
Near-Optimal Private and Scalable k-Clustering

Vincent Cohen-Addad1∗ Alessandro Epasto1 Vahab Mirrokni1
Shyam Narayanan2† Peilin Zhong1

1Google Research 2MIT
{cohenaddad,aepasto,mirrokni,peilinz}@google.com

shyamsn@mit.edu

Abstract

We study the differentially private (DP) k-means and k-median clustering problems
of n points in d-dimensional Euclidean space in the massively parallel computation
(MPC) model. We provide two near-optimal algorithms where the near-optimality
is in three aspects: they both achieve (1). O(1) parallel computation rounds, (2).
near-linear in n and polynomial in k total computational work (i.e., near-linear run-
ning time when n is a sufficient polynomial in k), (3). O(1) relative approximation
and poly(k, d) additive error. Note that Ω(1) relative approximation is provably nec-
essary even for any polynomial-time non-private algorithm, and Ω(k) additive error
is a provable lower bound for any polynomial-time DP k-means/median algorithm.
Our two algorithms provide a tradeoff between the relative approximation and the
additive error: the first has O(1) relative approximation and ∼ (k2.5 + k1.01

√
d)

additive error, and the second one achieves (1 + γ) relative approximation to the
optimal non-private algorithm for an arbitrary small constant γ > 0 and with
poly(k, d) additive error for a larger polynomial dependence on k and d.
To achieve our result, we develop a general framework which partitions the data
and reduces the DP clustering problem for the entire dataset to the DP clustering
problem for each part. To control the blow-up of the additive error introduced by
each part, we develop a novel charging argument which might be of independent
interest.

1 Introduction

Over the last decade, the leakage of private information by machine learning and data mining
algorithms has had dramatic consequences, from losses of billions of dollars [60] to even costing
human lives [8]. Thus, protecting data privacy has become a top priority constraint in many modern
machine learning and data mining problems.

This high demand has stimulated an important research effort to design algorithmic techniques
enabling privacy-preserving algorithms. In recent years, the elegant notion of differential privacy
(DP) [34] has become the gold standard for privacy-preserving algorithms [38, 67, 33, 1]. Informally,
differential privacy requires the output (distribution) of the algorithm to remain almost the same under
a small adversarial perturbation of the input.

k-Means and k-median clustering are fundamental and widely-studied problems in unsupervised
learning. They are used to analyze and extract information from massive datasets in machine learning
and data mining tasks. In particular, given a set of n points X ⊆ Rd within a ball of radius Λ, the
goal is to find a set C of k centers such that the clustering cost

∑
x∈X minc∈C d

p(x, c) is minimized,

∗Authors listed in alphabetical order.
†Work done as a student researcher at Google.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

where the power p = 1, 2 stands for k-median and k-means respectively. The importance of data
privacy has sparked an important research effort on designing accurate and efficient differentially
private k-means and k-median algorithms [15, 62, 39, 47, 58, 73, 64, 65, 71, 42, 5, 63, 52, 70, 69,
44, 53, 19, 61, 20, 14, 24]. In the above line of work, one can distinguish two separate efforts: one
effort emphasizing the approximation guarantees, namely aiming at best possible approximation
guarantee (under privacy constraints) in polynomial time, and a second effort targeting practical and
efficient differentially private algorithms. More concretely, none of the above works achieve optimal
accuracy and efficiency at the same time, i.e., the algorithms achieving O(1) relative approximation
and Λp · poly(k, log(n)) additive error have running time at least n1+Ω(1) · d (see e.g., [70, 44]), and
the algorithms with running time proportional to Õ(nd)3 and polynomial in the number of centers,
k, have either relative approximation Ω(log n) or additive error Λp · nΩ(1) (see e.g., [24, 14]). In
this work, we reconcile these two lines of work and present two algorithms that both achieve near
optimal approximation guarantee and near optimal running time simutaneously. Our two algorithms
provide a tradeoff between the relative approximation and the additive error. In particular, the first
algorithm runs in Õ(nd) + poly(k) time and outputs a solution with O(1) relative approximation
and roughly (k2.5 + k1.01

√
d) · Λp additive error (we ignore minor dependencies on log n and the

privacy parameters ε, δ in the additive error). The second algorithm runs in Õ(ndk) + poly(k) time
and outputs a solution with (1 + γ)ρ relative approximation and roughly poly(k, d) · Λp additive
error for a larger polynomial dependence on k, d, where γ > 0 is an arbitrarily small constant and ρ
is the best relative approximation of any polynomial-time non-private algorithm. Our approximation
guarantee is near optimal since the Ω(1) relative approximation is necessary even for any non-private
polynomial-time algorithm [28, 27, 26, 55] and Ω(k ·Λp) is a provable lower bound for additive error
achieved by any polynomial-time DP algorithm [47]. In addition, the approximation guarantees of our
algorithms match the best previous DP algorithms [70, 44] while our algorithms have faster running
time. In fact, our running time is almost tight when k = no(1) because Ω(nd) time is necessary to
read all input points.

Importantly, our algorithms are scalable. In the era of massive datasets, in-memory sequential
algorithms struggle to handle billions of data points. Algorithms that are suitable for large-scale
distributed/parallel computational systems such as MapReduce [32] are more desired. It motivates
the study of algorithms in the massively parallel computation (MPC) model [54, 46, 11]. In the MPC
model, there are multiple machines where each has local memory that is sublinear in the data size.
The computation proceeds in rounds. In each round, each machine sends/receives messages to/from
other machines but the size of messages sent/received by a machine cannot exceed its local memory.
As long as the local memory per machine is at least polynomial in k and at least nθ for a small
constant θ, our algorithms can be easily implemented in the MPC model with O(1) computation
rounds and total space (total memory size across all machines) linear in the input data size. Note that
Ω(k) local memory is needed for all previous non-private o(log n)-round MPC O(1)-approximate
k-means and k-median clustering algorithms (see e.g., [36, 40, 4, 6, 10, 18, 41]).

1.1 Other Related Work

k-Means and k-median clustering have seen a large body of work over the past few decades. There
have been numerous works obtainingO(1)-approximation algorithms for both k-means and k-median,
using either local search or primal-dual techniques. The state-of-the-art approximation algorithms
are a 5.912-approximation for Euclidean k-means and a 2.406-approximation for Euclidean k-
median, due to [25]. Two other fruitful methods of improving algorithms for these problems are
coresets [21, 40, 51, 31, 29], which replace the dataset of points with a smaller set, and dimensionality
reduction [22, 56], which reduces the number of dimensions of the ambient Euclidean space the
points reside in.

There is a line of work studying k-means and k-median problems under parallel, distributed and
streaming computational models. A popular way to tackle these clustering problems at scale is via
coresets. A coreset is a small weighted subset of input points such that a good clustering solution for
coreset yields a good approximate clustering to the original input point set. k-Means and k-median
coresets have been extensively studied in the literature (e.g, [40, 6, 10, 18, 16, 41, 17]), and most of
them can be implemented in the MPC model in O(1) rounds as long as the memory per machine is at

3Õ(f(n)) := f(n) · poly(log f(n))

2

least poly(k), i.e., is large enough to hold the entire coreset. Other approaches to solve k-means and
k-median in parallel are via quad-tree [13] or locality sensitive hashing [12]. These data partitioning
based approaches require less local memory size but provide worse approximations or output more
than k centers (and so pertain to the line of work sacrificing approximation guarantees to practicality
and efficiency). Notice that none of the previous scalable algorithms are differentially private.

Our paper focuses on differentially private k-means and k-median clustering in Euclidean space,
which, as described previously, has seen significant work over the past several years. The paper [70]
was the first paper to provide a differentially private algorithm for k-means clustering with O(1)
multiplicative ratio, and additive error polynomial in k, d, log n, ε−1, and log δ−1. Later, [44]
improved their result by obtaining an algorithm with multiplicative ratio arbitrarily close to the
best non-private k-means (or k-median) approximation, at the cost of a much larger polynomial
dependence on k in the additive error. The paper [24] was the first paper to study private clustering in
the Massively Parallel Computing framework, obtaining a polylogarithmic multiplicative ratio for
k-means and k-median with polylogarithmic rounds of communication and computation. We also
remark that [63, 70, 69, 19, 20] also provided private algorithms for k-means clustering in the local
differential privacy model, but these algorithms all have additive errors proportional to at least

√
n.

1.2 Our Results

In this paper, we provide nearly optimal algorithms for differentially private k-means and k-median,
in the MPC setting with O(1) total rounds of communication and computation. We gave a brief,
informal description of our results previously. We now formally state the two main theorems that we
will prove about private clustering in the MPC model. In our MPC setting, we assume that we have
n1−θ machines, each of which can store Õ(nθ) points in Rd, where θ > 0 can be an arbitrarily small
constant. (Equivalently, each machine has Õ(nθ · d) space and the total amount of space is Õ(n · d)).
Theorem 1.1. (Theorem E.4.) There exists an (ε, δ)-DP algorithm for k-means (or k-median) cluster-
ing with multiplicative error O(1) and additive error (k2.5 + k1.01

√
d) · poly

(
log n, ε−1, log δ−1

)
.

In addition, assuming each machine can store Õ(nθ) ≥ (k1.5 + d0.5) · poly(log n, ε−1, log δ−1)
points, the algorithm can be implemented in MPC with O(1) total rounds of communication and com-
putation, total sequential running time Õ(nd) + poly(k, ε−1, log δ−1), and total time per machine
Õ(nθd) + poly(k, ε−1, log δ−1).

Theorem 1.2. (Theorem E.9) Suppose that there exists a polynomial-time algorithm that can compute
a ρ-approximation to k-means (resp., k-median). Then, for any constant ρ′ > ρ, there exists an
(ε, δ)-DP algorithm for k-means (resp., k-median) with multiplicative error ρ′ and additive error
poly

(
k, d, log n, ε−1, log δ−1

)
. In addition, the algorithm can be implemented in MPC with O(1)

total rounds of communication and computation, total sequential time Õ(nd), and total time per
machine Õ(nθd), assuming each machine can store Õ(nθ) ≥ poly(k, d, log n, ε−1, log δ−1) points.

Our two results are similar to the results of [70] and [44], respectively, except that our algorithms are
implementable in MPC with O(1) rounds, and our algorithm has near-linear dependence on the size
of the dataset n (whereas [70] and [44] have polynomial dependence on n). We also remark that our
additive error for the first algorithm is slightly worse than that of [70] (which had k1.5 + k1.01d0.51),
and our additive error for the second algorithm matches that of [44].

Our results improve over the best MPC algorithm for private k-means and k-median [24], as we have
an O(1)-approximation whereas their paper had a poly log n-approximation. In addition, our result
only needs O(1) rounds of communication between machines, whereas they require log n rounds for
k-median and poly log n rounds for k-means.

1.3 Technical Overview and Roadmap

In this subsection, we assume for simplicity that we are dealing with k-means. The overall outline for
k-median is quite similar.

Some natural approaches and why they don’t work. A first natural approach is to apply a
uniform sampling approach. In other words, we can consider sampling nθ points at random, moving
them to a single machine, and then performing a sequential private clustering algorithm on this

3

machine. This idea of uniform sampling for private clustering was recently used by [14]. While they
proved that this method ensures differential privacy, their additive error is quite large: they prove
that with T samples one can obtain total additive error of roughly n/

√
T · Λ2. Even if we sampled

n/2 points at random, this equals
√
n · Λ2, whereas we wish for a much smaller additive error of

poly(k) · Λ2. One can also construct examples, even when k = 2, where random sampling must
induce large additive error. For instance, if we co-locate n−

√
n points at the origin and co-locate√

n points at a point Λ away from the origin, the optimal cost for 2-means is 0, but a random sample
of
√
n points, with constant probability, consists only of points located at the origin. Therefore, any

algorithm applied to the sampled points will completely fail to recognize the second cluster, and will
incur an Ω(

√
n · Λ2) error.

Another tempting approach to obtain an efficient and scalable DP algorithm with optimal approxima-
tion guarantees is to implement the O(1)-approximate private algorithms of [70] or [44] in the MPC
setting. Unfortunately, both of these algorithms have an intrinsic sequential behavior that makes this
approach difficult. The algorithm of [70] relies on a private local search procedure of [47], which
appears very difficult to implement in MPC without a number of rounds of communication of Ω(k).
The algorithm of [44] relies on iteratively finding and peeling off a “privately”-dense ball of points.
This method requires roughly O(k log n) iterations, and again appears very difficult to implement in
O(1) parallel rounds.

Our approach: we describe our overall procedure, and give intuition for some of the details.

Overall procedure. Our overall algorithm can be split into three main steps.
1. Reduce the dimensionality of the problem d to O(log k). This will remove large depen-

dencies on the dimension for both the runtime and additive error.
2. Compute in MPC a private and very efficient but weak k-means (or k-median) solu-

tion: Namely a solution with an ω(1)-approximation guarantee and that may use up to
O(k log2 n) centers instead of just k centers.

3. Combine the weak but efficient MPC solution with an O(1)-approximate private sequen-
tial algorithm to obtain an efficient O(1)-approximate MPC algorithm.

We remark that the first and third steps can be done using two different but related methods. The
first method obtains an O(1)-approximation with additive error proportional to approximately k2.5 +

k1.01
√
d (i.e., Theorem 1.1). The second method obtains a approximation factor within an arbitrary

factor γ of even the best known non-private and sequential algorithm, but with additive error
proportional to approximately kÕ(1/γ2) (i.e., Theorem 1.2). We discuss the second step in Section
3, the first method of doing the third step in Section 4, the second method of doing the third step in
Section 5, and both ways of doing the first step in Section 6. We now just focus on a key idea for the
third step, and will give more algorithmic description and intuition in the later sections of this paper.
All formal proofs are deferred to the appendix.

Charging Additive Error to Multiplicative Error. As previously mentioned, a direct sampling
approach fails because it incurs a too large additive error. However, we show that we can still use
sampling if we sort the points appropriately and do not sample each point with the same probability.
The first idea we use is inspired by Chen [21], which is to start with our weak MPC centers, and
map each point x to a bucket (j, r), where j represents the closest of the weak centers to x, and r
approximates the distance from x to this center. Our next idea is to show that if we apply a private
clustering procedure on a random sample of a fixed size in each bucket, we can charge the large
additive cost obtained to a small constant-factor blowup in the multiplicative cost. The intuition for
this is that if the average cost of each point is roughly R, then most points in our weak approximation
are still roughly within O(R) of the weak centers, and therefore get mapped to buckets represented
by much smaller balls. So, we can then apply a private sequential algorithm on these buckets with
total error depending on R2 rather than on Λ2. We will show that, by using properties of the initial
weak solution, the large additive error can be replaced with a small multiplicative error, even if the
sample size T for each bucket is small.

To explain the above intuition further, in our analysis we apply a Chernoff bound and some properties
of high-dimensional Euclidean space to show that if there are m points in a bucket all within radius

4

R of each other, we accumulate roughly R2 · m/
√
T additive error, as opposed to a more naive

Λ2 ·m/
√
T error (which would be obtained by [14]). We can then evenly distribute the error between

each of the m points, to obtain R2/
√
T error per point. We charge the error of each point to the

squared distance of each point to its center in the weak approximation, which is roughly equal to R2.
So, when we add over all points, the error across all points is roughly 1/

√
T times the overall cost of

the weak approximation. So, if the weak solution had cost at most α times the optimal k-means cost,
if the sampling size T is much bigger than α2 then the total error is much smaller than the optimal
cost. Hence, we are able to charge the total additive error into a small multiplicative error!

2 Preliminaries

We present some basic definitions and setup that will be sufficient for explaining our algorithms for
the main body of the paper. We defer the full set of preliminaries to Appendix A.

2.1 Differential Privacy

Definition 2.1 ([34]). A (randomized) algorithm A is said to be (ε, δ)-differentially private ((ε, δ)-
DP for short) if for any two “adjacent” datasets X and X ′ and any subset S of the output space of A,
we have

P(A(X) ∈ S) ≤ eε · P(A(X ′) ∈ S) + δ.

In our setting, we say that two datasets X and X ′ are adjacent if we can convert X to X ′ either by
adding, removing, or changing a single data point. We remark that in all of our algorithms, we will
implicitly assume that ε, δ ≤ 1

2 .

A ubiquitous method we use to ensure privacy is the Laplace Mechanism. Simply, this is a method
where we privatize a statistic of the data by adding noise Lap(t) to the statistic for some t > 0, where
Lap(t) has the PDF 1

2t · e
−|x|/t. It is well-known that if f(X) is a statistic that never changes by

more than ∆ between any two adjacent datasets X ,X ′, then f(X) + Lap(∆/ε) is (ε, 0)-DP.

2.2 The Massively Parallel Computation (MPC) Model

In the MPC model, there are multiple machines where each machine has sublinear local memory.
The input data points are distributed arbitrarily on the machines before computation starts. The
computation proceeds in rounds. In each round, each machine reads its local data and performs
computations. At the end of each round, each machine sends/receives messages to/from other
machines. The total size of messages sent/received by a machine in each round does not exceed the
local memory size. The output is distributed on machines at the end of the computation. The MPC
algorithm with small number of rounds and small total space (total memory across all machines) is
desired. Furthermore, scalability is also considered in many applications and thus we want the local
memory required by the algorithm as small as possible. There are many scalable MPC algorithmic
primitives. The most basic one is sorting.

Theorem 2.2 ([46, 45]). There is an MPC algorithm which sorts N data items in O(1) rounds using
O(N) total space. The local memory per machine required is at most O(Nθ) for arbitrary small
constant θ > 0.

Based on the sorting primitive above, other basic subroutines such as indexing, prefix sum and set
aggregation can be easily implemented in the MPC model with same complexity as sorting. We refer
readers to Appendix E of [3] for more basic MPC algorithmic primitives.

2.3 k-Means and k-Median Clustering

For two points x, y ∈ Rd, we define d(x, y) to be the Euclidean distance between x and y. For a set
C ⊂ Rd of points, we define d(x, C) = d(C, x) to be minc∈C d(x, c).

In both k-means and k-median clustering, we are given a dataset of points X = {x1, . . . , xn} in
d-dimensional Euclidean space Rd. We further assume that the points in X are in B(0,Λ), which
is the ball of radius Λ about the origin in Rd. Our goal in k-means (resp., k-median) clustering is

5

to find a subset C of k-points that minimizes the cost of X with respect to C. Specifically, for a set
of centers C, we define cost(X ; C) :=

∑
x∈X d(x, C)p, where p = 2 in the setting of k-means and

p = 1 in the setting of k-median. Occasionally, we may assign each point xi ∈ X a positive weight
wi, in which case we define cost(X ; C) :=

∑
xi∈X wi · d(xi, C)p. We also define OPT(X) to be the

minimum value of cost(X ; C) for any set of k points C.

Our goal in differentially private clustering is to produce a set of k centers C such that C is (ε, δ)-DP
with respect to X , and such that cost(X ; C) ≤ α · OPT(X) + V · Λp (where p = 2 for k-means and
p = 1 for k-median). If we obtain this guarantee, we say that we have an (ε, δ)-DP algorithm for
k-means (or k-median) with multiplicative ratio α and additive error V . In the MPC model, our goal
is to make a machine output the set of k centers at the end of the algorithm.

Finally, we briefly discuss coresets. For a dataset X ⊂ B(0,Λ) and for some γ ≤ 1
2 and W ≥ 0,

a (γ,W)-coreset is a dataset Y that estimates X with respect to k-means (or k-median) clustering,
i.e., (1 − γ) · cost(X ; C) −W · Λp ≤ cost(Y; C) ≤ (1 + γ) · cost(X ; C) + W · Λp for all subsets
C ⊂ B(0,Λ) of size at most k. We will also want the dataset Y to have much fewer distinct points
than X , though each point in Y may have large multiplicity. In the setting of non-private coresets, we
usually have W = 0, in which case we write γ-coreset to mean (γ, 0)-coreset. We note the following
theorem regarding MPC algorithms for non-private coresets.
Theorem 2.3 ([17, 40, 41]). Consider n points in Rd. There exists a non-private MPC algorithm
which outputs a k-means/k-median γ-coreset with size poly(k, d, log n, 1/γ) in O(1) rounds for
γ ∈ (0, 0.5). The total space needed is O(nd) + poly(k, d, log n, 1/γ), and the local memory per
machine required is poly(k, d, log n, 1/γ). In addition, the total running time over all machines is at
most O(nd) + poly(k, d, log n, 1/γ).

3 A Preliminary Bicriteria Approximation

A key tool in all of our k-means and k-median algorithms is an initial, crude approximation for
k-means (or k-median) clustering. Specifically, we start with a bicriteria approximation, which
means that the algorithm may output a list of more than k centers. Our algorithm is very efficient,
only needing constant rounds of communication and computation, and essentially optimal time per
machine.
Theorem 3.1. There exists an (ε, δ)-DP algorithm that, given a dataset X ⊂ B(0,Λ) of size n,
computes a set of O(k log2 n) points F that provides a dO(1)-approximation to the best k-means (or
k-median) clustering with additive error k · poly(log n, d, ε−1, log δ−1). In addition, the algorithm
can be implemented in MPC with O(1) rounds of communication and computation, and Õ(nθd) time
per machine.

Our techniques for this section heavily rely on a data structure called a Quadtree. This data structure
involves creating a nested series of grids partitioning Rd. The quadtree has varying levels, where
the 0th level is a very coarse grid, and each subsequent level further refines the previous level
with smaller grid pieces. The Quadtree can be used to embed the input points into a so-called
“Hierarchically Separated Tree” (HST) metric, for which computing k-median cost is often much
simpler than computing k-median in Euclidean space. Indeed, [24] uses this embedding, along with a
dynamic programming approach, to provide a private approximation to k-median with multiplicative
approximation O(d3/2 log n) and additive approximation O(k) · poly(log n, d, ε−1).

Unfortunately, we cannot directly use their approach for two reasons. The first is that their dynamic
programming approach requires roughly log n rounds of communication across machines for k-
median (and poly log n rounds for k-means), whereas we wish for O(1) rounds. The second is that
their approach runs into a barrier when the memory per machine is below roughly

√
n, whereas we

want an MPC algorithm even if each machine can only store nθ points for an arbitrarily small θ > 0.

Our method of developing a bicriteria approximation is inspired by the Quadtree and embeddings
into this HST metric, but we avoid the issues above by using a greedy approach rather than a dynamic
programming one. Specifically, we will consider each level of the Quadtree grid separately, and
map every point x ∈ X to the grid center x lies in. We then approximately choose the O(k) centers
that have the most points in them, using a private selection mechanism. We will have to do this for
logarithmically many levels, which causes us to have a bicriteria approximation. To analyze this
procedure, we avoid looking at the HST metric and instead consider the number of points nr that are

6

of distance r away from some center for every choice of radius r. We then use an integration by parts-
based idea to analyze the k-means (or k-median) cost based on summing a weighted combination of
nr over r, which we use to establish our accuracy bounds. Our greedy method can be implemented
in O(1) rounds of communication and computation for both k-means and k-median.

The full details of the algorithm and analysis, including pseudocode, are deferred to Appendix B.

4 A Constant Approximation in MPC

In this section, we describe how to combine our bicriteria approximation from Section 3, along with
the sequential private O(1)-approximate algorithm from [70], to obtain a parallel O(1)-approximate
algorithm using only O(1) rounds of communication and computation. Specifically, we prove the
following.
Theorem 4.1. There exists an (ε, δ)-DP algorithm for k-means (or k-median) with multiplicative
ratioO(1) and additive error k2.5 ·poly

(
d, log n, ε−1, log δ−1

)
. In addition, assuming each machine

stores Õ(nθ) ≥ k1.5 · poly(d, log n, ε−1, log δ−1) points, the algorithm can be implemented in
MPC with O(1) rounds of communication and computation, total sequential running time Õ(nd) +

poly(k, d, ε−1, log δ−1), and total time per machine Õ(nθd) + poly(k, d, ε−1, log δ−1).

We remark that large polynomial dependencies in d are not crucial, as we will use dimensionality
reduction in Section 6 to set d = O(log k).

Our algorithm is inspired by the coreset framework of Chen [21], who shows how to convert a
bicriteria approximation into a coreset for clustering (in the sequential, non-private setting). The
rough method is to start with an approximate set of cluster centers F of β · k points for some β > 1,
and map each point x ∈ X to its nearest neighbor in F . Then, the points in X are split into “rings”,
based on their closest point and their approximate distance to that closest point. Finally, the points in
each ring are replaced by a uniform sample of a few points in each ring, to create a small coreset.

Ordinarily, when performing DP k-means/k-median over n points, we incur additive cost proportional
to Λp, where Λ is the diameter of the pointset. Hence, naive application of using private k-means/k-
median on a random subset (or even a coreset) of T points is quite bad, as we have to scale each point
by a factor of n/T for the weights to match, which induces a n/T · Λp additive error. In reality, the
induced additive error is actually worse, and behaves like n/

√
T · Λp. However, an important insight

we have, as noted in Subsection 1.3, is that when using the framework of Chen [21], we can charge
much of the additive cost to multiplicative cost. Namely, if we perform a private k-means/k-median
algorithm on a random sample of T points in each ring separately, if the ring had radius R� Λ, we
would roughly incur additive error proportional to Rp/

√
T per point, rather than Λp/

√
T .

We then use the properties of the bicriteria approximation to show that if we add this error across
all rings, the additive error is actually only a small multiple of the optimal cost, as opposed to a
much worse n/

√
T · Λp. Recall that if Ri represents the approximate distance of each point xi to

its bicriteria center, then
∑
iR

p
i is at most dO(1) times more than the optimal k-means cost (plus

some small multiple of Λp), by Theorem 3.1. Hence, if T is roughly dO(1), we can get the overall
additional error induced by each Rp/

√
T error per point is at most O(1) times the optimal k-means

cost. This is what allows us to get a multiplicative approximation with small additive cost. We remark
that some rings may have fewer than our desired T points, in which case we cannot sample T random
points and incur an additional small additive cost. Finally, is quite simple to sample T points in each
ring in parallel, and map each sample to a separate machine. We can then use a sequential private
k-means algorithm for each sample separately, as we can store the T points on a single machine.

One additional issue is that this procedure has to find k points for each ring, and there will end up
being roughly O(k · poly log n) rings. So this means we need O(k2 · poly log n) centers, whereas
we only want k centers. Our way of fixing this is to convert our k centers into a “semi-coreset” by
mapping each point in a ring to its closest point in the corresponding private set of centers, and then
adding Laplace noise to the multiplicities of the set. These semi-coresets will be private, which means
we can apply a non-private MPC k-means algorithm on the union of all the semi-coresets to generate
a final set of points, since the semi-coresets have already been privatized. Also, while they are not
true coresets, we show that any O(1)-approximate k-means algorithm applied on the union of all the
semi-coresets still provides an O(1)-approximate solution for the original dataset.

7

We present the algorithm pseudocode in below in Algorithm 1, and defer the full analysis to Appendix
C. We remark that we replace some instances of mapping points to the nearest center with mapping
them to an approximately nearest center, which is useful in speeding up runtime.

Algorithm 1 A constant approximation algorithm for differentially private k-means (or k-median) in
MPC.

1: procedure CONSTANTAPPROX(X , ε, δ) . Will be (O(ε), O(δ))-DP.
2: Let T = poly(d, log n, ε−1, log δ−1) · k1.5 be a sufficiently large threshold parameter.
3: Let F = {f1, . . . , fβ·k} be an (ε, δ)-DP bicriteria approximation for k-clustering of X , using

Theorem 3.1, and where β = O(log2 n).
4: for all xi ∈ X do
5: Assign xi to bucket (j, r) if xi has fj as a O(log n)-approximate nearest neighbor, with
d(xi, fj) ≈ Λ

2n · 2r.
6: for all j ≤ β · k, r ≤ O(log n) do
7: Let Xj,r be set of points xi assigned to (j, r).
8: Let N̂j,r := |Xj,r|+ Lap(1/ε).
9: if N̂j,r ≥ 2T then

10: Sample T random points Yj,r from Xj,r.
11: Send Yj,r to one machine, and use [70] on each machine to find a k-clustering Gj,r.
12: Replace each point in Yj,r with an O(1)-approximate nearest neighbor in Gj,r.
13: Add Lap(1/ε) noise to the multiplicity of each point in the replaced data set, to create

dataset Ŷj,r.
14: else
15: Let Ŷj,r = ∅.
16: Let Ŷ =

⋃
j,r Ŷj,r.

17: Return a non-private MPC k-means clustering algorithm on Y, using, e.g., [17].

5 An Arbitrarily Good Approximation in MPC

In this section, we present a different method of combining the bicriteria approximation from Section
3 with a sequential private O(1)-approximation from [70] to obtain a parallel approximate algorithm
achieving arbitrarily close multiplicative ratio to the best non-private sequential algorithm. While we
obtain an improved multiplicative approximation ratio, we suffer a larger additive error. Specifically,
we prove the following.

Theorem 5.1. Suppose that there exists a polynomial-time algorithm that can compute a ρ-
approximation to k-means (resp., k-median). Then, for any constant ρ′ > ρ, exists an
(ε, δ)-DP algorithm for k-means (resp., k-median) with multiplicative ratio ρ′ and additive er-
ror poly

(
k, ed, log n, ε−1, log δ−1

)
. In addition, assuming each machine can store Õ(nθ) ≥

poly(k, ed, ε−1, log δ−1) points, the algorithm is implementable in MPC with O(1) total rounds of
communication and computation, and O(nθkd) time per machine.

We remark that while there is an exponential dependence on the dimension d in both the runtime and
additive error, in Section 6, we show how to replace the ed with poly(k) additive error.

Our overall procedure has two steps. The first step is to convert an O(1)-approximate private
sequential algorithm into a private sequential coreset: this is somewhat similar to Ghazi et al. [44],
which provides a similar guarantee but has a runtime dependence that is polynomial in n as opposed
to near-linear in n. The second step is to convert a private sequential coreset into a private parallel
coreset.

For the first step, we start with a private O(1)-approximate clustering, and as in Section 3, we split the
dataset X into roughly O(k log n) rings based on each point’s closest center and the distance to that
center. For each ring, we use a result of Ghazi et al. [44] inspired by the theory of error-correcting
codes, which forms a “cover” of each ring of size roughly exponential in the dimension, which is a
method of selecting points such that every point in the ring is reasonably close to at least 1 point in
the cover. We can create the cover in parallel, and then map every point to its closest point in the

8

cover in eO(d) time. We can use this cover and a Laplace mechanism to construct a private coreset of
the data, though the coreset will have size exponential in the dimension.

For the second step, we apply a similar method to Section 4, again using the insight of charging
additive error to multiplicative error. We again start with our weak parallel coreset from Section 3,
partition the points into rings, and sample uniformly from each ring which allows each ring’s sample
to fit on a single machine. Now, for each sample, we apply the private coreset procedure from the first
step, and together we obtain a large private coreset. We finally apply a non-private MPC clustering
algorithm on the already privatized coreset.

The full details of the algorithm and analysis, including pseudocode, are deferred to Appendix D.

6 Dimensionality Reduction

Our algorithm for dimensionality reduction relies on [56], which shows that a random projection Π
down to O(log k) dimensions can approximate every k-clustering of n points simultaneously. While
this may seemingly imply that we can automatically assume d = O(log k), this is not so obvious,
because once we have found a set of centers C′ in RO(log k), it is unclear how to pull this back up to a
set of centers in Rd.

Ghazi et al. [44] use dimensionality reduction to improve their exponential dependence on d to
a polynomial dependence on k (as eO(log k) = poly(k)). They start by constructing a random
projection Π down to O(log k) dimensions and compute a private set C′ = {c′1, . . . , c′k} in the
reduced dimension. They then map each point xi to a cluster Xj based on which point c′j ∈ C′ is
closest to Πxi. Finally, to obtain a set of centers in high dimensions, they compute a private average
(for k-means) or geometric median (for k-median) of the points in each cluster Xj .
The main issue in applying this method is that we wish for a very fast scalable algorithm that works
in MPC, and it is unknown how to compute a private geometric median that is sufficiently scalable,
i.e., runs in O(1) MPC rounds and Õ(nd) total work. Our first observation in obtaining an efficient
algorithm is that, rather than computing a geometric median of the points, a coordinate-wise median
serves as a reasonable proxy for the geometric median. Specifically, it has the important property
of being within distance O(r) of the geometric median of X̃j if at least 2/3 of the points in Xj are
within r of the geometric median [59]. In addition, the coordinate-wise median can be computed
on a small sample without significant error, and can be computed privately without much error
either. We can therefore use an approximate coordinate-wise median for each cluster Xj to obtain an
O(1)-approximate private and scalable clustering with minimal dependence on the dimension.

If we want arbitrarily good approximation, such as in Section 5, the coordinate-wise median is
unfortunately not strong enough. To fix this, our rough intuition is to compute a private geometric
median of a small uniform subsample of points, but only among those points close to the private
coordinate-wise median. This idea of uniform subsampling to speed up runtime has been used in
several previous algorithms for k-means, such as [23, 14, 30, 37]. As we perform the geometric
median on a small sample, a polynomial-time algorithm is sufficient. In addition, by restricting
ourselves to points close to the coordinate-wise median, we are able to replace additive error
proportional to Λ with additive error proportional to some smaller radius R, which we can charge
to multiplicative error in a similar manner as in Sections 4 and 5. We remark that this algorithm
may take Õ(ndk) total time instead of Õ(nd) time, but we fix this by performing another uniform
subsampling trick at the beginning of the algorithm, which improves the runtime at the cost of a slight
blowup in the additive error.

Overall, we obtain our main theorems of this paper, Theorems 1.1 and 1.2, which correspond to
dimension reduction applied to Theorems 4.1 and 5.1, respectively.

We provide pseudocode for Theorem 1.1 below, in Algorithm 2. The full algorithm and analysis for
both theorems, as well as pseudocode for Theorem 1.2, are deferred to Appendix E.

9

Algorithm 2 A constant approximation algorithm for differentially private k-means (or k-median) in
MPC, with improved dependence on d.

1: procedure CONSTANTAPPROXHIGHDIM(X , ε, δ) . Will be (O(ε), O(δ))-DP.
2: Let T = O(log(nd) · ε−1

√
d log δ−1) be a threshold parameter.

3: Let d′ = O(log k), and pick a random projection Π ∈ Rd′×d.
4: Use Algorithm 1 to find a k-means clustering C′ = {c′1, . . . , c′k} of ΠX = {Πx1, . . . ,Πxn}.
5: Let S ⊂ [n] be a random sample where each i ∈ S with probability k−0.01.
6: Map each point Πxi : i ∈ S to a 10-approximate nearest neighbor in C′.
7: for j = 1 to k do
8: Let Xj be the set of points xi such that Πxi is mapped to c′j .
9: Let N̂j = |Xj |+ Lap(1/ε).

10: if N̂j ≥ 2T then
11: Sample T points in Xj , and let cj be a private coordinate-wise median of the sampled

points, where we use (ε/(2
√
d log δ−1, 0)-DP in each direction.

12: else
13: Let cj be the origin.
14: Return C = {c1, . . . , ck}

References
[1] John M Abowd. The us census bureau adopts differential privacy. In Proceedings of the

24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages
2867–2867, 2018.

[2] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. In 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 459–468, 2006.

[3] Alexandr Andoni, Zhao Song, Clifford Stein, Zhengyu Wang, and Peilin Zhong. Parallel graph
connectivity in log diameter rounds. In 59th Annual Symposium on Foundations of Computer
Science (FOCS), pages 674–685. IEEE, 2018.

[4] Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar, and Sergei Vassilvitskii.
Scalable k-means++. Proc. VLDB Endow., 5(7):622–633, 2012.

[5] Maria-Florina Balcan, Travis Dick, Yingyu Liang, Wenlong Mou, and Hongyang Zhang. Dif-
ferentially private clustering in high-dimensional euclidean spaces. In International Conference
on Machine Learning, pages 322–331. PMLR, 2017.

[6] Maria-Florina Balcan, Steven Ehrlich, and Yingyu Liang. Distributed clustering on graphs.
2013.

[7] Borja Balle, Gilles Barthe, and Marco Gaboardi. Privacy amplification by subsampling: Tight
analyses via couplings and divergences. In Advances in Neural Information Processing Systems,
pages 6280–6290, 2018.

[8] Chris Baraniuk. Ashley madison:‘suicides’ over website hack. BBC News, 24, 2015.

[9] Raef Bassily, Adam D. Smith, and Abhradeep Thakurta. Private empirical risk minimization:
Efficient algorithms and tight error bounds. In 55th IEEE Annual Symposium on Foundations of
Computer Science (FOCS), pages 464–473, 2014.

[10] MohammadHossein Bateni, Aditya Bhaskara, Silvio Lattanzi, and Vahab Mirrokni. Distributed
balanced clustering via mapping coresets. Advances in Neural Information Processing Systems,
27, 2014.

[11] Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for parallel query
processing. Journal of the ACM, 64(6):1–58, 2017.

10

[12] Aditya Bhaskara and Maheshakya Wijewardena. Distributed clustering via lsh based data
partitioning. In International Conference on Machine Learning, pages 570–579. PMLR, 2018.

[13] Guy E Blelloch, Anupam Gupta, and Kanat Tangwongsan. Parallel probabilistic tree embed-
dings, k-median, and buy-at-bulk network design. In Proceedings of the twenty-fourth annual
ACM symposium on Parallelism in algorithms and architectures (SPAA), pages 205–213, 2012.

[14] Jeremiah Blocki, Elena Grigorescu, and Tamalika Mukherjee. Differentially-private sublinear-
time clustering. In IEEE International Symposium on Information Theory (ISIT), pages 332–337.
IEEE, 2021.

[15] Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical privacy: the sulq
framework. In Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium
on Principles of Database Systems (PODS), pages 128–138, 2005.

[16] Vladimir Braverman, Dan Feldman, Harry Lang, and Daniela Rus. Streaming coreset construc-
tions for m-estimators. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2019.

[17] Vladimir Braverman, Dan Feldman, Harry Lang, Adiel Statman, and Samson Zhou. Efficient
coreset constructions via sensitivity sampling. In Asian Conference on Machine Learning, pages
948–963. PMLR, 2021.

[18] Vladimir Braverman, Gereon Frahling, Harry Lang, Christian Sohler, and Lin F Yang. Clustering
high dimensional dynamic data streams. In International Conference on Machine Learning,
pages 576–585. PMLR, 2017.

[19] Alisa Chang, Badih Ghazi, Ravi Kumar, and Pasin Manurangsi. Locally private k-means in one
round. In International Conference on Machine Learning, pages 1441–1451. PMLR, 2021.

[20] Anamay Chaturvedi, Matthew Jones, and Huy Le Nguyen. Locally private k-means clustering
with constant multiplicative approximation and near-optimal additive error. pages 6167–6174,
2022.

[21] Ke Chen. On coresets for k-median and k-means clustering in metric and euclidean spaces and
their applications. SIAM J. Comput., 39(3):923–947, 2009.

[22] Michael B. Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina Persu.
Dimensionality reduction for k-means clustering and low rank approximation. In Proceedings of
the Forty-Seventh Annual ACM on Symposium on Theory of Computing (STOC), pages 163–172.
ACM, 2015.

[23] Michael B. Cohen, Yin Tat Lee, Gary L. Miller, Jakub Pachocki, and Aaron Sidford. Geometric
median in nearly linear time. In Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing (STOC), pages 9–21. ACM, 2016.

[24] Vincent Cohen-Addad, Alessandro Epasto, Silvio Lattanzi, Vahab Mirrokni, Andres Munoz,
David Saulpic, Chris Schwiegelshohn, and Sergei Vassilvitskii. Scalable differentially private
clustering via hierarchically separated trees. In Knowledge Discovery and Data Mining (KDD),
pages 221–230, 2022.

[25] Vincent Cohen-Addad, Hossein Esfandiari, Vahab S. Mirrokni, and Shyam Narayanan. Im-
proved approximations for euclidean k-means and k-median, via nested quasi-independent sets.
In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing (STOC),
2022.

[26] Vincent Cohen-Addad and Karthik C. S. Inapproximability of clustering in lp metrics. In David
Zuckerman, editor, 60th IEEE Annual Symposium on Foundations of Computer Science (FOCS),
pages 519–539. IEEE Computer Society, 2019.

[27] Vincent Cohen-Addad, Karthik C. S., and Euiwoong Lee. On approximability of clustering
problems without candidate centers. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 2635–2648. SIAM, 2021.

11

[28] Vincent Cohen-Addad, Karthik C. S., and Euiwoong Lee. Johnson coverage hypothesis:
Inapproximability of k-means and k-median in `p-metrics. In Proceedings of the 2022 ACM-
SIAM Symposium on Discrete Algorithms, (SODA), pages 1493–1530. SIAM, 2022.

[29] Vincent Cohen-Addad, Kasper Green Larsen, David Saulpic, and Chris Schweigelshohn. To-
wards optimal lower bounds for k-median and k-means coresets. In Proceedings of the 54th
Annual ACM SIGACT Symposium on Theory of Computing (STOC), 2022.

[30] Vincent Cohen-Addad, David Saulpic, and Chris Schwiegelshohn. Improved coresets and
sublinear algorithms for power means in euclidean spaces. In Advances in Neural Information
Processing Systems, pages 21085–21098, 2021.

[31] Vincent Cohen-Addad, David Saulpic, and Chris Schwiegelshohn. A new coreset framework
for clustering. In Proccedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing (STOC), pages 169–182. ACM, 2021.

[32] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters.
2004.

[33] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. Collecting telemetry data privately.
Advances in Neural Information Processing Systems, 30, 2017.

[34] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating noise to
sensitivity in private data analysis. In Theory of Cryptography, Third Theory of Cryptography
Conference, (TCC), volume 3876 of Lecture Notes in Computer Science, pages 265–284.
Springer, 2006.

[35] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci., 9(3-4):211–407, 2014.

[36] Alina Ene, Sungjin Im, and Benjamin Moseley. Fast clustering using mapreduce. In Proceedings
of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 681–689, 2011.

[37] Jon C. Ergun, Zhili Feng, Sandeep Silwal, David P. Woodruff, and Samson Zhou. Learning-
augmented k-means clustering. In The Tenth International Conference on Learning Representa-
tions (ICLR), 2022.

[38] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. Rappor: Randomized aggregatable
privacy-preserving ordinal response. In Proceedings of the 2014 ACM SIGSAC conference on
computer and communications security, pages 1054–1067, 2014.

[39] Dan Feldman, Amos Fiat, Haim Kaplan, and Kobbi Nissim. Private coresets. In Proceedings
of the 41st Annual ACM Symposium on Theory of Computing (STOC), pages 361–370. ACM,
2009.

[40] Dan Feldman and Michael Langberg. A unified framework for approximating and clustering
data. In Proceedings of the 43rd ACM Symposium on Theory of Computing (STOC), pages
569–578. ACM, 2011.

[41] Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data: Constant-
size coresets for k-means, pca, and projective clustering. SIAM Journal on Computing,
49(3):601–657, 2020.

[42] Dan Feldman, Chongyuan Xiang, Ruihao Zhu, and Daniela Rus. Coresets for differentially
private k-means clustering and applications to privacy in mobile sensor networks. In 2017 16th
ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN),
pages 3–16. IEEE, 2017.

[43] Quan Geng, Wei Ding, Ruiqi Guo, and Sanjiv Kumar. Tight analysis of privacy and utility
tradeoff in approximate differential privacy. In Silvia Chiappa and Roberto Calandra, editors,
The 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), volume
108 of Proceedings of Machine Learning Research, pages 89–99. PMLR, 2020.

12

[44] Badih Ghazi, Ravi Kumar, and Pasin Manurangsi. Differentially private clustering: Tight
approximation ratios. In Advances in Neural Information Processing Systems, 2020.

[45] Michael T Goodrich. Communication-efficient parallel sorting. SIAM Journal on Computing,
29(2):416–432, 1999.

[46] Michael T Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, searching, and simulation in
the mapreduce framework. In International Symposium on Algorithms and Computation, pages
374–383. Springer, 2011.

[47] Anupam Gupta, Katrina Ligett, Frank McSherry, Aaron Roth, and Kunal Talwar. Differentially
private combinatorial optimization. In Proceedings of the twenty-first annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1106–1125. SIAM, 2010.

[48] Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani. Approximate nearest neighbor: Towards
removing the curse of dimensionality. Theory Comput., 8(1):321–350, 2012.

[49] David Haussler. Decision theoretic generalizations of the PAC model for neural net and other
learning applications. Inf. Comput., 100(1):78–150, 1992.

[50] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of
the American Statistical Association, 58(301):13–30, 1963.

[51] Lingxiao Huang and Nisheeth K. Vishnoi. Coresets for clustering in euclidean spaces: impor-
tance sampling is nearly optimal. In Proccedings of the 52nd Annual ACM SIGACT Symposium
on Theory of Computing (STOC), pages 1416–1429. ACM, 2020.

[52] Zhiyi Huang and Jinyan Liu. Optimal differentially private algorithms for k-means clustering. In
Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, pages 395–408, 2018.

[53] Matthew Jones, Huy L Nguyen, and Thy D Nguyen. Differentially private clustering via maxi-
mum coverage. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pages 11555–11563, 2021.

[54] Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for mapre-
duce. In Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms
(SODA), pages 938–948. SIAM, 2010.

[55] Euiwoong Lee, Melanie Schmidt, and John Wright. Improved and simplified inapproximability
for k-means. Inf. Process. Lett., 120:40–43, 2017.

[56] Konstantin Makarychev, Yury Makarychev, and Ilya P. Razenshteyn. Performance of johnson-
lindenstrauss transform for k-means and k-medians clustering. In 51st Annual ACM SIGACT
Symposium on Theory of Computing (STOC), pages 1027–1038. ACM, 2019.

[57] Daniele Micciancio. Almost perfect lattices, the covering radius problem, and applications to
Ajtai’s connection factor. SIAM J. Comput., 34(1):118–169, 2004.

[58] Prashanth Mohan, Abhradeep Thakurta, Elaine Shi, Dawn Song, and David Culler. Gupt:
privacy preserving data analysis made easy. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, pages 349–360, 2012.

[59] Shyam Narayanan. Deterministic o(1)-approximation algorithms to 1-center clustering with
outliers. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, (APPROX/RANDOM), volume 116, pages 21:1–21:19, 2018.

[60] Rupert Neate. Over $119 bn wiped off facebook’s market cap after growth shock. The Guardian,
26, 2018.

[61] Huy L. Nguyen, Anamay Chaturvedi, and Eric Z. Xu. Differentially private k-means via
exponential mechanism and max cover. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 9101–9108. AAAI Press, 2021.

13

[62] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Smooth sensitivity and sampling in
private data analysis. In Proceedings of the thirty-ninth annual ACM Symposium on Theory of
computing (STOC), pages 75–84, 2007.

[63] Kobbi Nissim and Uri Stemmer. Clustering algorithms for the centralized and local models. In
Algorithmic Learning Theory, pages 619–653. PMLR, 2018.

[64] Kobbi Nissim, Uri Stemmer, and Salil Vadhan. Locating a small cluster privately. In Proceedings
of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
pages 413–427, 2016.

[65] Richard Nock, Raphaël Canyasse, Roksana Boreli, and Frank Nielsen. k-variates++: more
pluses in the k-means++. In International Conference on Machine Learning, pages 145–154.
PMLR, 2016.

[66] Claude Rogers. Lattice coverings of space. Mathematika, 6(1):33–39, 1959.

[67] Stephen Shankland. How google tricks itself to protect chrome user privacy. CNET, October,
2014.

[68] Adam D. Smith. Privacy-preserving statistical estimation with optimal convergence rates. In
Proceedings of the 43rd ACM Symposium on Theory of Computing (STOC), pages 813–822.
ACM, 2011.

[69] Uri Stemmer. Locally private k-means clustering. In Symposium on Discrete Algorithms
(SODA), pages 548–559, 2020.

[70] Uri Stemmer and Haim Kaplan. Differentially private k-means with constant multiplicative
error. In Advances in Neural Information Processing Systems, pages 5436–5446, 2018.

[71] Dong Su, Jianneng Cao, Ninghui Li, Elisa Bertino, and Hongxia Jin. Differentially private
k-means clustering. In Proceedings of the sixth ACM conference on data and application
security and privacy, pages 26–37, 2016.

[72] Salil Vadhan. The Complexity of Differential Privacy, pages 347–450. Springer International
Publishing, 2017.

[73] Yining Wang, Yu-Xiang Wang, and Aarti Singh. Differentially private subspace clustering.
Advances in Neural Information Processing Systems, 28, 2015.

14

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] The introduction states the two final main theorems we
prove (Theorems 1.1 and 1.2). The abstract also describes these, but in a simplified
manner for easier readability.

(b) Did you describe the limitations of your work? [Yes] All theorems explain what
assumptions we use regarding the datasets (Theorems 1.1, 1.2, 3.1, 4.1, 5.1), see also
Theorems in the Appendix.

(c) Did you discuss any potential negative societal impacts of your work? [No] This paper
is purely theoretical.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] We describe the

assumptions about the data and sizes of machines in all theorem statements (Theorems
1.1, 1.2, 3.1, 4.1, 5.1), see also Theorems in the Appendix.

(b) Did you include complete proofs of all theoretical results? [Yes] all formal proofs are
deferred to Appendix.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [N/A] No Experi-
ments.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

15

A Preliminaries

In this section, we restate some of the preliminaries from Section 2, and also include some new
important definitions and preliminary results that are of use. First, we recall that Λ > 0 is some fixed
real number and B(0,Λ) is the ball of radius Λ around the origin, which we assume all points in our
dataset X will be part of. We will use p to represent the exponent p = 1 for k-median and p = 2 for
k-means.

We use the phrase with overwhelming probability to denote probability at least 1− 1/nC , where C
can be an arbitrarily large constant.

A.1 Differential Privacy

Recall the definition of differential privacy from Section 2.
Definition A.1 ([34]). A (randomized) algorithm A is said to be (ε, δ)-differentially private ((ε, δ)-
DP for short) if for any two “adjacent” datasets X and X ′ and any subset S of the output space of A,
we have

P(A(X) ∈ S) ≤ eε · P(A(X ′) ∈ S) + δ.
When δ > 0, this is often referred to as approximate differential privacy, as opposed to pure
differential privacy when δ = 0.

In our setting, we say that two datasets X and X ′ are adjacent if we can convert X to X ′ either by
adding, removing, or changing a single data point. We remark that in all of our algorithms, we will
implicitly assume that ε, δ ≤ 1

2 .

In Section 2, we described a simplified Laplace mechanism for approximating functions f : X → R.
We now describe a more generalized Laplace mechanism for approximating a function f : X →
Rm, where m ≥ 1. The Laplace mechanism works by replacing the ith coordinate f(X)i with
f(X)i + Lap(T) for some choice of T > 0, where Lap(T) is the Laplace distribution with PDF
1

2T · e
−|x|/T at x. Importantly, the choices of Lap(T) for each dimension i ∈ [m] is chosen

independently. It is well-known (see, for instance, [35] or [72]) that if a function f has sensitivity
∆, meaning that ‖f(X)− f(X ′)‖1 ≤ ∆ for all adjacent X ,X ′, then the Laplace Mechanism with
parameter T is (∆/T, 0)-DP. We remark that we often will just use the simpler Laplace mechanism
where m = 1. In this case, note that the sensitivity just means an upper bound on |f(X)− f(X ′)|
for adjacent X ,X ′.
Similar to the Laplace Mechanism, we can also implement the Truncated Laplace mechanism[43]:
we will only use it for m = 1, i.e., for approximating functions f : X → R. If f has sensitivity
∆, the Truncated Laplace Mechanism outputs f(X) + TLap(∆, ε, δ), where TLap(∆, ε, δ) is the
distribution with PDF proportional to e−|x|·ε/∆ on the region [−A,A], whereA = ∆

ε ·log
(
1 + eε−1

2δ

)
.

Assuming ε, δ ≤ 1
2 , is known that if f has sensitivity ∆, then this mechanism is (ε, δ)-DP, and is

always accurate up to error ∆
ε · log 1

δ .

Next, we note two classic theorems regarding the privacy of composing private mechanisms (see, for
instance, [35] or [72]).
Theorem A.2 (Basic Adaptive Composition). Let A1, . . . ,Ak be adaptive mechanisms on a dataset
X such that each Ai is (εi, δi)-differentially private as a function of X , assuming that the previ-
ous outputs A1, . . . ,Ai−1 are fixed. Then, the mechanism A which concatenates the outputs of
A1, . . . ,Ak is (

∑
εi,
∑
δi)-differentially private.

Theorem A.3 (Strong Adaptive Composition). LetA1, . . . ,Ak be adaptive mechanisms on a dataset
X such that each Ai is (ε, δ)-differentially private as a function of X , assuming that the previous
outputs A1, . . . ,Ai−1 are fixed. Then, for any δ′ > 0, the mechanism A which concatenates the
outputs of A1, . . . ,Ak is (

√
2k log δ−1 · ε+ kε(eε − 1), kδ + δ′)-differentially private.

A.2 Clustering

First, we recall the basic definitions relating to distance and clustering cost.
Definition A.4. For two points x, y ∈ Rd, we define d(x, y) := ‖x − y‖2 to be the Euclidean
distance between x and y. In addition, for a set C ⊂ Rd of points and a point x ∈ Rd, we define
d(x, C) = d(C, x) to be minc∈C d(x, c).

16

Definition A.5. For a set X ⊂ Rd and a set of points C ⊂ Rd of size k, we define the k-
means cost cost(X ; C) :=

∑
x∈X d(x, C)2. Likewise, we define the k-median cost cost(X ; C) :=∑

x∈X d(x, C). Occasionally, we may assign each point xi ∈ X a positive weight wi, in which case
we define cost(X ; C) :=

∑
xi∈X wi · d(xi, C)p (p = 1 for k-median and p = 2 for k-means). If the

context is clear, we will not specify whether we are talking about k-means or k-median cost.

In addition, we define OPT(X) = minC:|C|=k cost(X ; C) to be the minimum k-means (or k-median)
cost.

In k-means or k-median clustering, given a dataset X ⊂ B(0,Λ) of size n, our goal is to efficiently
find a set of points C such that cost(X ; C) is a good approximation to OPT(X). In general, we wish
for purely multiplicative approximations, but due to the nature of private k-means (and k-median),
we will additionally have a small additive approximation that is proportional to Λp. We now define
approximate k-means/k-median solutions.
Definition A.6. For any α ≥ 1, a set C of size k is said to be an α-approximate for X with additive
error V if cost(X ; C) ≤ α ·OPT(X) + V · Λp.

We also define bicriteria solutions for k-means and k-median: here, we are allowed to use a larger
dataset C that may have more than k points, but still compare to the optimal k-clustering.
Definition A.7. For any α, β ≥ 1, a set C is said to be an (α, β)-bicriteria approximate solution for
X with additive error V if |C| ≤ β · k and cost(X ; C) ≤ α ·OPT(X) + V · Λp.

Finally, we also note an important result on dimensionality reduction for clustering, due to [56].
Theorem A.8. Let X = {x1, . . . , xn} be a set of points in Rd, and fix some integer k ≤ n and a real
number γ ≤ 1

2 . Let d′ = Cγ−2 log(k/γ) for a sufficiently large constant C. Then, for Π ∈ Rd′×d
chosen where each entry of Π is i.i.d. 1√

d′
· N (0, 1) (we will call this matrix Π a “random projection”

down to d′ dimensions), the optimal k-means costs OPT(X) and OPT(ΠX) are equal up to a 1± γ
multiplicative cost. Likewise, the optimal k-median costs OPT(X) and OPT(ΠX) are also equal
up to a 1± γ multiplicative cost.

In addition, the following stronger claim holds simultaneously for every partition of X into
X1, . . . ,Xk. We have that the minimum k-means (resp., k-median) cost where each Xi is a sin-
gle cluster, and the minimum k-means (resp., k-median) cost where each ΠXi is a single cluster, are
equal up to a 1± γ multiplicative factor.

We note that the minimum k-means (resp., k-median) cost when the clusters X1, . . . ,Xk are fixed is
determined by setting each center ci to be the mean (resp., geometric median) of the points in Xi.

A.3 Massively Parallel Computation (MPC)

We recall the description of the MPC model from Subsection 2.2. In our setting of clustering, we will
assume that there are O(n1−θ) machines, each of which can store Õ(nθ) points of dimension d. So,
the total memory is Õ(nd).

We remark that we will frequently use the phrase near-linear time: this will represent an MPC
algorithm that uses at most Õ(nd) total time across all machines, and at most Õ(nθd) time in any
individual machine.

We recall the primitive of sorting, and copy Theorem 2.2 here.
Theorem A.9. (Sorting) [46, 45] There is an MPC algorithm which sorts N data items in O(1)
rounds using O(N) total space. The local memory per machine required is at most O(Nθ) for an
arbitrary small constant θ > 0.

We next will need the following primitive that we call aggregation, which follows from the primitive
“Sizes of sets” in [3].
Lemma A.10. (Aggregation) Suppose we have N items, each of which has a label u in a universe U
(which may be larger than N). There is an MPC algorithm which stores all tuples (u, nu), where
u ∈ U has at least one item labeled with u and nu counts the number of such items, using O(1)
rounds and O(N) total space. The local memory per machine required is at most O(Nθ) for an
arbitrary small constant θ > 0.

17

In addition, we will need the following primitive that we call sampling, which follows from the
primitive “Indexing elements in sets” in [3].
Lemma A.11. (Sampling) Suppose we have N items which are partitioned into k sets S1, . . . , Sk.
Each item comes with an index in [k] representing its set. Then, for any positive integer T , we can
simultaneously choose a random sample of size T from each Si (and if |Si| ≤ T , we simply choose
all elements of Si). This can be done in MPC with O(1) rounds, Õ(N) total space, and local memory
at most O(Nθ) for an arbitrary small constant θ > 0.

Proof. For each element x, we assign it a random key ` between 1 and NO(1). With high probability
there is no collision of keys. For each element x, say it is assigned the pair (j, `), where x ∈ Sj and `
is the key. We sort the elements based on j and tiebreaking with `, using Theorem A.9.

Now, the “indexing elements in sets” procedure of [3] allows us to determine the relative position
of each x in its set Sj , for all j ∈ [k] simultaneously. In other words, it can determine how many
elements x′ also in Sj have the same or lower key than x, since we have sorted all points in Sj in
order of key. Thus, if we store all elements x such that this value is at most T , we are exactly storing
the elements with the T lowest keys among elements in Sj , simultaneously for all j ∈ [k]. Since the
keys were random, this is exactly the sampling procedure we want.

Finally, we require an algorithm for solving k-means or k-median in MPC, which follows from the
MPC coreset algorithm of Theorem 2.3.
Theorem A.12. (MPC k-means/k-median) [17, 40, 41] Consider n points in Rd. Suppose there
exists a polynomial-time (sequential, non-private) ρ-approximation to k-means (resp., k-median).
Then, there exists a non-private MPC algorithm which outputs a ρ(1 + γ) k-means (resp.,k-median)
solution, for any arbitrarily small constant γ > 0, in O(1) rounds. The total space needed is
O(nd)+poly(k, d, log n, 1/γ), and the local memory per machine required is poly(k, d, log n, 1/γ).
In addition, the total running time over all machines is at most O(nd) + poly(k, d, log n, 1/γ).

A.4 Approximate Near Neighbors and Randomly Shifted Grids

In our algorithms, we will also make use of Approximate Nearest Neighbor (ANN) data structures,
as well as the Quadtree data structure which is composed of randomly shifted grids.
Definition A.13. [48] The K-approximate nearest neighbor (K-ANN) problem with failure proba-
bility τ involves constructing a data structure over a set of points C in Rd supporting the following
query: given any fixed query point q ∈ Rd, return a point c ∈ C such that with probability at least
1− τ , d(q, c) ≤ K ·minc′∈C d(q, c′).

This has been a very well-studied problem, with the following algorithm as the best-known ANN
data structure in high-dimensional Euclidean space.
Theorem A.14. [2, 48] Given a dataset C of size m ≤ n, there exists a data structure that can solve
K-ANN with failure probability τ = 1

poly(n) , with total space O
(

(dm+m1+1/K2+o(1)) · (log n)
)

and query time O
(
d ·m1/K2+o(1) · (log n)

)
. In addition, if K = O(log n), we can improve the

total space to O(dm · poly log n) and the query time to O(d · poly log n).

Next, we describe the Quadtree data structure. This data structure has also been useful for approximate
nearest neighbor algorithms, though we will analyze this data structure more directly.
Definition A.15. A randomly shifted Quadtree is constructed as follows. We start with a top level
of some size Λ and let level 0 be a single grid cell, which is the d-dimensional hypercube [−Λ,Λ]d.
Next, we choose a uniformly random point ν = (ν1, . . . , νd) ∈ [−Λ,Λ]d, which will represent our
shift vector. Now, for each level ` ≥ 1, we partition the region [−Λ,Λ]d into grid cells of size Λ/2`,
shifted by ν. In other words, each cell is the form [ν1 + a1 ·Λ/2`, ν1 + (a1 + 1) ·Λ/2`]× · · ·× [νd +
ad · Λ/2`, νd + (ad + 1) · Λ/2`], where a1, . . . , ad ∈ Z. We say that Λ/2` is the grid size at level `.
(We remark that we may truncate some grid cells so that they do not escape [−Λ,Λ]d.) We continue
this for some number of levels, until we reach some bottom level.

We will only need the following straightforward fact about Quadtrees.

18

Proposition A.16. LetB be an `∞ ball of radius r contained in [−Λ,Λ]r (so it forms a d-dimensional
cube with each side length 2r). Then, for a randomly shifted quadtree and any level ` with grid size at
least r′ ≥ 2r, B is split by the grid in each dimension j ∈ [d] independently with probability 1− 2r

r′ .

A.5 List-Decodable Covers

In this subsection, we note an important result on list-decodable covers, which we will use in a similar
manner as [44] to obtain a differentially private coreset of the data for either k-means or k-median.
First, we need the following definition, which is restated from [44].
Definition A.17. Given a ball B centered around some point µ ∈ Rd and radius R, we say that a set
of pointsH is a γ-cover of B if for every point x ∈ B, there exists h ∈ X such that d(x, h) ≤ γ ·R.
In addition, we say that a γ-cover of B is list-decodable with list size ` at distance γ′ ≥ γ if, for any
x ∈ B, the number of points h ∈ H with d(x, h) ≤ γ′ ·R is at most `. Furthermore, we say that the
γ-cover is efficiently list-decodable at distance γ′ if there exists an efficient algorithm that, for any
x ∈ B, recovers all such points h ∈ H with d(x, h) ≤ γ ·R in time poly(`, d, log γ−1).

We will need the following lemma from [44], which is based on previous work of [66, 57].
Lemma A.18. For every 0 < γ < 1, and any ball B ⊂ Rd there exists a γ-coverH that is efficiently
list-decodable at distance γ′ with list size ` = (1 + γ′

γ)O(d). In addition, the cover is formed by a
lattice, for which a basis can be constructed in time eO(d).

As a corollary, we have the following, by setting γ′ = 1 and applying the efficient list-decodable
property with radius γ′ around the center µ of B.
Corollary A.19. For any ball B ⊂ Rd with center µ and radius R, and for any γ ≤ 1, there exists a
γ-coverH of B of size at most O(1/γ)O(d). In addition, all the points of the cover can be found in
time O(1/γ)O(d).

A.6 Sampling Lemmas

In this subsection, we note some useful lemmas relating to subsampling a dataset. First, we prove a
sampling lemma that shows that via uniform sampling, one can approximate the k-means cost, as
well as the k-median cost, of a set of points, up to some combined additive and multiplicative error.
This lemma is essentially proven in [21, 49], but due to some minor changes in the statement we
want, we prove it for completeness.
Lemma A.20. Let 0 < κ, γ < 1, and let n ≥ N ≥ T be fixed integers such that T ≥
Θ
(
k·d·log((κγ)−1)+logn

κ2·γ2

)
. Let X be a dataset of size N entirely contained in a unit ball of ra-

dius 1. Consider selecting a random set Y of size T in X , selected without replacement. Then, with
probability at least 1− 1/poly(n) over Y , for any set C = {c1, . . . , ck′} ∈ Rd of size at most k, and
for either p = 1 or p = 2,∑

y∈Y
d(C, y)p = (1± κ) · T

N
·
∑
x∈X

d(C, x)p ± γ · T. (1)

Proof. First, we may assume WLOG that the center of the ball is the origin, by shifting. In addition,
we may assume that all of the distances from ci to the origin are within 2 of each other, i.e.,
maxi ‖ci‖2 − mini ‖ci‖2 ≤ 2. Otherwise, d(C, y) is the same as d(C\{arg maxci∈C ‖ci‖2}, y)
for any point y in the unit ball. Next, we may assume that mini ‖ci‖2 ≤ O(1/κ) (which means
maxi ‖ci‖2 ≤ O(1/κ)). This is because otherwise, d(C, y)2 = (1 ± κ) · d(C, x)2 (and similarly
d(C, y) = (1± κ) · d(C, x)) for any points x, y in the unit ball. So, we just have to focus on C only
containing points within O(1/κ) of the origin.

Now, we fix a subset C of size at most k beforehand, and enumerate the pointsX = {x1, . . . , xN}. For
each i ≤ N , define ai = d(C, xi) ≤ O(1/κ). Let S ⊂ [N] be a random subset of T elements chosen
without replaccement. By using a version of Hoeffding’s inequality without replacement [50], we have
that P

(∣∣∣∑i∈S ai −
T
N ·
∑
i∈[N] ai

∣∣∣ ≤ t) ≤ 2 · e−Ω(t2)/T , because the ai’s are all contained in an
interval of radius 4. This is because, as in the previous paragraph, we noted that all of the values ‖ci‖

19

are within 2 of each other, and all points xi are in a ball of radius 1, so d(ci, x) = ‖ci‖2± 1 for any x
in the unit ball. Likewise, P

(∣∣∣∑i∈S a
2
i − T

N ·
∑
i∈[N] a

2
i

∣∣∣ ≤ t) ≤ 2 ·e−Ω(κ2·t2)/T . This is true since

the ai’s are in an interval of radius 4 and are all at mostO(1/κ), which means the a2
i ’s are concentrated

in an interval of radius O(1/κ). So, if we set t = γ·T
2 , then we have that Equations (1) holds with

failure probability at most 2e−Ω(κ2·γ2·T) ≤ 2e−Ω(kd log((κγ)−1)+logn) ≤ 1
poly(n) · (κ · γ)Ω(kd), for

either p = 1 or p = 2.

Now, we must perform a union bound over all subsets C. Although there are infinitely many of them,
we may assume WLOG that the subset C is contained in some (γ·κ100)O(1)-cover of the O(1/κ)-sized
ball, which has size (1/(κ · γ))O(d) = (κ · γ)−O(d). Otherwise, we may move each point in C to the
closest point in the net, which does not affect each ai = d(xi, C) or a2

i by more than γ/10 additively.
So, the number of possible subsets C of size at most k is at most (κ · γ)−O(kd), which means the
overall failure probability is 1

poly(n) .

Finally, we note that any private algorithm applied on a sampled dataset is still private. Specifically,
we have the following result.
Lemma A.21. Let ε, δ ≤ 1

2 , and let A be an (ε, δ)-DP algorithm on a dataset Y . Now, let B be an
algorithm on a dataset X , where we first either sample every point in X independently with some
fixed probability or sample T random points in X without replacement for some fixed T , and then
apply A to the sampled data points. Then, B is also (ε, δ)-DP.

In fact, one can actually get slightly stronger bounds on the privacy of B if the sampling probability
of each element is small (see, e.g., [7, 14]), but this will not end up being particularly useful in
improving our theoretical guarantees significantly.

B A Private MPC Bicriteria Approximation

In this section, we create a bicriteria approximation algorithm for k-means and k-median clustering,
which runs in near-linear time and only uses O(1) rounds of communication. In other words, this
algorithm will have a multiplicative approximation but will also use more than k centers. We will use
this procedure as a starting point which will eventually give us an O(1)-approximation algorithm
using only k centers. Our technique for this section is somewhat inspired by [24], except we use
a greedy approach rather than their dynamic programming approach to speed up the runtime and
reduce the number of rounds of communication.
Theorem B.1. There exists an (ε, δ)-DP algorithm that, given a dataset X ⊂ B(0,Λ) of size n,
computes an (O(d3), log2 n)-bicriteria approximation to the optimal k-means (or k-median) cost,
with additive error k · poly(log n, d, ε−1, log δ−1). In addition, the algorithm only requires O(1)
rounds of communication in MPC in near-linear time.

Remark B.2. We are not particular about polynomial dependencies on d, as we will later show how
to reduce d to roughly O(log k).

Algorithm: We create a randomly shifted quadtree with bottom level having grid size Θ(Λ/n2)
and the top (0th) level being [−Λ,Λ]d. Note that the quadtree has Θ(log n) levels. Now, at each level
` of the quadtree, we count the number of points in each cell c and add Truncated Laplace noise
TLap(1, ε/ log2 n, δ) noise. In other words, for every ` ≤ O(log n) and every cell c in level `, we
compute a quantity Ñ`,c which equals |X ∩c|+TLap(1, ε/ log2 n, δ/ log2 n). We then, for each level
`, pick the (up to) 4k cells with largest Ñ`,c, assuming the counts are at least 2ε−1 log2 n · log log2 n

δ .

We will run the above algorithm O(log n) times in parallel (with independent randomness in each
quadtree) and let F be the union of the centers of all cells picked, across all parallel iterations and all
levels. So, F will have O(k log2 n) cells in total.

Privacy: We claim that a single parallel iteration of the algorithm is (O(ε/ log2 n), O(δ/ log2 n))-
DP at each level. Indeed, if a single point in X is added, deleted, or moved, at most 2 cells change in
size, each by at most 1. So, outputting the counts Ñ`,c is at most (2ε/ log2 n, 2δ/ log2 n)-DP because

20

of our Truncated Laplace noise. In addition, choosing the (up to 4k) largest cells only depends
on the noisy counts Ñ`,c so it does not affect privacy. So, doing this over all levels and applying
basic composition tells us this algorithm is (O(ε/ log n), O(δ/ log n))-DP. Because we run O(log n)
parallel copies of this procedure, so we get (O(ε), O(δ))-DP.

Runtime: We focus on a single iteration and single level of the algorithm. First, we assign each
point x a pointer to its grid cell at that level. Then, using O(1) rounds, we can sort the points based
on the location of the grid cell, using Theorem A.9. Now, in O(1) rounds we can aggregate (without
privacy) to count the total number of points in each (nonempty) grid cell, using Lemma A.10. We
then add Truncated Laplace noise to each grid cell, and then sort again to find the heaviest grid cells
after imposing privacy constraints. This can all be done using a nearly linear amount of time per
machine. In addition, there is no need to add noise to any empty cell, because the error induced
by the Truncated Laplace noise is at most ε−1 log2 n · log log2 n

δ , which is below the threshold of

2ε−1 log2 n · log log2 n
δ for outputting the count. There are at most O(log n) levels per quadtree and

at most O(log n) quadtrees, so we can create O(log2 n) copies of the dataset X and generate the
centers for each level-iteration pair. Overall, we will have a total of O(k log2 n) points, which can all
be sent to a single machine for storage to generate our set F .
In total, the algorithm runs in near-linear time, with O(1) rounds of communication.

Accuracy: Let X = {x1, . . . , xn} be our original set of points, and let C = {c1, . . . , ck} be the
optimal set of k centers. For any radius r, let nr be the number of points x ∈ X such that d(x, C) ≥ r.
Then, note that the k-means cost and k-medians cost, up to an O(1)-approximation, equal

∑
t∈Z

22t · n2t and
∑
t∈Z

2t · n2t ,

respectively.

Now, let’s fix some radius r = 2t, and consider a randomly shifted grid of size 20r · d. Note that for
any point c ∈ C, the Euclidean ball B(c, r) of radius r around c is contained in the `∞ ball B∞(c, r).
Thus, by Proposition A.16, the probability this ball is split in any fixed dimension by the grid of size
20r · d is at least 1− 1/(10d). So, the probability that it is split in a total of q dimensions is at most
1/(10d)q ·

(
d
q

)
≤ 10−q . So, each ball B(ci, r) in expectation is split into at most

∑
q≥0 2q · 10−q ≤ 2

total cells by the corresponding level of the quadtree. Hence,
⋃k
i=1B(ci, r) is contained in at most

4k cells of grid size 20rd with at least 50% probability, by a Markov bound.

Now, suppose that all points in
⋃k
i=1B(ci, r) are contained in at most 4k total cells at this level.

Since each cell has side length 20r · d, it has `2-radius 10r · d3/2. Therefore, with at least 50%
probability, the number of points that are not within 10r · d3/2 of the 4k heaviest cells’ centers at
this level is at most nr. However, the noisy counts affect which cells the algorithm outputs to be
heaviest. But each count is accurate up to error 3ε−1 log2 n · log log2 n

δ even if we replace any Ñ`,c
below 2ε−1 log2 n · log log2 n

δ with 0. So, overall, with at least 50% probability, we have found at
most 4k grid cell centers such that the number of points not within 10d3/2 · r of any of these points is
at most nr +O

(
k · ε−1 · log2 n · log log2 n

δ

)
.

By repeating this across log n parallel copies, we can boost this failure probability sufficiently
high. We then repeat this across all levels, to get that for all choices of r between Λ/n2 and Λ,
the number of points of distance at least O(d3/2 · r) from some point in our final set F is at most
nr +O

(
k · ε−1 · log2 n · log log2 n

δ

)
. We also do not need to check r beyond Λ, as the center of the

21

top level of the quadtree contains all points. So, the k-means cost is at most∑
t∈Z:r=2t≤Λ

O(d3/2 · r)2 ·
(
nr +O

(
k · ε−1 · log2 n · log

log2 n

δ

))

≤ O(d3) ·

∑
t∈Z

22t · n2t +O

(
k · ε−1 · log2 n · log

log2 n

δ

)
·

∑
t∈Z:r=2t≤Λ

22t


≤ O(d3) ·OPT +O

(
kd3 log3 n · ε−1 log δ−1

)
· Λ2.

Hence, for k-means we obtain a poly(d)-multiplicative and a O(k ·poly(d, log n, ε−1, log δ−1)) ·Λ2-
additive error, using O(k log2 n) total centers. A very similar calculation gives us the same result
(with only a O(d3/2)-multiplicative factor) for k-median.

To finish, we provide algorithm pseudocode, as Algorithm 3.

Algorithm 3 A bicriteria approximation algorithm for differentially private k-means (or k-median).
1: procedure BICRITERIA(X , ε, δ) . Will be (O(ε), O(δ))-DP.
2: F ← ∅ . Initialize set of centers to ∅, we will add centers to it.
3: for rep = 1 to O(log n) do
4: Create a randomly shifted quadtree with top level [−Λ,Λ]d and bottom level with grid

size Λ/n2.
5: for each 0 ≤ ` ≤ log2(n2) do
6: for each cell c in level ` do
7: Let N`,c be the number of points in X ∩ c.
8: Let Ñ`,c = N`,c + TLap(1, ε/ log2 n, δ/ log2 n) (only compute for N`,c > 0).
9: Add the centers of the 4k cells c with largest Ñ`,c to F .

10: Return F .

C Obtaining a Constant Approximation in Near-Linear Time

In this section, we show a black-box method for creating an efficient parallel algorithm with O(1)-
approximation factor, given a polynomial-time sequential algorithm with O(1)-approximation factor
(for which we will use [70]) and an efficient parallel bicriteria algorithm with weaker approximation
guarantees, as in Section B.

We begin by showing how one can obtain a “semi-coreset” given an O(1)-approximate algorithm
for k-means and k-median. Namely, our semi-coreset will also have an additive error proportional
to the optimal cost, which prevents it from being a standard coreset. However, this will end up
being sufficient for our purposes. The following lemma is inspired by a result proven in Kaplan and
Stemmer [70], but differs in that we extend their procedure to work for approximate nearest neighbor
algorithms. While the proof of the following lemma is written for k-means, a nearly identical proof
holds for k-median.
Lemma C.1. Let A be an (ε, δ)-DP (sequential) algorithm that takes as input a dataset Y of size at
least Ω(k · ε−1 log n) contained in a ball B of radius R (with known center) and outputs outputs a
set of k centers G contained in B such that cost(X ;G) ≤ O(1) ·OPT(X) + V (n, d, k, ε, δ) ·Rp.
Then, for any fixed η > 0, there exists a (3ε, δ)-DP (sequential) algorithm B on the dataset Y that
outputs a set Ŷ ⊂ B such that for any set C of size at most k.

cost(Ŷ; C) ≤ O(1) ·
[
OPT(Y) + cost(Y; C) +

(
V (n, d, k, ε, δ) + k · ε−1 log n

)
·Rp

]
(2)

cost(Y; C) ≤ O(1) ·
[
OPT(Y) + cost(Ŷ; C) +

(
V (n, d, k, ε, δ) + k · ε−1 log n

)
·Rp

]
. (3)

In addition, constructing the set requires only O(k1+η · d · log n) space and at most O(kη · d · log n)
time per point in Y , for some arbitrarily chosen constant η > 0.

Proof. For simplicity of the presentation, we present the proof for k-means. The proof for k-median
is almost identical. We begin by constructing aK-approximate nearest neighbor (ANN) data structure

22

for the dataset G, which uses O(k1+η · d log n) space and O(kη · d log n) query time per point. By
Theorem A.14, we can set K = Θ(η−1/2), which for η > 0 fixed, is a constant.

Let the dataset Ỹ be generated by replacing point in Y with a K-approximate nearest neighbor in G
(counting multiplicity). For each point y ∈ Y , let ỹ represent its corresponding point in Ỹ . Then, for
any set of at most k centers C (even if C is not contained in B),

cost(Ỹ; C) =
∑
ỹ∈Ỹ

d(ỹ, C)2

≤
∑
y∈Y

(d(ỹ, y) + d(y, C))2 (4)

≤
∑
y∈Y

2
[
(d(ỹ, y)2 + d(y, C)2

]

≤ 2

∑
y∈Y

K2 · d(y,G)2 +
∑
ỹ∈Ỹ

d(y, C)2


≤ O(K2) ·OPT(Y) + 2K2V (n, d, k, ε, δ) ·R2 + 2 · cost(Y; C). (5)

Conversely, we have that

cost(Y; C) =
∑
y∈Y

d(y, C)2

≤
∑
y∈Y

(d(y, ỹ) + d(ỹ, C))2

≤ 2

∑
y∈Y

K2 · d(y,G)2 +
∑
ỹ∈Ỹ

d(ỹ, C)2


≤ O(K2) ·OPT(Y) + 2K2V (n, d, k, ε, δ) ·R2 + 2 · cost(Ỹ; C). (6)

Note that Ỹ is contained in G, but each point in Ỹ may have large multiplicity. Let Ŷ be the set
where we add Lap(1/ε) noise to the multiplicity of each point in G. In other words, if g ∈ G has
multiplicity mg in Ỹ , it will have multiplicity max(0,mg + Lap(1/ε)) in Ŷ .

First, note that since G is (ε, δ)-DP with respect to Y , the ANN data structure also satisfies (ε, δ)-DP
with respect to Y, as it only depends on G. This implies that Ŷ is (3ε, δ)-DP. To see why, if we fix the
ANN data structure, adding, removing, or changing a single point from Y changes the multiplicity
mg of at most two points in G by at most 1, which makes the sensitivity of the multiplicities at most
2. So, the standard Laplace mechanism to generate the multiplicities for Ŷ is (2ε, 0)-DP. Hence, the
adaptive composition of the ANN data structure with the construction of Ŷ is (3ε, δ)-DP.

Next, note that with overwhelming probability, every Lap(1/ε) noise added is at most O(ε−1 log n).
If C has nonempty intersection with the ball B2 that is concentric with B with radius 2R, we
have that d(ỹ, C) ≤ O(R) as ỹ ∈ G ⊂ B. So, the maximum additional error we gain is at most
O(k · ε−1 · log n · R2). Alternatively, if all points in C are not in B2, then d(y, C) for every point
y ∈ B is equivalent up to a factor of 3. In this case, as we assume the number of points in Ỹ (counting
multiplicity) is at least Θ(k · ε−1 · log n) = Θ(|G| · ε−1 · log n), we have that the number of points
in Ỹ and the number of points in Ŷ (counting multiplicity) are equal up to a constant factor, as the
multiplicity of each point in G does not change by more than O(ε−1 · log n). Thus, in this case,
cost(Ỹ; C) and cost(Ŷ; C) are equal up to a constant factor.

By combining this observation with Equations (5) and (6), if we treat K as a constant, we have that
for any set C of size at most k,

cost(Ŷ; C) ≤ O(1) ·
[
OPT(Y) + cost(Y; C) +

(
V (n, d, k, ε, δ) + k · ε−1 log n

)
·R2

]
cost(Y; C) ≤ O(1) ·

[
OPT(Y) + cost(Ŷ; C) +

(
V (n, d, k, ε, δ) + k · ε−1 log n

)
·R2

]
.

23

Now, consider some set X0 ⊂ B(µ,R) of size N0, for some center µ and some radius R. Let Y0 be
a random subset of T points in X0 selected without replacement, where γ ≤ 1

2 will be chosen later,

and N0 ≥ T ≥ Ω
(
k·d·log γ−1

γ2 + V (n,d,k,ε,δ)+kε−1 logn
γ

)
. Then, by Lemma A.20 with κ set to 1

2 , we

have that cost(Y0; C) ∈ (1± 0.5) · TN0
· cost(X0; C)± γ ·T ·Rp for any set C of size at most k. Now,

consider applying B (the algorithm created by Lemma C.1) to the dataset Y0, restricted to points in
the ball B(µ,R). This would obtain a set Ŷ0, such that for any set C of size k,

N0

T
· cost(Ŷ0; C) ≤ O

(
N0

T

)
·
[
OPT(Y0) + cost(Y0; C) +

(
V (n, d, k, ε, δ) + kε−1 log n

)
·Rp

]
≤ O(1) · [OPT(X0) + cost(X0; C)] +O (γ ·N0 ·Rp)
= O(1) · cost(X0; C) +O (γ ·N0 ·Rp) , (7)

and

cost(X0; C) ≤ O
(
N0

T

)
· [cost(Y0; C) + γ · T ·Rp]

≤ O
(
N0

T

)
·
[
OPT(Y0) + cost(Ŷ0; C) + γ · T ·Rp

]
≤ O

(
N0

T

)
· cost(Ŷ0; C) +O(1) ·OPT(X0) +O(γ ·N0 ·Rp). (8)

In addition, by Lemma A.21, we have that Ŷ0 is (O(ε), O(δ))-DP with respect to X0, since Y0 is a
randomly sampled subset of X0 and Ŷ0 is (O(ε), O(δ))-DP with respect to Y0.

We now state the main result of this section, which provides a parallel and differentially private
algorithm for k-means (or k-median) with an O(1)-multiplicative approximation. We will focus on
k-means in the proof, but an identical argument also holds for k-median.
Theorem C.2. Suppose we have a sequential (ε, δ)-DP algorithm A that takes as input a dataset X
contained in B(0,Λ), and outputs a set of k centers G such that cost(X ;G) ≤ O(1) · OPT(X) +
V (n, d, k, ε, δ) · Λp. In addition, suppose we have a near-linear time (ε, δ)-private MPC algorithm
that can generate an (α, β)-bicriteria approximate solution to k-means (resp., k-median) clustering
with additive error W = W (n, d, k, ε, δ), where α = dO(1) and β = (log n)O(1). Finally, assume
that each machine can store at least k1+η(log n)O(1) + T points, where T = (d + logn)O(1) ·
Θ(V (n, d, k, ε, δ) + k/ε) is some threshold and η > 0 is any small constant.

Then, there exists an (O(ε), O(δ))-DP algorithm for k-means (or k-median) clustering with multi-
plicative error O(1) and additive error

poly(d, log n) ·
(
W (n, d, k, ε, δ) + k2ε−1 + k · V (n, d, k, ε, δ)

)
.

In addition, the algorithm has total sequential time Õ(nd)+TO(1) and parallel time Õ(nθd)+TO(1),
i.e., the runtime is near-linear assuming n ≥ TC for some constant C.

Algorithm: Suppose we are given a set X of points across many machines. We start by running
the (ε, δ)-DP MPC algorithm, which outputs a set F = {f1, . . . , fβ·k} of size at most β · k, such that
cost(X ;F) ≤ α ·OPT(X) +W (n, d, k, ε, δ) · Λp.
Now, for each 1 ≤ j ≤ β · k and each 1 ≤ r ≤ log2(n2), let Bj,r represent the ball of radius
2r · Λ

n2 around the point fj ∈ F . Now, for each point x ∈ X , we assign it to some (j, r) where
j ≤ β · k, r ≤ log2(n2), using a L = O(log n)-approximate nearest neighbor data structure on the
dataset F . More precisely, for each x ∈ X , we find an L-approximate nearest neighbor fj , and then
find the smallest r such that x ∈ Bj,r. For L = O(log n), we can store the data structure with failure
probability τ = 1

poly(n) using space O(β · k · (log n)O(1)), and compute the L-approximate nearest

neighbor in F per point x ∈ X in time (log n)O(1).

Now, for each j ≤ β · k and r ≤ log2(n2), we define Xj,r as the set of points assigned to Bj,r. Via
MPC aggregation (Lemma A.10), we compute Nj,r = |Xj,r| and N̂j,r = Nj,r + Lap(1/ε) for each

24

j, r. We also define some threshold parameter T = Θ
(
k·d·log γ−1

γ2 + V (n,d,k,ε,δ)+kε−1 logn
γ

)
(where

γ will be chosen later) - we will see that T matches the threshold in the theorem statement. Now, for
each j, r, if N̂j,r ≥ 2T , let Yj,r be a random sample of T points from Xj,r, which we obtain using
Lemma A.11. Next, we use Lemma C.1 to compute a private approximation Ŷj,r of Yj,r based on

our sequential private algorithm A, where each point in Ŷj,r is scaled by a factor of N̂j,r

T . Otherwise,
if N̂j,r < 2T , we let Ŷj,r = ∅.

Finally, we compute a non-private, scalable MPC k-means (or k-median) algorithm on
⋃
j,r Ŷj,r with

an O(1) approximation factor, such as using Theorem A.12.

Runtime: We start by using the bicriteria of Section B, which takes near-linear time and O(1)
rounds. Next, the assignment of each point x ∈ X to (j, r) can be done in near-linear time as well,
as we can compute the ANN data structure for F on a single machine using O(β · k · (log n)O(1))
space, and then broadcast the data structure to all machines in O(1) rounds. The broadcasting only
needs O(1) rounds since the space on each machine is at least k1+η(log n)O(1), which means that
nθ(1−η) ≥ Õ(β · k). Then, each point can be sent to an O(log n)-approximate nearest neighbor in
poly log n time per point.

Next, computing the values Nj,r and N̂j,r are simple via MPC aggregation (Lemma A.10), and we
can sample T points from each (j, r) with N̂j,r ≥ 2T using MPC sampling (Lemma A.11). Then, in
linear time and 1 round of communication, we can assign each (j, r) to some machine, and then send
the sampled points Yj,r to the corresponding machine. Note that Yj,r has size at most T , so it fits on
a machine, and the number of machines needed is O(log n · β · k) = k · (log n)O(1). Then, we must
compute a private approximation Ŷj,r for each Yj,r using Lemma C.1, which can be done in time
poly(T) in each machine. This is because Yj,r already has at most T distinct elements, so applying
A takes poly(T) time [70], and by Lemma C.1, we only need an additional O(T · kη · d) time to
compute Ŷj,r. In addition, there are only O(k · poly log n) machines in total for this to be done, so
the total sequential and total parallel runtimes are both at most poly(T, d, log n) = TO(1). Finally,
we apply Theorem A.12 with γ = 0.5 on Ŷ . Because each Ŷj,r has at most k distinct points, Ŷ has at
most poly(k, log n) distinct points. Therefore, the total time for the final step of applying Theorem
A.12 is at most poly(k, d, log n). We will later show that our threshold parameter T exactly matches
the choice of T in the theorem statement, which will complete the proof of the runtime argument.

Privacy: First, note that the initial set F is (ε, δ)-DP, and the ANN data structure constructed from
F only depends on F . So, fixing this data structure, adding, removing, or changing a single point in
X can only change at most two of the Xj,r’s, each by at most 1 point. So, the set of values N̂j,r are
also (2ε, 0)-DP. If we fix F and N̂j,r for all j, r, then for each Xj,r that changes between two adjacent
datasets, we have that Ŷj,r is (O(ε), O(δ))-DP for the same reason that Ŷ0 was (O(ε), O(δ))-DP
with respect to X0. Therefore, the set of Ŷj,r is (O(ε), O(δ))-DP given F and N̂j,r since at most 2

of the Xj,r’s change. So, by adaptive composition, the final construction of Ŷ is (O(ε), O(δ))-DP.

Accuracy: We focus on the k-means setting for simplicity, but the proof is almost identical for the
k-median setting. Because x being assigned to (j, r) means that x ∈ Bj,r but x 6∈ Bj,r−1, this means
that Λ

n2 · 2r ≤ 2 · d(x, fj) + Λ
n2 ≤ 2L · d(x,F) + Λ

n2 . If we define r(x) = Λ
n2 · 2r if x is assigned to

some (j, r), then we have r(x) ≤ 2L · d(x,F) + Λ
n2 , which means

∑
x∈X

r(x)2 ≤
∑
x∈X

4L2 ·
(
d(x,F) +

Λ

n2

)2

≤ 8L2 ·
∑
x∈X

[
d(x,F)2 +

Λ2

n4

]
≤ O(α · log2 n) ·OPT(X) +O(log2 n) ·W (n, d, k, ε, δ) · Λ2.

The final inequality holds since cost(X ;F) ≤ α ·OPT(X)+W (n, d, k, ε, δ) ·Λ2 and L = O(log n).

25

Recall that we have computed some Ŷj,r for each j ≤ β · k and r ≤ log2(n2), which is contained in
the ball B around fj of radius Λ

n2 · 2r. If N̂j,r ≥ 2T , then for any set C of k points in B(0,Λ), we
have that by Equations (7) and (8),

cost(Ŷj,r; C) ≤ O(1) · cost(Xj,r; C) +O(γ ·Nj,r) ·
(

Λ

n2
· 2r
)2

,

and

cost(Xj,r; C) ≤ O(1) · cost(Ŷj,r; C) +O(1) ·OPT(Xj,r) +O(γ ·Nj,r) ·
(

Λ

n2
· 2r
)2

.

We remark that above, we scaled each point in Ŷj,r by N̂j,r/T, which is Θ(Nj,r/T) with overwhelm-
ing probability.

Let Ŷ be the union over all of the Ŷj,r’s (with their corresponding weights). Adding over all machines,
we have that

cost(Ŷ; C) ≤ O(1) · cost(X ; C) +O(γ) ·
∑
j,r

Nj,r ·
(

Λ

2n
· 2r
)2

= O(1) · cost(X ; C) +O(γ) ·
∑
x∈X

(r(x))
2

≤ O(1) · cost(X ; C) +O(γ · α · log2 n) ·OPT(X) +O(γ · log2 n) ·W (n, d, k, ε, δ) · Λ2,

and that
cost(X ; C) =

∑
j,r:N̂j,r≥2T

cost(Xj,r; C) +
∑

j,r:N̂j,r<2T

cost(Xj,r; C)

≤ O(1) · cost(Ŷ; C) +O(1) ·OPT(X) +O(γ) ·
∑
j,r

Nj,r ·
(

Λ

2n
· 2j
)2

+
∑

j,r:N̂j,r<2T

cost(Xj,r; C)

≤ O(1) · cost(Ŷ; C) +O(1 + γ · α · log2 n) ·OPT(X) +O(γ · log2 n) ·W (n, d, k, ε, δ) · Λ2

+O(T · βk · log n) · Λ2.

Hence, if we are able to obtain an O(1)-approximate clustering C for Ŷ in the MPC setting, we
will have that cost(Ŷ; C) ≤ O(1) · OPT(Ŷ) ≤ O(1 + γ · α · log2 n) · OPT(X) + O(γ · log2 n) ·
W (n, d, k, ε, δ). Therefore, we have that

cost(X ; C) ≤ O(1+γ·α·log2 n)·OPT(X)+O
(
γ · log2 n ·W (n, d, k, ε, δ) + T · β · log n · k

)
·Λ2.

Hence, we can set γ = 1
α log2 n

, so if we treat α = poly(d) and β = log2 n, then

T = Θ

(
k · d · log γ−1

γ2
+
V (n, d, k, ε, δ) + kε−1 log n

γ

)
= poly(d, log n)·Θ

(
V (n, d, k, ε, δ) + k · ε−1

)
.

Hence, we obtain a multiplicative cost of O(1) and an additive cost of

poly(d, log n) ·
(
W (n, d, k, ε, δ) + k · V (n, d, k, ε, δ) + k2ε−1

)
.

This concludes the proof of accuracy.

To finish, we can set the functions V (n, d, k, ε, δ) = poly(log n, log d, ε−1, log δ−1) · (k1.01d0.51 +
k1.5) based on [70]4 and W (n, d, k, ε, δ) = k · poly(log n, d, ε−1) based on Section B to obtain the
following.
Theorem C.3. There exists an (ε, δ)-DP algorithm for k-means (or k-median) clustering with
multiplicative error O(1) and additive error k2.5 · poly

(
d, log n, ε−1, log δ−1)

)
. In addition,

the algorithm can be implemented in MPC, assuming each machine can store Õ(nθ) ≥
k1.5 · poly(d, log n, ε−1, log δ−1) points, with O(1) total rounds of communication, total se-
quential running time Õ(nd) + poly(k, d, ε−1, log δ−1), and total time per machine Õ(nθd) +
poly(k, d, ε−1, log δ−1).

4While [70] only writes their proof for the k-means case, their argument also goes through for k-median.

26

D Obtaining an arbitrarily good approximation (for low dimensions)

D.1 Converting O(1)-approximation to sequential coreset

In this subsection, we only deal with sequential algorithms (so we ignore the MPC model), and show
how to convert a differentially private O(1)-approximate k-means (or k-median) algorithm into a
coreset containing roughly poly(k, log n, ed) distinct points, in roughly n · poly(k, ed) time, where
d is the dimension. This will allow us to reconstruct many of the results of Ghazi et al. [44] from an
O(1)-approximation such as by Kaplan and Stemmer [70], in a more efficient manner as our runtime
has only linear dependence on n as opposed to polynomial dependence. While the exponential
dependence on d will be quite large, we will show later that we can reduce d to O(log k), which gives
us a Õ(n) · poly(k)-time algorithm for generating a coreset. We will focus on the k-means problem,
but the same (in fact, even simpler) analysis works for k-median also.

Theorem D.1. For any fixed constant 0 < γ < 1, there exists an (ε, δ)-DP sequential algorithm
that operates on a dataset X ⊂ B(0,Λ) of size n, with the following properties. Then, in running
time Õ(n) · poly(k,O(1/γ)d, ε−1, log δ−1), the algorithm computes a weighted coreset Ŷ with at
most O(k log n) ·O(1/γ)O(d) distinct points, such that for any set C ⊂ Rd of size at most k that has
nonzero intersection with the slightly larger ball B(0, γ−1 · Λ), we have

cost(Ŷ; C) ∈ (1±O(γ)) · cost(X ; C)± poly
(
k, (1/γ)O(d), log n, ε−1, log δ−1

)
· Λ2.

Algorithm: Given a dataset X = {x1, . . . , xn} ∈ B(0,Λ), we start by applying a black-box (ε, δ)-
DP algorithm that outputs G = {g1, . . . , gk} of centers, such that cost(X ;G) ≤ O(1) ·OPT(X) +
U(n, d, k, ε, δ) · Λ2. (For k-median, the Λ2 would be Λ.) Now, for each 1 ≤ j ≤ k and each
1 ≤ r ≤ log2(n2), we define Tj,r to be the subset of Rd that is closest to cluster center gj ∈ G and
has distance from gj in the range [Λ

n2 · 2r−1, Λ
n2 · 2r). We will not explicitly compute Tj,r, but for a

given point x ∈ X , one can easily determine which region it belongs to in O(kd) time.

Given this, we will show how to construct a private coreset of the data. For each j ∈ [k] and
r ≤ log2(n2), define Bj,r to be the ball of radius Λ

n2 · 2r around gj . We use Lemma A.18 to create
an efficiently list-decodable γ-coverHj,r of Bj,r at distance 1. Importantly, the size of the cover is
at most (1/γ)O(d), and this covers Tj,r which is a subset of the ball. In addition, we can compute
all the points in the cover in time (1/γ)O(d). So, for each t ∈ [(1/γ)O(d)], we can let the point
yj,r,t be the tth point in the cover. Now, for each (j, r), we map each point xi ∈ X ∩ Tj,r to its
closest point yj,r,t ∈ Hj,r, and aggregate to compute an overall vector v = {vj,r,t} which counts the
number of points in X mapped to yj,r,t. Next, we let ṽ be the vector where we replace each vj,r,t
with ṽj,r,t = max(0, vj,r,t + Lap(1/ε)). Our final coreset Ŷ will be the set of points yj,r,t each with
multiplicity ṽj,r,t.

Runtime and size: We note that applying the black-box algorithm of either Kaplan and Stem-
mer [70] or Ghazi et al. [44] to obtain G may require poly(n, d) time. However, we can get
Õ
(
nd+ poly(k, d, ε−1, log δ−1)

)
runtime by using the algorithm we devised in Section C. As the

algorithm only needs to work in the sequential setting, we remark that many aspects of this algorithm
can be simplified, while still obtaining the same accuracy, privacy, and runtime guarantees.

Next, in O(knd) time, we can map each point x ∈ X to its region Tj,r. Then, for each (j, r), we
compute a γ-coverHj,r, which takes time at most O(k · log n) ·O(1/γ)O(d). Finally, mapping each
point x ∈ X ∩Tj,r to its closest center inHj,r for all j, r takes total time at most n ·O(1/γ)O(d), and
aggregating the sets and adding Laplace noise to create Ŷ takes time at mostO(k · log n) ·O(1/γ)O(d).
So, the overall runtime is Õ(n) · poly

(
k, ε−1, log δ−1, O(1/γ)O(d)

)
.

Finally, we remark that the number of distinct points in the coverHj,r is at most O(1/γ)O(d), so the
total number of distinct points in the coreset is at most O(k · log n) ·O(1/γ)O(d).

Privacy: We assume the original construction of G is (ε, δ)-private. Then, the vector ṽ will also be
(3ε, δ)-DP. To see why, if we treat G as fixed, changing a single point in X changes at most two values
of vj,r,t, so the `1-sensitivity of v is at most 2. Since we add Lap(1/ε) error to each coordinate, we

27

incur at most an additional (2ε, 0)-privacy loss. So, by adaptive composition, ṽ is (3ε, δ)-DP. In
addition, the coversHj,r only depend on G, so the overall algorithm is also (3ε, δ)-DP.

Accuracy: Consider any set of k centers C = {c1, . . . , ck}, where at least one point ci is in
B(0, γ−1 · Λ). In addition, suppose that we replaced Ŷ with the set Y where we used multiplicities
based on the vector v instead of ṽ. Suppose a point xi has distance d̃i from its closest center gj in
the solution G and distance di from its closest center in the solution C. Then, xi ∈ Tj,r for some r,
meaning that d̃i ≤ Λ

n2 · 2r ≤ 2d̃i. Then, xi is moved to a point of distance at most 2γ · d̃i away, by
the property of the coverHj,r. So, the induced error per point is at most

(di + 2γ · d̃i)2 − d2
i = 4γdid̃i + 4γ2d̃2

i ≤ 2γ(d2
i + d̃2

i) + 4γ2d̃2
i ≤ 2γd2

i + 6γd̃2
i .

Finally, noting that di must be at most 2γ−1 · Λ because every point x ∈ B(0,Λ) and C has nonzero
intersection with B(0, γ−1 · Λ), the overall error is at most

2γ ·
n∑
i=1

d2
i + 6γ ·

n∑
i=1

d̃2
i = 2γ · cost(X ; C) + 6γ · cost(X ;G)

≤ 2γ · cost(X ; C) + 6γ · [O(1) ·OPT(X) + U(n, d, k, ε, δ) · (2γ−1 · Λ)2]

≤ O(γ) · cost(X ; C) +O(γ−1 · U(n, d, k, ε, δ) · Λ2).

Hence, this means that for any set of k centers C, the cost of the original dataset X = {x1, . . . , xn}
and the modified weighted set created by the vector v have multiplicative cost ratios 1±O(γ) and
additive error U(n, d, k, ε, δ) = poly(k, d, log n, ε−1, log δ−1) · Λ2, using Theorem C.3.

Finally, we ask what happens when we replace v with ṽ? In expectation, each vj,r,t changes by
O(ε−1), which changes the overall cost with respect to C by at most O(ε−1 · k · log n · (1/γ)O(d)) ·
O(γ−1Λ)2 with high probability. Hence, we obtain an (O(γ), U)-coreset, where

U = O
(
k · ε−1 · log n · (1/γ)d + γ−1 · U(n, d, k, ε, δ)

)
= poly

(
k, log n, ε−1, log δ−1, (1/γ)O(d)

)
.

To finish, we provide algorithm pseudocode, as Algorithm 4.

Algorithm 4 A sequential coreset algorithm for differentially private k-means (or k-median).
1: procedure SEQUENTIALCORESET(X , ε, δ, γ) . Will be (O(ε), O(δ))-DP.
2: Use Algorithm 1 (or related procedure) to find private O(1)-approximate centers G =
{g1, . . . , gk}.

3: for each j ≤ k, r ≤ log2(n2) do
4: Let Bj,r be the ball of radius Λ

n2 · 2r around gj .
5: Construct an efficiently list-decodable γ-coverHj,r of Bj,r.
6: for each t ≤ (1/γ)O(d) do
7: Let yj,r,t be the tth point inHj,r.
8: for all xi ∈ X do
9: Assign xi to (j, r, t) if gj is xi’s closest center in G, d(xi, gj) ≈ Λ

n2 · 2r, and yj,r,t is the
closest point to xi inHj,r.

10: for each j ≤ k, r ≤ log2(n2), t ≤ (1/γ)O(d) do
11: Let vj,r,t be the number of points xi assigned to yj,r,t
12: Let ṽj,r,t = max(0, vj,r,t + Lap(1/ε))

13: Return Ŷ : set of points yj,r,t with multiplicity ṽj,r,t.

D.2 Converting a sequential coreset to a parallel coreset

In this subsection, we combine the sequential coreset we generated in Subsection D.1 with the
parallel bicriteria approximation we generated in Section B to generate a differentially private parallel
coreset. This will allow us to obtain an approximation factor that is arbitrarily close to the best-known
approximation factor of 5.912 for k-means and 2.406 for k-median [25]. While both the error and
runtime will have exponential dependence on the dimension d, we will later show how to reduce d to
roughly log k, which will imply only polynomial dependence on k.

28

Theorem D.2. For any fixed 0 < γ < 1, there exists an (ε, δ)-DP algorithm that operates on a
dataset X ⊂ B(0,Λ) of size n and outputs Ŷ with at most poly(k,O(1/γ)O(d), log n) distinct points,
such that for any set C ⊂ B(0,Λ) of size k,

cost(Ŷ; C) ∈ (1±O(γ)) · cost(X ; C)± poly
(
k, (1/γ)O(d), log n, ε−1, log δ−1

)
· Λ2.

(Λ2 is replaced with Λ in the k-median case.) In addition, if each machine can store Õ(nθ) ≥
poly

(
k, log n, ε−1, log δ−1, (1/γ)O(d)

)
points, then the algorithm can be implemented in MPC with

O(1) rounds of communication, total sequential time Õ(nkd)+poly(k,O(1/γ)d, ε−1, log δ−1), and
parallel time Õ(nθkd) + poly(k,O(1/γ)d, ε−1, log δ−1) per machine.

Algorithm: We start with a dataset X of n points in B(0,Λ), spread out across many machines.
We start by applying the parallel and (ε, 0)-DP (O(d3), log2 n)-bicriteria of Section B with additive
error W (n, k, ε, δ) · Λ2 (where W (n, d, k, ε, δ) = k · poly(log n, d, ε−1)) to generate a set of points
F = {f1, . . . , fK} where K = k · β. For each 1 ≤ j ≤ K and each 1 ≤ r ≤ R := log2(n2), we
define Tj,r to be the subset of Rd that is closest to cluster center sj ∈ S and has distance from sj in
the range [Λ

n2 · 2r−1, Λ
n2 · 2r). In addition, define Xj,r to be the set of points X ∩ Tj,r. Finally, define

Bj,r ⊃ Tj,r to be the ball of radius Λ
n2 · 2r around sj .

Now, for each pair (j, r), we compute Nj,r := |Xj,r| and N̂j,r := Nj,r + Lap(1/ε). Now, we let
T = poly

(
k, (1/γ)O(d), log n, ε−1, log δ−1

)
be some sufficiently large threshold parameter. Next,

if N̂j,r ≥ 2T , we sample T points uniformly at random from Xj,r (call this set Zj,r) and send it to
a specific machine. Note that Zj,r ⊂ Bj,r. Finally, we apply Theorem D.1 to the sample Zj,r to
generate a private coreset Ŷj,r, except that we replace B(0,Λ) with Bj,r.

Finally, we scale each Ŷj,r by N̂j,r

T , and let Ŷ =
⋃
j,r Ŷj,r be our final coreset.

Runtime: First, note that constructingF takes near-linear time withO(1) rounds of communication,
and we can broadcast F to all machines in O(1) rounds. We do not need to explicitly compute Tj,r,
but for each point x ∈ X , we can determine which (j, r) x is assigned to in time O(kd) per point,
so the total time per machine is O(nθ · k · d). Next, we can use MPC aggregation (Lemma A.10)
to compute Nj,r and N̂j,r for all (j, r), and then use MPC sampling (Lemma A.11) to send Zj,r in
near-linear time and O(1) rounds. Note that there are K · log2(n2) = O(k · log3 n) choices of (j, r),
so each Zj,r can be sent to a distinct machine. In addition, Zj,r has size at most T , so it can be stored
in a single machine. Finally, since Zj,r has size at most T , the total time of computing each Ŷj,r is at
most Õ(T) · poly(k,O(1/γ)d, ε−1, log δ−1) = poly(k,O(1/γ)d, ε−1, log δ−1), which can be done
individually on each machine without any communication.

We only need O(k · log3 n) machines to compute the Ŷj,r’s, so the total sequential running time
is Õ(nkd) + poly(k,O(1/γ)d, ε−1, log δ−1) and the total parallel running time is Õ(nθkd) +
poly(k,O(1/γ)d, ε−1, log δ−1). Finally, we only used O(1) total rounds of communication.

Privacy: First, the initial construction ofF and the rings is (ε, δ)-DP with respect toX , by Theorem
B.1. Next, note that the construction of Ŷj,r is (O(ε), O(δ))-DP with respect to Xj,r. This is because
computing N̂j,r is (ε, 0)-DP, and conditioned on N̂j,r ≥ 2T , the applying an (O(ε), O(δ))-DP
algorithm on a sample T points of Xj,r is also (O(ε), O(δ))-DP, by Lemma A.21. To finish, we note
that if we change X by a single point, assuming F is fixed, at most two groups Xj,r change (each
by at most 1 point). Finally, our construction of Y only depends on the Yj,r and N̂j,r’s, which were
already included in our calculation of privacy. So by adaptive composition, the overall algorithm is
(O(ε), O(δ))-DP.

Accuracy: We start by comparing Xj,r to Zj,r, assuming N̂j,r ≥ 2T . Note that T ≥
Θ
(
k·d·log((κ′γ′)−1)+logn

(κ′)2·(γ′)2

)
, where κ′ = γ′ = cγ/d3 for some small constant c. Therefore, by

Lemma A.20 with parameters γ′ and κ′ = γ′, for any set C = {c1, . . . , ck} of k points and for all

29

j, r,

cost(Zj,r; C) = (1± γ′) · T

Nj,r
· cost(Xj,r; C)± γ′ · T ·

(
Λ

n2
· 2r
)2

.

(We remark that Lemma A.20 works for any C, even if not contained in Bj,r or even in B(0,Λ). Now,
define B′j,r to be the concentric ball around Bj,r of radius γ−1 · Λ

n2 · 2r. By applying Theorem D.1
but replacing B(0,Λ) with Bj,r, we obtain that if C has nonempty intersection with B′j,r, then

cost(Ŷj,r; C) = (1±O(γ))· T
Nj,r
·cost(Xj,r, C)±O(γ′)·T ·

(
Λ

n2
· 2r
)2

±V (n, d, k, γ, ε, δ)·
(
γ−1 · Λ

n2
· 2r
)2

.

Therefore, assuming T ≥ (γ′)−3 · V (n, d, k, γ, ε, δ), we have that

cost(Ŷj,r; C) = (1±O(γ)) · T

Nj,r
· cost(Xj,r, C)±O(γ′) · T ·

(
Λ

n2
· 2r
)2

. (9)

Otherwise, we have that every point in Zj,r and every point in Ŷj,r have the same distance to C up to
a 1±O(γ) factor. In addition, the total weight of points in Zj,r is T , but when creating Ŷj,r using
Theorem D.1, we update the vector v = {vj,r,t} by adding Lap(1/ε) noise to each component. Since
there are a total of O(k · log n · (1/γ)O(d)) choices for the triple (j, r, t), assuming that T is at least
logn
ε ·

1
γ times the number of choices, we have that the total weight of Ŷj,r and Zj,r are the same up

to a 1 ± O(γ) factor with overwhelming probability. Therefore, in this case, we still have that (9)
holds.

Overall, assuming that N̂j,r ≥ 2T , we have that after scaling Ŷj,r by a factor of N̂j,r

T , that

N̂j,r
T
· cost(Ŷj,r, C) = (1±O(γ)) · N̂j,r

Nj,r
· cost(Xj,r; C)±O(γ′) · N̂j,r ·

(
Λ

n2
· 2r
)2

= (1±O(γ)) · cost(Xj,r; C)±O(γ′) ·Nj,r ·
(

Λ

n2
· 2r
)2

,

since N̂j,r = Nj,r + Lap(1/ε) and Nj,r are equal up to a 1 ± γ factor if N̂j,r ≥ 2T . Finally, if
N̂j,r ≤ 2T , then we let Ŷj,r be empty, so it has no cost, but Xj,r has cost at most O(T · Λ2). In
addition, there are at most O(K ·R) = O(k · log3 n) such choices of (j, r).

Adding these over all machines, we have that

cost(Ŷ; C) =
∑

(j,r):N̂j,r≥2T

N̂j,r
T
· cost(Ŷj,r; C)

= (1±O(γ)) ·
∑

(j,r):N̂j,r≥2T

cost(Xj,r; C)±O(γ′) ·
∑
j,r

Nj,r ·
(

Λ

n2
· 2r
)2

= (1±O(γ)) · cost(X ; C)±O(k log3 n · T · Λ2)±O(γ′) ·
∑
x∈X

d(x,F)2

= (1±O(γ)) · cost(X ; C)±O(k log3 n · T · Λ2)±O(γ′) ·
[
O(d3) ·OPT(X) + k · poly(log n, d, ε−1) · Λ2

]
.

Finally, using our bounds for T , we have that

cost(Ŷ; C) = (1±O(γ)) · cost(X ; C)± poly
(
k, log n, ε−1, log δ−1, (1/γ)O(d)

)
· Λ2.

We can apply Theorem D.2 to obtain the following theorem.
Theorem D.3. Suppose that there exists a polynomial-time algorithm that can compute a ρ-
approximation to k-means (resp., k-median). Then, for any constant ρ′ > ρ, exists an (ε, δ)-
DP algorithm for k-means (resp., k-median) with multiplicative ratio ρ′ and additive error
poly

(
k, ed, log n, ε−1, log δ−1

)
. In addition, assuming each machine can store some Õ(nθ) ≥

poly(k, ed, ε−1, log δ−1) points, the algorithm is implementable in MPC with O(1) total rounds of
communication and O(nθkd) time per machine.

30

Proof. We set γ so that ρ′/ρ = 1 +O(γ). Given Theorem D.2, the algorithm is quite simple. First,
we apply Theorem D.2 to find a weighted coreset Ŷ with at most poly(k, (1/γ)O(d), log n) distinct
points. Then, move Ŷ to a single machine and then apply a non-private algorithm which can be
implemented in poly(|Ŷ|) time.

The runtime and privacy are straightfoward to check, where the additional
poly(k, (1/γ)d, ε−1, log δ−1) time needed is at most Õ(nθd) by our assumption, and since
Ŷ is already private so any output that only depends on Ŷ must also be private. Finally, accuracy is
simple to verify, since any ρ-approximate k-means (or k-median) clustering centers for Ŷ must be a
ρ(1 + O(γ)) = ρ′-approximate clustering with additive error poly(k, (1/γ)d, log n, ε−1, log δ−1).
Since ρ′ is a fixed constant, this means γ > 0 is a fixed constant, which completes the proof.

To finish, we provide algorithm pseudocode for Theorem D.3, as Algorithm 5.

Algorithm 5 A parallel approximation algorithm for differentially private k-means (or k-median)
with arbitrarily good approximation ratio.

1: procedure ARBITRARILYGOODAPPROX(X , ε, δ, γ) . Will be (O(ε), O(δ))-DP.
2: Let T = poly(k, (1/γ)O(d), log n, ε−1, log δ−1) be sufficiently large.
3: Use Algorithm 3 to find private bicriteria approximation F = {f1, . . . , fK}.
4: for all xi ∈ X do
5: Assign xi to (j, r) if fj is xi’s closest center in F , d(xi, fj) ≈ Λ

n2 · 2r.
6: for each j ≤ K, r ≤ log2(n2) do
7: Let Bj,r be the ball of radius Λ

n2 · 2r around gj .
8: Let Xj,r be the set of points xi assigned to (j, r), and Nj,r be the number of points xi

assigned to (j, r).
9: Let N̂j,r = Nj,r + Lap(1/ε).

10: Let Zj,r be a uniform sample T points from Xj,r.
11: Send each Zj,r to a specific machine.
12: Use Algorithm 4 on Zj,r, which returns Ŷj,r.
13: Let Ŷ =

⋃
j,r Ŷj,r, where each Ŷj,r is weighted by N̂j,r

T . Move Ŷ to a single machine.
14: Apply the best k-means/k-median algorithm of [25], and return the final set of k centers.

E Dimensionality Reduction

In this section, we show how to reduce the dependencies on the dimension d by showing a reduction
to d being roughly log k.

E.1 Coordinate-Wise Median

A major piece of our dimensionality reduction procedure is to show that one can compute a private
coordinate-wise median, and that this coordinate-wise median serves as a good proxy for both
the mean and geometric median. First, we note the standard guarantees of private median (in the
sequential setting for one dimension). The following result immediately follows from applying the
PrivateQuantile algorithm of [68], after rounding each point to the nearest multiple of Λ/n2.

Lemma E.1. Given T numbers z1, . . . , zT ∈ [−Λ,Λ] ⊂ R, some τ < 1
T , and some choice of

quantile α ∈ [0.1, 0.9], there exists an (ε, 0)-DP algorithm on z1, . . . , zT that can successfully output
a point z̃ that is an “approximate” α-quantile of z1, . . . , zT , with probability at least 1− τ . By this,
we mean that the number of these points that are below z∗ − τ · Λ is at most α · T + Cε−1 log τ−1

for some sufficiently large constant C, and likewise the number of these points that are above
z∗ + τ · Λ is at most (1− α) · T + Cε−1 log τ−1. In addition, the algorithm can be implemented in
O(T) · poly(log τ−1) time and space.

We will also need the following lemma, showing that an approximate coordinate-wise median is a
good estimate for a dataset of points.

31

Lemma E.2. [59] Let Z be a set of points in Rd, and let z be any point in Z such that for all d
coordinate directions j ∈ [d], the jth coordinate zj of z is between the 35% and 65% percentile of
the jth coordinate of the points in Z . Then, for any ball B of any radius R > 0, if B contains at least
9/10 of the points in Z, then the distance between z and the center of B is at most O(R).

We remark that the original theorem statement in [59] assumed z was exactly the coordinate-wise
median, but an identical analysis also implies this stronger version above.

We now show how to compute a private coordinate-wise median in the MPC setting, and establish an
important property of this point which will later be crucial in showing it is a good proxy for both the
mean and geometric median.

Lemma E.3. Let n ≥ 1, and let Z be some set of T ≥ 20C log(nd) · ε−1
√
d log δ−1 points in

B(0,Λ) ⊂ Rd, where C is the same constant as in Lemma E.1. Assume we can fit T points into a
machine. Then, there exists an (ε, δ)-DP algorithm that returns a point z̃ with the following property.
For any positive R and any unknown ball of radius R around some point y ∈ B(0,Λ) that contains
at least 9/10 of the points in Z , the distance between z̃ and y is at most CR+ Λ/n2.

In addition, the computation can be done in near-linear time with O(1) rounds in MPC.

Proof. Our algorithm is as follows. Define ε′ = ε/(2
√
d log δ−1). Now, we sample T =

20C log(nd) · ·ε−1
√
d log δ−1 = 10C log(nd)/ε′ points at random from z1, . . . , zT , which can

be sent to a single machine in O(1) rounds. Next, among these selected points, we compute the
private median in each coordinate with failure probability τ = 1

poly(n,d) , to output a point z̃. It is
clear that the overall algorithm takes near-linear time, as we can fit T points on a machine.

Among the randomly sampled points, the algorithm is a composition of d ε′-DP algorithms (one in
each direction), so the overall algorithm is (ε, δ)-DP.

To verify accuracy, first note that for any fixed direction, assuming C is sufficiently large, with
probability at least 1− 1

poly(n,d) , the 40% and 60% percentiles of the sampled points are at least the
35% and at most the 65% percentiles of the true points in that direction. Therefore, we can apply
Lemma E.1 with ε replaced with ε′. With probability at least 1 − τ = 1 − 1

poly(n,d) , the private
median we find in the fixed direction is between the 40% and 60% percentiles of the sampled points
up to error Λ/(n2d), which is between the 35% and at most the 65% percentiles of the true points
up to error Λ/(n2d). We can take a union bound over each coordinate to say this happens for all
coordinates with probability at least 1− 1

poly(n) .

For now, let us ignore the error of Λ/(n2d) per coordinate. Then, we can use Lemma E.2, which
implies that if at least 9/10 of the points are in a ball of radius R, then z̃ is in a ball of radius at most
O(R) from the center. Thus, by adding back this error per coordinate, the final point z̃ we select is
still within O(R) + Λ/n2 of the center of any such ball of radius R containing at least 9/10 of the
points in X . In addition, our algorithm did not require R, so this holds for all R simultaneously.

E.2 Obtaining a Constant Approximation

Here, we show how to convert an approximation algorithm in d′ = O(log k) to an approximation
algorithm in d dimensions without blowing up the approximation factor significantly.
Theorem E.4. There exists an (ε, δ)-DP algorithm for k-means (or k-median) clustering with multi-
plicative errorO(1) and additive error (k2.5+k1.01

√
d)·poly

(
log n, ε−1, log δ−1)

)
. In addition, as-

suming nθ ≥ (k1.5+d0.5)·poly(log n, ε−1, log δ−1), the algorithm can be implemented in MPC with
O(1) total rounds of communication, total sequential running time Õ(nd) + poly(k, ε−1, log δ−1),
and total time per machine Õ(nθd) + poly(k, ε−1, log δ−1).

Algorithm: First, by using a random projection Π ∈ Rd′×d, map each point xi ∈ X to Πxi ∈ Rd′ .
Next, we privately solve k-means (or k-median) in the lower-dimensional space, using Theorem C.3,
to generate a set C′ = {c′1, . . . , c′k} ∈ Rd′ .
Let S ⊂ [n] be a random sample of points where each point in [n] is in S independently with some
probability p = k−η , for some small constant η > 0. Next, we construct a K =

√
1/η-approximate

32

nearest neighbor (ANN) data structure for C′ ∈ Rd′ . Define Xj ⊂ X as the set of points xi such that
Πxi is mapped to c′j ∈ C, and Sj ⊂ S to be the set of corresponding indices.

Then, for all 1 ≤ j ≤ k, we compute N̂j := |Sj |+Lap(1/ε). If N̂j ≥ 2T , where T := 20C log(nd)·
ε−1
√
d log δ−1, we sample T points in each such Xj , and apply Lemma E.3 to find a point cj ∈ Rd,

which is the point z̃ created from Lemma E.3. Otherwise, we just let cj be the origin. Our final set is
C = {c1, . . . , ck}.

Runtime: First, we note that Π can be generated in a single machine and broadcast to all machines,
so all points Πxi can be computed in near-linear time and O(1) rounds. We can then use the runtime
guarantees of Theorem C.3 with d replaced by d′ = O(log k).

Next, sampling S is easy (as we just sample each xi independently). Since k1+η · d space (equivalent
to k1+η points) fits in a machine, we can send C′ to a single machine and use the K = (1/

√
η)-

approximate nearest neighbor data structure from Theorem A.14. This ANN structure uses O(k1+η ·
d · log n) space and can be broadcast to all machines in O(1) rounds, and then it takes O(kη ·d · log n)
time per machine. As we sampled each point to be in S with probability k−η, with very high
probability we do not use more than Õ(nθ · d) time per machine, or Õ(n · d) time total.

Finally, we can use MPC aggregation (Lemma A.10) to compute N̂j , and use MPC sampling (Lemma
A.11) to sample T points from each Xj , in near-linear time and O(1) rounds. Finally, we can
store each of the (up to) k samples of T points on a separate machine, and compute each cj in
Õ(T · d) ≤ Õ(nθ · d) time. So, the total sequential running time is Õ(nd) + poly(k, ε−1, log δ−1),
and the total parallel running time is Õ(nθd) + poly(k, ε−1, log δ−1).

Privacy: First, the construction of C′ is (O(ε), O(δ))-DP, since Π is oblivious to the dataset
X . Next, the sensitivity of the vector (|S1|, . . . , |Sk|) if a single point changes is at most 2, so
determining N̂j = |Sj | + Lap(1/ε) for all j is (2ε, 0)-DP. Finally, assuming that C′ and the N̂j’s
are fixed, constructing cj for all sets is (2ε, 2δ)-DP, since changing a single point in X can change
at most two sets Xj by at most 1 point each. So, by adaptive composition, the overall procedure is
(O(ε), O(δ))-DP.

Accuracy: Define OPT(X) as the optimum cost of X and OPT(ΠX) as the optimum cost of ΠX
(either for k-means or k-median). By Theorem A.8, we have that if d′ ≥ O(log k), 0.5 ·OPT(X) ≤
OPT(ΠX) ≤ 2OPT(X). In addition, with overwhelming probability, no point in ΠX has norm
greater thanO(

√
log n) ·Λ: this would be true even for a random projection down to a single direction.

Hence, cost(ΠX , C′) ≤ O(OPT(X)) + O(log n) · U(n, d′, k, ε, δ) · Λ2, where U(n, d′, k, ε, δ)
represents the additive error from applying Theorem C.3 in d′ = O(log k) dimensions.

For each j ∈ [k], let X ′j ⊂ X be the full set of points xi such that Πxi would have been mapped to c′j
if we did not sample S from [n], and define S′j ⊂ [n] to be the corresponding set of indices. So, S′j par-
titions [n] instead of S. Hence, if we applied the full ANN data structure to every point in ΠX , the cost
obtained, treatingK =

√
1/η as a constant, is still at mostO(OPT(X))+O(log n)·U(n, d′, k, ε, δ)·

Λ2. In other words,
∑
j≤k

∑
i∈S′j

d(Πxi, c
′
j)

2 ≤ O(OPT(X)) + O(log n) · U(n, d′, k, ε, δ) · Λ2.

(The same applies for the k-median case, replacing d(Πxi, c
′
j)

2 with d(Πxi, c
′
j) and Λ2 with Λ.) By

applying Theorem A.8 again, if we pick the true mean (or geometric median) of each cluster X ′j as
c̃j ∈ Rd, then

∑
j≤k

∑
i∈S′j

d(xi, c̃j) ≤ O(OPT(X)) +O(log n) · U(n, d′, k, ε, δ) · Λ2.

If |S′j | ≤ Θ(T · kη), we may run into trouble with |Sj |+ Lap(1/ε) ≤ 2T , in which case the additive
cost of the points in S′j may be very large. There could be up to Θ(k) such bad choices of j, which
gives us an additive cost of up to Θ(T · k1+η) · Λ2. Otherwise, we will have that |Sj | ≥ 3T , which
means |Sj | + Lap(1/ε) ≥ 2T , so we can sample T points and apply Lemma E.3 to find some cj .
Let Rj be the 90% percentile of distances between c̃j and the points xi ∈ Xj , which by a Chernoff
bound is at most the 95% percentile of distances between c̃j and the points xi ∈ X ′j . By Lemma
E.3, d(c̃j , cj) ≤ O(Rj + Λ/n2). However, we know that the average distance (or squared distance)
between c̃j and the points xi ∈ Xj is at least Ω(Rj) (or Ω(R2

j)), because at least 5% of points in

33

X ′j are distance at least Rj from c̃j . Thus, choosing cj instead of c̃j cannot blow up the cost of its
respective cluster by more than an O(1) multiplicative factor and more than an O(Λ) additive factor.

If we had used the centers {c̃j}, we would have obtained a cost of O(OPT(X)) + O(log n) ·
U(n, d′, k, ε, δ) · Λ2. So, overall, since we use the centers {cj} instead, we obtain a cost of
O(OPT(X)) + O(log n) · U(n, d′, k, ε, δ) · Λ2 + O(T · k1+η) · Λ2. As T = O(log(nd) ·
ε−1
√
d log δ−1), by setting η = 0.01 and applying the bound for U from Theorem C.3, we ob-

tain an additive error of

(k2.5 + k1.01
√
d) · poly(log n, log d, ε−1, log δ−1).

E.3 Obtaining nearly optimal approximation factor

Here, we show how to convert a ρ-approximation algorithm in d′ = O(γ−2 log(k/γ)) dimensions to
a ρ · (1 + γ)-approximation algorithm in d dimensions for an arbitrarily small constant γ.

First, we need the following result about private empirical risk minimization, due to Bassily et al. [9]
(and slightly restated).

Lemma E.5. [9] Let f(θ, x) be a convex function in θ that is L-Lipschitz for some L. Suppose we
are attempting to minimize `(θ) :=

∑N
i=1 f(θ;xi) for a dataset x1, . . . , xN , over θ in a ball B of

radius Λ. Then, there exists an (ε, δ)-DP algorithm that runs in polynomial time that outputs some θ′

such that `(θ′)−minθ∈B `(θ) ≤ OL
(√

d
ε · poly log(nδ)

)
· Λ with overwhelming probability.

Note that the function f(θ, x) = ‖θ−x‖2 is 1-Lipschitz and convex. This observation will be crucial
in applying the above lemma.

Theorem E.6. Suppose that there exists a polynomial-time algorithm that can compute a ρ-
approximation to k-means (resp., k-median). Then, for any constant ρ′ > ρ, exists an (ε, δ)-
DP algorithm for k-means (resp., k-median) with multiplicative error ρ′ and additive error
poly

(
k, d, log n, ε−1, log δ−1

)
. In addition, the algorithm can be implemented in MPC with O(1)

total rounds of communication, total sequential time Õ(nkd), and total time per machine Õ(nθkd),
assuming each machine can store Õ(nθ) ≥ poly(k, d, log n, ε−1, log δ−1) points.

Algorithm: We will set γ such that ρ′ = (1 +O(γ)) · ρ, and d′ = O(γ−2 log(k/γ)). Similar to in
Theorem E.4, we start with a random projection Π ∈ Rd′×d, map each point xi ∈ X to Πxi ∈ Rd′ .
(Note that d′ is slightly larger here than in Subsection E.2). Now, we can privately solve k-means (or
k-median) in Rd′ , using Theorem D.2, to generate a set C′ = {c′1, . . . , c′k} ∈ Rd′ .
Now, rather than sampling S and using approximate nearest neighbor, we simply map each point
Πxi to its closest point c′j ∈ C′, which partitions the dataset X into X1, . . . ,Xk and the set of indices
[n] into S1, . . . , Sk.

In the case of k-means, we will simply compute an (ε, δ)-differentially private mean for each cluster
of points xi ∈ Xj to obtain some cj . More precisely, we define N̂j = |Sj | + Lap(1/ε), and

define cj =
(
O(Λ · ε−1 log δ−1) · N (0, I) +

∑
xi∈Xj

xi

)
/N̂j . If for some reason ‖cj‖2 ≥ 2Λ, we

replace cj with the origin. Our final output will be C = {c1, . . . , ck}.
In the k-median case, as in Theorem E.4, we compute some approximate coordinate-wise median
per cluster. Specifically, for all 1 ≤ j ≤ k, we let Nj = |Sj | and N̂j := |Sj | + Lap(1/ε). If
N̂j ≥ 2T , where T := 20Cγ−4 log γ−1 · poly log(ndδ) · ε−1 · d ≥ 20C log(nd) · ε−1 ·

√
d log δ−1,

we sample T points X̂j in each such Xj (let Ŝj be the corresponding indices), and apply Lemma E.3
to find a point ĉj ∈ Rd, which is the point z̃ created from Lemma E.3. For each such j for which
N̂j ≥ 2T , we again use Lemma E.1 to compute an (ε, 0)-DP estimate of the 70% percentile distance
from ĉj to the T sampled points xi ∈ X̂j . Let this distance be R̂j . To finish, we set a threshold
R̃j := C(R̂j + Λ/n2) for a sufficiently large constant C, and compute cj to be a private minimizer
of the loss function `(c) :=

∑
x∈X̂j ,‖x−ĉj‖2≤γ−1·R̃j

d(x, ĉj), which we compute using Lemma E.5.

34

Runtime: As in Theorem E.4, we can compute all points Πxi in near-linear time and O(1) rounds.
We then use the runtime guarantees of Theorem D.2 with d replaced by d′ = O(γ−2 log(k/γ)),
which means (1/γ)d

′
= kÕ(γ−2). Next, we can broadcast C′ to all machines, and for each x ∈ X

compute its nearest neighbor in C′ in time Õ(nθ · k · d) time per machine or Õ(n · k · d) time total.

In the k-means case, we can use MPC Aggregation (Lemma A.10) to compute
∑
xi∈Xj

xi and N̂j
for all j ∈ [k], using near-linear time and O(1) rounds. Then, we can compute each cj in O(d) time.
So, after computing C′ and the nearest neighbor of each xi, the rest takes near-linear time and O(1)
rounds.

In the k-median case, as in Theorem E.4, we can compute N̂j and sample T points from each Sj , in
near-linear time and O(1) rounds. Finally, we can store each of the (up to) k groups of T sampled
points on a separate machine, and compute each ĉj in Õ(T · d) time. Then, we use the private median
algorithm to compute R̂j (and consequently, R̃j) for each j, which also takes Õ(T · d) time. Finally,
we privately minimize the empirical loss of points within R̃j/γ of ĉj , which takes poly(T, d) time.

Since T points fit in a single machine, we therefore have the total sequential running time
is Õ(nkd) + poly(kÕ(γ−2), d, ε−1, log δ−1), and the total parallel running time per machine is
Õ(nθkd) + poly(kÕ(γ−2), d, ε−1, log δ−1). Finally, we only use O(1) total rounds of communica-
tion.

Privacy: First, note that C′ is (ε, δ)-DP, as in Theorem E.4. Next, note that N̂j is (ε, 0)-DP with
respect to the points in Sj .

We now consider privacy for the rest of the algorithm with respect to an individual Xj . In the k-means
case, if Xj changes by inserting, removing, or changing one point, this affects

∑
xi∈Xj

xi by at most

2Λ in `2 distance. So, the Gaussian Mechanism tells us that cj is (ε, δ)-DP assuming that N̂j is fixed.
So, by adaptive composition, the algorithm is (O(ε), O(δ))-DP, since changing X affects at most 2
of the Xj’s.

In the k-median case, we first consider privacy with respect to the sampled dataset X̂j . The creation of
ĉj is clearly (O(ε), O(δ))-DP. Also, assuming that c̃j is fixed, the value R̂j (and thus R̃j) is (ε, δ)-DP.
Finally, assuming ĉj , R̃j is fixed we are using an (ε, δ)-DP empirical risk minimization algorithm on
points within γ−1R̃j of ĉj : if X̂j changes by 1 point then this set of points we perform the private
empirical risk minimization algorithm (Lemma E.5) on changes by at most 1 point. Therefore, the
remainder of the algorithm for computing cj is (O(ε), O(δ))-DP with respect to X̂j , which means by
Lemma A.21, it is also (O(ε), O(δ))-DP with respect to the points in Xj .
Finally, we have that for the full dataset X , assuming C′ is fixed, changing a single point in X affects
at most two of the datasets Xj , each by at most 1 point. So, by adaptive composition, the overall
algorithm is (O(ε), O(δ))-DP.

Accuracy: Let OPT(X) be the optimum cost of X and OPT(ΠX) be the optimum cost of ΠX
(either for k-means or k-median). By Theorem A.8, we have that if d′ ≥ O(γ−2 log(k/γ)), (1− γ) ·
OPT(X) ≤ OPT(ΠX) ≤ (1 + γ) ·OPT(X). As in Theorem E.4, no point in ΠX has norm greater
thanO(

√
log n)·Λ, so cost(ΠX , C′) ≤ (1+γ)·(OPT(ΠX))+O(log n)·U(n, d′, k, ε, δ)·Λ2, where

U(n, d′, k, ε, δ) represents the additive error from applying Theorem D.3 in d′ = O(γ−2 log(k/γ))
dimensions.

Now, since we used the entire dataset (instead of sampling S), we have that∑
j≤k

∑
i∈Sj

d(Πxi, c
′
j)

2 ≤ ρ ·OPT(ΠX) +O(log n) · U(n, d′, k, ε, δ) · Λ2

≤ ρ · (1 + γ) ·OPT(X) +O(log n) · U(n, d′, k, ε, δ) · Λ2,

where the last inequality follows by Theorem A.8. (The same applies for the k-median case, replacing
d(Πxi, c

′
j)

2 with d(Πxi, c
′
j) and Λ2 with Λ.) We can then apply Theorem A.8 again to obtain that if

35

we pick the true mean (or geometric median) of each cluster Xj as c̃j ∈ Rd, then∑
j≤k

∑
i∈Sj

d(xi, c̃j) ≤ ρ · (1 +O(γ)) ·OPT(X) +O(log n) · U(n, d′, k, ε, δ) · Λ2 (10)

We now focus on the k-means case and consider how far cj deviates from c̃j . Note that cj = 1
N̂j
·(

O(Λ · ε−1 log δ−1) · N (0, I) +
∑
xi∈Xj

xi

)
, whereas c̃j = 1

Nj
·
∑
xi∈Xj

xi. IfNj ≥ Ω(ε−1 log n),

then with overwhelming probability, |N̂j −Nj | ≤ O(ε−1 log n) ≤ 1
2Nj . Therefore, we have

‖cj − c̃j‖2 ≤
1

N̂j
·O(Λ · ε−1 log δ−1) ·O(

√
d log n) +

(
1

N̂j
− 1

Nj

)
·

∥∥∥∥∥∥
∑
xi∈Xj

xi

∥∥∥∥∥∥
2

≤ Λ · O(ε−1 log δ−1 ·
√
d log n)

Nj
+
O(ε−1 log n)

N2
j

·
∑
xi∈Xj

‖xi‖2

≤ Λ · O(ε−1 log δ−1 ·
√
d log n)

Nj
.

Since c̃j is the true center of the cluster Xj , this means that
∑
i∈Sj

d(cj , xi)
2 = Nj · d(c̃j , cj)

2 +∑
i∈Sj

d(c̃j , xi)
2 = O(Λ2) ·O(ε−2 log2 δ−1 · d · log2 n) +

∑
i∈Sj

d(c̃j , xi)
2. This is all assuming

Nj ≥ Ω(ε−1 log n), but otherwise, we have that since Nj ≤ O(ε−1 log n), the maximum error we
can have for cj (since we have ensured ‖cj‖2 ≤ O(Λ)) is at most O(Λ2) · ε−1 log n).

Overall, the final cost is

cost(X ; C) ≤ ρ·(1+O(γ))·OPT(X)+
[
O(log n) · U(n, d′, k, ε, δ) +O(k · ε−2 log2 δ−1 · d · log2 n)

]
·Λ2.

Applying d′ = O(γ−2 log(k/γ)), we get the desired accuracy guarantees.

Next, we focus on the k-median case, and consider some cluster j such that N̂j ≥ 3T . Define Rj
to be the smallest real number such that at least 95% of the points in Xj are within Rj of the true
geometric median c̃j of Xj . We claim the following.

Proposition E.7. With overwhelming probability, R̂j ≤ O(Rj + Λ/n2).

Proof. By a Chernoff bound, at least 90% of the T sampled points are within Rj of c̃j with over-
whelming probability. Therefore, d(c̃j , ĉj) ≤ O(Rj + Λ/n2) by Lemma E.3, which we may apply
because T ≥ 20C log(nd)·ε−1 ·

√
d log δ−1. This also implies that at least 90% of the sampled points

are within O(Rj + Λ/n2) of ĉj , so with overwhelming probability, since R̂j is a private estimator of
the 70% percentile distance from ĉj to the sampled points, we have that R̂j ≤ O(Rj + Λ/n2).

Proposition E.8. With overwhelming probability, d(ĉj , c̃j) ≤ O(R̂j + Λ/n2).

Proof. Note that with overwhelming probability, R̂j is at least the 65% percentile of distances
between ĉj and the T sampled points, up to error O(Λ/n2), which means by a Chernoff bound, it is
at least the 60% percentile of distances between ĉj and points in Xj , up to error O(Λ/n2).

Let Qj be the true 60% percentile of distances between ĉj and points in Xj . It suffices to show
that Q̂j := d(ĉj , c̃j) ≤ O(Qj). To see why, any point x within Qj of ĉj , we have that d(x, c̃j) ≥
d(c̃j , ĉj) − d(x, ĉj) ≥ Q̂j − Qj . So, d(x, c̃j) − d(x, ĉj) ≥ Q̂j − 2Qj . So, this holds for at least
60% of points. However, for the remaining 40% of points, we still have that d(x, c̃j)− d(x, ĉj) ≥
−d(c̃j , ĉj) ≥ −Q̂j . Now, adding d(x, c̃j)− d(x, ĉj) across all x ∈ Xj should be negative, because
c̃j is the true geometric median of Xj . So, 0.6 · (Q̂j − 2Qj) + 0.4 · (−Q̂j) ≤ 0, which means that
Q̂j ≤ 6Qj by rearranging.

36

Proposition E.8 implies that d(ĉj , c̃j) ≤ R̃j , based on how we chose R̃j .

Now, consider any point c in the ball B(ĉj , R̃j) of radius R̃j around ĉj , and define `(c) :=∑
x∈Xj∩B(ĉj ,γ−1R̃j) d(c, x), or equivalently, `(c) =

∑
x∈Xj

d(c, x) · I(d(x, ĉj) ≤ γ−1 · R̃j). Define

`′(c) :=
∑
x∈X̂j

d(c, x) · I(d(x, ĉj) ≤ R̃j). Note that our private empirical risk minimization algo-
rithm attempts to minimize `′(c), since we are restricting ourselves to loss from the sampled points in
B(ĉj , γ

−1 · R̃j). Note that for c ∈ B(ĉj , R̃j), each summand d(c, x) · I(d(x, ĉj) ≤ γ−1 · R̃j) in `(c)
is bounded by O(γ−1 · R̃j). Therefore, we can apply Hoeffding’s inequality to say for any fixed c,
with probability at least 2 · exp

(
−γ4 · T

)
, `′(c) = T

Nj
· `(c)± γ2 ·T · R̃j . In addition, note that there

exists a γ2-cover of B(ĉj , R̃j) of size (1/γ)O(d), which means that by our choice of T , we have that
with overwhelming probability, `′(c) = T

Nj
· `(c)± γ2 · T · R̃j holds for all c in this cover. Now, for

all c ∈ B(ĉj , R̃j), we can round c to a point in the cover of distance at most γ2 · R̃j away, affects
`(c) by at most Nj · R̃j · γ2 and `′(c) by at most T · R̃j · γ2. So, we have that with overwhelming
probability, for all c ∈ B(ĉj , R̃j), that `′(c) = T

Nj
· `(c)±O(γ2 · T) · R̃j .

Now, by applying Lemma E.5, we return a point cj ∈ B(ĉj , R̃j) such that `′(cj) ≤
minc∈B(ĉj ,γ−1R̃j) `

′(c) + O
(√

d
ε · poly log(nδ)

)
· γ−1R̃j ≤ `′(c̃j) + O

(√
d
ε · poly log(nδ)

)
· R̃j ,

since we think of γ as a fixed constant. Now, using our bounds comparing `(c) with `′(c), we
have that `(cj) ≤ `(c̃j) + O(γ2 ·Nj) · R̃j +

Nj

T · O
(√

d
ε · poly log(nδ)

)
· R̃j . Now, based on our

definition of T and Proposition E.7, we can further simplify this as `(cj) ≤ `(c̃j)+O(γ2 ·Nj) · R̃j ≤
`(c̃j) +O(γ2) · (Rj + Λ/n2) ·Nj . Finally, we note that `(c) does not deal with points outside the
ball B(ĉj , γ

−1 · R̃j). However, for any such point, since d(cj , c̃j) ≤ d(cj , ĉj) + d(ĉj , c̃j) ≤ O(R̃j),
we have that d(cj , x) = (1±O(γ)) · d(c̃j , x). Therefore, with overwhelming probability, we have
that ∑

x∈Xj

d(cj , x) ≤ (1 +O(γ)) ·
∑
x∈Xj

d(c̃j , x) +O(γ2) ·
(
Rj +

Λ

n2

)
·Nj .

By Markov’s inequality, Rj is at most O(1) times the average distance between c̃j and the points in
Xj , which implies that∑

x∈Xj

d(cj , x) ≤ (1 +O(γ)) ·
∑
x∈Xj

d(c̃j , x) +O(γ2) ·
(

Λ

n2

)
·Nj .

By adding the above equation over all j ∈ [k] and combining with Equation (10), we obtain

cost(X ; C) ≤
k∑
j=1

∑
x∈Xj

d(cj , x)

≤
k∑
j=1

(1 +O(γ)) ·
∑
x∈Xj

d(c̃j , x) +O(γ2) ·Nj ·
Λ

n2

≤ ρ · (1 +O(γ)) ·OPT(X) +O(log n) · U(n, d′, k, ε, δ) · Λ2 +O(γ2) ·Nj ·
Λ

n2

= ρ · (1 +O(γ)) ·OPT(X) +O(log n) · U(n, d′, k, ε, δ) · Λ2.

This concludes the proof of accuracy, by setting d′ = O(log(k/γ)/γ2).

To finish, we provide pseudocode for Theorem E.6, as Algorithm 6.

37

Algorithm 6 A parallel approximation algorithm for differentially private k-means (or k-median)
with arbitrarily good approximation ratio.

1: procedure ARBITRARILYGOODAPPROXHIGHDIM(X , ε, δ, γ) . Will be (O(ε), O(δ))-DP.
2: Let T = Θ(γ−4 log γ−1 · poly log(ndδ) · ε−1 · d).
3: Let d′ = O(γ−2 log(k/γ)), and pick a random projection Π ∈ Rd′×d.
4: Use Algorithm 1 to find a k-means clustering C′ = {c′1, . . . , c′k} of ΠX = {Πx1, . . . ,Πxn}.
5: Map each point Πxi : i ∈ S to its nearest neighbor in C′.
6: for j = 1 to k do
7: Let Xj be the set of points xi such that Πxi is mapped to c′j .
8: Let N̂j = |Xj |+ Lap(1/ε).
9: if k-means then

10: cj =
(
O(Λ · ε−1 log δ−1) · N (0, I) +

∑
xi∈Xj

xi

)
/N̂j

11: Replace cj with 0 if ‖cj‖2 ≥ 2Λ.
12: else
13: if N̂j ≥ 2T then
14: Sample T points X̂j from Xj .
15: Apply a private coordinate-wise median of X̂j to obtain ĉj .
16: Compute R̂j , a private estimate of the 70% percentile of distances from ĉj to

points in X̂j .
17: Set R̃j = Θ(R̂j + Λ/n2).
18: Use Lemma E.5 with loss `(c) =

∑
x∈X̂j ,‖x−ĉj‖2≤γ−1·R̃j

d(x, ĉj) to obtain a
private empirical risk minimizer cj .

19: Return C = {c1, . . . , ck}

38

E.4 A Fully Near-Linear time Algorithm

We finish by improving Theorem E.6 to running in Õ(nd) sequential time (and Õ(nθd) parallel time),
removing the runtime dependence on k.

Consider p ∈ {1, 2} (p = 1 corresponds to k-median; p = 2 corresponds to k-means). Given X and
a set of k centers C, let ai := d(xi, C)p. Now, consider sampling each i ∈ [n] with probability 1/k,
to get a subsampled set S. We wish to compare the cost of k ·

∑
i∈S d(xi, C)p with cost(X ; C) =∑n

i=1 d(xi, C)p. If we let a′i be independent random variables, where a′i = (k−1)ai with probability
1
k and −ai otherwise, then

∑
a′i has the same distribution as k · cost(S; C)− cost(X ; C), where S is

the subsampled set of X . Note that each a′i has mean 0, variance O(k · a2
i), and is uniformly bounded

by O(Λp). Therefore, by Bernstein’s inequality, we have that

P (|k · cost(S; C)− cost(X ; C)| ≥ t) ≤ 2 exp

(
− Ω(t2)

k ·
∑
a2
i + Λp · t

)
.

If we want above probability to be at most some small value τ , it suffices for t2

k·
∑
a2i

& log 1
τ

and t
Λp & log 1

τ . Noting that
∑
a2
i ≤ max ai ·

∑
ai . cost(X ; C) · Λp, it suffices for t &

Λp log 1
τ +

√
k log 1

τ · Λp · cost(X ; C). By inequality of arithmetic and geometric means, we have

that
√
k log 1

τ · Λp · cost(X ; C) ≤ k
γ log 1

τ · Λ
p + γ · cost(X ; C) for any γ ∈ (0, 1]. Therefore, for a

sufficiently large constant C,

P
(
|k · cost(S; C)− cost(X ; C)| ≥ C

(
k

γ
log

1

τ
· Λp + γ · cost(X ; C)

))
≤ τ.

Now, consider creating a Λ
n10 -sized net of B(0,Λ), and choosing the k centers in C from there. There

are at most nO(d·k) = eO(d·k·logn) ways of choosing such centers. In addition, for any set of k centers
C ⊂ B(0,Λ), by mapping each point to its closest point in the net, we do not change the cost of S
or X by more than n · 2 Λp

n10 ≤ Λp

n8 . Therefore, the probability that |k · cost(S; C) − cost(X ; C)| ≥
C
(
k
γ log 1

τ · Λ
p + γ · cost(X ; C)

)
for all sets C of size k is at most τ · eO(d·k·logn). Therefore, by

replacing τ with τ
eO(d·k·log n) , we have that

P

 sup
C⊂B(0,Λ)
|C|=k

|k · cost(S; C)− cost(X ; C)| ≥ C
(
k2d log n

γ
log

1

τ
· Λp + γ · cost(X ; C)

) ≤ τ.
Overall, given a dataset X , we can subsample each element xi with probability 1

k and then solve
private k-means or k-median using Theorem E.6. Due to the subsampling, we now have that with
overwhelming probability, each machine only has O(nθ/k) points, so the total sequential runtime
has been improved to Õ(nd) and the total time per machine has been improved to Õ(nθd). The
multiplicative error blows up by an additional 1 +O(γ) factor, and if we think of γ as a small but
fixed constant, the additive error only increases by poly(k, d, log n) if we want our algorithm to
succeed with high probability. Finally, the algorithm is still (ε, δ)-DP by Lemma A.21.

Therefore, an improved version of Theorem E.6 holds where the total sequential runtime is Õ(nd)

and the total time per machine is Õ(nθd).
Theorem E.9. Suppose that there exists a polynomial-time algorithm that can compute a ρ-
approximation to k-means (resp., k-median). Then, for any constant ρ′ > ρ, there exists an
(ε, δ)-DP algorithm for k-means (resp., k-median) with multiplicative error ρ′ and additive error
poly

(
k, d, log n, ε−1, log δ−1

)
. In addition, the algorithm can be implemented in MPC with O(1)

total rounds of communication, total sequential time Õ(nd), and total time per machine Õ(nθd),
assuming each machine can store Õ(nθ) ≥ poly(k, d, log n, ε−1, log δ−1) points.

39

	Introduction
	Other Related Work
	Our Results
	Technical Overview and Roadmap

	Preliminaries
	Differential Privacy
	The Massively Parallel Computation (MPC) Model
	k-Means and k-Median Clustering

	A Preliminary Bicriteria Approximation
	A Constant Approximation in MPC
	An Arbitrarily Good Approximation in MPC
	Dimensionality Reduction
	Preliminaries
	Differential Privacy
	Clustering
	Massively Parallel Computation (MPC)
	Approximate Near Neighbors and Randomly Shifted Grids
	List-Decodable Covers
	Sampling Lemmas

	A Private MPC Bicriteria Approximation
	Obtaining a Constant Approximation in Near-Linear Time
	Obtaining an arbitrarily good approximation (for low dimensions)
	Converting O(1)-approximation to sequential coreset
	Converting a sequential coreset to a parallel coreset

	Dimensionality Reduction
	Coordinate-Wise Median
	Obtaining a Constant Approximation
	Obtaining nearly optimal approximation factor
	A Fully Near-Linear time Algorithm

