER-2045641, NRT-2021693, and GCR-2020888.

This material is based upon work supported by the U.S. Department of Energy, Office of Science,
Office of Advanced Scientific Computing Research, Department of Energy Computational Science
Graduate Fellowship under Award Number DE-SC0024386, and Natural Sciences and Engineering
Research Council of Canada (NSERC) under grant number DGECR-2018-00059.

DISCLAIMERS

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States Government or any agency thereof.

REFERENCES

M. Al-Roomi, S. Al-Ebrahim, S. Buqrais, and I. Ahmad. Cloud Computing Pricing Models: A Survey.
International Journal of Grid and Distributed Computing, 6(5):93–106, Oct. 2013. doi: 10.14257/ijgdc.2013.
6.5.09.

F. Alzhouri, A. Agarwal, Y. Liu, and A. S. Bataineh. Dynamic Pricing for Maximizing Cloud Revenue: A
Column Generation Approach. In Proceedings of the 18th International Conference on Distributed Computing
and Networking (ICDCN), 2017.

M. Arsenis and R. Kleinberg. Individual Fairness in Prophet Inequalities. In Proceedings of the 23rd ACM
Conference on Economics and Computation, EC ’22, page 245, New York, NY, USA, 2022. Association for
Computing Machinery. ISBN 9781450391504. doi: 10.1145/3490486.3538301.

J. Baek and V. Farias. Fair exploration via axiomatic bargaining. Advances in Neural Information Processing
Systems (NeurIPS), 34:22034–22045, 2021.

J. Balogh, J. Békési, G. Dósa, L. Epstein, and A. Levin. A new and improved algorithm for online bin packing,
2017.

S. Balseiro, C. Kroer, and R. Kumar. Single-Leg Revenue Management with Advice. In Proceedings of the 24th
ACM Conference on Economics and Computation, EC ’23, page 207, New York, NY, USA, 2023. Association
for Computing Machinery. ISBN 9798400701047. doi: 10.1145/3580507.3597704.

S. Banerjee, V. Gkatzelis, A. Gorokh, and B. Jin. Online Nash Social Welfare Maximization with Predictions. In
Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1–19, 2022.
doi: 10.1137/1.9781611977073.1.

M. H. Bateni, Y. Chen, D. F. Ciocan, and V. Mirrokni. Fair Resource Allocation in A Volatile Marketplace. In
Proceedings of the 2016 ACM Conference on Economics and Computation, EC ’16, page 819, New York, NY,
USA, 2016. Association for Computing Machinery. ISBN 9781450339360. doi: 10.1145/2940716.2940763.

Z. Benomar, E. Chzhen, N. Schreuder, and V. Perchet. Addressing bias in online selection with limited budget
of comparisons, 2023.

D. Bertsimas, V. F. Farias, and N. Trichakis. On the efficiency-fairness trade-off. Management Science, 58(12):
2234–2250, 2012.

D. Bertsimas, V. F. Farias, and N. Trichakis. Flexibility in Organ Allocation for Kidney Transplantation.
Operations Research, 61(1), 2013. ISSN 73-87.

S. Borenstein, M. R. Jaske, and A. H. Rosenfeld. Dynamic Pricing, Advanced Metering, and Demand Response
in Electricity Markets. In UC Berkeley: Center for the Study of Energy Markets, 2002.

10

Published as a conference paper at ICLR 2024

A. Borodin, N. Linial, and M. E. Saks. An Optimal On-Line Algorithm for Metrical Task System. J. ACM, 39
(4):745–763, Oct 1992. ISSN 0004-5411. doi: 10.1145/146585.146588.

N. Buchbinder, K. Jain, and M. Singh. Secretary Problems and Incentives via Linear Programming. SIGecom
Exch., 8(2), dec 2009. doi: 10.1145/1980522.1980528.

H.-J. Böckenhauer, D. Komm, R. Královič, and P. Rossmanith. The online knapsack problem: Advice and
randomization. Theoretical Computer Science, 527:61–72, 2014. ISSN 0304-3975. doi: https://doi.org/10.
1016/j.tcs.2014.01.027.

C. L. Canonne. A short note on learning discrete distributions, 2020. arXiv math.ST:2002.11457.

J. C. Castillo, D. Knoepfle, and G. Weyl. Surge Pricing Solves the Wild Goose Chase. In Proceedings of the
2017 ACM Conference on Economics and Computation, EC ’17, page 241–242, New York, NY, USA, 2017.
Association for Computing Machinery. ISBN 9781450345279. doi: 10.1145/3033274.3085098.

T. Chakraborty, Z. Huang, and S. Khanna. Dynamic and Nonuniform Pricing Strategies for Revenue Maximiza-
tion. SIAM Journal on Computing, 42(6):2424–2451, Jan. 2013. doi: 10.1137/100787799.

Y. Chen, A. Cuellar, H. Luo, J. Modi, H. Nemlekar, and S. Nikolaidis. Fair contextual multi-armed bandits:
Theory and experiments. In Conference on Uncertainty in Artificial Intelligence, pages 181–190. PMLR,
2020.

A. Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism prediction instruments.
Big Data., 5(2):153–163, 2017.

J. Correa, A. Cristi, P. Duetting, and A. Norouzi-Fard. Fairness and Bias in Online Selection. In M. Meila and
T. Zhang, editors, Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pages 2112–2121. PMLR, 18–24 Jul 2021.

M. Cygan, Ł. Jeż, and J. Sgall. Online knapsack revisited. Theory of Computing Systems, 58:153–190, 2016.

Y. Deng, N. Golrezaei, P. Jaillet, J. C. N. Liang, and V. Mirrokni. Fairness in the Autobidding World with
Machine-learned Advice, 2023.

D. Dwibedy and R. Mohanty. Semi-online scheduling: A survey. Computers & Operations Research, 139:
105646, 2022. ISSN 0305-0548. doi: https://doi.org/10.1016/j.cor.2021.105646.

R. El-Yaniv, A. Fiat, R. M. Karp, and G. Turpin. Optimal Search and One-Way Trading Online Algorithms.
Algorithmica, 30(1):101–139, May 2001. doi: 10.1007/s00453-001-0003-0.

T. Fluschnik, P. Skowron, M. Triphaus, and K. Wilker. Fair Knapsack. Proceedings of the AAAI Conference on
Artificial Intelligence, 33(01):1941–1948, Jul. 2019. doi: 10.1609/aaai.v33i01.33011941.

D. Freund, T. Lykouris, E. Paulson, B. Sturt, and W. Weng. Group fairness in dynamic refugee assignment, 2023.

J. Hall, C. Kendrick, and C. Nosko. The effects of Uber’s surge pricing: A case study. The University of Chicago
Booth School of Business, 2015.

M. Hardt, E. Price, and N. Srebro. Equality of Opportunity in Supervised Learning. Advances in neural
information processing systems (NeurIPS), 29, 2016.

S. Im, R. Kumar, M. Montazer Qaem, and M. Purohit. Online Knapsack with Frequency Predictions. In
Advances in Neural Information Processing Systems (NeurIPS), volume 34, pages 2733–2743, 2021.

D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham. Worst-Case Performance Bounds
for Simple One-Dimensional Packing Algorithms. SIAM Journal on Computing, 3(4):299–325, 1974. doi:
10.1137/0203025.

I. Kash, A. D. Procaccia, and N. Shah. No Agent Left behind: Dynamic Fair Division of Multiple Resources. In
Proceedings of the 2013 International Conference on Autonomous Agents and Multi-Agent Systems, AAMAS
’13, page 351–358, Richland, SC, 2013. International Foundation for Autonomous Agents and Multiagent
Systems. ISBN 9781450319935.

J. Kleinberg, S. Mullainathan, and M. Raghavan. Inherent Trade-Offs in the Fair Determination of Risk
Scores. In C. H. Papadimitriou, editor, 8th Innovations in Theoretical Computer Science Conference
(ITCS 2017), volume 67 of Leibniz International Proceedings in Informatics (LIPIcs), pages 43:1–43:23,
Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-3-95977-029-3.
doi: 10.4230/LIPIcs.ITCS.2017.43.

11

Published as a conference paper at ICLR 2024

R. Kumar, M. Purohit, A. Schild, Z. Svitkina, and E. Vee. Semi-Online Bipartite Matching, 2019.

R. Lee, B. Sun, J. C. S. Lui, and M. Hajiesmaili. Pareto-Optimal Learning-Augmented Algorithms for Online
k-Search Problems, Nov. 2022.

J. Lorenz, K. Panagiotou, and A. Steger. Optimal Algorithms for k-Search with Application in Option Pricing.
Algorithmica, 55(2):311–328, Aug. 2008. doi: 10.1007/s00453-008-9217-8.

T. Lykouris and S. Vassilvtiskii. Competitive Caching with Machine Learned Advice. In J. Dy and A. Krause,
editors, Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pages 3296–3305. PMLR, 10–15 Jul 2018.

W. Ma, D. Simchi-Levi, and C.-P. Teo. On Policies for Single-Leg Revenue Management with Limited Demand
Information. Operations Research, 69(1):207–226, Jan. 2021. doi: 10.1287/opre.2020.2048.

W. Ma, P. Xu, and Y. Xu. Fairness Maximization among Offline Agents in Online-Matching Markets. ACM
Trans. Econ. Comput., 10(4), apr 2023. ISSN 2167-8375. doi: 10.1145/3569705.

V. Manshadi, R. Niazadeh, and S. Rodilitz. Fair Dynamic Rationing. In Proceedings of the 22nd ACM
Conference on Economics and Computation, EC ’21, page 694–695, New York, NY, USA, 2021. Association
for Computing Machinery. ISBN 9781450385541. doi: 10.1145/3465456.3467554.

A. Marchetti-Spaccamela and C. Vercellis. Stochastic on-line knapsack problems. Mathematical Programming,
68(1-3):73–104, Jan. 1995. doi: 10.1007/bf01585758.

D. S. Mitrinovic, J. E. Pečarić, and A. M. Fink. Inequalities Involving Functions and Their Integrals and
Derivatives, volume 53. Springer Science & Business Media, 1991.

D. Patel, A. Khan, and A. Louis. Group Fairness for Knapsack Problems. In Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems, 2020.

V. Patil, G. Ghalme, V. Nair, and Y. Narahari. Achieving Fairness in the Stochastic Multi-Armed Bandit Problem.
J. Mach. Learn. Res., 22(1), jan 2021. ISSN 1532-4435.

M. Purohit, Z. Svitkina, and R. Kumar. Improving Online Algorithms via ML Predictions. In Advances in
Neural Information Processing Systems (NeurIPS), volume 31, 2018.

J. Reineke. Randomized Caches Considered Harmful in Hard Real-Time Systems. Leibniz Transactions on
Embedded Systems, 1(1):03:1–03:13, Jun. 2014. doi: 10.4230/LITES-v001-i001-a003.

S. Seiden, J. Sgall, and G. Woeginger. Semi-online scheduling with decreasing job sizes. Operations Research
Letters, 27(5):215–221, 2000. ISSN 0167-6377. doi: https://doi.org/10.1016/S0167-6377(00)00053-5.

T. Si Salem, G. Iosifidis, and G. Neglia. Enabling Long-term Fairness in Dynamic Resource Allocation.
Proceedings of the ACM on Measurement and Analysis of Computing Systems, 6(3):1–36, 2022.

S. R. Sinclair, G. Jain, S. Banerjee, and C. L. Yu. Sequential Fair Allocation of Limited Resources under
Stochastic Demands. CoRR, abs/2011.14382, 2020. URL https://arxiv.org/abs/2011.14382.

A. Sinha, A. Joshi, R. Bhattacharjee, C. Musco, and M. Hajiesmaili. No-regret Algorithms for Fair Resource
Allocation, 2023.

B. Sun, A. Zeynali, T. Li, M. Hajiesmaili, A. Wierman, and D. H. Tsang. Competitive Algorithms for the Online
Multiple Knapsack Problem With Application to Electric Vehicle Charging. Proceedings of the ACM on
Measurement and Analysis of Computing Systems, 4(3):1–32, 2020.

B. Sun, R. Lee, M. H. Hajiesmaili, A. Wierman, and D. H. Tsang. Pareto-Optimal Learning-Augmented
Algorithms for Online Conversion Problems. In Advances in Neural Information Processing Systems
(NeurIPS), 2021.

B. Sun, L. Yang, M. Hajiesmaili, A. Wierman, J. C. Lui, D. Towsley, and D. H. Tsang. The Online Knapsack
Problem with Departures. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 6
(3):1–32, 2022.

M. S. Talebi and A. Proutiere. Learning proportionally fair allocations with low regret. Proceedings of the ACM
on Measurement and Analysis of Computing Systems, 2(2):1–31, 2018.

Z. Tan and Y. Wu. Optimal semi-online algorithms for machine covering. Theoretical Computer Science, 372
(1):69–80, 2007. ISSN 0304-3975. doi: https://doi.org/10.1016/j.tcs.2006.11.015.

12

https://arxiv.org/abs/2011.14382

Published as a conference paper at ICLR 2024

Z. Wang, J. Ye, D. Lin, and J. C. S. Lui. Achieving Efficiency via Fairness in Online Resource Allocation. In
Proceedings of the Twenty-Third International Symposium on Theory, Algorithmic Foundations, and Protocol
Design for Mobile Networks and Mobile Computing, MobiHoc ’22, page 101–110, New York, NY, USA,
2022. Association for Computing Machinery. ISBN 9781450391658. doi: 10.1145/3492866.3549724.

D. Wojtczak. On Strong NP-Completeness of Rational Problems. In F. V. Fomin and V. V. Podolskii, editors,
Computer Science – Theory and Applications, pages 308–320, Cham, 2018. Springer International Publishing.
ISBN 978-3-319-90530-3.

L. Yang, A. Zeynali, M. H. Hajiesmaili, R. K. Sitaraman, and D. Towsley. Competitive Algorithms for Online
Multidimensional Knapsack Problems. Proceedings of the ACM on Measurement and Analysis of Computing
Systems, 5(3), Dec 2021.

A. Zeynali, B. Sun, M. Hajiesmaili, and A. Wierman. Data-driven Competitive Algorithms for Online Knapsack
and Set Cover. Proceedings of the AAAI Conference on Artificial Intelligence, 35(12):10833–10841, May
2021. doi: 10.1609/aaai.v35i12.17294.

P. Zhang, X. Wang, C. Li, L. Wang, and J. Xie. A Dynamic Pricing Model for Virtual Machines in Cloud
Environments. In IEEE International Conference on Smart Cloud (SmartCloud), pages 13–18. IEEE, 2020.

Z. Zhang, Z. Li, and C. Wu. Optimal Posted Prices for Online Cloud Resource Allocation. SIGMETRICS
Perform. Eval. Rev., 45(1):60, jun 2017. ISSN 0163-5999. doi: 10.1145/3143314.3078529.

Y. Zhou, D. Chakrabarty, and R. Lukose. Budget Constrained Bidding in Keyword Auctions and Online
Knapsack Problems. In Proceedings of the 17th International Conference on World Wide Web, WWW ’08,
page 1243–1244, New York, NY, USA, 2008. Association for Computing Machinery. ISBN 9781605580852.
doi: 10.1145/1367497.1367747.

13

Published as a conference paper at ICLR 2024

SUPPLEMENTARY MATERIAL FOR “TIME FAIRNESS IN ONLINE KNAPSACK
PROBLEMS”

Table 1: A summary of key notations.

Notation Description
j ∈ [n] Current position in sequence of items
xj ∈ {0, 1} Decision for jth item. xj = 1 if accepted, xj = 0 if not accepted
U Upper bound on the value density of any item
L Lower bound on the value density of any item
α Fairness parameter, defined in Definition 3.4

wj (Online input) Item weight revealed to the player when jth item arrives
vj (Online input) Item value revealed to the player when jth item arrives

A RELATED WORK

We consider the online knapsack problem (OKP), a classical resource allocation problem wherein
items with different weights and values arrive sequentially, and we wish to admit them into a
capacity-limited knapsack, maximizing the total value subject to the capacity constraint.

Our work contributes to several active lines of research, including a rich literature on OKP first
studied in Marchetti-Spaccamela and Vercellis (1995), with important optimal results following in
Zhou et al. (2008). In the past several years, research in this area has surged, with many works
considering variants of the problem, such as removable items Cygan et al. (2016), item departures
Sun et al. (2022), and generalizations to multidimensional settings Yang et al. (2021). Closest to this
work, several studies have considered the online knapsack problem with additional information or
in a learning-augmented setting, including frequency predictions Im et al. (2021), online learning
Zeynali et al. (2021), and advice complexity Böckenhauer et al. (2014).

In the literature on the knapsack problem, fairness has been recently considered in Patel et al. (2020)
and Fluschnik et al. (2019). Unlike our work, both deal exclusively with the standard offline setting
of knapsack, and consequently do not consider time fairness. (Patel et al., 2020) introduces a notion
of group fairness for the knapsack problem, while (Fluschnik et al., 2019) introduces three notions of
“individually best, diverse, and fair” knapsacks which aggregate the voting preferences of multiple
voters. To the best of our knowledge, our work is the first to consider notions of fairness in the online
knapsack problem.

In the broader literature on online algorithms and dynamic settings, several studies explore fairness,
although most consider notions of fairness that are different from the ones in our work. Online
fairness has been explored in resource allocation Manshadi et al. (2021); Sinclair et al. (2020); Bateni
et al. (2016); Sinha et al. (2023), fair division Kash et al. (2013), refugee assignment Freund et al.
(2023), matchings Deng et al. (2023); Ma et al. (2023), prophet inequalities Correa et al. (2021),
organ allocation Bertsimas et al. (2013), and online selection Benomar et al. (2023). Banerjee et al.
(2022) shows competitive algorithms for online resource allocation which seek to maximize the Nash
social welfare, a metric which quantifies a trade-off between fairness and performance. Deng et al.
(2023) also explicitly considers the intersection between predictions and fairness in the online setting.
In addition to these problems, there are also several online problems adjacent to OKP in the literature
which would be interesting to explore from a fairness perspective, including one-way trading El-Yaniv
et al. (2001); Sun et al. (2022), bin packing Balogh et al. (2017); Johnson et al. (1974), and single-leg
revenue management Balseiro et al. (2023); Ma et al. (2021).

In the online learning literature, several works consider fairness using regret as a performance metric.
In particular, Talebi and Proutiere (2018) studies a stochastic multi-armed bandit setting where tasks
must be assigned to servers in a proportionally fair manner. Several other works including Baek and
Farias (2021); Patil et al. (2021); Chen et al. (2020) build on these results using different notions of
fairness. For a general resource allocation problem, Sinha et al. (2023) presents a fair online resource

14

Published as a conference paper at ICLR 2024

allocation policy achieving sublinear regret with respect to an offline optimal allocation. Furthermore,
many works in the regret setting explicitly consider fairness from the perspective of an α-fair utility
function, including Sinha et al. (2023); Si Salem et al. (2022); Wang et al. (2022) , which partially
inspires our parameterized definition of α-CTIF (Def. 3.4).

In the broader ML research community, fairness has seen burgeoning recent interest, particularly
from the perspective of bias in trained models. Mirroring the literature above, multiple definitions
of fairness in this setting have been proposed and studied, including equality of opportunity Hardt
et al. (2016), conflicting notions of fairness Kleinberg et al. (2017), and inherent trade-offs between
performance and fairness constraints Bertsimas et al. (2012). Fairness has also been extensively
studied in impact studies such as Chouldechova (2017), which demonstrated the disparate impact of
recidivism prediction algorithms used in the criminal justice system on different demographics.

B PROOFS FOR SECTION 3 (TIME FAIRNESS)

Observation 3.2. The ZCL algorithm (Zhou et al., 2008) is not TIF.

Proof. Let zj ∈ [0, 1] be the knapsack’s utilization when the jth item arrives. When the knapsack is
empty, zj = 0, and when the knapsack is close to full, zj = 1− ϵ for some small ϵ > 0. Pick any
instance with sufficiently many items, and pick zA < zB such that at least one admitted item, say the
kth one, satisfies Φ(zA) ≤ vk < Φ(zB). Note that this implies that the kth item arrived between the
utilization being at zA and at zB . Now, modify this same instance by adding a copy of the kth item
after the utilization has reached zB . Note that this item now has probability zero of being admitted.
This implies that two items with the same value-to-weight ratio have different probabilities of being
admitted into the knapsack, contradicting the definition of TIF.

Theorem 3.3. There is no nontrivial algorithm for OKP that guarantees TIF without additional
information about the input. Further, even if the input length n or perfect frequency predictions as
defined in Im et al. (2021) are known in advance, no nontrivial algorithm can guarantee TIF.

Proof. We prove the three parts one by one.

1. WLOG assume that all items have the same value density x = L = U . Assume for the sake
of a contradiction that there is some algorithm ALG which guarantees TIF, and suppose we
have a instance I with n items (which we will set later).

Since we assume that ALG guarantees TIF, consider p(x), the probability of admitting an
item with value density x. Let p(x) = p. Note that p > 0, and also that it cannot depend
on the input length n. Note that we can have have all items of equal weight w, so that for
n ≫ 3B/wp, the knapsack is full with high probability. But now consider modifying the
input sequence from I to I ′, by appending a copy of itself, i.e., increasing the input with
another n items of exactly the same type. The probability of admitting these new items
must be (eventually) zero, even though they have the same value-to-weight ratio as the first
half of the input (and, indeed, the same weights). Therefore, the algorithm violates the TIF
constraint on the instance I ′, which is a contradiction.

2. Again WLOG assume that all items have the same value density x = L = U , so that
sx =

∑n
i=1 wi. Assume for the sake of a contradiction that there is some competitive

algorithm ALGFP which uses frequency predictions to guarantee TIF.

Since we assume that ALGFP guarantees TIF, consider p(x), the probability of admitting
any item. Let p(x) = p. Again, note that p > 0, and also that it cannot depend on the input
length n, but can depend on sx this time.

Consider two instances I and I ′ as follows: I consists exclusively of “small” items of
(constant) weight wδ ≪ B each, whereas I ′ consists of a small, constant number of such
small items followed by a single “large” item of weight B−δ/2. Note that by taking enough
items in I, we can ensure the two instances have the same total weight s(x). Therefore,
p(x) must be the same for these two instances, by assumption. Of course, the items all have
value x by our original assumption.

15

Published as a conference paper at ICLR 2024

Note that the optimal packing in both instances would nearly fill up the knapsack. However,
I ′ has the property that any competitive algorithm must reject all the initial smaller items,
as admitting any of them would imply that the large item can no longer be admitted. By
making wδ arbitrarily small, we can make the algorithm arbitrarily non-competitive.

The instance I guarantees that p(x) is sufficiently large (i.e., bounded below by some
constant), and so with high probability, at least one item in I ′ is admitted within the first
constant number of items. Therefore, with high probability, ALGFP does not admit the
large-valued item in I ′, and so it cannot be competitive.

3. Again WLOG assume that all items have the same value density x = L = U . Assume
for the sake of a contradiction that there is some competitive algorithm ALGN which uses
knowledge of the input length n to guarantee TIF.

We will consider only input sequences of length n (assumed to be sufficiently large),
consisting only of items with value density x. Again, since we assume that ALGFP guarantees
TIF, consider p(x), the probability of admitting any item. Let p(x) = p. Again, note that
p > 0, and also that it must be the same for all input sequences of length n.

Consider such an instance I, consisting of identical items of (constant) weight wc each.
Suppose the total weight of the items is very close to the knapsack capacity B. Since the
expected number of items admitted is np, the total value admitted is x · np on expectation.
The optimal solution admits a total value of nx (since the total weight is close to B),
and therefore, the competitive ratio is roughly 1/p. Since we assumed the algorithm was
competitive, it follows that p must be bounded below by a constant.

Now consider a different instance I ′, consisting of 3 log(n)/p2 items of weight wδ ≪ B,
followed by n− 3 log(n)/p2 “large” items of weight B − wδ/2. Note that these are well-
defined, as p is bounded below by a constant, and n is sufficiently large. The instance I ′

again has the property that any competitive algorithm must reject all the initial smaller items,
as admitting any of them would imply that none of the large items can be admitted.

However, by the coupon collector problem, with high probability (1− poly(1/n)), at least
one of the 3 log(n)/p2 small items is admitted, which contradicts the competitiveness of
ALGN. As before, by making wδ arbitrarily small, we can make the algorithm arbitrarily
non-competitive.

Observation 3.5. The ZCL algorithm (Zhou et al., 2008) is not 1-CTIF.

Proof. This follows immediately from the fact that the threshold value in ZCL changes each time an
item is accepted, which corresponds to the utilization changing. Consider two items with the same
value density (close to L), where one of the items arrives first in the sequence, and the other arrives
when the knapsack is roughly half-full, and assume that there is enough space in the knapsack to
accommodate both items when they arrive. The earlier item will be admitted with certainty, whereas
the later item will with high probability be rejected. So despite having the same value, the items
will have a different admission probability purely based on their position in the sequence, violating
1-CTIF.

C PROOFS FOR SECTION 4 (ONLINE FAIR ALGORITHMS)

Proposition 4.1. Any constant threshold-based algorithm for OKP is 1-CTIF. Furthermore, any
constant threshold-based deterministic algorithm for OKP cannot be better than (U/L)-competitive.

Proof. Consider an arbitrary threshold-based algorithm ALG with constant threshold value ϕ. For
any instance I, and any item, say the jth one, in this instance, note that the probability of admitting
the item depends entirely on the threshold ϕ, and nothing else, as long there is enough space in the
knapsack to admit it. So for any value density x ∈ [L,U], the admission probability p(x) is just the
indicator variable capturing whether there is space for the item or not.

For the second part, given a deterministic ALG with a fixed constant threshold ϕ ∈ [L,U], there are
two cases. If ϕ > L, the instance I consisting entirely of L-valued items induces an unbounded

16

Published as a conference paper at ICLR 2024

competitive ratio, as no items are admitted by ALG. If ϕ = L, consider the instance I ′ consisting
of m equal-weight items with value L followed by m items with value U , and take m large enough
that the knapsack can become full with only L-valued items. ALG here admits only L-valued items,
whereas the optimal solution only admits U -valued items, and so ALG cannot do better than the
worst-case competitive ratio of U

L for OKP.

Proposition 4.2. The ZCL algorithm is 1
ln(U/L)+1 -CTIF.

Proof. Consider the interval
[
0, 1

ln(U
L)+1

]
, viewed as an utilization interval. An examination of the

ZCL algorithm reveals that the value of the threshold is below L on this subinterval. But since we have
a guarantee that the value-to-weight ratio is at least L, while the utilization is within this interval, the
ZCL algorithm is exactly equivalent to the algorithm using the constant threshold L. By Proposition
4.1, therefore, the algorithm is 1-CTIF within this interval, and therefore is 1

ln(U
L)+1

-CTIF.

Theorem 4.3. For α ∈ [1/ln(U/L)+1, 1], the baseline algorithm is U [ln(U/L)+1]
Lα[ln(U/L)+1]+(U−L)(1−ℓ) -

competitive and α-CTIF for OKP.

Proof. To prove the competitive ratio of the parameterized baseline algorithm (call it BASE[α]),
consider the following:

Fix an arbitrary instance I ∈ Ω. When the algorithm terminates, suppose the utilization of the
knapsack is zT . Assume we obtain a value of BASE[α](I). Let P and P⋆ respectively be the sets of
items picked by BASE[α] and the optimal solution.

Denote the weight and the value of the common items (i.e., the items picked by both BASE and OPT)
by W = w(P ∩ P⋆) and V = v(P ∩ P⋆). For each item j which is not accepted by BASE[α], we
know that its value density is < Φα(zj) ≤ Φα(zT) since Φα is a non-decreasing function of z. Thus,
using B = 1, we get

OPT(I) ≤ V +Φα(zT)(1−W).

Since BASE[α](I) = V + v(P \ P⋆), the inequality above implies that

OPT(I)
BASE[α](I)

≤ V +Φα(zT)(1−W)

V + v(P \ P⋆)
.

Note that, by definition of the algorithm, each item j picked in P must have value density of at least
Φα(zj), where zj is the knapsack utilization when that item arrives. Thus, we have:

V ≥
∑

j∈P∩P⋆

Φα(zj) wj =: V1,

v(P \ P⋆) ≥
∑

j∈P\P⋆

Φα(zj) wj =: V2.

Since OPT(I) ≥ BASE[α](I), we have:

OPT(I)
BASE[α](I)

≤ V +Φα(zT)(1−W)

V + v(P \ P⋆)
≤ V1 +Φα(zT)(1−W)

V1 + v(P \ P⋆)
≤ V1 +Φα(zT)(1−W)

V1 + V2
,

where the second inequality follows because Φα(zT)(1−W) ≥ v(P \ P⋆) and V1 ≤ V .

Note that V1 ≤ Φα(zT)w(P ∩ P⋆) = Φα(zT)W , and by plugging in the actual values of V1 and V2,
we get:

OPT(I)
BASE[α](I)

≤ Φα(zT)∑
j∈P Φα(zj) wj

.

17

Published as a conference paper at ICLR 2024

Based on the assumption that individual item weights are much smaller than 1, we can substitute for
wj with δzj = zj+1 − zj for all j. This substitution gives an approximate value of the summation
via integration.∑

j∈P
Φα(zj) wj ≈

∫ zT

0

Φα(z)dz

=

∫ α

0

Ldz +

∫ zT

α

(
Ue

L

) z−ℓ
1−ℓ

(
L

e

)
dz

= Lα+

(
L

e

)
(1− ℓ)

 (
Ue
L

) z−ℓ
1−ℓ

ln(Ue/L)

zT

α

= Lα+
Φα(zT)

ln(Ue/L)
− Φα(α)

ln(Ue/L)
− ℓΦα(zT)

ln(Ue/L)
+

ℓΦα(α)

ln(Ue/L)

= L

(
α− 1

ln(Ue/L)
+

ℓ

ln(Ue/L)

)
+

Φα(zT)

ln(Ue/L)
− ℓΦα(zT)

ln(Ue/L)

= L

(
α− 1− ℓ

ln(U/L) + 1

)
+

(1− ℓ)Φα(zT)

ln(U/L) + 1
,

where the fourth equality has used the fact that Φα(zj) = (L/e)(Ue/L)
z−ℓ
1−ℓ , and the fifth equality

has used Φα(α) = L. Substituting back in, we get:

OPT(I)
BASE[α](I)

≤ Φα(zT)

L
(
α− 1−ℓ

ln(U/L)+1

)
+ (1−ℓ)Φα(zT)

ln(U/L)+1

≤ U [ln(U/L) + 1]

Lα[ln(U/L) + 1]− L(1− ℓ) + U(1− ℓ)
.

Thus, the baseline algorithm is U [ln(U/L)+1]
Lα[ln(U/L)+1]−L(1−ℓ)+U(1−ℓ) -competitive.

The fairness constraint of α-CTIF is immediate, because the threshold Φα(z) ≤ L in the interval
[0, α], and so it can be replaced by the constant threshold L in that interval. Applying Proposition 4.1
yields the result.

Theorem 4.5. No α-CTIF deterministic online algorithm for OKP can achieve a competitive ratio

smaller than
W(U(1−α)

Lα)
1−α , where W (·) is the Lambert W function.

Proof. For any α-CTIF deterministic online algorithm ALG, there must exist some utilization region
[a, b] with b− a = α. Any item that arrives in this region is treated fairly, i.e., by definition of CTIF
there exists a function p(x) : [L,U] → {0, 1} which characterizes the fair decisions of ALG. We
define v = min{x ∈ [L,U] : p(x) = 1} (i.e., v is the lowest value density that ALG is willing to
accept during the fair region).

We first state a lemma (proven afterwards), which asserts that the feasible competitive ratio for any
α-CTIF deterministic online algorithm with v > L is strictly worse than the feasible competitive
ratio when v = L.

Lemma C.1. For any α-CTIF deterministic online algorithm ALG for OKP, if the minimum value
density v that ALG accepts during the fair region of the utilization (of length α) is > L, then it must
have a competitive ratio β′ ≥ W (U(1−α)

Lα e
1
α)/(1− α)− 1

α , where W (·) is the Lambert W function.

By Lemma C.1, it suffices to consider the algorithms that set v = L.

Given ALG, let g(x) : [L,U] → [0, 1] denote the acceptance function of ALG, where g(x) is the final
knapsack utilization under the instance Ix. Note that for small δ, processing Ix+δ is equivalent to
first processing Ix, and then processing m identical items, each with weight 1

m and value density
x + δ. Since this function is unidirectional (item acceptances are irrevocable) and deterministic,
we must have g(x + δ) ≥ g(x), i.e. g(x) is non-decreasing in [L,U]. Once a batch of items with
maximum value density U arrives, the rest of the capacity should be used, i.e., g(U) = 1.

18

Published as a conference paper at ICLR 2024

For any algorithm with v = L, it will admit all items greedily for an α fraction of the knapsack.
Therefore, under the instance Ix, the online algorithm with acceptance function g obtains a value
of ALG(Ix) = αL + g(r)r +

∫ x

r
udg(u), where udg(u) is the value obtained by accepting items

with value density u and total weight dg(u), and r is defined as the lowest value density that ALG is
willing to accept during the unfair region, i.e., r = infx∈(L,U]:g(x)≥α x.

For any β′-competitive algorithm, we must have r ≤ αβ′L since otherwise the worst-case ratio is
larger than β′ under an instance Ix with x = αβ′L + ϵ, (ϵ > 0). To derive a lower bound of the
competitive ratio, observe that it suffices WLOG to focus on algorithms with r = αβ′L. This is
because if a β′-competitive algorithm sets r < αβ′L, then an alternative algorithm can postpone the
item acceptance to r = αβ′L and maintain β′-competitiveness.

Under the instance Ix, the offline optimal solution obtains a total value of OPT(Ix) = x. Therefore,
any β′-competitive online algorithm must satisfy:

ALG(Ix) = g(L)L+

∫ x

L

udg(u) = αL+

∫ x

r

udg(u) ≥ x

β′ , ∀x ∈ [L,U].

By integral by parts and Grönwall’s Inequality (Theorem 1, p. 356, in Mitrinovic et al. (1991)), a
necessary condition for the competitive constraint above to hold is the following:

g(x) ≥ 1

β′ −
αL− g(r)r

x
+

1

x

∫ x

r

g(u)du (2)

≥ 1

β′ −
αL

r
+ g(r) +

1

β′ ln
x

r
= g(αβ′L) +

1

β′ ln
x

αβ′L
, ∀x ∈ [L,U]. (3)

By combining g(U) = 1 with equation (3), it follows that any deterministic α-CTIF and β′-
competitive algorithm must satisfy 1 = g(U) ≥ g(αβ′L) + 1

β′ ln
x

αβ′L ≥ α + 1
β′ ln

x
αβ′L . The

minimal value for β′ can be achieved when both inequalities are tight, and is the solution to

ln(U
αβ′L)/β

′ = 1 − α. Thus,
W(U−Uα

Lα)
1−α is a lower bound of the competitive ratio, where W (·)

denotes the Lambert W function.

Proof of Lemma C.1 We use the same definition of the acceptance function g(x) as that in Theorem
4.5. Based on the choice of v by ALG, we consider the following two cases.

Case I: when v ≥ U
1+αβ′ . Under the instance Ix with x ∈ [L, v), the offline optimum is

OPT(Ix) = x and ALG can achieve ALG(Ix) = Lg(L) +
∫ x

L
udg(u). Thus, any β′-competitive

algorithm must satisfy:

ALG(Ix) = Lg(L) +

∫ x

L

udg(u) ≥ x

β′ , x ∈ [L, v).

By integral by parts and Grönwall’s Inequality (Theorem 1, p. 356, in Mitrinovic et al. (1991)), a
necessary condition for the inequality above to hold is:

g(x) ≥ 1

β′ +
1

x

∫ x

L

g(u)du ≥ 1

β′ +
1

β′ ln
x

L
,∀x ∈ [L, v).

Under the instance Iv, to maintain α-CTIF , we must have g(v) ≥ limx→v[
1
β′ +

1
β′ ln

x
L] + α =

1
β′ +

1
β′ ln

v
L + α. Thus, we have 1 ≥ g(v) ≥ 1

β′ +
1
β′ ln

v
L + α, which gives:

β′ ≥
1 + ln v

L

1− α
. (4)

This lower bound is achieved when g(x) = 1
β′ +

1
β′ ln

x
L , x ∈ [L, v) and g(v) = 1

β′ +
1
β′ ln

x
L + v.

In addition, the total value of accepted items is ALG(Iv) = v
β′ + αv.

Under the instance Ix with x ∈ (v, U], we observe that the worst-case ratio is:
OPT(Ix)
ALG(Ix)

≤ U

ALG(Iv)
= β′ U

v(1 + αβ′)
≤ β′.

Thus, the lower bound of the competitive ratio is dominated by equation (4), and β′ ≥ 1+ln v
L

1−α ≥
1+ln U

L(1+αβ′)
1−α .

19

Published as a conference paper at ICLR 2024

Case II: when L < v < U
1+αβ′ . In this case, we have the same results under instances Ix, x ∈ [L, v].

In particular, g(v) = 1
β′ +

1
β′ ln

x
L + v and ALG(Iv) = v

β′ + αv.

Under the instance Ix with x ∈ (v, U], the online algorithm can achieve

ALG(Ix) = ALG(Iv) +
∫ x

r

udg(u), x ∈ (v, U], (5)

where r is the lowest value density that ALG admits outside of the fair region. Using the same
argument as that in the proof of Theorem 4.5, WLOG we can consider r = β′ · ALG(Iv) =
v(1 + αβ′), (r < U). By integral by parts and Grönwall’s Inequality, a necessary condition for
equation (5) is:

g(x) ≥ 1

β′ −
ALG(Iv)− g(r)r

x
+

1

x

∫ x

r

g(u)du

≥ 1

β′ −
ALG(Iv)− g(r)r

r
+

1

β′ ln
x

r

= g(r) +
1

β′ ln
x

r
.

Combining with g(U) = 1 and g(r) ≥ g(v), we have:

1 = g(U) ≥ g(r) +
1

β′ ln
U

r
≥ α+

1

β′ +
1

β′ ln
v

L
+

1

β′ ln
U

v(1 + αβ′)
,

and thus, the competitive ratio must satisfy:

β′ ≥
1 + ln U

L(1+αβ′)

1− α
. (6)

Recall that under the instance Ix with x ∈ [L, v), the worst-case ratio is:

OPT(Ix)
ALG(Ix)

≤
1 + ln v

L

1− α
<

1 + ln U
L(1+αβ′)

1− α
.

Therefore, the lower bound is dominated by equation (6).

Summarizing above two cases, for any α-CTIF deterministic online algorithm, if the minimum value
density v that it is willing to accept during the fair region is > L, then its competitive ratio must

satisfy β′ ≥
1+ln U

L(1+αβ′)
1−α , and the lower bound of the competitive ratio is

W((1−α)U
Lα e1/α)
1−α . It is

also easy to verify that
W((1−α)U

Lα e1/α)
1−α ≥ W(U−Uα

Lα)
1−α ,∀ α ∈ [1

ln(U/L)+1 , 1]. Thus, for any α-CTIF
algorithm, we focus on the algorithms where v = L in order to minimize the competitive ratio.

Theorem 4.6. For any α ∈ [1/ln(U/L)+1, 1], ECT[α] is β-competitive and α-CTIF.

Proof. Fix an arbitrary instance I ∈ Ω. When ECT[α] terminates, suppose the utilization of the
knapsack is zT , and assume we obtain a value of ECT[α](I). Let P and P⋆ respectively be the sets
of items picked by ECT[α] and the optimal solution.

Denote the weight and the value of the common items (i.e., the items picked by both ECT and OPT)
by W = w(P ∩ P⋆) and V = v(P ∩ P⋆). For each item j which is not accepted by ECT[α], we
know that its value density is < Ψα(zj) ≤ Ψα(zT) since Ψα is a non-decreasing function of z. Thus,

OPT(I) ≤ V +Ψα(zT)(1−W).

Since ECT[α](I) = V + v(P \ P⋆), the above inequality implies that

OPT(I)
ECT[α](I)

≤ V +Ψα(zT)(1−W)

V + v(P \ P⋆)
.

20

Published as a conference paper at ICLR 2024

Note that, by definition of the algorithm, each item j picked in P must have value density at least
Ψα(zj), where zj is the knapsack utilization when that item arrives. Thus, we have:

V ≥
∑

j∈P∩P⋆

Ψα(zj) wj =: V1,

v(P \ P⋆) ≥
∑

j∈P\P⋆

Ψα(zj) wj =: V2.

Since OPT(I) ≥ ECT[α](I), we have:

OPT(I)
ECT[α](I)

≤ V +Ψα(zT)(1−W)

V + v(P \ P⋆)
≤ V1 +Ψα(zT)(1−W)

V1 + v(P \ P⋆)
≤ V1 +Ψα(zT)(1−W)

V1 + V2
,

where the second inequality follows because Ψα(zT)(1−W) ≥ v(P \ P⋆) and V1 ≤ V .

Note that V1 ≤ Ψα(zT)w(P ∩ P⋆) = Ψα(zT)W , and by plugging in for the actual values of V1 and
V2 we get:

OPT(I)
ECT[α](I)

≤ Ψα(zT)∑
j∈P Ψα(zj) wj

.

Based on the assumption that individual item weights are much smaller than 1, we can substitute for
wj with δzj = zj+1 − zj for all j. This substitution gives an approximate value of the summation
via integration: ∑

j∈P
Ψα(zj) wj ≈

∫ zT

0

Ψα(z)dz

Now there are two cases to analyze – the case where zT = α, and the case where zT > α. Note that
zT < α is impossible, as this means ECT[α] rejected some item that it had capacity for even when
the threshold was at L, which is a contradiction. We explore each of the two cases in turn below.

Case I. If zT = α, then
∑

j∈P Ψα(zj) wj ≥ Lα.
This follows because ECT[α] is effectively greedy for at least α utilization of the knapsack, and so
the admitted items during this portion must have value at least Lα. Substituting into the original
equation gives us the following:

OPT(I)
ECT[α](I)

≤ Ψα(zT)

Lα
≤ β.

Case II. If zT > α, then
∑

j∈P Ψα(zj) wj ≈
∫ α

0
Ldz +

∫ zT
α

Ψα(z)dz.
Solving for the integration, we obtain the following:∑

j∈P
Ψα(zj) wj ≈

∫ α

0

Ldz +

∫ zT

α

Ψα(z)dz

= Lα+

∫ zT

α

Ueβ(z−1)dz = Lα+

[
Ueβ(z−1)

β

]zT
α

= Lα− Ueβ(α−1)

β
+

Ueβ(zT−1)

β
= Lα− Ψα(α)

β
+

Ψα(zT)

β
=

Ψα(zT)

β
.

Substituting into the original equation, we can bound the competitive ratio:

OPT(I)
ECT[α](I)

≤ Ψα(zT)
1
βΨ

α(zT)
= β,

and the result follows.

Furthermore, the value of β which solves the equation x = Uex(α−1)

Lα can be shown as
W(U−Uα

Lα)
1−α ,

which matches the lower bound from Theorem 4.5.

Theorem 4.11. For any γ ∈ (0, 1], and any I ∈ Ω, LA-ECT[γ] is 2
γ -consistent.

21

Published as a conference paper at ICLR 2024

Proof. For consistency, assume that the black-box predictor ρ−1
I (y) is accurate (i.e. d̂γ = d⋆γ). Let ϵ

denote the upper bound on any individual item’s weight (previously assumed to be small).

In Lemma C.2, we describe ORACLE⋆
γ , a competitive semi-online algorithm (Seiden et al., 2000;

Tan and Wu, 2007; Kumar et al., 2019; Dwibedy and Mohanty, 2022) which is restricted to use a
knapsack of size γ. Plainly, it is an algorithm that has full knowledge of the items in the instance,
but must process items sequentially using a threshold it has to set in advance. Items still arrive in an
online manner, decisions are immediate and irrevocable, and the order of arrival is unknown.

Lemma C.2. There is a deterministic semi-online algorithm, ORACLE⋆
γ , which is 1-CTIF, fills a

knapsack of size γ ∈ [0, 1], and has an approximation factor of 2/(γ− ϵ). Moreover, no deterministic
semi-online algorithm with an approximation factor less than 2− L/U is 1-CTIF.

Proof of Lemma C.2
Upper bound: Note that ORACLE⋆

γ can compute d⋆γ before any items arrive. Suppose ORACLE⋆
γ

sets its threshold at d⋆γ , and therefore admits any items with value density at or above d⋆γ .

Recall the definition of the critical threshold d⋆γ from Definition 4.9. For an arbitrary instance I, let
V denote the value obtained by OPT(I), and d⋆γ gives the maximum value density such that the total
value of items with value density ≥ d⋆γ in OPT(I) is at least γV/2.

Based on the definition of d⋆γ , we know that either the total weight of items with value density ≥ d⋆γ
in OPT(I)’s knapsack is strictly less than γ, or γd⋆γ ≥ γV/2. To verify this, we start by sorting
OPT(I)’s packed items in non-increasing order of value density.

Suppose a greedy approximation algorithm APXγ iterates over this list in sorted order, packing items
into a knapsack of size γ until it is full. Note that APXγ packs (γ − ϵ) of the highest value density
items from I into its knapsack.

By definition, APXγ ≥ (γ − ϵ) · V . In the worst-case, where all items in OPT(I)’s knapsack are the
same value density, we have that APXγ = (γ − ϵ) · V .

Denote the value density of the last item packed by APXγ as d̄. For the sake of contradiction, assume
that d⋆γ < d̄. Since APXγ fills a (γ − ϵ) fraction of its knapsack with items of value density ≥ d̄ and
obtains a value of at least (γ − ϵ)V > γV

2 , this causes a contradiction: d⋆γ should be the largest value
density such that the total value of items with value density ≥ d⋆γ in OPT(I) is at least γV/2, but the
assumption d⋆γ < d̄ implies that the total value of items with value density ≥ d̄ is also at least γV/2.

This further implies either of the following: (I) The true value of d⋆γ is d⋆γ > d̄ if APXγ’s knapsack
contains enough items with value density > d̄ and total weight < (γ − ϵ) such that their total value is
at least γV/2. (II) d⋆γ = d̄ if there are enough items of value density d̄ in I such that γd̄ ≥ γV/2.

Given this information, there are two possible outcomes for the items accepted by ORACLE⋆
γ , listed

below. In each, we show that the value obtained is at least (γ − ϵ)V/2.

• If the total weight of items packed by ORACLE⋆
γ(I) is strictly less than (γ − ϵ), then we

know the total weight of items with value density ≥ d⋆γ in the optimal solution’s knapsack is
strictly less than (γ − ϵ), and that the total weight of items with value density ≥ d⋆γ in the
instance is also strictly less than (γ − ϵ). By definition of d⋆γ , ORACLE⋆

γ(I) obtains a value
of ≥ γV/2.

• If the total weight of items packed by ORACLE⋆
γ(I) is ≥ (γ − ϵ), then we know that

γd⋆γ ≥ γV/2. If this wasn’t true, there would exist some other value density d̂ in OPT(I)’s
knapsack such that d̂ > d⋆γ and the total value of items with value density ≥ d̂ in OPT(I)’s
knapsack would have value at least γV/2. Thus, ORACLE⋆

γ(I) obtains a value of at least
(γ − ϵ)d⋆γ ≥ (γ − ϵ)V/2.

Therefore, ORACLE⋆
γ admits a value of at least (γ − ϵ)V/2, and its approximation factor is at most

2/(γ − ϵ).

22

Published as a conference paper at ICLR 2024

Lower bound: Consider an input formed by a large number of infinitesimal items of density L
and total weight 1, followed by infinitesimal items of density U and total weight L/U . An optimal
algorithm accepts all items of density U and fills the remaining space with items of density L, giving
its knapsack a total value of (L/U)U+(1−L/U)L = 2L−L2/U . Any deterministic algorithm that
satisfies 1-CTIF, however, must accept either all items of density L, giving its knapsack a value of L,
or reject all items of density L, giving it a value of (L/U)U = L. In both cases, the approximation
factor of the algorithm would be 2L−L2/U

L = 2− L/U .

We use ORACLE⋆
γ as a benchmark. Fix an arbitrary input I ∈ Ω. Let LA-ECT[γ] terminate filling

zT fraction of the knapsack and obtaining a value of LA-ECT[γ](I).
Let ORACLE⋆

γ terminate obtaining a value of ORACLE⋆
γ(I).

Now we consider two cases – the case where zT < κ + γ, and the case where zT ≥ κ + γ. We
explore each below.

Case I. If zT < κ+ γ, the following statements must be true:

• Since the threshold function Ψd̂γ (z) ≤ d⋆γ for all values z less than κ+γ, any item accepted
by ORACLE⋆

γ(I) must be accepted by LA-ECT[γ](I).

• Thus, LA-ECT[γ](I) ≥ ORACLE⋆
γ(I), and 2

γ−ϵLA-ECT[γ](I) ≥ OPT(I).

Note that Case I implies that as γ approaches 1, the value obtained by LA-ECT[1](I) is greater than
or equal to that obtained by ORACLE⋆

1(I), and the competitive bound reduces to OPT(I)
LA-ECT[1](I) ≤

2
1−ϵ .

Case II. If zT ≥ κ+ γ, then we know that any item accepted by ORACLE⋆
γ(I) must have been

accepted by LA-ECT[γ].

Proof by contradiction: assume that zT ≥ κ+γ and there exists some item accepted by ORACLE⋆
γ(I)

that wasn’t accepted by LA-ECT[γ]. This implies that when the item arrived to LA-ECT[γ], the
threshold function Ψd̂γ (z) was greater than d⋆γ , which is the minimum acceptable value density for
any item accepted by ORACLE⋆

γ(I).

Since Ψd̂γ (z) ≤ d̂γ for all values z ≤ κ+ γ and zT ≥ κ+ γ implies that LA-ECT[γ] saw enough
items with value density ≥ d⋆γ to fill a γ fraction of the knapsack, this causes a contradiction. Since
items arrive in the same order to both ORACLE⋆

γ(I) and LA-ECT[γ], ORACLE⋆
γ(I)’s knapsack

would already be full by the time this item arrived.

This tells us that LA-ECT[γ](I) ≥ ORACLE⋆
γ(I), and thus we have the following:

2

γ − ϵ
LA-ECT[γ](I) ≥ OPT(I)

It follows in either case that LA-ECT[γ] is 2
γ -consistent for accurate predictions.

Theorem 4.12. For any γ ∈ [0, 1], and any I ∈ Ω, LA-ECT[γ] is 1
1−γ (ln(U/L) + 1)-robust.

Proof. Fix an arbitrary input sequence I . Let LA-ECT[γ] terminate filling zT fraction of the knapsack
and obtaining a value of LA-ECT[γ](I). Let P and P⋆ respectively be the sets of items picked by
LA-ECT[γ] and the optimal solution.

Denote the weight and the value of the common items (items picked by both LA-ECT and OPT) by
W = w(P ∩ P⋆) and V = v(P ∩ P⋆). For each item j which is not accepted by LA-ECT[γ], we
know that its value density is < Ψγ,d̂(zj) ≤ Ψγ,d̂(zT) since Ψγ,d̂ is a non-decreasing function of z.
Thus, we have:

OPT(I) ≤ V +Ψγ,d̂(zT)(1−W).

23

Published as a conference paper at ICLR 2024

Since LA-ECT[γ](I) = V + v(P \ P⋆), the inequality above implies that:

OPT(I)
LA-ECT[γ](I)

≤ V +Ψγ,d̂(zT)(1−W)

V + v(P \ P⋆)
.

Note that each item j picked in P must have value density of at least Ψγ,d̂(zj), where zj is the
knapsack utilization when that item arrives. Thus, we have that:

V ≥
∑

j∈P∩P⋆

Ψγ,d̂(zj) wj =: V1,

v(P \ P⋆) ≥
∑

j∈P\P⋆

Ψγ,d̂(zj) wj =: V2.

Since OPT(I) ≥ LA-ECT[γ](I), we have that

OPT(I)
LA-ECT[γ](I)

≤ V +Ψγ,d̂(zT)(1−W)

V + v(P \ P⋆)
≤ V1 +Ψγ,d̂(zT)(1−W)

V1 + V2
.

Note that V1 ≤ Ψγ,d̂(zT)w(P ∩ P⋆) = Ψγ,d̂(zT)W , and so, plugging in the actual values of V1 and
V2, we get:

OPT(I)
LA-ECT[γ](I)

≤ Ψγ,d̂(zT)∑
j∈P Ψγ,d̂(zj) wj

.

Based on the assumption that individual item weights are much smaller than 1, we can substitute for
wj with δzj = zj+1 − zj for all j. This substitution allows us to obtain an approximate value of the
summation via integration: ∑

j∈P
Ψγ,d̂(zj) wj ≈

∫ zT

0

Ψγ,d̂(z)dz

Now we consider three separate cases – the case where zT ∈ [0, κ), the case where zT ∈ [κ, κ+ γ),
and the case where zT ∈ [κ+ γ, 1]. We explore each below.

Case I. If zT ∈ [0, κ), OPT(I) is bounded by Ψγ,d̂(zT) ≤ d̂. Furthermore,∑
j∈P

Ψγ,d̂(zj) wj ≈
∫ zT

0

Ψγ,d̂(z)dz =

∫ zT

0

(
Ue

L

) z
1−γ

(
L

e

)
dz

= (1− γ)

(
L

e

)[(
Ue
L

) z
1−γ

ln(Ue/L)

]zT

0

= (1− γ)
Ψγ,d̂(zT)

ln(Ue/L)

Combined with the previous equation for the competitive ratio, this gives us the following:

OPT(I)
LA-ECT[γ](I)

≤ Ψγ,d̂(zT)

(1− γ) Ψγ,d̂(zT)
ln(U/L)+1

≤ d̂

(1− γ) d̂
ln(U/L)+1

=
1

1− γ
(ln(U/L) + 1) .

Case II. If zT ∈ [κ, κ+ γ), OPT(I) is bounded by Ψγ,d̂(zT) = d̂. Furthermore,∫ zT

0

Ψγ,d̂(z)dz =

∫ κ

0

(
Ue

L

) z
1−γ

(
L

e

)
dz +

∫ zT

κ

d̂ dz ≥
∫ κ

0

(
Ue

L

) z
1−γ

(
L

e

)
dz.

Note that since the bound on OPT(I) can be the same (i.e. OPT(I) ≤ d̂), Case I is strictly worse
than Case II for the competitive ratio, and we inherit the worse bound:

OPT(I)
LA-ECT[γ](I)

≤ d̂

(1− γ) d̂
ln(U/L)+1

=
1

1− γ
(ln(U/L) + 1) .

24

Published as a conference paper at ICLR 2024

Case III. If zT ∈ [κ+ γ, 1], OPT(I) is bounded by Ψγ,d̂(zT) ≤ U . Furthermore,∑
j∈P

Ψγ,d̂(zj) wj ≈
∫ zT

0

Ψγ,d̂(z)dz =

∫ zT−γ

0

(
Ue

L

) z
1−γ

(
L

e

)
dz +

∫ κ+γ

κ

d̂ dz

= (1− γ)

(
L

e

)[(
Ue
L

) z
1−γ

ln(Ue/L)

]zT−γ

0

+ γd̂

= (1− γ)
Ψγ,d̂(zT)

ln(Ue/L)
+ γd̂.

Combined with the previous equation for the competitive ratio, this gives us the following:

OPT(I)
LA-ECT[γ](I)

≤ Ψγ,d̂(zT)

(1− γ) Ψγ,d̂(zT)
ln(U/L)+1 + γd̂

≤ Ψγ,d̂(zT)

(1− γ) Ψγ,d̂(zT)
ln(U/L)+1

=
1

1− γ
(ln(U/L) + 1) .

Since we have shown that LA-ECT[γ](I) obtains at least 1
1−γ (ln(U/L) + 1) of the value obtained

by OPT(I) in each case, we conclude that LA-ECT[γ](I) is 1
1−γ (ln(U/L) + 1)-robust.

Theorem 4.13. For any learning-augmented online algorithm ALG which satisfies 1-CTIF, one of
the following holds: Either ALG’s consistency is > 2

√
U/L − 1, or ALG has unbounded robustness.

Furthermore, the consistency of any algorithm is lower bounded by 2−ε2/1+ε, where ε =
√

L/U .

Proof. We begin by proving the first statement, which gives a consistency-robustness trade off for
any learning-augmented ALG.

Lemma C.3. One of the following statements holds for any 1-CTIF online algorithm ALG with any
prediction:

(i) ALG has consistency worse (larger) than 2
√

U/L− 1.

(ii) ALG has unbounded robustness.

Proof of Lemma C.3. Let ε =
√
L/U and V =

√
LU and note that εV = L and V/ε = U .

Consider a sequence I that starts with a set of red items of density L and total size 1, continues with
1/ε “white" items, each of size ε and density ε(1+ ε)V (which is in [L,U]), and ends with one black
item of size ε and density V/ε = U . The optimal solution rejects all red items and accepts all other
items except one white item.
The optimal profit is thus OPT(I) = (1 + ε)V − ε(1 + ε)V + V = (2− ε2)V .

Suppose the predictions are consistent with I. Then, a 1-CTIF learning-augmented ALG has the
following two choices:

• It accepts all red items. Then if the input is indeed I, the consistency of ALG would be
(2−ε2)

√
LU

L = (2− ε2)
√
U/L = 2

√
U/L−

√
L/U > 2

√
U/L− 1. In this case, (i) holds.

• It rejects all red items. Then, the input may be formed entirely by the red items (and the
predictions are incorrect). The algorithm does not accept any item, and its robustness will
be unbounded. In this case, (ii) holds.

Note that LA-ECT[γ] satisfies (ii) when γ → 1.

Next, we prove the final statement, which lower bounds the achievable consistency for any 1-CTIF
algorithm. To do this, we consider a semi-online 1-CTIF algorithm ALG. It has full knowledge of the
items in the instance, but must process items sequentially using a threshold it has to set in advance.
Items still arrive in an online manner, decisions are immediate and irrevocable, and the order of
arrival is unknown.

25

Published as a conference paper at ICLR 2024

Lemma C.4. Any semi-online 1-CTIF algorithm has an approximation factor of at least 2−ε2

1+ε , where
ε =

√
L/U .

Proof of Lemma C.4. As previously, let V =
√
LU and note that εV = L and V/ε = U .

Consider an input sequence starting with 1/ε “white" items, each of size ε and density ε(1 + ε)V
(which is in [L,U]). Note that white items have a total size of 1 (knapsack capacity) and a total value
of (1 + ε)V . Suppose the input continues with one black item of size ε and density V/ε = U . An
optimal algorithm accepts all items in the input sequence except one white item. The optimal profit is
thus (1 + ε)V − ε(1 + ε)V + V = (2− ε2)V .

Given that the entire set of white items fits in the knapsack, any 1-CTIF algorithm must accept or
reject them all. In the former case, the algorithm cannot accept the black item (the knapsack becomes
full before processing the black item), and its profit will be (1 + ε)V , resulting in an approximation
factor of 2−ε2

1+ε . In the latter case, the algorithm can only accept the black item, and its approximation
factor would be at least 2− ε2.

Combining the statements of Lemmas C.3 and C.4, the original statement follows.

26

	Introduction
	Problem & Preliminaries
	Time Fairness
	Time-Independent Fairness (TIF)
	Conditional Time-Independent Fairness (CTIF)

	Online Fair Algorithms
	Pareto-optimal deterministic algorithms
	Randomization helps
	Prediction helps

	Numerical Experiments
	Conclusion
	Related Work
	Proofs for Section 3 (Time Fairness)
	Proofs for Section 4 (Online Fair Algorithms)

