
Published as a conference paper at ICLR 2024

SUPPLEMENTARY MATERIAL FOR “TIME FAIRNESS IN ONLINE KNAPSACK
PROBLEMS”

Table 1: A summary of key notations.

Notation Description
j 2 [n] Current position in sequence of items
xj 2 {0, 1} Decision for jth item. xj = 1 if accepted, xj = 0 if not accepted
U Upper bound on the value density of any item
L Lower bound on the value density of any item
↵ Fairness parameter, defined in Definition 3.4

wj (Online input) Item weight revealed to the player when jth item arrives
vj (Online input) Item value revealed to the player when jth item arrives

A RELATED WORK

We consider the online knapsack problem (OKP), a classical resource allocation problem wherein
items with different weights and values arrive sequentially, and we wish to admit them into a
capacity-limited knapsack, maximizing the total value subject to the capacity constraint.

Our work contributes to several active lines of research, including a rich literature on OKP first
studied in Marchetti-Spaccamela and Vercellis (1995), with important optimal results following in
Zhou et al. (2008). In the past several years, research in this area has surged, with many works
considering variants of the problem, such as removable items Cygan et al. (2016), item departures
Sun et al. (2022), and generalizations to multidimensional settings Yang et al. (2021). Closest to this
work, several studies have considered the online knapsack problem with additional information or
in a learning-augmented setting, including frequency predictions Im et al. (2021), online learning
Zeynali et al. (2021), and advice complexity Böckenhauer et al. (2014).

In the literature on the knapsack problem, fairness has been recently considered in Patel et al. (2020)
and Fluschnik et al. (2019). Unlike our work, both deal exclusively with the standard offline setting
of knapsack, and consequently do not consider time fairness. (Patel et al., 2020) introduces a notion
of group fairness for the knapsack problem, while (Fluschnik et al., 2019) introduces three notions of
“individually best, diverse, and fair” knapsacks which aggregate the voting preferences of multiple
voters. To the best of our knowledge, our work is the first to consider notions of fairness in the online
knapsack problem.

In the broader literature on online algorithms and dynamic settings, several studies explore fairness,
although most consider notions of fairness that are different from the ones in our work. Online
fairness has been explored in resource allocation Manshadi et al. (2021); Sinclair et al. (2020); Bateni
et al. (2016); Sinha et al. (2023), fair division Kash et al. (2013), refugee assignment Freund et al.
(2023), matchings Deng et al. (2023); Ma et al. (2023), prophet inequalities Correa et al. (2021),
organ allocation Bertsimas et al. (2013), and online selection Benomar et al. (2023). Banerjee et al.
(2022) shows competitive algorithms for online resource allocation which seek to maximize the Nash
social welfare, a metric which quantifies a trade-off between fairness and performance. Deng et al.
(2023) also explicitly considers the intersection between predictions and fairness in the online setting.
In addition to these problems, there are also several online problems adjacent to OKP in the literature
which would be interesting to explore from a fairness perspective, including one-way trading El-Yaniv
et al. (2001); Sun et al. (2022), bin packing Balogh et al. (2017); Johnson et al. (1974), and single-leg
revenue management Balseiro et al. (2023); Ma et al. (2021).

In the online learning literature, several works consider fairness using regret as a performance metric.
In particular, Talebi and Proutiere (2018) studies a stochastic multi-armed bandit setting where tasks
must be assigned to servers in a proportionally fair manner. Several other works including Baek and
Farias (2021); Patil et al. (2021); Chen et al. (2020) build on these results using different notions of
fairness. For a general resource allocation problem, Sinha et al. (2023) presents a fair online resource

14

Published as a conference paper at ICLR 2024

allocation policy achieving sublinear regret with respect to an offline optimal allocation. Furthermore,
many works in the regret setting explicitly consider fairness from the perspective of an ↵-fair utility
function, including Sinha et al. (2023); Si Salem et al. (2022); Wang et al. (2022) , which partially
inspires our parameterized definition of ↵-CTIF (Def. 3.4).

In the broader ML research community, fairness has seen burgeoning recent interest, particularly
from the perspective of bias in trained models. Mirroring the literature above, multiple definitions
of fairness in this setting have been proposed and studied, including equality of opportunity Hardt
et al. (2016), conflicting notions of fairness Kleinberg et al. (2017), and inherent trade-offs between
performance and fairness constraints Bertsimas et al. (2012). Fairness has also been extensively
studied in impact studies such as Chouldechova (2017), which demonstrated the disparate impact of
recidivism prediction algorithms used in the criminal justice system on different demographics.

B PROOFS FOR SECTION 3 (TIME FAIRNESS)

Observation 3.2. The ZCL algorithm (Zhou et al., 2008) is not TIF.

Proof. Let zj 2 [0, 1] be the knapsack’s utilization when the jth item arrives. When the knapsack is
empty, zj = 0, and when the knapsack is close to full, zj = 1� ✏ for some small ✏ > 0. Pick any
instance with sufficiently many items, and pick zA < zB such that at least one admitted item, say the
kth one, satisfies �(zA)  vk < �(zB). Note that this implies that the kth item arrived between the
utilization being at zA and at zB . Now, modify this same instance by adding a copy of the kth item
after the utilization has reached zB . Note that this item now has probability zero of being admitted.
This implies that two items with the same value-to-weight ratio have different probabilities of being
admitted into the knapsack, contradicting the definition of TIF.

Theorem 3.3. There is no nontrivial algorithm for OKP that guarantees TIF without additional

information about the input. Further, even if the input length n or perfect frequency predictions as

defined in Im et al. (2021) are known in advance, no nontrivial algorithm can guarantee TIF.

Proof. We prove the three parts one by one.

1. WLOG assume that all items have the same value density x = L = U . Assume for the sake
of a contradiction that there is some algorithm ALG which guarantees TIF, and suppose we
have a instance I with n items (which we will set later).

Since we assume that ALG guarantees TIF, consider p(x), the probability of admitting an
item with value density x. Let p(x) = p. Note that p > 0, and also that it cannot depend
on the input length n. Note that we can have have all items of equal weight w, so that for
n � 3B/wp, the knapsack is full with high probability. But now consider modifying the
input sequence from I to I 0, by appending a copy of itself, i.e., increasing the input with
another n items of exactly the same type. The probability of admitting these new items
must be (eventually) zero, even though they have the same value-to-weight ratio as the first
half of the input (and, indeed, the same weights). Therefore, the algorithm violates the TIF
constraint on the instance I 0, which is a contradiction.

2. Again WLOG assume that all items have the same value density x = L = U , so that
sx =

Pn
i=1 wi. Assume for the sake of a contradiction that there is some competitive

algorithm ALG
FP which uses frequency predictions to guarantee TIF.

Since we assume that ALGFP guarantees TIF, consider p(x), the probability of admitting
any item. Let p(x) = p. Again, note that p > 0, and also that it cannot depend on the input
length n, but can depend on sx this time.

Consider two instances I and I 0 as follows: I consists exclusively of “small” items of
(constant) weight w� ⌧ B each, whereas I 0 consists of a small, constant number of such
small items followed by a single “large” item of weight B��/2. Note that by taking enough
items in I, we can ensure the two instances have the same total weight s(x). Therefore,
p(x) must be the same for these two instances, by assumption. Of course, the items all have
value x by our original assumption.

15

Published as a conference paper at ICLR 2024

Note that the optimal packing in both instances would nearly fill up the knapsack. However,
I 0 has the property that any competitive algorithm must reject all the initial smaller items,
as admitting any of them would imply that the large item can no longer be admitted. By
making w� arbitrarily small, we can make the algorithm arbitrarily non-competitive.

The instance I guarantees that p(x) is sufficiently large (i.e., bounded below by some
constant), and so with high probability, at least one item in I 0 is admitted within the first
constant number of items. Therefore, with high probability, ALGFP does not admit the
large-valued item in I 0, and so it cannot be competitive.

3. Again WLOG assume that all items have the same value density x = L = U . Assume
for the sake of a contradiction that there is some competitive algorithm ALG

N which uses
knowledge of the input length n to guarantee TIF.

We will consider only input sequences of length n (assumed to be sufficiently large),
consisting only of items with value density x. Again, since we assume that ALGFP guarantees
TIF, consider p(x), the probability of admitting any item. Let p(x) = p. Again, note that
p > 0, and also that it must be the same for all input sequences of length n.

Consider such an instance I, consisting of identical items of (constant) weight wc each.
Suppose the total weight of the items is very close to the knapsack capacity B. Since the
expected number of items admitted is np, the total value admitted is x · np on expectation.
The optimal solution admits a total value of nx (since the total weight is close to B),
and therefore, the competitive ratio is roughly 1/p. Since we assumed the algorithm was
competitive, it follows that p must be bounded below by a constant.

Now consider a different instance I 0, consisting of 3 log(n)/p2 items of weight w� ⌧ B,
followed by n� 3 log(n)/p2 “large” items of weight B � w�/2. Note that these are well-
defined, as p is bounded below by a constant, and n is sufficiently large. The instance I 0

again has the property that any competitive algorithm must reject all the initial smaller items,
as admitting any of them would imply that none of the large items can be admitted.

However, by the coupon collector problem, with high probability (1� poly(1/n)), at least
one of the 3 log(n)/p2 small items is admitted, which contradicts the competitiveness of
ALGN. As before, by making w� arbitrarily small, we can make the algorithm arbitrarily
non-competitive.

Observation 3.5. The ZCL algorithm (Zhou et al., 2008) is not 1-CTIF.

Proof. This follows immediately from the fact that the threshold value in ZCL changes each time an
item is accepted, which corresponds to the utilization changing. Consider two items with the same
value density (close to L), where one of the items arrives first in the sequence, and the other arrives
when the knapsack is roughly half-full, and assume that there is enough space in the knapsack to
accommodate both items when they arrive. The earlier item will be admitted with certainty, whereas
the later item will with high probability be rejected. So despite having the same value, the items
will have a different admission probability purely based on their position in the sequence, violating
1-CTIF.

C PROOFS FOR SECTION 4 (ONLINE FAIR ALGORITHMS)

Proposition 4.1. Any constant threshold-based algorithm for OKP is 1-CTIF. Furthermore, any

constant threshold-based deterministic algorithm for OKP cannot be better than (U/L)-competitive.

Proof. Consider an arbitrary threshold-based algorithm ALG with constant threshold value �. For
any instance I, and any item, say the jth one, in this instance, note that the probability of admitting
the item depends entirely on the threshold �, and nothing else, as long there is enough space in the
knapsack to admit it. So for any value density x 2 [L,U], the admission probability p(x) is just the
indicator variable capturing whether there is space for the item or not.

For the second part, given a deterministic ALG with a fixed constant threshold � 2 [L,U], there are
two cases. If � > L, the instance I consisting entirely of L-valued items induces an unbounded

16

Published as a conference paper at ICLR 2024

competitive ratio, as no items are admitted by ALG. If � = L, consider the instance I 0 consisting
of m equal-weight items with value L followed by m items with value U , and take m large enough
that the knapsack can become full with only L-valued items. ALG here admits only L-valued items,
whereas the optimal solution only admits U -valued items, and so ALG cannot do better than the
worst-case competitive ratio of U

L for OKP.

Proposition 4.2. The ZCL algorithm is
1

ln(U/L)+1 -CTIF.

Proof. Consider the interval
h
0, 1

ln(U
L)+1

i
, viewed as an utilization interval. An examination of the

ZCL algorithm reveals that the value of the threshold is below L on this subinterval. But since we have
a guarantee that the value-to-weight ratio is at least L, while the utilization is within this interval, the
ZCL algorithm is exactly equivalent to the algorithm using the constant threshold L. By Proposition
4.1, therefore, the algorithm is 1-CTIF within this interval, and therefore is 1

ln(U
L)+1

-CTIF.

Theorem 4.3. For ↵ 2 [1/ln(U/L)+1, 1], the baseline algorithm is
U [ln(U/L)+1]

L↵[ln(U/L)+1]+(U�L)(1�`) -

competitive and ↵-CTIF for OKP.

Proof. To prove the competitive ratio of the parameterized baseline algorithm (call it BASE[↵]),
consider the following:

Fix an arbitrary instance I 2 ⌦. When the algorithm terminates, suppose the utilization of the
knapsack is zT . Assume we obtain a value of BASE[↵](I). Let P and P? respectively be the sets of
items picked by BASE[↵] and the optimal solution.

Denote the weight and the value of the common items (i.e., the items picked by both BASE and OPT)
by W = w(P \ P?) and V = v(P \ P?). For each item j which is not accepted by BASE[↵], we
know that its value density is < �↵(zj)  �↵(zT) since �↵ is a non-decreasing function of z. Thus,
using B = 1, we get

OPT(I)  V + �↵(zT)(1�W).

Since BASE[↵](I) = V + v(P \ P?), the inequality above implies that

OPT(I)
BASE[↵](I)  V + �↵(zT)(1�W)

V + v(P \ P?)
.

Note that, by definition of the algorithm, each item j picked in P must have value density of at least
�↵(zj), where zj is the knapsack utilization when that item arrives. Thus, we have:

V �
X

j2P\P?

�↵(zj) wj =: V1,

v(P \ P?) �
X

j2P\P?

�↵(zj) wj =: V2.

Since OPT(I) � BASE[↵](I), we have:

OPT(I)
BASE[↵](I)  V + �↵(zT)(1�W)

V + v(P \ P?)
 V1 + �↵(zT)(1�W)

V1 + v(P \ P?)
 V1 + �↵(zT)(1�W)

V1 + V2
,

where the second inequality follows because �↵(zT)(1�W) � v(P \ P?) and V1  V .

Note that V1  �↵(zT)w(P \ P?) = �↵(zT)W , and by plugging in the actual values of V1 and V2,
we get:

OPT(I)
BASE[↵](I)  �↵(zT)P

j2P �
↵(zj) wj

.

17

Published as a conference paper at ICLR 2024

Based on the assumption that individual item weights are much smaller than 1, we can substitute for
wj with �zj = zj+1 � zj for all j. This substitution gives an approximate value of the summation
via integration.

X

j2P
�↵(zj) wj ⇡

Z zT

0
�↵(z)dz

=

Z ↵

0
Ldz +

Z zT

↵

✓
Ue

L

◆ z�`
1�`

✓
L

e

◆
dz

= L↵+

✓
L

e

◆
(1� `)

2

4
�
Ue
L

� z�`
1�`

ln(Ue/L)

3

5
zT

↵

= L↵+
�↵(zT)

ln(Ue/L)
� �↵(↵)

ln(Ue/L)
� `�↵(zT)

ln(Ue/L)
+

`�↵(↵)

ln(Ue/L)

= L

✓
↵� 1

ln(Ue/L)
+

`

ln(Ue/L)

◆
+

�↵(zT)

ln(Ue/L)
� `�↵(zT)

ln(Ue/L)

= L

✓
↵� 1� `

ln(U/L) + 1

◆
+

(1� `)�↵(zT)

ln(U/L) + 1
,

where the fourth equality has used the fact that �↵(zj) = (L/e)(Ue/L)
z�`
1�` , and the fifth equality

has used �↵(↵) = L. Substituting back in, we get:

OPT(I)
BASE[↵](I)  �↵(zT)

L
⇣
↵� 1�`

ln(U/L)+1

⌘
+ (1�`)�↵(zT)

ln(U/L)+1

 U [ln(U/L) + 1]

L↵[ln(U/L) + 1]� L(1� `) + U(1� `)
.

Thus, the baseline algorithm is U [ln(U/L)+1]
L↵[ln(U/L)+1]�L(1�`)+U(1�`) -competitive.

The fairness constraint of ↵-CTIF is immediate, because the threshold �↵(z)  L in the interval
[0,↵], and so it can be replaced by the constant threshold L in that interval. Applying Proposition 4.1
yields the result.

Theorem 4.5. No ↵-CTIF deterministic online algorithm for OKP can achieve a competitive ratio

smaller than
W(U(1�↵)

L↵)
1�↵ , where W (·) is the Lambert W function.

Proof. For any ↵-CTIF deterministic online algorithm ALG, there must exist some utilization region
[a, b] with b� a = ↵. Any item that arrives in this region is treated fairly, i.e., by definition of CTIF
there exists a function p(x) : [L,U] ! {0, 1} which characterizes the fair decisions of ALG. We
define v = min{x 2 [L,U] : p(x) = 1} (i.e., v is the lowest value density that ALG is willing to
accept during the fair region).

We first state a lemma (proven afterwards), which asserts that the feasible competitive ratio for any
↵-CTIF deterministic online algorithm with v > L is strictly worse than the feasible competitive
ratio when v = L.

Lemma C.1. For any ↵-CTIF deterministic online algorithm ALG for OKP, if the minimum value

density v that ALG accepts during the fair region of the utilization (of length ↵) is > L, then it must

have a competitive ratio �0 � W (U(1�↵)
L↵ e

1
↵)/(1� ↵)� 1

↵ , where W (·) is the Lambert W function.

By Lemma C.1, it suffices to consider the algorithms that set v = L.

Given ALG, let g(x) : [L,U] ! [0, 1] denote the acceptance function of ALG, where g(x) is the final
knapsack utilization under the instance Ix. Note that for small �, processing Ix+� is equivalent to
first processing Ix, and then processing m identical items, each with weight 1

m and value density
x + �. Since this function is unidirectional (item acceptances are irrevocable) and deterministic,
we must have g(x + �) � g(x), i.e. g(x) is non-decreasing in [L,U]. Once a batch of items with
maximum value density U arrives, the rest of the capacity should be used, i.e., g(U) = 1.

18

Published as a conference paper at ICLR 2024

For any algorithm with v = L, it will admit all items greedily for an ↵ fraction of the knapsack.
Therefore, under the instance Ix, the online algorithm with acceptance function g obtains a value
of ALG(Ix) = ↵L + g(r)r +

R x
r udg(u), where udg(u) is the value obtained by accepting items

with value density u and total weight dg(u), and r is defined as the lowest value density that ALG is
willing to accept during the unfair region, i.e., r = infx2(L,U]:g(x)�↵ x.

For any �0-competitive algorithm, we must have r  ↵�0L since otherwise the worst-case ratio is
larger than �0 under an instance Ix with x = ↵�0L + ✏, (✏ > 0). To derive a lower bound of the
competitive ratio, observe that it suffices WLOG to focus on algorithms with r = ↵�0L. This is
because if a �0-competitive algorithm sets r < ↵�0L, then an alternative algorithm can postpone the
item acceptance to r = ↵�0L and maintain �0-competitiveness.

Under the instance Ix, the offline optimal solution obtains a total value of OPT(Ix) = x. Therefore,
any �0-competitive online algorithm must satisfy:

ALG(Ix) = g(L)L+

Z x

L
udg(u) = ↵L+

Z x

r
udg(u) � x

�0 , 8x 2 [L,U].

By integral by parts and Grönwall’s Inequality (Theorem 1, p. 356, in Mitrinovic et al. (1991)), a
necessary condition for the competitive constraint above to hold is the following:

g(x) � 1

�0 �
↵L� g(r)r

x
+

1

x

Z x

r
g(u)du (2)

� 1

�0 �
↵L

r
+ g(r) +

1

�0 ln
x

r
= g(↵�0L) +

1

�0 ln
x

↵�0L
, 8x 2 [L,U]. (3)

By combining g(U) = 1 with equation (3), it follows that any deterministic ↵-CTIF and �0-
competitive algorithm must satisfy 1 = g(U) � g(↵�0L) + 1

�0 ln
x

↵�0L � ↵ + 1
�0 ln

x
↵�0L . The

minimal value for �0 can be achieved when both inequalities are tight, and is the solution to

ln(U
↵�0L)/�

0 = 1 � ↵. Thus,
W(U�U↵

L↵)
1�↵ is a lower bound of the competitive ratio, where W (·)

denotes the Lambert W function.

Proof of Lemma C.1 We use the same definition of the acceptance function g(x) as that in Theorem
4.5. Based on the choice of v by ALG, we consider the following two cases.

Case I: when v � U
1+↵�0 . Under the instance Ix with x 2 [L, v), the offline optimum is

OPT(Ix) = x and ALG can achieve ALG(Ix) = Lg(L) +
R x
L udg(u). Thus, any �0-competitive

algorithm must satisfy:

ALG(Ix) = Lg(L) +

Z x

L
udg(u) � x

�0 , x 2 [L, v).

By integral by parts and Grönwall’s Inequality (Theorem 1, p. 356, in Mitrinovic et al. (1991)), a
necessary condition for the inequality above to hold is:

g(x) � 1

�0 +
1

x

Z x

L
g(u)du � 1

�0 +
1

�0 ln
x

L
, 8x 2 [L, v).

Under the instance Iv, to maintain ↵-CTIF , we must have g(v) � limx!v[
1
�0 +

1
�0 ln

x
L] + ↵ =

1
�0 +

1
�0 ln

v
L + ↵. Thus, we have 1 � g(v) � 1

�0 +
1
�0 ln

v
L + ↵, which gives:

�0 �
1 + ln v

L

1� ↵
. (4)

This lower bound is achieved when g(x) = 1
�0 +

1
�0 ln

x
L , x 2 [L, v) and g(v) = 1

�0 +
1
�0 ln

x
L + v.

In addition, the total value of accepted items is ALG(Iv) = v
�0 + ↵v.

Under the instance Ix with x 2 (v, U], we observe that the worst-case ratio is:
OPT(Ix)
ALG(Ix)

 U

ALG(Iv)
= �0 U

v(1 + ↵�0)
 �0.

Thus, the lower bound of the competitive ratio is dominated by equation (4), and �0 � 1+ln v
L

1�↵ �
1+ln U

L(1+↵�0)
1�↵ .

19

Published as a conference paper at ICLR 2024

Case II: when L < v < U
1+↵�0 . In this case, we have the same results under instances Ix, x 2 [L, v].

In particular, g(v) = 1
�0 +

1
�0 ln

x
L + v and ALG(Iv) = v

�0 + ↵v.

Under the instance Ix with x 2 (v, U], the online algorithm can achieve

ALG(Ix) = ALG(Iv) +
Z x

r
udg(u), x 2 (v, U], (5)

where r is the lowest value density that ALG admits outside of the fair region. Using the same
argument as that in the proof of Theorem 4.5, WLOG we can consider r = �0 · ALG(Iv) =
v(1 + ↵�0), (r < U). By integral by parts and Grönwall’s Inequality, a necessary condition for
equation (5) is:

g(x) � 1

�0 �
ALG(Iv)� g(r)r

x
+

1

x

Z x

r
g(u)du

� 1

�0 �
ALG(Iv)� g(r)r

r
+

1

�0 ln
x

r

= g(r) +
1

�0 ln
x

r
.

Combining with g(U) = 1 and g(r) � g(v), we have:

1 = g(U) � g(r) +
1

�0 ln
U

r
� ↵+

1

�0 +
1

�0 ln
v

L
+

1

�0 ln
U

v(1 + ↵�0)
,

and thus, the competitive ratio must satisfy:

�0 �
1 + ln U

L(1+↵�0)

1� ↵
. (6)

Recall that under the instance Ix with x 2 [L, v), the worst-case ratio is:

OPT(Ix)
ALG(Ix)


1 + ln v

L

1� ↵
<

1 + ln U
L(1+↵�0)

1� ↵
.

Therefore, the lower bound is dominated by equation (6).

Summarizing above two cases, for any ↵-CTIF deterministic online algorithm, if the minimum value
density v that it is willing to accept during the fair region is > L, then its competitive ratio must

satisfy �0 �
1+ln U

L(1+↵�0)
1�↵ , and the lower bound of the competitive ratio is

W((1�↵)U
L↵ e1/↵)
1�↵ . It is

also easy to verify that
W((1�↵)U

L↵ e1/↵)
1�↵ � W(U�U↵

L↵)
1�↵ , 8 ↵ 2 [1

ln(U/L)+1 , 1]. Thus, for any ↵-CTIF
algorithm, we focus on the algorithms where v = L in order to minimize the competitive ratio.
Theorem 4.6. For any ↵ 2 [1/ln(U/L)+1, 1], ECT[↵] is �-competitive and ↵-CTIF.

Proof. Fix an arbitrary instance I 2 ⌦. When ECT[↵] terminates, suppose the utilization of the
knapsack is zT , and assume we obtain a value of ECT[↵](I). Let P and P? respectively be the sets
of items picked by ECT[↵] and the optimal solution.

Denote the weight and the value of the common items (i.e., the items picked by both ECT and OPT)
by W = w(P \ P?) and V = v(P \ P?). For each item j which is not accepted by ECT[↵], we
know that its value density is < ↵(zj)  ↵(zT) since ↵ is a non-decreasing function of z. Thus,

OPT(I)  V + ↵(zT)(1�W).

Since ECT[↵](I) = V + v(P \ P?), the above inequality implies that

OPT(I)
ECT[↵](I)  V + ↵(zT)(1�W)

V + v(P \ P?)
.

20

Published as a conference paper at ICLR 2024

Note that, by definition of the algorithm, each item j picked in P must have value density at least
 ↵(zj), where zj is the knapsack utilization when that item arrives. Thus, we have:

V �
X

j2P\P?

 ↵(zj) wj =: V1,

v(P \ P?) �
X

j2P\P?

 ↵(zj) wj =: V2.

Since OPT(I) � ECT[↵](I), we have:

OPT(I)
ECT[↵](I)  V + ↵(zT)(1�W)

V + v(P \ P?)
 V1 + ↵(zT)(1�W)

V1 + v(P \ P?)
 V1 + ↵(zT)(1�W)

V1 + V2
,

where the second inequality follows because ↵(zT)(1�W) � v(P \ P?) and V1  V .

Note that V1  ↵(zT)w(P \ P?) = ↵(zT)W , and by plugging in for the actual values of V1 and
V2 we get:

OPT(I)
ECT[↵](I)  ↵(zT)P

j2P
↵(zj) wj

.

Based on the assumption that individual item weights are much smaller than 1, we can substitute for
wj with �zj = zj+1 � zj for all j. This substitution gives an approximate value of the summation
via integration:

X

j2P
 ↵(zj) wj ⇡

Z zT

0
 ↵(z)dz

Now there are two cases to analyze – the case where zT = ↵, and the case where zT > ↵. Note that
zT < ↵ is impossible, as this means ECT[↵] rejected some item that it had capacity for even when
the threshold was at L, which is a contradiction. We explore each of the two cases in turn below.

Case I. If zT = ↵, then
P

j2P
↵(zj) wj � L↵.

This follows because ECT[↵] is effectively greedy for at least ↵ utilization of the knapsack, and so
the admitted items during this portion must have value at least L↵. Substituting into the original
equation gives us the following:

OPT(I)
ECT[↵](I)  ↵(zT)

L↵
 �.

Case II. If zT > ↵, then
P

j2P
↵(zj) wj ⇡

R ↵
0 Ldz +

R zT
↵ ↵(z)dz.

Solving for the integration, we obtain the following:
X

j2P
 ↵(zj) wj ⇡

Z ↵

0
Ldz +

Z zT

↵
 ↵(z)dz

= L↵+

Z zT

↵
Ue�(z�1)dz = L↵+


Ue�(z�1)

�

�zT

↵

= L↵� Ue�(↵�1)

�
+

Ue�(zT�1)

�
= L↵� ↵(↵)

�
+
 ↵(zT)

�
=
 ↵(zT)

�
.

Substituting into the original equation, we can bound the competitive ratio:

OPT(I)
ECT[↵](I)  ↵(zT)

1
�

↵(zT)
= �,

and the result follows.

Furthermore, the value of � which solves the equation x = Uex(↵�1)

L↵ can be shown as
W(U�U↵

L↵)
1�↵ ,

which matches the lower bound from Theorem 4.5.

Theorem 4.11. For any � 2 (0, 1], and any I 2 ⌦, LA-ECT[�] is
2
� -consistent.

21

Published as a conference paper at ICLR 2024

Proof. For consistency, assume that the black-box predictor ⇢�1
I (y) is accurate (i.e. d̂� = d?�). Let ✏

denote the upper bound on any individual item’s weight (previously assumed to be small).

In Lemma C.2, we describe ORACLE
?
� , a competitive semi-online algorithm (Seiden et al., 2000;

Tan and Wu, 2007; Kumar et al., 2019; Dwibedy and Mohanty, 2022) which is restricted to use a
knapsack of size �. Plainly, it is an algorithm that has full knowledge of the items in the instance,
but must process items sequentially using a threshold it has to set in advance. Items still arrive in an
online manner, decisions are immediate and irrevocable, and the order of arrival is unknown.

Lemma C.2. There is a deterministic semi-online algorithm, ORACLE
?
� , which is 1-CTIF, fills a

knapsack of size � 2 [0, 1], and has an approximation factor of 2/(�� ✏). Moreover, no deterministic

semi-online algorithm with an approximation factor less than 2� L/U is 1-CTIF.

Proof of Lemma C.2
Upper bound: Note that ORACLE?

� can compute d?� before any items arrive. Suppose ORACLE
?
�

sets its threshold at d?� , and therefore admits any items with value density at or above d?� .

Recall the definition of the critical threshold d?� from Definition 4.9. For an arbitrary instance I, let
V denote the value obtained by OPT(I), and d?� gives the maximum value density such that the total
value of items with value density � d?� in OPT(I) is at least �V/2.

Based on the definition of d?� , we know that either the total weight of items with value density � d?�
in OPT(I)’s knapsack is strictly less than �, or �d?� � �V/2. To verify this, we start by sorting
OPT(I)’s packed items in non-increasing order of value density.

Suppose a greedy approximation algorithm APX� iterates over this list in sorted order, packing items
into a knapsack of size � until it is full. Note that APX� packs (� � ✏) of the highest value density
items from I into its knapsack.

By definition, APX� � (� � ✏) · V . In the worst-case, where all items in OPT(I)’s knapsack are the
same value density, we have that APX� = (� � ✏) · V .

Denote the value density of the last item packed by APX� as d̄. For the sake of contradiction, assume
that d?� < d̄. Since APX� fills a (� � ✏) fraction of its knapsack with items of value density � d̄ and
obtains a value of at least (� � ✏)V > �V

2 , this causes a contradiction: d?� should be the largest value
density such that the total value of items with value density � d?� in OPT(I) is at least �V/2, but the
assumption d?� < d̄ implies that the total value of items with value density � d̄ is also at least �V/2.

This further implies either of the following: (I) The true value of d?� is d?� > d̄ if APX�’s knapsack
contains enough items with value density > d̄ and total weight < (� � ✏) such that their total value is
at least �V/2. (II) d?� = d̄ if there are enough items of value density d̄ in I such that �d̄ � �V/2.

Given this information, there are two possible outcomes for the items accepted by ORACLE
?
� , listed

below. In each, we show that the value obtained is at least (� � ✏)V/2.

• If the total weight of items packed by ORACLE
?
�(I) is strictly less than (� � ✏), then we

know the total weight of items with value density � d?� in the optimal solution’s knapsack is
strictly less than (� � ✏), and that the total weight of items with value density � d?� in the
instance is also strictly less than (� � ✏). By definition of d?� , ORACLE?

�(I) obtains a value
of � �V/2.

• If the total weight of items packed by ORACLE
?
�(I) is � (� � ✏), then we know that

�d?� � �V/2. If this wasn’t true, there would exist some other value density d̂ in OPT(I)’s
knapsack such that d̂ > d?� and the total value of items with value density � d̂ in OPT(I)’s
knapsack would have value at least �V/2. Thus, ORACLE?

�(I) obtains a value of at least
(� � ✏)d?� � (� � ✏)V/2.

Therefore, ORACLE?
� admits a value of at least (� � ✏)V/2, and its approximation factor is at most

2/(� � ✏).

22

Published as a conference paper at ICLR 2024

Lower bound: Consider an input formed by a large number of infinitesimal items of density L
and total weight 1, followed by infinitesimal items of density U and total weight L/U . An optimal
algorithm accepts all items of density U and fills the remaining space with items of density L, giving
its knapsack a total value of (L/U)U+(1�L/U)L = 2L�L2/U . Any deterministic algorithm that
satisfies 1-CTIF, however, must accept either all items of density L, giving its knapsack a value of L,
or reject all items of density L, giving it a value of (L/U)U = L. In both cases, the approximation
factor of the algorithm would be 2L�L2/U

L = 2� L/U .

We use ORACLE
?
� as a benchmark. Fix an arbitrary input I 2 ⌦. Let LA-ECT[�] terminate filling

zT fraction of the knapsack and obtaining a value of LA-ECT[�](I).
Let ORACLE?

� terminate obtaining a value of ORACLE?
�(I).

Now we consider two cases – the case where zT <  + �, and the case where zT �  + �. We
explore each below.

Case I. If zT < + �, the following statements must be true:

• Since the threshold function d̂� (z)  d?� for all values z less than +�, any item accepted
by ORACLE

?
�(I) must be accepted by LA-ECT[�](I).

• Thus, LA-ECT[�](I) � ORACLE
?
�(I), and 2

��✏LA-ECT[�](I) � OPT(I).

Note that Case I implies that as � approaches 1, the value obtained by LA-ECT[1](I) is greater than
or equal to that obtained by ORACLE

?
1(I), and the competitive bound reduces to OPT(I)

LA-ECT[1](I) 
2

1�✏ .

Case II. If zT �  + �, then we know that any item accepted by ORACLE
?
�(I) must have been

accepted by LA-ECT[�].

Proof by contradiction: assume that zT � +� and there exists some item accepted by ORACLE
?
�(I)

that wasn’t accepted by LA-ECT[�]. This implies that when the item arrived to LA-ECT[�], the
threshold function d̂� (z) was greater than d?� , which is the minimum acceptable value density for
any item accepted by ORACLE

?
�(I).

Since d̂� (z)  d̂� for all values z  + � and zT � + � implies that LA-ECT[�] saw enough

items with value density � d?� to fill a � fraction of the knapsack, this causes a contradiction. Since
items arrive in the same order to both ORACLE

?
�(I) and LA-ECT[�], ORACLE?

�(I)’s knapsack
would already be full by the time this item arrived.

This tells us that LA-ECT[�](I) � ORACLE
?
�(I), and thus we have the following:

2

� � ✏
LA-ECT[�](I) � OPT(I)

It follows in either case that LA-ECT[�] is 2
� -consistent for accurate predictions.

Theorem 4.12. For any � 2 [0, 1], and any I 2 ⌦, LA-ECT[�] is
1

1�� (ln(U/L) + 1)-robust.

Proof. Fix an arbitrary input sequence I . Let LA-ECT[�] terminate filling zT fraction of the knapsack
and obtaining a value of LA-ECT[�](I). Let P and P? respectively be the sets of items picked by
LA-ECT[�] and the optimal solution.

Denote the weight and the value of the common items (items picked by both LA-ECT and OPT) by
W = w(P \ P?) and V = v(P \ P?). For each item j which is not accepted by LA-ECT[�], we
know that its value density is < �,d̂(zj)  �,d̂(zT) since �,d̂ is a non-decreasing function of z.
Thus, we have:

OPT(I)  V + �,d̂(zT)(1�W).

23

Published as a conference paper at ICLR 2024

Since LA-ECT[�](I) = V + v(P \ P?), the inequality above implies that:

OPT(I)
LA-ECT[�](I)  V + �,d̂(zT)(1�W)

V + v(P \ P?)
.

Note that each item j picked in P must have value density of at least �,d̂(zj), where zj is the
knapsack utilization when that item arrives. Thus, we have that:

V �
X

j2P\P?

 �,d̂(zj) wj =: V1,

v(P \ P?) �
X

j2P\P?

 �,d̂(zj) wj =: V2.

Since OPT(I) � LA-ECT[�](I), we have that

OPT(I)
LA-ECT[�](I)  V + �,d̂(zT)(1�W)

V + v(P \ P?)
 V1 + �,d̂(zT)(1�W)

V1 + V2
.

Note that V1  �,d̂(zT)w(P \ P?) = �,d̂(zT)W , and so, plugging in the actual values of V1 and
V2, we get:

OPT(I)
LA-ECT[�](I)  �,d̂(zT)P

j2P
�,d̂(zj) wj

.

Based on the assumption that individual item weights are much smaller than 1, we can substitute for
wj with �zj = zj+1 � zj for all j. This substitution allows us to obtain an approximate value of the
summation via integration:

X

j2P
 �,d̂(zj) wj ⇡

Z zT

0
 �,d̂(z)dz

Now we consider three separate cases – the case where zT 2 [0,), the case where zT 2 [,+ �),
and the case where zT 2 [+ �, 1]. We explore each below.

Case I. If zT 2 [0,), OPT(I) is bounded by �,d̂(zT)  d̂. Furthermore,

X

j2P
 �,d̂(zj) wj ⇡

Z zT

0
 �,d̂(z)dz =

Z zT

0

✓
Ue

L

◆ z
1��

✓
L

e

◆
dz

= (1� �)

✓
L

e

◆" �
Ue
L

� z
1��

ln(Ue/L)

#zT

0

= (1� �)
 �,d̂(zT)

ln(Ue/L)

Combined with the previous equation for the competitive ratio, this gives us the following:

OPT(I)
LA-ECT[�](I)  �,d̂(zT)

(1� �)
�,d̂(zT)

ln(U/L)+1

 d̂

(1� �) d̂
ln(U/L)+1

=
1

1� �
(ln(U/L) + 1) .

Case II. If zT 2 [,+ �), OPT(I) is bounded by �,d̂(zT) = d̂. Furthermore,
Z zT

0
 �,d̂(z)dz =

Z 

0

✓
Ue

L

◆ z
1��

✓
L

e

◆
dz +

Z zT


d̂ dz �

Z 

0

✓
Ue

L

◆ z
1��

✓
L

e

◆
dz.

Note that since the bound on OPT(I) can be the same (i.e. OPT(I)  d̂), Case I is strictly worse
than Case II for the competitive ratio, and we inherit the worse bound:

OPT(I)
LA-ECT[�](I)  d̂

(1� �) d̂
ln(U/L)+1

=
1

1� �
(ln(U/L) + 1) .

24

Published as a conference paper at ICLR 2024

Case III. If zT 2 [+ �, 1], OPT(I) is bounded by �,d̂(zT)  U . Furthermore,

X

j2P
 �,d̂(zj) wj ⇡

Z zT

0
 �,d̂(z)dz =

Z zT��

0

✓
Ue

L

◆ z
1��

✓
L

e

◆
dz +

Z +�


d̂ dz

= (1� �)

✓
L

e

◆" �
Ue
L

� z
1��

ln(Ue/L)

#zT��

0

+ �d̂

= (1� �)
 �,d̂(zT)

ln(Ue/L)
+ �d̂.

Combined with the previous equation for the competitive ratio, this gives us the following:

OPT(I)
LA-ECT[�](I)  �,d̂(zT)

(1� �)
�,d̂(zT)

ln(U/L)+1 + �d̂
 �,d̂(zT)

(1� �)
�,d̂(zT)

ln(U/L)+1

=
1

1� �
(ln(U/L) + 1) .

Since we have shown that LA-ECT[�](I) obtains at least 1
1�� (ln(U/L) + 1) of the value obtained

by OPT(I) in each case, we conclude that LA-ECT[�](I) is 1
1�� (ln(U/L) + 1)-robust.

Theorem 4.13. For any learning-augmented online algorithm ALG which satisfies 1-CTIF, one of

the following holds: Either ALG’s consistency is > 2
p

U/L � 1, or ALG has unbounded robustness.

Furthermore, the consistency of any algorithm is lower bounded by 2�"2/1+", where " =
p

L/U .

Proof. We begin by proving the first statement, which gives a consistency-robustness trade off for
any learning-augmented ALG.

Lemma C.3. One of the following statements holds for any 1-CTIF online algorithm ALG with any

prediction:

(i) ALG has consistency worse (larger) than 2
p

U/L� 1.

(ii) ALG has unbounded robustness.

Proof of Lemma C.3. Let " =
p
L/U and V =

p
LU and note that "V = L and V/" = U .

Consider a sequence I that starts with a set of red items of density L and total size 1, continues with
1/" “white" items, each of size " and density "(1+ ")V (which is in [L,U]), and ends with one black

item of size " and density V/" = U . The optimal solution rejects all red items and accepts all other
items except one white item.
The optimal profit is thus OPT(I) = (1 + ")V � "(1 + ")V + V = (2� "2)V .

Suppose the predictions are consistent with I. Then, a 1-CTIF learning-augmented ALG has the
following two choices:

• It accepts all red items. Then if the input is indeed I, the consistency of ALG would be
(2�"2)

p
LU

L = (2� "2)
p
U/L = 2

p
U/L�

p
L/U > 2

p
U/L� 1. In this case, (i) holds.

• It rejects all red items. Then, the input may be formed entirely by the red items (and the
predictions are incorrect). The algorithm does not accept any item, and its robustness will
be unbounded. In this case, (ii) holds.

Note that LA-ECT[�] satisfies (ii) when � ! 1.

Next, we prove the final statement, which lower bounds the achievable consistency for any 1-CTIF
algorithm. To do this, we consider a semi-online 1-CTIF algorithm ALG. It has full knowledge of the
items in the instance, but must process items sequentially using a threshold it has to set in advance.
Items still arrive in an online manner, decisions are immediate and irrevocable, and the order of
arrival is unknown.

25

Published as a conference paper at ICLR 2024

Lemma C.4. Any semi-online 1-CTIF algorithm has an approximation factor of at least
2�"2

1+" , where

" =
p

L/U .

Proof of Lemma C.4. As previously, let V =
p
LU and note that "V = L and V/" = U .

Consider an input sequence starting with 1/" “white" items, each of size " and density "(1 + ")V
(which is in [L,U]). Note that white items have a total size of 1 (knapsack capacity) and a total value
of (1 + ")V . Suppose the input continues with one black item of size " and density V/" = U . An
optimal algorithm accepts all items in the input sequence except one white item. The optimal profit is
thus (1 + ")V � "(1 + ")V + V = (2� "2)V .

Given that the entire set of white items fits in the knapsack, any 1-CTIF algorithm must accept or
reject them all. In the former case, the algorithm cannot accept the black item (the knapsack becomes
full before processing the black item), and its profit will be (1 + ")V , resulting in an approximation
factor of 2�"2

1+" . In the latter case, the algorithm can only accept the black item, and its approximation
factor would be at least 2� "2.

Combining the statements of Lemmas C.3 and C.4, the original statement follows.

26

	Introduction
	Problem & Preliminaries
	Time Fairness
	Time-Independent Fairness (TIF)
	Conditional Time-Independent Fairness (CTIF)

	Online Fair Algorithms
	Pareto-optimal deterministic algorithms
	Randomization helps
	Prediction helps

	Numerical Experiments
	Conclusion
	Related Work
	Proofs for Section 3 (Time Fairness)
	Proofs for Section 4 (Online Fair Algorithms)

