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A MORE IMPLEMENTATION DETAILS

The backdoor triggers used in our experiments are shown in Figure[6]

BadNets

Refool

Figure 6: Examples of backdoored CIFAR-10 images by the 6 attacks.

Table 3: A configuration summary for the 6 backdoor attacks: datasets, models, and triggers.

Backdoork BadNets Trojan Blend Clean-Label Signal Refool
Dataset CIFAR-10 | CIFAR-10 CIFAR-10 CIFAR-10 | CIFAR-10 GTSRB
Model WideResNet | WideResNet | WideResNet | WideResNet | WideResNet | WideResNet
Inject Rate 0.1 0.05 0.1 0.8 0.1 0.8
. . . | Grid 4+ PGD| Sinusoidal .
Trigger Type Grid Square Random Noise Noise Signal Reflection
Trigger Size 3x3 3x3 Full Image 3x3 Full Image | Full Image
Target Label 0 0 0 0 0 0
ASR 100.00% 100.00% 99.97% 99.21% 99.91% 95.16%
ACC 85.65% 81.24% 84.95% 82.43% 84.36% 82.38%

Detailed implementation on 6 state-of-the-art backdoor attacks:

e BadNets: The trigger is a 3 x 3 checkerboard (pixel values are 128 or 255) at the bottom right
corner of images. We labeled the backdoor examples with a chosen target label and achieved an
attack success rate of 100% with an injection rate of 10%.

e Trojan attack. We follow the method proposed in the paper to reverse engineer a 3 x 3 square
trigger from the last fully-connected layer of the network. In order to reduce the impact on clean
accuracy, we poisoned only 5% of training data with the reverse-engineered Trojan trigger. We
achieved an attack success rate of 100% with an injection rate of 5%.

e Blend attack. We used the random patterns reported in the original paper. We achieved an attack
success rate of 99.97% with an injection rate of 10% and a blend ratio of o = 0.2.

o Clean-label attack (CL). We followed the same settings as reported in the paper. Specifically,
we used Projected Gradient Descent (PGD) to generate adversarial perturbations bounded to L
maximum perturbation € = 16. The trigger is a 3 x 3 grid at the bottom right corner of images.
We achieved an attack success rate of 99.21% with an injection rate of 80%.
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e Sinusoidal signal attack (SIG). We generate the backdoor trigger following the horizontal sinu-
soidal function defined in their paper with A = 20 and f = 6. We achieved an attack success rate
of 99.91% with an injected rate of 10%.

e Reflection attack (Refool). The implementation is based on the open-source codeﬂ We achieved
an attack success rate of 95.16% with an injection rate of 80%.

More Details on Defense Baselines We adopted the same settings used in NAD for the standard
finetuning approach and finetuned the model until convergence. We replicated Fine-prunin via
PyTorch and pruned the last convolutional layer of the model as suggested in the original paper Liu
et al.|(2018a). For a fair comparison, the pruning ratio was set to a value such that the ACC of the
pruned network matched the ACC of our NAD approach. We used the open-source codeE] for mode
connectivity repair (MCR) and set the endpoint model t = 0 and t = 1 with the same backdoored
WRN-16-1. We trained the connection path for 100 epochs and evaluated the defense performance

of the model on the path. Other settings of the code remain unchanged.

B COMPARISON WITH DATA AUGMENTATION TECHNIQUES

Cutout (DeVries & Taylor, |2017) and Mixup (Zhang et al., [2018) are popular data augmentation
methods for CNNs. Cutout masks out random sections of input images during training and Mixup
randomly morphs the training images. We evaluate in this section the independent effectiveness of
Mixup and Cutout in erasing backdoor triggers. For Cutouﬂ we set the number of patches to be cut
out of each image to 1 and each patch is a 3 x 3 square. For Mixulﬂ we set a to be the default
value of 1, indicating that we sample the weight uniformly between zero and one. Other settings
for attacks and defenses are identical to the settings specified in Section The results (see Table
M) can be a supplement of Table[I] We conclude that data augmentation techniques have mitigating
effects on backdoors only when the transformation images are similar to the trigger patterns. They
are hence not general against a wide range of backdoor attacks.

Table 4: Comparison with Mixup and Cutout on erasing backdoor triggers.

Backdoor Before Mixup Cutout NAD (Ours)
Attack ASR  ACC ASR ACC ASR ACC ASR ACC
BadNets | 100% 85.65% | 68.22% 80.27% | 28.17% 82.73% | 3.81% 81.85%
Trojan | 100% 81.24% | 96.20% 71.83% | 50.22% 80.13% | 19.63% 79.16%
Blend [99.97% 84.95% | 99.11% 80.51% | 15.30% 81.78% | 3.04% 81.68%
CL 99.21% 82.43% | 93.77% 77.13% | 73.33% 81.34% | 9.18% 80.34%
SIG 9991% 84.36% | 52.11% 79.94% | 99.95% 82.77% | 2.52% 81.95%
Refool |95.16% 82.38% | 8.76% 77.84% | 91.86% 80.06% | 3.18%  80.73%
Average |99.04% 83.50% | 69.69% 77.92% | 59.80% 81.46% | 7.22%  80.83%
Deviation - - $2935% | 5.58%|]39.24% | 2.03% |] 91.82% | 2.66%

C MORE RESULTS OF MoODE CONNECTIVITY REPAIR (MCR)

We use the open-source code of MCR and compare its performance to our NAD method. The ex-
periments are conducted on CIFAR-10 dataset using 5% clean finetune data. We first run MCR with
the two endpoint models t = 0 and t = 1 which use the same backdoored WRN-16-1 model. Figure
shows the convergence rate of MCR and our NAD against BadNets attack. We then run an addi-
tional experiment for MCR using two different endpoint models: t = 0 and t = 1 use the backdoored
WRN-16-1 and the finetuned backdoored WRN-16-1 respectively. This result is reported in Table
[l We find that using different endpoint models can not further improve the performance of MCR.

Zhttps://github.com/DreamtaleCore/Refool
3https://github.com/kangliucn/Fine-pruning-defense
*https://github.com/IBM/model-sanitization/tree/master/backdoor/backdoor-cifar
>https://github.com/uoguelph-mlrg/Cutout
Shttps://github.com/leehomyc/mixup-pytorch
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Figure 7: Convergence rate comparison between MCR and NAD against BadNets attack with 5%
clean training data. We show the best result of MC at the connection point t = 0.3. Note that it takes
longer for MCR to converge yet its ASR is still higher than that of the NAD’s.

Table 5: Performance of MCR with different endpoint models on CIFAR-10 dataset. B denotes the
backdoored WRN-16-1 and F-B denotes the backdoored WRN-16-1 after Fine-tuning. MCR-(B,B)
denotes the default setting where the two endpoint models are both B, while MCR-(B,F-B) denotes
the MCR using two different endpoint models B and F-B. The best results are boldfaced.

Backdoor Before MCR-(B,B) MCR-(B,F-B) NAD (Ours)
Attack ASR ACC ASR ACC ASR ACC ASR ACC
BadNets | 100% 85.65% | 4.65% 80.94% | 6.00% 80.56% | 4.77% 81.17%
Trojan 100% 81.24% |41.25% 78.76% |53.31% 78.31% |19.63% 79.16%
Blend |99.97% 84.95% |64.33% 80.34% |70.65% 80.51% | 4.04% 81.68%
CL 99.21% 82.43% |32.95% 79.04% |42.66% 80.31% | 9.18% 80.34%
SIG 9991% 84.36% | 1.62% 80.94% | 7.32% 81.12% | 2.52% 81.95%
Refool [95.15% 82.38% | 8.76% 78.84% |10.95% 79.03% | 3.18% 80.73%

D EXPERIMENTAL RESULTS OF TRIGGER RECOVERING
TECHNIQUE

Qiao et al.[{(2019) proposed MESA that recovers the trigger distribution via generative modeling and
then removes the backdoor by model retraining. We implemented this work based on their open-
source cod Note that we report the best averaging results of defense performance and we changed
nothing in the code besides setting the proportion of available training data to 5%. We present the
results in Table

Table 6: Comparison between NAD and retraining-based approaches that use both the original trig-
ger (Org-T) and the MESA-recovered trigger (Rec-T). While all methods are able to reduce the ASR
of BadNets to a similar level, NAD is able to reduce the ASR of CL by 16 more percent in compar-
ison to the model retrained with the original trigger and by 22 more percent in comparison to the
model retrained with the MESA-generated trigger.

Backdoor Before Retrain w/ rec-T | Retrain w/ org-T | NAD (Ours)
Attack ASR ACC ASR ACC ASR ACC | ASR ACC
BadNets | 100% 85.65% | 4.96% 81.23% | 3.91% 82.14% |4.77% 81.17%

CL 99.21% 82.43% (31.23% 79.12% | 25.23% 79.57% |9.18% 80.34%

E EXPERIMENTAL RESULTS OF HYPER-PARAMETER S

We only give a rough estimate of 3 for all the backdoor attacks in Figure 8| and it certainly provides
better results by a more granular level of tuning.

"https://github.com/superrrpotato/Defending-Neural-Backdoors-via-Generative-Distribution-Modeling

15



Under review as a conference paper at ICLR 2021

100

90 —e— BadNets —<— Blend —+— SIG 90
§°, 80 Trojan —%— CL —<— Refool —~ 80 —
L 70 o‘\c’ 70 ‘\'
@
@ 60 g 60
2 g
& 50 3 50
§ 40 ® 40
% 30 § 30
2 k)
7 2 O 2 —— BadNets —<— Blend —+— SIG

10 . 10 — Trojan —¥— CL —<— Refool

0 )4

0 2000 5000 10000 50000 0 0 2000 5000 10000 50000

B
Figure 8: Parameter analysis: performance of our NAD approach under different 3.

F EXPERIMENTAL RESULTS OF DIFFERENT ATTENTION
FUNCTIONS

We compare the performance of NAD under scenarios where 4 different attention functions, A, can,
A2 cons Asum > and A2 are employed. We use the BadNets attack as our benchmark attack.
Again, we evaluate the performance of NAD using two metrics, the ASR and the ACC, and the
results are summarized in Table[7]
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Figure 9: Iterative NAD and Finetuning against Figure 10: Erasing all-target BadNets attack.
BadNets.

Table 7: Performance of NAD using different attention functions against BadNets on CIFAR-10 with
5% clean data. ASR: attack success rate; ACC: clean accuracy. The best results are in boldfaced.

Attention Function Amean Ancan Asum Aum
ASR ACC | ASR ACC ASR ACC ASR ACC
Baseline 100% 85.86% | 100% 85.86% | 100% 85.86% | 100% 85.86%
Epoch 1 11.81% 66.72% | 1.98% 47.52% | 9.38% 68.81% | 1.36% 47.25%
Epoch 2 16.34% 79.92% |8.86% 78.14% | 10.82% 79.34% | 9.81% 77.91%
Epoch 3 13.86% 81.83% |4.50% 81.00% | 7.67% 81.69% |5.12% 81.12%
Epoch 4 14.16% 81.90% |5.96% 80.67% | 8.39% 81.38% | 5.80% 80.83%
Epoch 5 12.28% 81.50% |4.60% 81.30% | 6.89% 81.46% |4.21% 81.55%

G EXPERIMENTAL RESULTS OF ITERATIVE NAD

We evaluate whether NAD can be further improved with multiple iterations of distillation. In this
experiment, we adopted the same configuration and set the iteration times to 5. Taking the BadNets
attack as an example. The results in Figure[9]show that the attack rate has not been further reduced,
and has even slightly increased by 2% in some cases. We hypothesize that the attentions of the
backdoored neurons have been correctly aligned with the attentions of the benign neurons after a
single-iteration of erasing. Whereas multiple iterations of distillation will make NAD refocus on
the trigger pattern. Therefore, we believe that one-iteration of distillation is sufficient to guarantee
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the best result. Note that iterative Finetuning does not lead to further improvement over one-time
finetuning neither.

H ERASING ALL-TARGET BACKDOOR ATTACKS

Unlike a single-target attack where the goal is to misclassify all backdoored images as one pre-
specified target class, an all-target attack aims to misclassify every source class label as different
ones (in our case, misclassify the original label 7 as (i + 1) % 10). In this experiment, we adopted
the same settings (i.e. single target attacks on BadNets) to conduct all-target attacks on the WRN-
16-1 network. We found that an all-target attack is a tougher task than a single-target attack. It is
harder to attain a satisfactory ASR with an all-target attack. The results in Figure[I0]show that NAD
is able to reduce the ASR across all poison-classes (from 79% to 9.7%) effectively with only 5% of
clean training data.

I FEATURE MAPS V.S. ATTENTION MAPS

A natural question to ask is: why attention maps instead of feature maps? This can be traced back
to the field of knowledge distillation. Directly aligning the feature maps could lead to an informa-
tion loss on the sample density in the space, and this could lead to a decrement in the distillation
performance (Zagoruyko & Komodakis), 2017} [Huang & Wang| 2017} [Lopez et al., 2019). In the
context of backdoor erasing, aligning the feature maps is not a good option because the backdoor
neurons are only weakly, if not at all, activated by clean samples 2019). In contrast, atten-
tion maps contain integrated information (see Equation [I)) of both backdoored and benign neurons’
feature maps, even when the neurons are not fired. (see Table [8). Figure [[1] visualizes activation
maps of a backdoored image on BadNets, Finetuned BadNets with 5% of clean training data, and
BadNets erased by NAD with 5% of clean training data. The attention maps aggregated across the
channels using 5 different attention functions are shown in Figure[T2]
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(a) Trigger Sample on BadNets (b) Trigger Sample on Finetuned BadNets (c) Trigger Sample on BadNets Erased by NAD

Figure 11: The activation map of one backdoored image at Group 3 of WRN-16-1 for (a) BadNets,
(b) Finetuned BadNets with 5% of clean training data, and (c) BadNets erased by our NAD with 5%
of clean training data. Each small patch is a channel (64 channels in total). The small red circles
highlight the regions that are fired by the trigger pattern at different channels of the activation map.

Table 8: NAD using attention map versus activation map against BadNets.

Before | Activation Map | Attention Map
CIFAR-10 ASR| 100% 98.44% 3.81%
(WRN-16-1) ACC | 85.65% 82.66 81.85%
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Figure 12: The attention maps derived by 5 different attention functions are shown for (a) BadNet,
(b) Finetuned BadNet by 5% clean training data, and (c) BadNets erased by our NAD.
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Figure 13: The learning curves (test ASR and ACC) of the NAD student network and a Finetuning
network on CIFAR-10 against BadNets (left) and CL (right). In NAD, the student network tends to
overfit to the teacher network, unless an early stopping is applied based on the validation ACC.

J OVERFITTING IN NAD

Here, we run NAD for a sufficiently long time (e.g. 20 epochs) to test if the student will eventually
overfit to the finetuned teacher network. This experiment is conducted on CIFAR-10 against Bad-
Nets and CL attacks. We also run the Finetuning defense as a comparison. Note that, the teacher
network of NAD is only finetuned for 10 epochs, following the settings in Section .1} As shown
in Figure [T3| (Appendix [J), the student network of NAD can indeed overfit to the partially purified
teacher network. However, this can be effectively addressed by a simple early stopping strategy:
stop the finetuning when there are no significant improvements on the validation accuracy within a
few epochs (e.g. at epoch 5). As shown by the green curves, the clean accuracy of NAD first drops,
then quickly recovers and stabilizes at a high level within a few epochs. This also highlights the
efficiency of our NAD defense as only a few epochs of finetuning is sufficient to erase the backdoor
trigger.

K EFFECTIVENESS AGAINST ADAPTIVE ATTACKS

A backdoor adversary may attempt to construct a more stealthy backdoor trigger that does not cause
obviouse shift of the attention. To simulate this scenario, we design an adaptive version of BadNets
on CIFAR-10 that attaches the trigger pattern at the center region of the image. Such an adaptive
attack will only shift the attention close to the center region and has a weaker activation response.
Since most of the CIFAR-10 objects are located at the center of the clean images, this adaptive
attack may make the attention distillation much less effective. Figure [T4]illustrates a few examples
of backdoored images for this type of attack. We use a scaling parameter o € [0, 1] to adjust the
pixel value of a black-white square trigger pattern (all images are normalized into the range of [0, 1]).
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For example, for o = 0.2, we scale pixel values of the trigger pattern p to p X «. The results of our
NAD against this adaptive attack are reported in Table [9} Our NAD method can still effectively
erase the adaptive attack while maintaining high accuracy on clean data. Interestingly, Finetuning
can only effectively erase the weaker trigger, and not as effective as NAD (especially in the case of
« = 1.0 attack). We conjecture this is because the center regions are more hard overwritten by the
clean images used for finetuning. We leave the exploration of more advanced adaptive attacks for
future work.

(a) Square Trigger (b) Square Trigger (c) Square Trigger (d) Square Trigger
=02 a=05 =08 a=10
Figure 14: The triggers used by an adaptive BadNets attack against our NAD under different o (a
scaling factor of the original black-white square). The trigger patterns are all placed at the center of
the image.

Table 9: Performance of our NAD (5 = 2,0000 for o = 1.0 and 8 = 1,0000 for other «) against
an adaptive BadNets attack. ASR: attack success rate; ACC: clean accuracy. The best results are
boldfaced.

Square Before Finetuning NAD (Ours)
Trigger| ASR  ACC | ASR ACC | ASR ACC
a=02(99.85% 82.11% | 7.51% 79.26% |4.92% 80.32%
a=0.5]99.87% 83.04% | 7.65% 77.84% |3.98% 78.91%
a=0.8199.97% 82.85% |12.65% 79.91% |4.08% 80.38%
a=1.0] 100% 83.23%|90.77% 79.56% |5.83% 80.41%
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