
Under review as a conference paper at ICLR 2021

A PPO

Proximal Policy Optimization (PPO) Schulman et al. (2017) is an actor-critic RL algorithm that
learns a policy πθ and a value function Vθ with the goal of finding an optimal policy for a given MDP.
PPO alternates between sampling data through interaction with the environment and optimizing an
objective function using stochastic gradient ascent. At each iteration, PPO maximizes the following
objective:

JPPO = Jπ − α1JV + α2Sπθ , (7)
where α1, α2 are weights for the different loss terms, Sπθ is the entropy bonus for aiding exploration,
JV is the value function loss defined as

JV =
(
Vθ(s)− V target

t

)2
.

The policy objective term Jπ is based on the policy gradient objective which can be estimated using
importance sampling in off-policy settings (i.e. when the policy used for collecting data is different
from the policy we want to optimize):

JPG(θ) =
∑
a∈A

πθ(a|s)Âθold(s, a) = Ea∼πθold

[
πθ(a|s)
πθold(a|s)

Âθold(s, a)

]
, (8)

where Â(·) is an estimate of the advantage function, θold are the policy parameters before the update,
πθold is the behavior policy used to collect trajectories (i.e. that generates the training distribution of
states and actions), and πθ is the policy we want to optimize (i.e. that generates the true distribution
of states and actions).

This objective can also be written as

JPG(θ) = Ea∼πθold
[
r(θ)Âθold(s, a)

]
, (9)

where

rθ =
πθ(a|s)
πθold(a|s)

is the importance weight for estimating the advantage function.

PPO is inspired by TRPO (Schulman et al., 2015), which constrains the update so that the policy does
not change too much in one step. This significantly improves training stability and leads to better
results than vanilla policy gradient algorithms. TRPO achieves this by minimizing the KL divergence
between the old (i.e. before an update) and the new (i.e. after an update) policy. PPO implements the
constraint in a simpler way by using a clipped surrogate objective instead of the more complicated
TRPO objective. More specifically, PPO imposes the constraint by forcing r(θ) to stay within a small
interval around 1, precisely [1− ε, 1 + ε], where ε is a hyperparameter. The policy objective term
from equation (7) becomes

Jπ = Eπ
[
min

(
rθÂ, clip (rθ, 1− ε, 1 + ε) Â

)]
,

where Â = Âθold(s, a) for brevity. The function clip(r(θ), 1− ε, 1 + ε) clips the ratio to be no more
than 1 + ε and no less than 1− ε. The objective function of PPO takes the minimum one between
the original value and the clipped version so that agents are discouraged from increasing the policy
update to extremes for better rewards.

Note that the use of the Adam optimizer (Kingma & Ba, 2015) allows loss components of different
magnitudes so we can use Gπ and GV from equations (3) and (4) to be used as part of the DrAC ob-
jective in equation (5) with the same loss coefficient αr. This alleviates the burden of hyperparameter
search and means that DrAC only introduces a single extra parameter αr.

13

Under review as a conference paper at ICLR 2021

Table 3: List of hyperparameters used to obtain the results in this paper.

Hyperparameter Value

γ 0.999
λ 0.95

timesteps per rollout 256
epochs per rollout 3

minibatches per epoch 8
entropy bonus 0.01

clip range 0.2
reward normalization yes

learning rate 5e-4
workers 1

environments per worker 64
total timesteps 25M

optimizer Adam
LSTM no

frame stack no
αr 0.1
c 0.1
K 10

B CYCLE-CONSISTENCY

Here is a description of the cycle-consistency metric proposed by Aytar et al. (2018) and also
used in Lee et al. (2020) for analyzing the learned representations of RL agents. Given two
trajectories V and U , vi ∈ V first locates its nearest neighbor in the other trajectory uj =

argminu∈U ‖h(vi)− h(u)‖
2, where h(·) denotes the output of the penultimate layer of trained

agents. Then, the nearest neighbor of uj ∈ V is located, i.e., vk = argminv∈V ‖h(uj)− h(uj)‖2,
and vi is defined as cycle-consistent if |i− k| ≤ 1, i.e., it can return to the original point. Note that
this cycle-consistency implies that two trajectories are accurately aligned in the hidden space. Similar
to Aytar et al. (2018), we also evaluate the three-way cycle-consistency by measuring whether vi
remains cycle-consistent along both paths, V → U → J → V and V → J → U → V , where J is
the third trajectory.

C HYPERPARAMETERS

We use Kostrikov (2018)’s implementation of PPO (Schulman et al., 2017), on top of which all our
methods are build. The agent is parameterized by the ResNet architecture from (Espeholt et al.,
2018) which was used to obtain the best results in Cobbe et al. (2019). Unless otherwise noted, we
use the best hyperparameters found in Cobbe et al. (2019) for the easy mode of Procgen (i.e. same
experimental setup as the one used here), namely:

For DrAC, we did a grid search for the regularization coefficient αr ∈
[0.0001, 0.01, 0.05, 0.1, 0.5, 1.0] used in equation (5) and found that the best value is αr = 0.1,
which was used to produce all the results in this paper.

For UCB-DrAC, we did grid searches for the exploration coefficient c ∈ [0.0, 0.1, 0.5, 1.0, 5.0] and
the size of the sliding window used to compute the Q-values K ∈ [10, 50, 100]. We found that the
best values are c = 0.1 and K = 10, which were used to obtain the results shown here.

For RL2-DrAC, we performed a hyperparameter search for the dimension of recurrent hidden state
h ∈ [16, 32, 64], for the learning rate l ∈ [3e − 4, 5e − 4, 7e − 4], and for the entropy coefficient
e ∈ [1e− 4, 1e− 3, 1e− 2] and found h = 32, l = 5e− 4, and e = 1e− 3 to work best. We used
Adam with ε = 1e− 5 as the optimizer.

14

Under review as a conference paper at ICLR 2021

0 5 10 15 20 25
Step [1e6]

0

200

400

600

800

1000

1200

1400

Nu
m

be
r S

el
ec

te
d

Dodgeball

(a) c = 0.0

0 5 10 15 20 25
Step [1e6]

0

200

400

600

800

1000

Nu
m

be
r S

el
ec

te
d

Dodgeball
crop
random-conv
grayscale
flip
rotate
cutout
cutout-color
color-jitter

(b) c = 0.1

0 5 10 15 20 25
Step [1e6]

0

50

100

150

200

Nu
m

be
r S

el
ec

te
d

Dodgeball

(c) c = 5.0

Figure 4: Behavior of UCB for different values of its exploration coefficient c on Dodgeball. When c
is too small, UCB might converge to a suboptimal augmentation. On the other hand, when c is too
large, UCB might take too long to converge.

For Meta-DrAC, the convolutional network whose weights we meta-learn consists of a single
convolutional layer with 3 input and 3 output channels, kernel size 3, stride 1 and 0 padding. At each
epoch, we perform one meta-update where we unroll the inner optimizer using the training set and
compute the meta-test return on the validation set. We did the same hyperparameter grid searches
as for RL2-DrAC and found that the best values were l = 7e− 4 and e = 1e− 2 in this case. The
buffer of experience (collected before each PPO update) was split into 90% for meta-training and
10% for meta-testing.

For Rand-FM Lee et al. (2020) we use the recommended hyperparameters in the authors’ released
implementation, which were the best values for CoinRun (Cobbe et al., 2018), one of the Procgen
games used for evaluation in (Lee et al., 2020).

For IBAC-SNI Igl et al. (2019) we also use the authors’ open sourced implementation. We use the
parameters corresponding to IBAC-SNI λ = .5. We use weight regularization with l2 = .0001,
data augmentation turned on, and a value of β = .0001 which turns on the variational information
bottleneck, and selective noise injection turned on. This corresponds to the best version of this
approach, as found by the authors after evaluating it on CoinRun (Cobbe et al., 2018). While IBAC-
SNI outperforms the other methods on maze-like games such as heist, maze, and miner, it is still
significantly worse than our approach on the entire Procgen benchmark.

For both baselines, Rand-FM and IBAC-SNI, we use the same experimental setup for training and
testing as the one used for our methods. Hence, we train them for 25M frames on the easy mode of
each Procgen game, using (the same) 200 levels for training and the rest of the levels for testing.

We use the Adam (Kingma & Ba, 2015) optimizer for all our experiments. Note that by using
Adam, we do not need separate coefficients for the policy and value regularization terms (since Adam
rescales gradients for each loss component accordingly).

D ANALYSIS OF UCB’S BEHAVIOR

In Figure 3, we show the behavior of UCB during training, along with train and test performance
on the respective environments. In the case of Ninja, UCB converges to always selecting the best
augmentation only after 15M training steps. This is because the augmentations have similar effects
on the agent early in training, so it takes longer to find the best augmentation from the given set.
In contrast, on Dodgeball, UCB finds the most effective augmentation much earlier in training
because there is a significant difference between the effect of various augmentations. Early discovery
of an effective augmentation leads to significant improvements over PPO, for both train and test
environments.

Another important factor is the exploration coefficient used by UCB (see equation (6)) to balance
the exploration and exploitation of different augmentations. Figure 4 compares UCB’s behavior for
different values of the exploration coefficient. Note that if the coefficient is 0, UCB always selects the

15

Under review as a conference paper at ICLR 2021

augmentation with the largest Q-value. This can sometimes lead to UCB converging on a suboptimal
augmentation due to the lack of exploration. However, if the exploration term of equation (6) is too
large relative to the differences in the Q-values among various augmentations, UCB might take too
long to converge. In our experiments, we found that an exploration coefficient of 0.1 results in a good
exploration-exploitation balance and works well across all Procgen games.

E PROCGEN BENCHMARK

Figure 5: Screenshots of multiple procedurally-generated levels from five Procgen environments:
Maze, Climber, Plunder, Ninja, and BossFight (from left to right).

F BEST AUGMENTATIONS

Table 4: Best augmentation type for each game, as evaluated on the test environments.

Game BigFish StarPilot FruitBot BossFight Ninja Plunder CaveFlyer CoinRun

Best Augmentation crop crop crop flip color-jitter crop rotate random-conv

Table 5: Best augmentation type for each game, as evaluated on the test environments.

Game Jumper Chaser Climber Dodgeball Heist Leaper Maze Miner

Best Augmentation random-conv crop color-jitter crop crop crop crop color-jitter

16

Under review as a conference paper at ICLR 2021

G BREAKDOWN OF PROCGEN SCORES

Table 6: Procgen scores on train levels after training on 25M environment steps. The mean and
standard deviation are computed using 10 runs. The best augmentation for each game is used when
computing the results for DrAC and RAD.

Game PPO Rand + FM IBAC-SNI DrAC RAD UCB-DrAC RL2-DrAC Meta-DrAC

BigFish 8.9± 1.5 6.0± 0.9 19.1± 0.819.1± 0.819.1± 0.8 13.1± 2.2 13.2± 2.8 13.2± 2.2 10.1± 1.9 9.28± 1.9
StarPilot 29.8± 2.3 26.3± 0.8 26.7± 0.7 38.0± 3.138.0± 3.138.0± 3.1 36.5± 3.9 35.3± 2.2 30.6± 2.6 30.5± 3.9
FruitBot 29.1± 1.1 29.2± 0.7 29.4± 0.8 29.4± 1.0 26.1± 3.0 29.5± 1.229.5± 1.229.5± 1.2 29.2± 1.0 29.4± 1.1
BossFight 8.5± 0.78.5± 0.78.5± 0.7 5.6± 0.7 7.9± 0.7 8.2± 1.0 8.1± 1.1 8.2± 0.8 8.4± 0.8 7.9± 0.5
Ninja 7.4± 0.7 7.2± 0.6 8.3± 0.8 8.8± 0.5 8.9± 0.98.9± 0.98.9± 0.9 8.5± 0.3 8.1± 0.6 7.8± 0.4
Plunder 6.0± 0.5 5.5± 0.7 6.0± 0.6 9.9± 1.3 8.4± 1.5 11.1± 1.611.1± 1.611.1± 1.6 5.3± 0.5 6.5± 0.5
CaveFlyer 6.8± 0.6 6.5± 0.5 6.2± 0.5 8.2± 0.78.2± 0.78.2± 0.7 6.0± 0.8 5.7± 0.6 5.3± 0.8 6.5± 0.7
CoinRun 9.3± 0.3 9.6± 0.6 9.6± 0.4 9.7± 0.29.7± 0.29.7± 0.2 9.6± 0.4 9.5± 0.3 9.1± 0.3 9.4± 0.2
Jumper 8.3± 0.4 8.9± 0.4 8.5± 0.6 9.1± 0.49.1± 0.49.1± 0.4 8.6± 0.4 8.1± 0.7 8.6± 0.4 8.4± 0.5
Chaser 4.9± 0.5 2.8± 0.7 3.1± 0.8 7.1± 0.57.1± 0.57.1± 0.5 6.4± 1.0 7.6± 1.0 4.5± 0.7 5.5± 0.8
Climber 8.4± 0.8 7.5± 0.8 7.1± 0.7 9.9± 0.89.9± 0.89.9± 0.8 9.3± 1.1 9.0± 0.4 7.9± 0.9 8.5± 0.5
Dodgeball 4.2± 0.5 4.3± 0.3 9.4± 0.69.4± 0.69.4± 0.6 7.5± 1.0 5.0± 0.7 8.3± 0.9 6.3± 1.1 4.8± 0.6
Heist 7.1± 0.57.1± 0.57.1± 0.5 6.0± 0.5 4.8± 0.7 6.8± 0.7 6.2± 0.9 6.9± 0.4 5.6± 0.8 6.6± 0.6
Leaper 5.5± 0.45.5± 0.45.5± 0.4 3.2± 0.7 2.7± 0.4 5.0± 0.7 4.9± 0.9 5.3± 0.5 2.7± 0.6 3.7± 0.6
Maze 9.1± 0.3 8.9± 0.6 8.2± 0.8 8.3± 0.7 8.4± 0.7 8.7± 0.6 7.0± 0.7 9.2± 0.29.2± 0.29.2± 0.2
Miner 12.2± 0.3 11.7± 0.8 8.5± 0.7 12.5± 0.3 12.6± 1.012.6± 1.012.6± 1.0 12.5± 0.2 10.9± 0.5 12.4± 0.3

Table 7: Procgen scores on test levels after training on 25M environment steps. The mean and
standard deviation are computed using 10 runs. The best augmentation for each game is used when
computing the results for DrAC and RAD.

Game PPO Rand + FM IBAC-SNI DrAC RAD UCB-DrAC RL2-DrAC Meta-DrAC

BigFish 4.0± 1.2 0.6± 0.8 0.8± 0.9 8.7± 1.4 9.9± 1.79.9± 1.79.9± 1.7 9.7± 1.0 6.0± 0.5 3.3± 0.6
StarPilot 24.7± 3.4 8.8± 0.7 4.9± 0.8 29.5± 5.4 33.4± 5.133.4± 5.133.4± 5.1 30.2± 2.8 29.4± 2.0 26.6± 2.8
FruitBot 26.7± 0.8 24.5± 0.7 24.7± 0.8 28.2± 0.8 27.3± 1.8 28.3± 0.928.3± 0.928.3± 0.9 27.5± 1.6 27.4± 0.8
BossFight 7.7± 1.0 1.7± 0.9 1.0± 0.7 7.5± 0.8 7.9± 0.6 8.3± 0.88.3± 0.88.3± 0.8 7.6± 0.9 7.7± 0.7
Ninja 5.9± 0.7 6.1± 0.8 9.2± 0.69.2± 0.69.2± 0.6 7.0± 0.4 6.9± 0.8 6.9± 0.6 6.2± 0.5 5.9± 0.7
Plunder 5.0± 0.5 3.0± 0.6 2.1± 0.8 9.5± 1.09.5± 1.09.5± 1.0 8.5± 1.2 8.9± 1.0 4.6± 0.3 5.6± 0.4
CaveFlyer 5.1± 0.9 5.4± 0.8 8.0± 0.88.0± 0.88.0± 0.8 6.3± 0.8 5.1± 0.6 5.3± 0.9 4.1± 0.9 5.5± 0.4
CoinRun 8.5± 0.5 9.3± 0.49.3± 0.49.3± 0.4 8.7± 0.6 8.8± 0. 9.0± 0.8 8.5± 0.6 8.3± 0.5 8.6± 0.5
Jumper 5.8± 0.5 5.3± 0.6 3.6± 0.6 6.6± 0.46.6± 0.46.6± 0.4 6.5± 0.6 6.4± 0.6 6.5± 0.5 5.8± 0.7
Chaser 5.0± 0.8 1.4± 0.7 1.3± 0.5 5.7± 0.6 5.9± 1.0 6.7± 0.66.7± 0.66.7± 0.6 3.8± 0.5 5.1± 0.6
Climber 5.7± 0.8 5.3± 0.7 3.3± 0.6 7.1± 0.77.1± 0.77.1± 0.7 6.9± 0.8 6.5± 0.8 6.3± 0.5 6.6± 0.6
Dodgeball l1.7± 0.3l1.7± 0.3l1.7± 0.3 0.5± 0.4 1.4± 0.4 4.3± 0.8 2.8± 0.7 4.7± 0.7 3.0± 0.8 1.9± 0.5
Heist 2.4± 0.5 2.4± 0.6 9.8± 0.69.8± 0.69.8± 0.6 4.0± 0.8 4.1± 1.0 4.0± 0.7 2.4± 0.4 2.0± 0.6
Leaper 4.9± 0.7 6.2± 0.5 6.8± 0.66.8± 0.66.8± 0.6 5.3± 1.1 4.3± 1.0 5.0± 0.3 2.8± 0.7 3.3± 0.4
Maze 5.7± 0.6 8.0± 0.7 10.0± 0.710.0± 0.710.0± 0.7 6.6± 0.8 6.1± 1.0 6.3± 0.6 5.6± 0.3 5.2± 0.6
Miner 8.5± 0.5 7.7± 0.6 8.0± 0.6 9.8± 0.69.8± 0.69.8± 0.6 9.4± 1.2 9.7± 0.7 8.0± 0.4 9.2± 0.7

17

Under review as a conference paper at ICLR 2021

H AUTOMATIC DATA AUGMENTATION

5

10

15
Sc

or
e

BigFish

10

20

30

StarPilot

0

10

20

30
FruitBot

0

2

4

6

8

BossFight

4

6

8

Sc
or

e

Ninja

4

6

8

10

12
Plunder

3

4

5

6

7

8

CaveFlyer

6

7

8

9

CoinRun

5

6

7

8

9

Sc
or

e

Jumper

2

4

6

8
Chaser

2

4

6

8

Climber

2

4

6

8
Dodgeball

0 10 20
Step [1e6]

3

4

5

6

7

8

Sc
or

e

Heist

0 10 20
Step [1e6]

4

6

8 Leaper

0 10 20
Step [1e6]

5

6

7

8

9
Maze

0 10 20
Step [1e6]

2.5

5.0

7.5

10.0

12.5
Miner

PPO
DrAC (best)
UCB-DrAC
RL2-DrAC
Meta-DrAC

Figure 6: Train performance of various approaches that automatically select an augmentation, namely
UCB-DrAC, RL2-DrAC, and Meta-DrAC. The mean and standard deviation are computed using 10
runs.

18

Under review as a conference paper at ICLR 2021

2

4

6

8

10

Sc
or

e

BigFish

10

20

30

StarPilot

0

5

10

15

20

25

FruitBot

0

2

4

6

8
BossFight

3

4

5

6

7

Sc
or

e

Ninja

4

6

8

Plunder

3

4

5

6

7 CaveFlyer

6

7

8

9
CoinRun

4.5

5.0

5.5

6.0

6.5

Sc
or

e

Jumper

2

4

6

Chaser

2

3

4

5

6

7
Climber

1

2

3

4

5
Dodgeball

0 10 20
Step [1e6]

2.0

2.5

3.0

3.5

4.0

Sc
or

e

Heist

0 10 20
Step [1e6]

2

3

4

5

6

7
Leaper

0 10 20
Step [1e6]

4.0

4.5

5.0

5.5

6.0

6.5
Maze

0 10 20
Step [1e6]

2

4

6

8

10
Miner

PPO
DrAC (best)
UCB-DrAC
RL2-DrAC
Meta-DrAC

Figure 7: Test performance of various approaches that automatically select an augmentation, namely
UCB-DrAC, RL2-DrAC, and Meta-DrAC. The mean and standard deviation are computed using 10
runs.

19

	Introduction
	Background
	Automatic Data Augmentation for RL
	Data Augmentation in RL
	Policy and Value Function Regularization
	Automatic Data Augmentation

	Experiments
	Generalization Ability
	Regularization Effect
	Automatic Augmentation
	Robustness Analysis

	Related Work
	Discussion
	PPO
	Cycle-Consistency
	Hyperparameters
	Analysis of UCB's Behavior
	Procgen Benchmark
	Best Augmentations
	Breakdown of Procgen Scores
	Automatic Data Augmentation

