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Abstract

We study the reinforcement learning problem for discounted Markov Decision
Processes (MDPs) under the tabular setting. We propose a model-based algorithm
named UCBVI-γ, which is based on the optimism in the face of uncertainty
principle and the Bernstein-type bonus. We show that UCBVI-γ achieves an
Õ
(√
SAT/(1− γ)1.5

)
regret, where S is the number of states, A is the number

of actions, γ is the discount factor and T is the number of steps. In addition, we
construct a class of hard MDPs and show that for any algorithm, the expected regret
is at least Ω̃

(√
SAT/(1− γ)1.5

)
. Our upper bound matches the minimax lower

bound up to logarithmic factors, which suggests that UCBVI-γ is nearly minimax
optimal for discounted MDPs.

1 Introduction
The goal of reinforcement learning (RL) is designing algorithms to learn the optimal policy through
interactions with the unknown dynamic environment. Markov decision process (MDPs) plays a central
role in reinforcement learning due to their ability to describe the time-independent state transition
property. More specifically, the discounted MDP is one of the standard MDPs in reinforcement
learning to describe sequential tasks without interruption or restart. For discounted MDPs, with a
generative model [12], several algorithms with near-optimal sample complexity have been proposed.
More specifically, Azar et al. [3] proposed an Empirical QVI algorithm which achieves the optimal
sample complexity to find the optimal value function. Sidford et al. [22] proposed a sublinear
randomized value iteration algorithm that achieves a near-optimal sample complexity to find the
optimal policy, and Sidford et al. [23] further improved it to reach the optimal sample complexity.
Since generative model is a powerful oracle that allows the algorithm to query the reward function
and the next state for any state-action pair (s, a), it is natural to ask whether there exist online RL
algorithms (without generative model) that achieve optimality.

To measure an online RL algorithm, a widely used notion is regret, which is defined as the summation
of sub-optimality gaps over time steps. The regret is firstly introduced for episodic and infinite-
horizon average-reward MDPs and later extended to discounted MDPs by [15, 30, 35, 35]. Liu and
Su [15] proposed a double Q-learning algorithm with the UCB exploration (Double Q-learning),

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



which enjoys Õ(
√
SAT/(1 − γ)2.5) regret, where S is the number of states, A is the number of

actions, γ is the discount factor and T is the number of steps. While Double Q-learning enjoys a
standard

√
T -regret, it still does not match the lower bound proved in [15] in terms of the dependence

on S,A and 1/(1 − γ). Recently, Zhou et al. [34] proposed a UCLK+ algorithm for discounted
MDPs under the linear mixture MDP assumption and achieved Õ

(
d
√
T/(1− γ)1.5

)
regret, where d

is the dimension of the feature mapping. However, directly applying their algorithm to our setting
would yield an Õ

(
S2A
√
T/(1− γ)1.5

)
regret1, which is even worse that of double Q-learning [15]

in terms of the dependence on S,A.

In this paper, we aim to close this gap by designing a practical algorithm with a nearly optimal regret.
In particular, we propose a model-based algorithm named UCBVI-γ for discounted MDPs without
using the generative model. At the core of our algorithm is to use a “refined” Bernstein-type bonus
and the law of total variance [3, 4], which together can provide tighter upper confidence bound
(UCB). Our contributions are summarized as follows:

• We propose a model-based algorithm UCBVI-γ to learn the optimal value function under
the discounted MDP setting. We show that the regret of UCBVI-γ in first T steps is upper
bounded by Õ(

√
SAT/(1− γ)1.5). Our regret bound strictly improves the best existing regret

Õ(
√
SAT/(1− γ)2.5)2 in [15] by a factor of (1− γ)−1.

• We also prove a lower bound of the regret by constructing a class of hard-to-learn discounted
MDPs, which can be regarded as a chain of the hard MDPs considered in [15]. We show that for
any algorithm, its regret in the first T steps can not be lower than Ω̃(

√
SAT/(1− γ)1.5) on the

constructed MDP. This lower bound also strictly improves the lower bound Ω(
√
SAT/(1− γ) +√

AT/(1− γ)1.5) proved by [15].

• The nearly matching upper and the lower bounds together suggest that the proposed UCBVI-γ
algorithm is minimax-optimal up to logarithmic factors.

We compare the regret of UCBVI-γ with previous online algorithms for learning discounted MDPs
in Table 1.

Notation For any positive integer n, we denote by [n] the set {1, . . . , n}. For any two numbers a and
b, we denote by a ∨ b as the shorthand for max(a, b). For two sequences {an} and {bn}, we write
an = O(bn) if there exists an absolute constant C such that an ≤ Cbn, and we write an = Ω(bn) if
there exists an absolute constant C such that an ≥ Cbn. We use Õ(·) and Ω̃(·) to further hide the
logarithmic factors.

2 Related Work
Model-free Algorithms for Discounted MDPs. A large amount of reinforcement learning algo-
rithms like Q-learning can be regarded as model-free algorithms. These algorithms directly learn
the action-value function by updating the values of each state-action pair. Kearns and Singh [13]
firstly proposed a phased Q-Learning which learns an ε-optimal policy with Õ(SA/((1− γ)7ε2))
sample complexity for ε ≤ 1/(1 − γ). Later on, Strehl et al. [25] proposed a delay-Q-learning
algorithm, which achieves Õ(SA/((1− γ)8ε4)) sample complexity of exploration. Wang [29]
proposed a randomized primal-dual method algorithm, which improves the sample complexity to
Õ(SA/((1− γ)4ε2)) for ε ≤ 1/(1− γ) under the ergodicity assumption. Later, Sidford et al. [23]
proposed a sublinear randomized value iteration algorithm and achieved Õ(SA/((1− γ)4ε2)) sample
complexity for ε ≤ 1. Sidford et al. [22] further improved the empirical QVI algorithm and proposed
a variance-reduced QVI algorithm, which improves the sample complexity to Õ(SA/((1− γ)3ε2))
for ε ≤ 1. Wainwright [28] proposed a variance-reduced Q-learning algorithm, which is an extension
of the Q-learning algorithm and achieves Õ(SA/((1− γ)3ε2)) sample complexity. In addition, Dong

1Linear mixture MDP assumes that there exists a feature mapping φ(s′|s, a) ∈ Rd and a vector θ ∈ Rd

such that P(s′|s, a) = 〈φ(s′|s, a),θ〉. It can be verified that any MDP is automatically a linear mixture MDP
with a SA-dimensional feature mapping [2, 35].

2The regret definition in [15] differs from our definition by a factor of (1− γ)−1. Here we translate their
regret from their definition to our definition for a fair comparison. A detailed comparison can be found in
Appendix.
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Table 1: Comparison of RL algorithms for discounted MDPs in terms of sample complexity and
regret. Note that the regret bounds for all the compared algorithms except Double Q-learning [15]
are derived from their sample complexity results. See Appendix A.1 for more details.

Algorithm Sample complexity Regret

Delay-Q-learning
[25] Õ

(
SA

(1−γ)8ε4

)
Õ
(
S1/5A1/5T 4/5

(1−γ)9/5

)
Q-learning with UCB

[9] Õ
(

SA
(1−γ)7ε2

)
Õ
(
S1/3A1/3T 2/3

(1−γ)8/3

)
UCB-multistage

[33] Õ
(

SA
(1−γ)5.5ε2

)
Õ
(
S1/3A1/3T 2/3

(1−γ)13/6

)
UCB-multistage-adv

[33] Õ
(

SA
(1−γ)3ε2

)
3 Õ

(
S1/3A1/3T 2/3

(1−γ)4/3

)
Double Q-learning

Model-free

[15] N/A Õ
( √

SAT
(1−γ)2.5

)
R-max

[5] Õ
(

S2A
(1−γ)6ε3

)
Õ
(
S1/2A1/4T 3/4

(1−γ)7/4

)
MoRmax

[27] Õ
(

SA
(1−γ)6ε2

)
Õ
(
S1/3A1/3T 2/3

(1−γ)7/3

)
UCRL

[14] Õ
(

S2A
(1−γ)3ε2

)
Õ
(
S2/3A1/3T 2/3

(1−γ)4/3

)
UCBVI-γ

Model-based

(Our work) N/A Õ
( √

SAT
(1−γ)1.5

)
Lower bound Ω̃

(
SA

(1−γ)3ε2

)
Ω̃
( √

SAT
(1−γ)1.5

)
N/A

[14] (Our work)
2. It holds when ε ≤ 1/poly(S,A, 1/(1− γ)).

et al. [9] proposed an infinite Q-learning with UCB and improved the sample complexity of explo-
ration to Õ(SA/((1− γ)7ε2)). Zhang et al. [33] proposed a UCB-multistage algorithm which attains
the Õ(SA/((1− γ)5.5ε2)) sample complexity of exploration, and proposed a UCB-multistage-adv
algorithm which attains a better sample complexity Õ(SA/((1− γ)3ε2)) in the high accuracy regime.
Recently, Liu and Su [15] focused on regret minimization for the infinite-horizon discounted MDP
and showed the connection between regret and sample complexity of exploration. Liu and Su [15]
proposed a Double Q-Learning algorithm, which achieves Õ(

√
SAT/(1− γ)2.5) regret within T

steps. Furthermore, Liu and Su [15] constructed a series of hard MDPs and showed that the expected
regret for any algorithm is lower bounder by Ω̃

(√
SAT/(1 − γ) +

√
AT/(1− γ)1.5

)
. There still

exists a 1/(1− γ)-gap between the upper and lower regret bounds. In contrast to the aforementioned
model-free algorithms, our proposed algorithm is model-based.

Model-based Algorithms for Discounted MDP. Our UCBVI-γ falls into the category of model-
based reinforcement learning algorithms. Model-based algorithms maintain a model of the envi-
ronment and update it based on the observed data. They will form the policy based on the learnt
model. More specifically, to learn the ε-optimal value function, Azar et al. [3] proposed an empirical
QVI algorithm which achieves Õ(SA/((1− γ)3ε2)) sample complexity. Azar et al. [3] proposed
an empirical QVI algorithm which improves the sample complexity to Õ(SA/((1− γ)3ε2)) for
ε ≤ 1/

√
(1− γ)S. Szita and Szepesvári [27] proposed an MoRmax algorithm, which achieves

Õ(SA/((1− γ)6ε2)) sample complexity. Later, Lattimore and Hutter [14] proposed a UCRL algo-
rithm, which achieves Õ(S2A/((1− γ)3ε2)) sample complexity in general and Õ(SA/((1− γ)3ε2))
sample complexity with a strong assumption on the state transition. Recently, Agarwal et al. [1]
proposed a refined analysis for the empirical QVI algorithm which achieves Õ(SA/((1− γ)3ε2))
sample complexity when ε ≤ 1/

√
1− γ.

Upper and Lower Bounds for Episodic MDPs. There is a line of work which aims at proving
sample complexity or regret for episodic MDPs (MDPs which consist of restarting episodes) [7, 18,
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4, 19, 11, 8, 24, 21, 31, 32, 17, 20]. Compared with the episodic MDP, discounted MDPs involve
only one infinite-horizon sample trajectory, suggesting that any two states or actions on the trajectory
are dependent. Such a dependence makes the learning of discounted MDPs more challenging.

3 Preliminaries
We consider infinite-horizon discounted Markov Decision Processes (MDP) which are defined by
a tuple (S,A, γ, r,P). Here S is the state space with |S| = S, A is the action space with |A| = A,
γ ∈ (0, 1) is the discount factor, r : S ×A → [0, 1] is the reward function, P(s′|s, a) is the transition
probability function, which denotes the probability that state s transfers to state s′ with action a. For
simplicity, we assume the reward function is deterministic and known. A non-stationary policies
π is a collection of function {πt}∞t=1, where each function πt : {S × A}t−1 × S → A maps
history {s1, a1, ..., st−1, at−1, st = s} to an action. For any non-stationary policy π, we denote
πt(s) = πt(s; s1, a1, ..., st−1, at−1) for simplicity. We define the action-value function and value
function at step t as follows:

Qπt (s, a) = E
[ ∞∑
i=0

γir(st+i, at+i)

∣∣∣∣s1, ..., st = s, at = a

]
,

V πt (s) = E
[ ∞∑
i=0

γir(st+i, at+i)

∣∣∣∣s1, ..., st = s

]
,

where at+i = πt+i(st+i), and st+i+1 ∼ P
(
· |st+i, πt+i(st+i)

)
. In addition, we denote the optimal

action-value function and the optimal value function as Q∗(s, a) = supπ Q
π
1 (s, a) and V ∗(s) =

supπ V
π
1 (s) respectively. Note that the optimal action-value function and the optimal value function

are independent of the step t. For simplicity, for any function V : S → R, we denote [PV ](s, a) =
Es′∼P(·|s,a)V (s′). According to the definition of the value function, we have the following non-
stationary Bellman equation and Bellman optimality equation for non-stationary policy π and optimal
policy π∗:

Qπt (s, a) = r(s, a) + γ[PV πt+1](s, a), Q∗(s, a) = r(s, a) + γ[PV ∗](s, a). (3.1)

4 Main Results
4.1 Algorithm

In this subsection, we propose the Upper Confidence Bound Value Iteration-γ (UCBVI-γ) algorithm,
which is illustrated in Algorithm 1. The algorithm framework of UCBVI-γ follows the UCBVI
algorithm proposed in Azar et al. [4], which can be regarded as the counterpart of UCBVI-γ in the
episodic MDP setting.

UCBVI-γ is a model-based algorithm that maintains an empirical measure Pt at each step t. At
the beginning of the t-th iteration, UCBVI-γ takes action at based on the greedy policy induced by
Qt(st, a) and transits to the next state st+1. After receiving the next state st+1, UCBVI-γ computes
the empirical transition probability function Pt(s′|s, a) in (4.1). Based on empirical transition
probability function Pt(s′|s, a), UCBVI-γ updates Qt+1(s, a) by performing one-step value iteration
onQt(s, a) with an additional upper confidence bound (UCB) term UCBt(s, a) defined in (4.3). Here
the UCB bonus term is used to measure the uncertainty of the expectation of the value function Vt(s).
Unlike previous work, which adapts a Hoeffding-type bonus [15], our UCBVI-γ uses a Bernstein-
type bonus which brings a tighter upper bound by accessing the variance of Vt(s), denoted by
Vars′∼P(·|,s,a)Vt(s′). However, since the probability transition P(·|s, a) is unknown, it is impossible
to calculate the exact variance of Vt. Instead, UCBVI-γ estimates the variance by considering the
variance of Vt over the empirical probability transition function Pt(·|s, a) defined in (4.1). Therefore,
the final UCB bonus term in (4.3) can be regarded as a standard Bernstein-type bonus on the empirical
measure Pt(·|s, a) with an additional error term.

Compared with UCBVI algorithm in Azar et al. [4], the action-value function Qt(s, a) in UCBVI-γ
is updated in a forward way from step 1 to step T with the initial value Q1(s, a) = 1/(1− γ) for all
s ∈ S, a ∈ A, while UCBVI updates its action-value function in a backward way from Qt,H to Qt,1
with initial value Qt,H(s, a) = 0. Compared with UCRL in Lattimore and Hutter [14], UCBVI-γ
does not need to call an additional extended value iteration sub-procedure [10, 26], which is not easy
to implement even with infinite computation [14].
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Algorithm 1 Upper Confidence Value-iteration UCBVI-γ
1: Receive state s1 and set initial value function Q1(s, a)← 1/(1− γ), N0(s, a) = N0(s, a, s′) =
N0(s)← 0 for all s ∈ S, a ∈ A, s′ ∈ S

2: for step t = 1, . . . do
3: Let πt(·) ← argmaxa∈AQt(·, a), take action at ← πt(st) and receive next state st+1 ∼

P(·|st, at)
4: Set Nt(s) ← Nt−1(s), Nt(s, a) ← Nt−1(s, a) and Nt(s, a, s′) ← Nt−1(s, a, s′) for all

s ∈ S, a ∈ A, s′ ∈ S
5: Update Nt(st) ← Nt(st) + 1, Nt(st, at) ← Nt(st, at) + 1 and Nt(st, at, st+1) ←

Nt(st, at, st+1) + 1
6: For all s ∈ S, a ∈ A, set

Pt(s′|s, a) =
Nt(s, a, s

′)

Nt(s, a) ∨ 1
. (4.1)

7: Update new value function Qt+1(s, a) and Vt+1(s) by

Qt+1(s, a) = min
{
Qt(s, a), r(s, a) + γ[PtVt](s, a) + CγUCBt(s, a)

}
,

Vt+1(s) = max
a∈A

Qt+1(s, a). (4.2)

where

UCBt(s, a) =

√
8UVars′∼Pt(·|s,a)(Vt(s′))

Nt(s, a) ∨ 1
+

8U/(1− γ)

Nt(s, a) ∨ 1

+

√
8
∑
s′ Pt(s′|s, a) min

{
100Bt(s′), 1/(1− γ)2

}
Nt(s, a) ∨ 1

, (4.3)

and Bt(s′) = β/
[
(1− γ)5

(
Nt(s

′) ∨ 1
)]
.

8: end for

Computational complexity In each step t, Algorithm 1 needs to first compute the empirical
transition Pt and update the value function Vt+1 by one-step value iteration, which will cost O(S2A)
time complexity for each update. However, the number of updates can be reduced by using the “batch”
update scheme adapted in [10, 7] and in this case Algorithm 1 only needs to update the value function
Vt+1 when the number of visits Nt(s, a) doubles. With this update scheme, the number of updates is
upper bounded by O(SA log T ) and the total cost for updating the value function is O(S3A2 log T ).
In addition, the Algorithm 1 still needs to choose the action with respect to the value function Vt and
it costs O(AT ) time complexity. Thus, the total computation complexity of the “batch” version of
Algorithm 1 is O(AT + S3A2 log T ).

4.2 Regret Analysis

In this subsection, we provide the regret bound of UCBVI-γ. We first give the formal definition of
the regret for the discounted MDP setting.
Definition 4.1. For a given non-stationary policy π, we define the regret Regret(T ) as follow:

Regret(T ) =

T∑
t=1

[
V ∗(st)− V πt (st)

]
.

The same regret has been used in prior work [30, 35, 34] on discounted MDPs. It is related to the
“sample complexity of exploration” [12, 14, 9]. For more details about the connection between the
regret and the sample complexity, please refer to Appendix A.
Remark 4.2. Without the use of generative model [12], an agent may enter bad states at the first
few steps in discounted MDPs and there is no “restarting” mechanism as in episodic MDPs that can
prevent the agent from being stuck in those bad states. Due to this limitation, both the regret and the
sample complexity of exploration guarantees are not sufficient to ensure a good policy being learned.
We think this is the fundamental limitation in the online learning of discounted MDPs.
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With Definition 4.1, we introduce our main theorem, which gives an upper bound on the regret for
UCBVI-γ.
Theorem 4.3. Let U = log(40SAT 3 log2 T/(δ(1 − γ)2)). If we set β = S2A2U5 in UCBVI-γ,
then with probability at least 1− δ, the regret of UCBVI-γ in Algorithm 1 is bounded by

Regret(T ) ≤ 752S2A1.5U3.5

(1− γ)3.5
+

60U
√
SAT

(1− γ)1.5
+

4
√
TU

(1− γ)2
.

Remark 4.4. Notice that when T = Ω̃(S3A2/(1− γ)4) and SA = Ω(1/(1− γ)), the regret is
bounded by Õ

(√
SAT/(1− γ)1.5

)
. In addition, since Regret(T ) ≤ T/(1− γ) holds for any T ,

we have E[Regret(T )] = Õ
(√
SAT/(1− γ)1.5 + Tδ/1− γ

)
. When choosing δ = 1/T , we have

E[Regret(T )] = Õ
(√
SAT/(1− γ)1.5

)
.

We also provide a regret lower bound, which suggests that our UCBVI-γ is nearly minimax optimal.
Theorem 4.5. Suppose γ ≥ 2/3, A ≥ 30 and T ≥ 100SAL/(1− γ)4, then for any algorithm, there
exists an MDP such that

E[Regret(T )] ≥
√
SAT

10000(1− γ)1.5
− 4
√
STL

(1− γ)1.5
− 8S

(1− γ)2
,

where L = log (300S4T 2/(1− γ)) log(10ST ).

Remark 4.6. When T is large enough and A = Ω̃(1), Theorem 4.5 suggests that the lower bound of
regret is Ω̃(

√
SAT/(1− γ)1.5). It can be seen that the regret of UCBVI-γ in Theorem 4.3 matches

this lower bound up to logarithmic factors. Therefore, UCBVI-γ is nearly minimax optimal.

5 Proof of the Main Results
In this section, we provide the proofs of Theorems 4.3 and 4.5. The missing proofs are deferred to
the appendix.

5.1 Proof of Theorem 4.3

In this subsection, we prove Theorem 4.3. For simplicity, let δ′ = (1− γ)2δ/(80T log2 T ), then
U = log(SAT 2/δ′). We first present the following key lemma, which shows that the optimal
value functions V ∗ and Q∗ can be upper bounded by the estimated functions Vt and Qt with high
probability:
Lemma 5.1. With probability at least 1− 64Tδ log2 T/(1− γ)2, for all t ∈ [T ], s ∈ S, a ∈ A, we
have Qt(s, a) ≥ Q∗(s, a), Vt(s) ≥ V ∗(s).

Equipped with Lemma 5.1, we can decompose the regret of UCBVI-γ as follows:

Regret(T ) ≤
T∑
t=1

[
Vt(st)− V πt (st)

]
=

T∑
t=1

[
Qt(st, at)−Qπt (st, at)

]
︸ ︷︷ ︸

Regret′(T )

,

where the inequality holds due to Lemma 5.1. Therefore, it suffices to bound Regret′(T ). We have

Regret′(T ) ≤
T∑
t=1

(
r(st, at) + γ[Pt−1Vt−1](st, at) + CγUCBt−1(st, at)

− r(st, at)− γ[PV πt+1](st, at)
)

=

T∑
t=1

(
γ[Pt−1Vt−1](st, at) + CγUCBt−1(st, at)− γ[PV πt+1](st, at)

)
,

where the inequality holds due to the update rule (4.2) and the Bellman equation Qπt (st, at) =
r(st, at) + γ[PV πt+1](st, at). We further have

T∑
t=1

(
γ[Pt−1Vt−1](st, at) + CγUCBt−1(st, at)− γ[PV πt+1](st, at)

)
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=

T∑
t=1

γ(Vt−1(st+1)− V πt+1(st+1))︸ ︷︷ ︸
I1

+

T∑
t=1

γ
[
(Pt−1 − P)(Vt−1 − V ∗)

]
(st, at)︸ ︷︷ ︸

I2

+

T∑
t=1

γ[(Pt−1 − P)V ∗](st, at)︸ ︷︷ ︸
I3

+

T∑
t=1

CγUCBt−1(st, at)︸ ︷︷ ︸
I4

+

T∑
t=1

γ
[
P(Vt−1 − V πt+1)

]
(st, at)− γ

[
Vt−1(st+1)− V πt+1(st+1)

]
︸ ︷︷ ︸

I5

. (5.1)

In the above decomposition, term I1 controls the estimation error between the value functions Vt−1
and V πt+1, terms I2 and I3 measure the estimation error between the transition probability function P
and the estimated transition probability function Pt−1, term I4 comes from the exploration bonus in
Algorithm 1, and term I5 accounts for the randomness in the stochastic transition process, which can
be controlled by the third term O(

√
TU/(1− γ)2) in Theorem 4.3.

In the remaining of the proof, it suffices to bound terms I1 to I5 separately.

First, I1 can be regarded as the difference between the estimated Vt−1 and the value function V πt+1 of
policy π, and it can be bounded by the following lemma.
Lemma 5.2. For the term I1, We have I1 ≤ γRegret′(T ) + (2S + 2)γ/1− γ

Next, I2 can be regarded as the “correction" term between the estimated Vt−1 and the optimal value
function V ∗. It can be bounded by the following lemma.
Lemma 5.3. With probability at least 1− 64Tδ log2 T/(1− γ)2 − 3δ, we have

I2 ≤ (1− γ)Regret′(T )/2 +
√

2TClog(1/δ) +
5S2AClog(ST/δ) log(3T )

(1− γ)2
.

In addition, I3 can be regarded as the error between the empirical probability distribution Pt−1
and the true transition probability P. Note that V ∗ is a fixed value function that does not have any
randomness. Therefore, I3 can be bounded through the standard concentration inequalities, and its
upper bound is presented in the following lemma.
Lemma 5.4. With probability at least 1− 2δ − δ/(1− γ), we have

I3 ≤
2SAU2

1− γ
+ U
√

2SA

√
5T

1− γ
+

29U

3(1− γ)3
+

2Regret′(T )

1− γ
+

√
2TU

(1− γ)2
.

Furthermore, I4 can be regarded as the summation of the UCB terms, which is also the dominating
term of the total regret. It can be bounded by the following lemma.
Lemma 5.5. With probability at least 1− 4δ − δ/(1− γ), we have

I4 ≤
37S2A1.5U3.5

(1− γ)2.5
+ U
√

8SA

√
5T

1− γ
+

29U

3(1− γ)3
+

2Regret′(T )

1− γ
+

12SU
√
AT

(1− γ)2
.

Finally, I5 is the summation of a martingale difference sequence. By Azuma-Hoeffding inequality,
with probability at least 1− δ, we have

I5 ≤
√

2T log(1/δ)

1− γ
. (5.2)

Substituting the upper bounds of terms I1 to I5 from Lemma 5.2 to Lemma 5.5, as well as (5.2), into
(5.1), and taking a union bound to let all the events introduced in Lemma 5.2 to Lemma 5.5 and (5.2)
hold, we have with probability at least 1− 20TU2δ/(1− γ)2, the following inequality holds:

(1− γ)Regret′(T ) ≤ 160S2A1.5U3.5

(1− γ)2.5
+

54U
√
SAT√

1− γ
+

2
√

2TU

1− γ
+ 12U

√
SARegret′(T )

1− γ
.

(5.3)

7



Using the fact that x ≤ a+ b
√
x⇒ x ≤ 1.1a+ 4b2, (5.3) can be further bounded as follows

Regret(T ) ≤ Regret′(T )

≤ 752S2A1.5U3.5

(1− γ)3.5
+

60U
√
SAT

(1− γ)1.5
+

4
√
TU

(1− γ)2
.

This completes our proof.

5.2 Proof of Theorem 4.5

s1,0 ...
...

...
s1,1

1− γ + ε
γ − ε

1− γγ

s2,0
1− γ

γ

...
...

...
s2,1

sS−1,0...
...

...
sS−1,1sS,0...

...
...

sS,1

Figure 1: A class of hard-to-learn MDPs considered in Theorem 4.5. The MDP can be regarded as a
combination of S two-state MDPs, each of which is an MDP illustrated on the top-left corner. In
addition, the i-th two-state MDP has the a∗i -th action as its optimal action. The blue arrows represent
the optimal actions in different states. ε =

√
A(1− γ)/K/24.

In this subsection, we provide the proof of Theorem 4.5. The proof of the lower bound is based on
constructing a class of hard MDPs. Specifically, the state space S consists of 2S states {si,0, si,1}i∈[S]
and the action space A contains A actions. The reward function r satisfies that r(si,0, a) = 0 and
r(si,1, a) = 1 for any a ∈ A, i ∈ [S]. The probability transition function P is defined as follows.

P(si,1|si,0, a) = 1− γ + 1a=a∗i
1

24

√
A(1− γ)

K
,P(si,1|si,1, a) = γ,

P(si,0|si,0, a) = γ − 1a=a∗i
1

24

√
A(1− γ)

K
,P(si+1,0|si,1, a) = 1− γ,

where we assume sS+1,0 = s1,0 for simplicity and a∗i is the optimal action for state si,0. The MDP is
illustrated in Figure 1, which can be regarded as S copies of the “single" two-state MDP arranged
in a circle. The two-state MDP is the same as that proposed in [15]. Each of the two-state MDP
has two states and one “optimal" action a∗i satisfied P(si,1|si,0, a∗i ) = 1 − γ + ε. Compared with
the MDP instance in [10], both instances use S copies of a single MDP. However, unlike the MDP
in [10] which only has one “optimal" action among all SA actions, our MDP which has in total S
“optimal" actions, which makes it harder to analyze.

Now we begin to prove our lower bound. Let Ea∗ [·] denote the expectation conditioned on one
fixed selection of a∗ = (a∗1, . . . , a

∗
S). We introduce a shorthand notation E∗ to denote E∗[·] =

1/AS ·
∑

a∗∈AS Ea∗ [·]. Here E∗ is the average value of expectation over the randomness from MDP
defined by different optimal actions. From now on, we aim to lower bound E∗[Regret(T )], since
once E∗[Regret(T )] is lower bounded, E[Regret(T )] can be lower bounded by selecting a∗1, . . . , a

∗
S

which maximizes E[Regret(T )]. We set T = 10SK in the following proof. Based on the definition
of E∗, we have the following lemma.
Lemma 5.6. The expectated regret E∗[Regret(T )] can be lower bounded as follows:

E∗[Regret(T )] ≥ E∗
[ T∑
t=1

V ∗(st)−
r(st, at)

1− γ

]
− 4

(1− γ)2
.

8



By Lemma 5.6, it suffices to lower bound
∑T
t=1[V ∗(st)− r(st, at)/(1− γ)], which is RegretLiu(T )

defined in [15]. When an agent visits the state set {sj,0, sj,1} for the i-th time, we denote the state
in {sj,0, sj,1} it visited as Xj,i, and the following action selected by the agent as Aj,i. Let Tj be
the number of steps for the agent staying in {sj,0, sj,1} in the total T steps. Then the regret can be
further decomposed as follows:

E∗
[ T∑
t=1

V ∗(st)−
r(st, at)

1− γ

]
=

S∑
j=1

E∗
[ Tj∑
i=1

V ∗(Xj,i)−
r(Xj,i, Aj,i)

1− γ

]
= I1 + I2 + I3,

where

I1 =

S∑
j=1

E∗
[ K∑
i=1

V ∗(Xj,i)−
r(Xj,i, Aj,i)

1− γ

]
,

I2 =

S∑
j=1

E∗
[ Tj∑
i=K+1

V ∗(Xj,i)−
r(Xj,i, Aj,i)

1− γ

∣∣∣∣Tj > K

]
· P∗[Tj > K],

I3 = −
S∑
j=1

E∗
[ K∑
i=Tj+1

V ∗(Xj,i)−
r(Xj,i, Aj,i)

1− γ

∣∣∣∣Tj < K

]
· P∗[Tj < K].

Note that I1 essentially represents the regret over S two-state MDPs in their first K steps, and it can
be lower bounded through the following lemma.

Lemma 5.7. If K ≥ 10SA/(1− γ)4, then for each j ∈ [S], we have

E∗
[ K∑
i=1

(1− γ)V ∗(Xj,i)− r(Xj,i, Aj,i)

]
≥

√
AK

2304
√

1− γ
− 1

1− γ
.

This lemma shows that the expected regret of first K steps on states sj,0 and sj,1 is at least
Ω̃
(√
AK/(1− γ)0.5 − 1/(1− γ)

)
. Therefore by Lemma 5.7, we have

I1 =

S∑
j=1

E∗
[ K∑
i=1

V ∗(Xj,i)−
r(Xj,i, Aj,i)

1− γ

]
≥

√
SAT

2304
√

10(1− γ)1.5
− S

(1− γ)2
. (5.4)

To bound I2, we need the following lemma.

Lemma 5.8. With probability at least 1−2STδ log T/(1−γ), for each j ∈ [S] and K+1 ≤ t ≤ T ,
we have

t∑
i=K+1

V ∗(Xj,i)−
r(Xj,i, Aj,i)

1− γ
≥ −

√
2t log(1/δ) log T

(1− γ)1.5
− 4

(1− γ)2
.

Lemma 5.8 gives a crude lower bound of I2. Taking expectation over Lemma 5.8 and taking
summation over all states, we have

I2 ≥
S∑
j=1

E∗
[(
−
√

2Tj log(1/δ) log T

(1− γ)1.5
− 4

(1− γ)2

)∣∣∣∣Tj > K

]
P∗[Tj > K]

−
S∑
j=1

T

1− γ
· 2STδ log T

(1− γ)2

≥
S∑
j=1

E∗
[
−
√

2Tj log(1/δ) log T

(1− γ)1.5

]
− 4S

(1− γ)2
− 2S2T 2δ log T

(1− γ)2

≥
S∑
j=1

−
√

2E∗[Tj ] log(1/δ) log T

(1− γ)1.5
− 4S

(1− γ)2
− 2S2T 2δ log T

(1− γ)2
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≥ −
√

2ST log(1/δ) log T

(1− γ)1.5
− 4S

(1− γ)2
− 2S2T 2δ log T

(1− γ)2
, (5.5)

where the first inequality holds due to Lemma 5.8, the second inequality holds since 1 −
2STδ log T/(1− γ) ≤ 1 and E[−X|Y ]P(Y ) ≥ E[−X] when X ≥ 0, the third inequality holds due
to Jensen’s inequality and the fact that

√
x is a concave function, and the last inequality holds due to

Jensen’s inequality and the fact that
∑S
j=1 E∗[Tj ] = T . To bound I3, we need the following lemma,

which suggests that when K is large enough, Ti > K happens with high probability:
Lemma 5.9. When K ≥ 10A log(1/δ)/(1− γ)4, with probability at least 1− 2Sδ, for all i ∈ [S],
we have Ti > K.

Notice that the difference of transition probability between the optimal action and suboptimal actions
is
√
A(1− γ)/24K. In this case, when T is large enough, Ti is close to T/S = 10K. Thus I3 can

be lower bounded as follows:

I3 ≥ −
S∑
j=1

K

1− γ
P∗[Tj < K] ≥ − STδ

5(1− γ)
, (5.6)

where the first inequality holds due to 0 ≤ r(Xj,i, Aj,i) ≤ 1 and the second inequality holds due
to Lemma 5.9. Finally, setting δ = 1/

(
4ST 2(1− γ)2 log T

)
, we can verify that the requirements

of K in Lemma 5.7 and Lemma 5.9 hold when T satisfies T ≥ 100SAL/(1− γ)4, and L =
log (300S4T 2/((1− γ)2δ)) log T . Therefore, substituting δ = 1/

(
4ST 2(1− γ)2 log T

)
into (5.5)

and (5.6), and combining (5.4), (5.5), (5.6) and Lemma 5.6, we have

E[Regret(T )] ≥
√
SAT

10000(1− γ)1.5
− 4
√
STL

(1− γ)1.5
− 8S

(1− γ)2
,

which completes the proof of Theorem 4.5.

6 Conclusions and Future Work
We proposed UCBVI-γ, an online RL algorithm for discounted tabular MDPs. We show that the
regret of UCBVI-γ can be upper bounded by Õ(

√
SAT/(1− γ)1.5) and we prove a matching lower

bound on the expected regret Ω̃(
√
SAT/(1− γ)1.5). There is still a gap between the upper and lower

bounds when T ≤ max{S3A2/(1 − γ)4, SA/(1 − γ)4}, and we leave it as an open problem for
future work.
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A More Discussions on the Regret and Sample Complexity
A.1 Converting Sample Complexity of Exploration to Regret

In this subsection, we shows the relationship between the sample complexity of exploration and the
regret.

The definition of regret in Defintion 4.1 is related to the “sample complexity of exploration” N(ε, δ)
[12, 14, 9], which is the upper bound on the number of steps t such that V ∗(st)− V πt (st) ≥ ε with
probability at least 1− δ. Compared with the regret, sample complexity of exploration focuses on
the sub-optimalities at all steps t, rather than the first T steps, and ignores the small sub-optimalities.
Though both metrics have been used to describe the performance of an algorithm, these two metrics
are not directly comparable. More specifically, algorithms with fewer but larger sub-optimalities will
have a small sample complexity of exploration but a high regret. In contrast, algorithms with a lot of
moderate sub-optimalities will have a high sample complexity of exploration but a low regret.

By the definition of the sample complexity exploration N(ε, δ), with probability at least 1− δ, the
number of steps t where V ∗(st) − V πt (st) ≥ ε is upper bounded by N(ε, δ). Thus, for the regret
within T steps, we have following inequality:

Regret(T ) =

T∑
t=1

[
V ∗(st)− V πt (st)

]
=

∑
t∈[T ],V ∗(st)−V πt (st)≥ε

[
V ∗(st)− V πt (st)

]
+

∑
t∈[T ],V ∗(st)−V πt (st)<ε

[
V ∗(st)− V πt (st)

]
≤ N(ε, δ)

1− γ
+ Tε, (A.1)

where the inequality holds due to the definition of N(ε, δ). Furthermore,if an algorithm achieve sam-
ple complexity N(ε, δ) = O(Bε−α), then we can choose ε = T−1/(α+1)(1− γ)1/(α+1)B−1/(α+1)

to minimize the (A.1). Thus, we have

Regret(T ) ≤ N(ε, δ)

1− γ
+ Tε (A.2)

= O
(Bε−α

1− γ
+ Tε

)
= O

(
B1/(α+1)(1− γ)−1/(α+1)Tα/(α+1)

)
.

Furthermore, the best result in sample complexity of exploration [33] achieves Õ
(
SA/

(
(1− γ)3ε2

))
sample complexity and this result implies Õ(S1/3A1/3(1− γ)−4/3T 2/3) regret, which is worse than
our result by a T 1/6 factor.

A.2 Comparison with the Regret in [15]

Our definition is similar to that of Liu and Su [15]. Note that Liu and Su [15] define the regret as
RegretLiu(T ) =

∑T
t=1 ∆t, where ∆t = (1− γ)V ∗(st)− r(st, at). Comparing the definition in Liu

and Su [15] with our definition, we can show that (1− γ)Regret(T ) ≈ RegretLiu(T ) since

(1− γ)

T∑
t=1

V πt (st) ≈ (1− γ)

T∑
t=1

∞∑
i=0

γir(st+i, at+i) ≈
T∑
t=1

r(st, at),

where the first approximate equality holds due to Azuma-Hoeffding inequality and the second
approximate equality holds due to 0 ≤ r(s, a) ≤ 1. Therefore, our regret definition is equivalent to
that in [15] up to a 1− γ factor.
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B Proof of Lemmas in Section 5.1
In this section, we prove Lemma 5.1 to Lemma 5.5. For simplicity, we introduce the following
shorthand notations:

V∗(s, a) = Vars′∼P(·|s,a)
(
V ∗(s′)

)
,

Vπt (s, a) = Vars′∼P(·|s,a)
(
V πt+1(s′)

)
,

Vt(s, a) = Vars′∼Pt(·|s,a)(Vt(s
′)),

V∗t (s, a) = Vars′∼Pt(·|s,a)(V
∗(s′)).

We start with a list of technical lemmas that will be used to prove Lemma 5.1 to Lemma 5.5. We first
provide the Azuma-Hoeffding and Bernstein inequalities.
Lemma B.1 (Azuma–Hoeffding inequality, Cesa-Bianchi and Lugosi 6). Let {xi}ni=1 be a martingale
difference sequence with respect to a filtration {Gi} satisfying |xi| ≤M for some constant M , xi is
Gi+1-measurable, E[xi|Gi] = 0. Then for any 0 < δ < 1, with probability at least 1− δ, we have

n∑
i=1

xi ≤M
√

2n log(1/δ).

Lemma B.2 (Bernstein inequality, Cesa-Bianchi and Lugosi 6). Let {xi}ni=1 be a martingale dif-
ference sequence with respect to a filtration {Gi} satisfying |xi| ≤ M for some constant M , xi is
Gi+1-measurable, E[xi|Gi] = 0. Suppose that

n∑
i=1

E(x2i |Gi) ≤ v

for some constant v. Then for any δ > 0, with probability at least 1− δ,
n∑
i=1

xi ≤
√

2v log(1/δ) +
2M log(1/δ)

3
.

The following first lemma provides basic inequalities for the summations of counted numbers
Ni(si, ai) and Ni(si).
Lemma B.3. For all t ∈ [T ] and subset C ⊆ [T ], we have

t∑
i=1

1

NCi−1(si, ai) ∨ 1
≤ SAClog(3T ),

t∑
i=1

1

Ni−1(si) ∨ 1
≤ SClog(3T ),

∑
i∈C

1√
Ni−1(si, ai) ∨ 1

≤
√
SAClog(3T )|C|.

Next lemma upper bounds the difference between the empirical measure Pt−1 and P, with respect to
the true variance of the optimal value function V∗(s, a).
Lemma B.4. If 0 ≤ V ∗(s) ≤ 1/(1 − γ) for all s ∈ S, then with probability at least 1 − δ, for all
t ∈ [T ], s ∈ S, a ∈ A, we have[

(Pt − P)V ∗
]
(s, a) ≤

√
2V∗(s, a)Clog(SAT/δ)

Nt−1(s, a) ∨ 1
+

C2 log(SAT/δ)

3(1− γ)
(
Nt−1(s, a) ∨ 1

) .
Similar to Lemma B.4, the following lemmas also upper bounds the difference between the empirical
measure Pt−1 and P, but with respect to the estimated variance.
Lemma B.5 (Theorem 4 in Maurer and Pontil 16). Let Z,Z1, .., Zn be i.i.d random variable with
value in [0,M ] and let δ > 0, then with probability at least 1− δ, we have

EZ − 1

n

n∑
i=1

Zi ≤
√

2VnZ log(1/δ)

n
+

7M log(1/δ)

3n
,

where VnZ is the estimated variance VnZ =
∑

1≤i<j≤n(Zi − Zj)2/n(n− 1).
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Lemma B.6. If 0 ≤ V ∗(s) ≤ 1/(1 − γ) for all s ∈ S, then with probability at least 1 − δ, for all
t ∈ [T ], s ∈ S, a ∈ A, we have

[
(P− Pt)V ∗

]
(s, a) ≤

√
2V∗t−1(s, a)Clog(SAT/δ)

Nt−1(s, a) ∨ 1
+

7Clog(SAT/δ)

3(1− γ)
(
Nt−1(s, a) ∨ 1

) .
The next lemma shows that the total variance of the nonstationary policy π can be upper bounded by
O(T/(1− γ)). It is worth noting that a trivial bound which bounds Vπi (si, ai) by 1/(1− γ)2 only
gives an O(T/(1− γ)2) bound.
Lemma B.7. With probability at least 1− δ/(1− γ), we have

γ2
T∑
t=1

Vπt (st, at) ≤
5T

1− γ
+

25 log(1/δ)

3(1− γ)3
.

Based on previous concentration Lemma, we define the following high probability events and our
proof of Lemma 5.2 to Lemma 5.5 relies on these high probability events. Let E denote the event when
the conclusion of Lemma 5.1 holds. Then by Lemma 5.1, we have Pr(E) ≥ 1−64Tδ log2 T/(1−γ)2.
We also define the following event:

E1 =

{[
(Pt − P)V ∗

]
(s, a) ≤

√
2V∗(s, a)Clog(SAT/δ)

Nt−1(s, a) ∨ 1

+
C2 log(SAT/δ)

3(1− γ)
(
Nt−1(s, a) ∨ 1

) ,∀s ∈ S, a ∈ A, t ∈ [T ]

}
,

E2 =

{[
(P− Pt)V ∗

]
(s, a) ≤

√
2V∗t−1(s, a)Clog(SAT/δ)

Nt−1(s, a) ∨ 1

+
7Clog(SAT/δ)

3(1− γ)
(
Nt−1(s, a) ∨ 1

) ,∀s ∈ S, a ∈ A, t ∈ [T ]

}
,

E3 =

{
Pt−1(s′|st, at)− P(s′|st, at) ≤

√
2P(s′|st, at)(1− P(s′|st, at))Clog(ST/δ)

Nt−1(st, at) ∨ 1
,

+
C2 log(ST/δ)

3
(
Nt−1(st, at) ∨ 1

)∀s ∈ S, a ∈ A, t ∈ [T ]

}
,

E4 =

{ T∑
t=1

P(s′|st, at)
(
Vt−1(s′)− V ∗(s′)

)
≤

T∑
t=1

(
Vt−1(st+1)− V ∗(st+1)

)
+

√
2T log(1/δ)

1− γ

}
,

E5 =
{
γ2

T∑
t=1

Vπt (st, at) ≤
5T

1− γ
+

25 log(1/δ)

3(1− γ)3
}
,

E6 =

{ T∑
t=1

[
P(Vt−1 − V πt+1)

]
(st, at)−

T∑
t=1

[
Vt−1(st+1)− V πt+1(st+1)

]
≤
√

2T log(1/δ)

1− γ

}
,

E7 =

{ T∑
t=1

[
P(V ∗ − V πt+1)

]
(st, at)−

T∑
t=1

[
V ∗(st+1)− V πt+1(st+1)

]
≤
√

2T log(1/δ)

1− γ

}
,

E8 =

{∥∥Pt−1(·|s, a)− P(·|s, a)
∥∥
1
≤
√

2SClog(T/δ)√
Nt−1(s, a) ∨ 1

,∀s ∈ S, a ∈ A, t ∈ [T ]

}
,

E9 =

{ T∑
t=1

∑
s′

P(s′|st, at) min
{ 100S2A2U5

(1− γ)5
(
Nt−1(s′) ∨ 1

) , 1

(1− γ)2

}
≤

T∑
t=1

min
{ 100S2A2U5

(1− γ)5
(
Nt−1(st+1) ∨ 1

) , 1

(1− γ)2

}
+

√
2TU

(1− γ)2

}
,
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where U = log(40SAT 3 log2 T/(δ(1 − γ)2)). For these high probability events, according to the
Lemma B.1, we have Pr(E4) ≥ 1−δ,Pr(E6) ≥ 1−δ,Pr(E7) ≥ 1−δ,Pr(E8) ≥ 1−δ,Pr(E9) ≥ 1−δ.
According to the Lemma B.2, we have Pr(E3) ≥ 1 − δ. According to the Lemma B.4, we have
Pr(E1) ≥ 1− δ. According to the Lemma B.6, we have Pr(E2) ≥ 1− δ. According to the Lemma
B.7, we have Pr(E5) ≥ 1− δ/(1− γ).

The next lemma shows that the total difference between the optimal variance and the variance induced
by π can be bounded in terms of Regret′(T ).
Lemma B.8. On the event E7, we have

T∑
i=1

(
V∗(si, ai)− Vπi (si, ai)

)
≤ 2Regret′(T )

1− γ
+

2 +
√

2TClog(1/δ)

(1− γ)2
.

Similar to Lemma B.8, the next lemma shows that the total difference between the estimated variance
and the variance induced by π can be upper-bounded in terms of Regret′(T ).
Lemma B.9. On the event E6 ∩ E8, we have

T∑
i=1

(
Vi−1(si, ai)− Vπi (si, ai)

)
≤ 2Regret′(T )

1− γ
+

9S
√

2ATClog(T/δ) log(3T )

(1− γ)2
.

B.1 Proof of Lemma 5.1

For simplicity, we denote U = log(SAT 2/δ) and H = b2 log T/(1− γ)c+ 1 and for h ∈ [H], we
define

Regret′(t, s, h) =
∑

1≤i≤t,si=s

γh
[
Vi+h(si+h)− V πi+h(si+h)

]
.

Then we have the following lemma.
Lemma B.10. For each t ∈ [T ], with probability at least 1− 4H2δ, for all s ∈ S, h ∈ [H], we have

Regret′(t, s, h) ≤
16SAU2

√
Nt(s)

(1− γ)2.5
+

4S2A1.5U3

(1− γ)3.5
.

In addition, if Nt(s) > 0, we have

Vt(s)− V ∗(s) ≤
20SAU2

(1− γ)2.5
√
Nt(s)

.

Now, we start the proof of Lemma 5.1,

Proof of Lemma 5.1. We prove this lemma by induction. At the first step t = 1, for all s ∈ S, we
have V1(s) = 1/(1− γ) ≥ V ∗(s). When Lemma 5.1 holds for the first t steps, we consider for each
s ∈ S, a ∈ A, then by the update rule (4.2), we have

Qt+1(s, a) = min
{
Qt(s, a), r(s, a) + γ[PtVt](s, a) + CγUCBt(s, a)

}
.

If Qt+1(s, a) = Qt(s, a), then by induction, we have

Qt+1(s, a) ≥ r(s, a) +
8γU

1− γ
≥ r(s, a) + γ[PV ∗](s, a) = Q∗(s, a),

where the first inequality holds due to (4.2) in Algorithm 1 and the second inequality holds due to
0 ≤ V ∗(s) ≤ 1/(1− γ). Otherwise, if Nt(s, a) = 0, then we have

Qt+1(s, a) = Qt(s, a) ≥ Q∗(s, a).

When Nt(s, a) > 0, with probability at least 1− δ, we have

Qt+1(s, a)−Q∗(s, a)

= γ[PtVt](s, a) + CγUCBt(s, a)− γ[PV ∗](s, a)

17



= CγUCBt(s, a) + γ[(Pt − P)V ∗](s, a) + γ[Pt(Vt − V ∗)](s, a)

≥ CγUCBt(s, a) + γ[(Pt − P)V ∗](s, a)

≥ CγUCBt(s, a)− Cγ

√
4V∗t (s, a)U

Nt(s, a) ∨ 1
− 8UCγ

(1− γ)
(
Nt(s, a) ∨ 1

)
≥ Cγ

√
8Vt(s, a)U

Nt(s, a) ∨ 1
− Cγ

√
4V∗t (s, a)U

Nt(s, a) ∨ 1
+ Cγ

√
8
∑
s′ Pt(s′|s, a) min

{
100Bt(s′), 1/(1− γ)2

}
Nt(s, a) ∨ 1

,

(B.1)

where the first inequality holds due to Vt(s) ≥ V ∗(s) , the second inequality holds due to Lemma B.6
and the third inequality holds due to the definition of UCBt in (4.3). For the term V∗t (s, a), we have

V∗t (s, a) = Es′∼Pt(·|s,a)
[(
V ∗(s′)− E[V ∗(s′)]

)2]
= Es′∼Pt(·|s,a)

[(
V ∗(s′)− Vt(s′)− E[V ∗(s′)− Vt(s′)] + Vt(s

′)− E[Vt(s
′)]
)2]

≤ 2Es′∼Pt(·|s,a)
[(
Vt(s

′)− E[Vt(s
′)]
)2]

+ 2Es′∼Pt(·|s,a)
[(
V ∗(s′)− Vt(s′)− E[V ∗(s′)− Vt(s′)]

)2]
≤ 2Vt(s, a) + 2Es′∼Pt(·|s,a)

[(
V ∗(s′)− Vt(s′)

)2]
, (B.2)

where the first inequality holds due to (x+ y)2 ≤ 2x2 + 2y2 and the second inequality holds due to
E
[
(X − E[X])2

]
≤ E[X2]. Substituting (B.2) into (B.1), with probability at least 1− 4(t+ 1)H2δ,

we have

Qt+1(s, a)−Q∗(s, a) ≥ Cγ

√
8Vt(s, a)U

Nt(s, a) ∨ 1
+ Cγ

√
8
∑
s′ Pt(s′|s, a) min

{
100Bt(s′), 1/(1− γ)2

}
Nt(s, a) ∨ 1

− Cγ

√
8Vt(s, a)U + 8UEs′∼Pt(·|s,a)

(
V ∗(s′)− Vt(s′)

)2
Nt(s, a) ∨ 1

≥ Cγ

√
8
∑
s′ Pt(s′|s, a) min

{
100Bt(s′), 1/(1− γ)2

}
Nt(s, a) ∨ 1

− Cγ

√
8UEs′∼Pt(·|s,a)

(
V ∗(s′)− Vt(s′)

)2
Nt(s, a) ∨ 1

≥ 0,

where the first inequality holds due to (B.1), the second inequality holds due to (B.2), the third
inequality holds due to

√
a+ b ≤

√
a +
√
b, the last inequality holds due to Lemma B.10 with

probability at least 1 − 4H2δ and induction hypothesis with probability at least 1 − 4tH2δ. In
addition, for all s ∈ S, we have

Vt+1(s) = max
a∈A

Qt+1(s, a) ≥ max
a∈A

Q∗(s, a) = V ∗(s).

Thus, by induction, we complete the proof of Lemma 5.1.

B.2 Proof of Lemma 5.2

Proof of Lemma 5.2. We have

T∑
t=1

γ
(
Vt−1(st+1)− V πt+1(st+1)

)
18



= γ

T∑
t=1

(
Vt−1(st+1)− Vt+1(st+1)

)
︸ ︷︷ ︸

I1

+ γ

T∑
t=1

(
Vt+1(st+1)− V πt+1(st+1)

)
︸ ︷︷ ︸

I2

.

For the term I1, we have
T∑
t=1

γ
(
Vt−1(st+1)− Vt+1(st+1)

)
≤ γ

T∑
t=1

∑
s∈S

[
Vt−1(s)− Vt+1(s)

]
= γ

∑
s∈S

T∑
t=1

[
Vt−1(s)− Vt+1(s)

]
= γ

∑
s∈S

(
V0(s) + V1(s)− VT (s)− VT+1(s)

)
≤ 2Sγ

1− γ
, (B.3)

where the first inequality holds due to Vt−1(s) ≥ Vt+1(s) by (4.2) in Algorithm 1, and the second
inequality holds due to 0 ≤ Vt(s) ≤ 1/(1− γ). For the term I2, we have

I2 = γ

T+1∑
t=2

(
Vt(st)− V πt (st)

)
= γRegret′(T ) + γ

(
VT+1(sT+1)− V πT+1(sT+1)

)
− γ
(
V1(s1)− V π1 (s1)

)
≤ γRegret′(T ) +

2γ

1− γ
, (B.4)

where the inequality holds due to 0 ≤ Vt(s), V
π
t (s) ≤ 1/(1− γ). Combining (B.3) and (B.4), we

complete the proof of Lemma 5.2.

B.3 Proof of Lemma 5.3

Proof of Lemma 5.3. On the event E , we have
T∑
t=1

γ
[
(Pt−1 − P)(Vt−1 − V ∗)

]
(st, at)

= γ

T∑
t=1

∑
s′∈S

(
Pt−1(s′|st, at)− P(s′|st, at)

)(
Vt−1(s′)− V ∗(s′))

≤
T∑
t=1

∑
s′∈S

[√
2P(s′|st, at)(1− P(s′|st, at))Clog(2ST/δ)

Nt−1(st, at) ∨ 1
+

C2 log(ST/δ)

3
(
Nt−1(st, at) ∨ 1

)]
×
(
Vt−1(s′)− V ∗(s′)

)
≤

T∑
t=1

∑
s′∈S

√
2Clog(ST/δ)

√
P(s′|st, at)

Nt−1(st, at) ∨ 1

(
Vt−1(s′)− V ∗(s′)

)
︸ ︷︷ ︸

I1

+

T∑
t=1

2SClog(ST/δ)

3(1− γ)
(
Nt−1(st, at) ∨ 1

)︸ ︷︷ ︸
I2

, (B.5)

where first inequality holds due to the definition of E2 and the second inequality holds due to
0 ≤ Vt+1(s′) − V ∗(s′) ≤ 1/(1 − γ). To bound term I1, we separate S into two subsets S1t ∪ S2t ,
where

S1t =

{
s ∈ S : P(s|st, at)

(
Nt−1(st, at) ∨ 1

)
≥ 8Clog(ST/δ)

(1− γ)2

}
, S2t = S/S1t .
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Then on the event E4, we have

I1 =

T∑
t=1

∑
s′∈S1

t

P(s′|st, at)
√

2Clog(ST/δ)

√
1

P(s′|st, at)
(
Nt−1(st, at) ∨ 1

)(Vt−1(s′)− V ∗(s′)
)

+

T∑
t=1

∑
s′∈S2

t

√
2Clog(ST/δ)P(s′|st, at)

(
Nt−1(st, at) ∨ 1

)
Nt−1(st, at) ∨ 1

(
Vt−1(s′)− V ∗(s′)

)
≤

T∑
t=1

∑
s′∈S1

t

(1− γ)P(s′|st, at)
(
Vt−1(s′)− V ∗(s′)

)
/2

+

T∑
t=1

∑
s′∈S2

t

4Clog(ST/δ)

3(1− γ)2
(
Nt−1(st, at) ∨ 1

)
≤

T∑
t=1

∑
s′∈S1

t

(1− γ)P(s′|st, at)
(
Vt−1(s′)− V ∗(s′)

)
/2 +

4S2AClog(ST/δ) log(3T )

3(1− γ)2

≤
T∑
t=1

∑
s′∈S

(1− γ)P(s′|st, at)
(
Vt−1(s′)− V ∗(s′)

)
/2 +

4S2AClog(ST/δ) log(3T )

3(1− γ)2

≤ (1− γ)/2 ·
[ T∑
t=1

(
Vt−1(st+1)− V ∗(st+1)

)
+

√
2T log(1/δ)

1− γ

]
+

4S2AClog(ST/δ) log(3T )

3(1− γ)2

≤ (1− γ)/2 ·
T∑
t=1

(
Vt−1(st+1)− V πt+1(st+1)

)
+
√

2TClog(1/δ) +
4S2AClog(ST/δ) log(3T )

3(1− γ)2

≤ (1− γ)/2 ·
[

Regret′(T ) +
(2S + 2)

1− γ

]
+
√

2TClog(1/δ) +
4S2AClog(ST/δ) log(3T )

3(1− γ)2
,

(B.6)

where the first inequality holds due to separate condition of P(s′), the second inequality holds due to
Lemma B.3, the third inequality holds due to Vt−1(s′) ≥ V ∗(s′), the fourth inequality holds due to
the definition of event E4, the fifth inequality holds due to V ∗ ≥ V πt+1, and the last inequality holds
due to Lemma 5.2. For the term I2, according to Lemma B.3, we have

I2 ≤
2S2AClog(ST/δ) log(3T )

3(1− γ)
. (B.7)

Substituting (B.6),(B.7) into (B.5), we complete the proof of Lemma 5.3.

B.4 Proof of Lemma 5.4

Proof of Lemma 5.4. On the event E1 ∩ E5 ∩ E7, we have

T∑
t=1

γ[(Pt−1 − P)V ∗](st, at)

≤
T∑
t=1

Cγ

√
2V∗(st, at)Clog(SAT/δ)

Nt−1(st, at) ∨ 1
+

2Clog(SAT/δ)Cγ
(1− γ)

(
Nt−1(st, at) ∨ 1

)
≤ Cγ

√
2Clog(SAT/δ)

√√√√ T∑
t=1

V∗(st, at)

√√√√ T∑
t=1

1

Nt−1(st, at) ∨ 1

+

T∑
t=1

2γClog(SAT/δ)

(1− γ)
(
Nt−1(st, at) ∨ 1

)
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≤ CγU
√

2SA

√√√√ T∑
t=1

V∗(st, at) +
2γSAU2

1− γ

= CγU
√

2SA

√√√√ T∑
t=1

Vπt (st, at) +

T∑
t=1

V∗(st, at)−
T∑
t=1

Vπt (st, at) +
2γSAU2

1− γ

≤ U
√

2SA

√
5T

1− γ
+

29U

3(1− γ)3
+

2Regret′(T )

1− γ
+

√
2TU

(1− γ)2
+

2SAU2

1− γ
, (B.8)

where the first inequality holds due to the definition of event E1, the second inequality holds due to
Cauchy-Schwarz inequality, the third inequality holds due to Lemma B.3 and the definition of U , and
the last inequality holds due to Lemma B.8 and the definition of event E5. Thus, we complete the
proof of Lemma 5.4.

B.5 Proof of Lemma 5.5

Proof of Lemma 5.5. For the term UCBt−1(st, at), we have

T∑
t=1

CγUCBt−1(st, at) ≤
T∑
t=1

Cγ

√
8UVt−1(st, at)

Nt−1(st, at) ∨ 1︸ ︷︷ ︸
I1

+

T∑
t=1

Cγ
8U

(1− γ)
(
Nt−1(st, at) ∨ 1

)︸ ︷︷ ︸
I2

+

T∑
t=1

Cγ

√
8
∑
s′ Pt(s′|st, at) min

{
100Bt(s′), 1/(1− γ)2

}
Nt−1(st, at) ∨ 1︸ ︷︷ ︸
I3

.

(B.9)

For the term I1, on the event E5 ∩ E6 ∩ E8, we have

I1 ≤ Cγ

√√√√8U

T∑
t=1

Vt−1(st, at)

√√√√ T∑
t=1

1

Nt−1(st, at) ∨ 1

≤ CγU
√

8SA

√√√√ T∑
t=1

Vt−1(st, at)

= CγU
√

8SA

√√√√ T∑
i=1

Vπt (st, at) +

T∑
t=1

Vt−1(st, at)−
T∑
i=1

Vπt (st, at)

≤ U
√

8SA

√
5T

1− γ
+

29U

3(1− γ)3
+

2Regret′(T )

1− γ
+

9SU
√
AT

(1− γ)2
, (B.10)

where the first inequality holds due to Cauchy-Schwarz inequality, the second inequality holds due to
Lemma B.3, the last inequality holds due to the definition of event E5 and Lemma B.9. For the term
I2, by Lemma B.3, we have

I2 =

T∑
t=1

8U

(1− γ)
(
Nt−1(st, at) ∨ 1

) ≤ 8SAU2

1− γ
. (B.11)

For the term I3, on the event E8 ∩ E9, we have

I3

≤

√√√√8

T∑
t=1

1

Nt−1(st, at) ∨ 1

√√√√ T∑
t=1

∑
s′

Pt(s′|st, at) min

{
100S2A2U5

(1− γ)5Nt−1(s′)
,

1

(1− γ)2

}
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≤
√

8SAU

√√√√ T∑
t=1

∑
s′

Pt(s′|st, at) min

{
100S2A2U5

(1− γ)5
(
Nt−1(s′) ∨ 1

) , 1

(1− γ)2

}
≤
√

8SAU ·√√√√ T∑
i=1

√
2SU

(1− γ)2
√
Nt(st, at) ∨ 1

+

T∑
t=1

∑
s′

P(s′|st, at) min

{
100S2A2U5

(1− γ)5
(
Nt−1(s′) ∨ 1

) , 1

(1− γ)2

}

≤
√

8SAU

√√√√SU
√

2AT

(1− γ)2
+

√
2TU

(1− γ)2
+

T∑
t=1

min

{
100S2A2U5

(1− γ)5
(
Nt−1(st+1) ∨ 1

) , 1

(1− γ)2

}

≤
√

8SAU

√
SU
√

2AT

(1− γ)2
+

√
2TU

(1− γ)2
+

100S3A2U6

(1− γ)5
, (B.12)

where the first inequality holds due to Cauchy-Schwarz inequality, the second inequality holds due to
Lemma B.3, the third inequality holds due to the definition of event E8, the forth inequality holds
due to the definition of event E9 and the last inequality holds due to Lemma B.3. Substituting (B.10),
(B.11) and (B.12) into (B.9), we complete the proof of Lemma 5.5.

C Proof of Lemmas in Section 5.2
C.1 Proof of Lemma 5.6

Proof of Lemma 5.6. We have

E∗
[ T∑
t=1

V ∗(st)− V πt (st)

]
= E∗

[ T∑
t=1

V ∗(st)−
∞∑
k=0

γkr(st+k, at+k)

]

= E∗
[ T∑
t=1

(
V ∗(st)−

t∑
k=0

γkr(st, at)
)
−

∞∑
t=T+1

T∑
k=0

γt−kr(st, at)

]

≥ E∗
[ T∑
t=1

V ∗(st)−
r(st, at)

1− γ

]
−

∞∑
t=T+1

T∑
k=0

γt−k

≥ E∗
[ T∑
t=1

V ∗(st)−
r(st, at)

1− γ

]
− 4

(1− γ)2
. (C.1)

where the first inequality holds due to 0 ≤ r(st, at) ≤ 1 and the last inequality holds due to∑∞
k=0 γ

k = 1/(1− γ). Thus, we finish the proof of Lemma 5.6.

C.2 Proof of Lemma 5.7

Proof of Lemma 5.7. In this proof, we follow the proof technique in [15] and [10]. For simplicity,
we denote ε =

√
A(1− γ)/K/24 and we first determine the optimal policy in these hard-to-learn

MDPs. According to (3.1), for optimal policy π∗, we have

Q∗(s, a) = r(s, a) + γ[PV ∗](s, a),

For each j ∈ [S] and state s = sj,1, the choice of action a will not effect the reward r(s, a) and the
probability transition function P(·|s, a). For optimal action a∗ at state s = sj,0, we have

V ∗(sj,0) = r(s, a) + γ[PV ∗](s, a∗)
= 0 + γP(sj,0|sj,0, a∗)V ∗(sj,0) + γP(sj,1|sj,0, a∗)V ∗(sj,1).

Since P(sj,0|sj,0, a∗) + P(sj,1|sj,0, a∗) = 1, we have

(1− γ)V ∗(sj,0) = γ
(
V ∗(sj,1)− V ∗(sj,0)

)
,
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and it implies that V ∗(sj,1) ≥ V ∗(sj,0). Therefore, for all action a 6= a∗j , we have Q∗(sj,0, a∗j ) ≥
Q∗(sj,0, a) and it further implies that the optimal action at state s = sj,0 is a∗j . Thus, according to
the optimal bellman equation 3.1, for each j ∈ [S], we have

V ∗(sj,0) = γ(1− γ + ε)V ∗(sj,1) + γ(γ − ε)V ∗(sj,0),

V ∗(sj,1) = 1 + γ(1− γ)V ∗(sj+1,1) + γ2V ∗(sj,1),

and it implies that the optimal value function V ∗ is

V ∗(sj,0) =
γ − γ2 + γε

(1− γ)(1− 2γ2 + γ + γε)
,

V ∗(sj,1) =
1− γ2 + γε

(1− γ)(1− 2γ2 + γ + γε)
.

When an agent visits the state set {sj,0, sj,1} for the i-th time, we denote the state in {sj,0, sj,1}
it visited as Xj,i, and the following action selected by the agent as Aj,i. For each j ∈ [S], by the
definition of Xj,i, we have

P(Xj,i = sj,1|Xj,i−1 = sj,0, Aj,i−1) = 1− γ + 1Aj,i=a∗j ε,

P(Xj,i = sj,0|Xj,i−1 = sj,0, Aj,i−1) = γ − 1a=a∗j ε,
P(Xj,i = sj,0|Xj,i−1 = sj,0, Aj,i−1) = 1− γ,
P(Xj,i = sj,1|Xj,i−1 = sj,1, Aj,i−1) = γ,

where the third equality holds because when Xj,i−1 leave state sj,0, sj,1, the next state in sj,0, sj,1
must be sj,0. Similar to the proof of Theorem 5 in [10], we focus on the first K visits to the state set
{sj,0, sj,1} and let random variable N0, N1 and N∗0 denote the total number of visit state sj,0, the
total number of visit state sj,1 and the total number of visit state sj,0 with action a∗j . By the same
argument as the proof of Theorem 5 in [10], for the random variable N1 and N∗0 , we have following
property:

E[N1] ≤ K

2
+

1

2(1− γ)
+
εE[N∗0 ]

1− γ
, (C.2)

and

E[N∗0 ] ≤ K

2A
+

1

2A(1− γ)
+
εK

2

√
K

A(1− γ)
+

εK

2
√
A(1− γ)

. (C.3)

Therefore, the regret can be upper bounded by

E∗
[ K∑
i=1

V ∗(Xj,i)−
r(Xj,i, Aj,i)

1− γ

]
= E[N0]

(
V ∗(sj,0)− 0

)
+ E[N1]

(
V ∗(sj,1)− 1

1− γ

)
=

(γ − γ2 + γε)
(
K − E[N1]

)
− (γ − γ2)E[N1]

(1− γ)(1− 2γ2 + γ + γε)

≥
Kγε
2 − γ −

γε
2(1−γ) −

E[N∗0 ]ε(2γ−2γ
2+γε)

1−γ

(1− γ)(1− 2γ2 + γ + γε)

≥

Kγε
2 − γ −

γε
2(1−γ) −

(
K
2A + 1

2A(1−γ) + εK
2

√
K

A(1−γ) + εK
2
√
A(1−γ)

)
ε(2γ−2γ2+γε)

1−γ

(1− γ)(1− 2γ2 + γ + γε)
. (C.4)

where the second inequality holds due to the fact that E[N0] + E[N1] = K, the third inequality holds
due to (C.2) and the last inequality holds due to (C.3). Since K ≥ 10SA/(1 − γ)4, γ > 2/3 and
A ≥ 30, (C.4) can be further bounded by

E∗
[ K∑
i=1

V ∗(Xj,i)−
r(Xj,i, Aj,i)

1− γ

]
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≥

Kγε
2 − γ −

γε
2(1−γ) −

(
K
2A + 1

2A(1−γ) + εK
2

√
K

A(1−γ) + εK
2
√
A(1−γ)

)
ε(2γ−2γ2+γε)

1−γ

(1− γ)(1− 2γ2 + γ + γε)

≥ γ ×

Kε
4 − 1− 3ε

(
5K
8A + εK

2

√
K

A(1−γ) + εK
2
√
A(1−γ)

)
(1− γ)(1− 2γ2 + γ + γε)

≥ γ ×

√
AK(1−γ)

576 − 1

(1− γ)(1− 2γ2 + γ + γε)

≥
√
AK

2304(1− γ)1.5
− 1

(1− γ)2
, (C.5)

where the second inequality holds to ε =
√
A(1− γ)/K/24 ≤ 1 − γ with K ≥ 10SA/(1 − γ)4,

the third inequality holds due to ε =
√
A(1− γ)/K/24 with A ≥ 30 and the last inequality holds

due to γ ≥ 2/3 and ε =
√
A(1− γ)/K/24 ≤ 1− γ. Therefore, we finish the proof of Lemma 5.7.

C.3 Proof of Lemma 5.8

Proof of Lemma 5.8. For each j ∈ [S] and t ∈ [T ], we denote H = blog T/(1− γ)c + 1, random
variable

Yj,i =

H∑
k=0

γkr(Xj,i+k, Aj,i+k),

and filtration Fj,i contain all random variable before Xj,i+H . For simplicity, we ignore the subscript
j and only focus on the subscript i.

Since Yi is Fi-measurable and 0 ≤ Yi ≤ 1/(1− γ) , for each k ∈ [H], with probability at least 1− δ,
we have

b tH c+1∑
i=bKH c+1

YiH+k ≤
b tH c+1∑
i=bKH c+1

E
[
YiH+k|F(i−1)H+k

]
+

√
2t

1− γ
log

1

δ

=

b tH c+1∑
i=bKH c+1

V πiH+k(XiH+k) +

√
2t

1− γ
log

1

δ

≤
b tH c+1∑
i=bKH c+1

V ∗(XiH+k) +

√
2t

1− γ
log

1

δ
, (C.6)

where the first inequality holds due to Lemma B.1 and the second inequality holds due to the definition
of optimal value function V ∗. Taking summation of (C.6), for all k ∈ [H], with probability at least
1−Hδ, we have

t∑
i=K+1

V ∗(Xi) +

√
2t log 1

δ log T

(1− γ)1.5
≥

t∑
i=K+1

Yi

=

t∑
i=K+1

H∑
k=0

γkr(Xi+k, Ai+k)

≥
t∑

i=K+1

r(Xi, Ai)

min(H,i−K−1)∑
k=0

γi

≥
t∑

i=K+1

r(Xi, Ai)

1− γ
− 4

(1− γ)2
,
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where the second inequality holds due to 0 ≤ r(s, a) ≤ 1. Finally, taking union for all j ∈ [S] and
t ∈ [T ], we complete the proof.

C.4 Proof of Lemma 5.9

Proof of Lemma 5.9. Let Yj,i be an indicator random variables which denote whether the agent at
state Xj,i with action Aj,i goes to the different state. Yj,i = 1 if the agent goes to the different state
and Yj,i = 0 if the agent stay at the same state. Let filtration Fj,i contain all random variables before
Xj,i. Then, for each j ∈ [S], with probability at least 1− δ, we have

K∑
i=1

Yj,i ≤
K∑
i=1

E
[
Yj,i|Fj,i−1

]
+

√
2K log

1

δ
≤ (1− γ + ε)K +

√
2K log

1

δ
≤ 3(1− γ)K,

(C.7)

where the first inequality holds due to Lemma B.1, the second inequality holds due to the definition
of our MDPs and the last one holds due to the selection of K. Similarly, with probability at least
1− δ, we have

5K∑
i=1

Yj.i ≥
2K∑
i=1

E
[
Yj,i|Fj,i−1

]
−
√

10K log
1

δ
≥ 5K(1− γ)−

√
10K log

1

δ
≥ 4(1− γ)K,

(C.8)

where the first inequality holds due to Lemma B.1, the second inequality holds due to the definition
of our MDPs and the last one holds due to the selection of K. Taking a union bound (C.7) and (C.8)
for all j ∈ [S], then we have (C.7) and (C.8) hold with probability at least 1− 2Sδ. Let Zj,i be the
number of times for the agent to start from state sj,i and travel the next different state in the first T
steps. By definition, we have

Zj,0 + Zj,1 =

Tj∑
i=1

Yj,i. (C.9)

By Pigeonhole principle, there exist a j∗ such that Tj∗ ≥ T/S = 10K > 5K. Therefore, we have

Zj∗,0 + Zj∗,1 =

Tj∗∑
i=1

Yj∗,i ≥
5K∑
i=1

Yj∗,i ≥ 4(1− γ)K. (C.10)

Furthermore, after leaving the state sj∗,0, the agent will visit all other states before arrive the state
sj∗,0 again. Thus, for any k ∈ [S], the difference between Zj∗,0 and Zk,0 is at most 1, so do Zj∗,1
and Zk,1. Therefore, for any k ∈ [S], we have

Zk,0 + Zk,1 ≥ Zj∗,0 + Zj∗,1 − 2 ≥ 4(1− γ)K − 2 > 3(1− γ)K ≥
K∑
i=1

Yk,i, (C.11)

where the second inequality holds due to (C.10), the third inequality holds since K > 2/(1− γ) and
the last one holds due to (C.7). Finally, by (C.9) we have Zk,0 + Zk,1 =

∑Tk
i=1 Yk,i. Combining it

with (C.11), we have
∑Tk
i=1 Yk,i >

∑K
i=1 Yk,i, which suggests that Tk > k. Thus, we complete the

proof.

D Proof of Lemmas in Appendix B
D.1 Proof of Lemma B.3

Proof of Lemma B.3. We have

t∑
i=1

1

Ni−1(si, ai) ∨ 1
=

∑
s∈S,a∈A

1 +
∑

s∈S,a∈A

Nt−1(s,a)∑
i=1

1

i
≤ SA+

∑
s∈S,a∈A

t∑
i=1

1

i
≤ SAClog(3T ).

(D.1)
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We also have
t∑
i=1

1

Ni−1(si) ∨ 1
=
∑
s∈S

1 +

Nt(s)∑
i=1

1

i
≤ S +

∑
s∈S

t∑
i=1

1

i
≤ SClog(3T ).

According to (D.1), for a subset C ⊆ [T ], we have∑
i∈C

1√
Ni−1(si, ai) ∨ 1

≤
√
|C|
∑
i∈C

1

Ni−1(si, ai) ∨ 1
≤
√
SAClog(3T )|C|,

where the first inequality holds due to Cauchy-Schwarz inequality and the second inequality holds
due to (D.1). Thus, we complete the proof.

D.2 Proof of Lemma B.4

Proof of Lemma B.4. For each s ∈ S, a ∈ A, we denote t0 = 0 and

ti = min
{
t|t > ti−1, (st, at) = (s, a)

}
. (D.2)

Here, ti is the time which state-action pair (s, a) appear for the ith time and the random variable ti is
a stopping time. Beside, the random variable V ∗(sti+1)(i = 1, 2., , ) are random variable with value
in
[
0, 1/(1− γ)

]
and variance V∗(s, a). By Lemma B.2 and a union bound, with probability at least

1− δ, for all s ∈ S, a ∈ A, τ ∈ [T ], we have
τ∑
i=1

V ∗(sti+1)−
τ∑
i=1

PV ∗(s, a) ≤
√

2τV∗(s, a) log(SAT/δ) +
2 log(SAT/δ)

3(1− γ)
.

Thus, for all τ ∈ [T ], we have[
(Ptτ+1 − P)V ∗

]
(s, a) =

1

τ

τ∑
i=1

V ∗(sti+1)− 1

τ

τ∑
i=1

PV ∗(s, a)

≤
√

2V∗(s, a)Clog(SAT/δ)

τ
+

C2 log(SAT/δ)

3(1− γ)τ

=

√
2V∗(s, a)Clog(SAT/δ)

Ntτ (s, a)
+

C2 log(SAT/δ)

3(1− γ)Ntτ (s, a)
. (D.3)

In addition, for τ = 0, we have[
(Ptτ+1 − P)V ∗

]
(s, a) ≤ 1

1− γ
≤ C2 log(SAT/δ)

3(1− γ)
(
Ntτ (s, a) ∨ 1

) , (D.4)

where the first inequality holds due to 0 ≤ V ∗(s) ≤ 1/(1− γ) and the second inequality holds due
to Ntτ (s, a) = 0. Since Pt and Nt−1(s, a) changed only when t = tτ + 1, we complete the proof by
combining (D.3) and (D.4).

D.3 Proof of Lemma B.6

Proof of Lemma B.6. For each s ∈ S, a ∈ A, we denote t0 = 0 and denote

ti = min
{
t|t > ti−1, (st, at) = (s, a)

}
. (D.5)

Here, ti is the time which state-action pair (s, a) appear for the ith time and the random variable ti is
a stopping time. Beside, the random variable V ∗(sti+1)(i = 1, 2., , ) are random variable with value
in
[
0, 1/(1− γ)

]
and variance V∗(s, a). By Lemma B.5 and a union bound, with probability at least

1− δ, for all s ∈ S, a ∈ A, τ ∈ [T ], we have
τ∑
i=1

PV ∗t (s, a)−
τ∑
i=1

V ∗(sti+1) ≤
√

2τV∗tτ (s, a) log(SAT/δ) +
7 log(SAT/δ)

3(1− γ)
.
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Thus, for all τ ∈ [T ], we have[
(P− Ptτ+1)V ∗

]
(s, a) =

1

τ

∣∣∣ τ∑
i=1

V ∗(sti+1)−
τ∑
i=1

PV ∗(s, a)
∣∣∣

≤
√

2V∗tτ (s, a)Clog(SAT/δ)

τ
+

C7 log(SAT/δ)

3(1− γ)τ

=

√
2V∗tτ (s, a)Clog(SAT/δ)

Ntτ (s, a)
+

C7 log(SAT/δ)

3(1− γ)Ntτ (s, a)
. (D.6)

In addition, for τ = 0, we have[
(P− Ptτ+1)V ∗

]
(s, a) ≤ 1

1− γ
≤ C7 log(SAT/δ)

3(1− γ)
(
Ntτ (s, a) ∨ 1

) , (D.7)

where the first inequality holds due to 0 ≤ V ∗(s) ≤ 1/(1− γ) and the second inequality holds due
to Ntτ (s, a) = 0. Since Pt,V∗t−1 and Nt−1(s, a) changed only when t = tτ + 1, we complete the
proof by combining (D.6) and (D.7).

D.4 Proof of Lemma B.7

Proof of Lemma B.7. For simplicity, we denoteH = b1/(1−γ)c+1, T ′ = bT/Hc+1 and filtration
Ft contained all random variables before first t+H steps. Then for every t ∈ [T ], we have

1

(1− γ)2
≥ E

[( ∞∑
i=0

γir(st+i, at+i)
)
− V πt (st)|Ft−H

]2
= E

[ ∞∑
i=0

γi
(
r(st+i, at+i) + γV πt+i+1(st+i+1)− V πt+i(st+i)

)
|Ft−H

]2
= E

[ ∞∑
i=0

γ2i
[
r(st+i, at+i) + γV πt+i+1(st+i+1)− V πt+i(st+i)

]2
|Ft−H

]

= E
[ ∞∑
i=0

γ2i+2Vπt+i(st+i, at+i)|Ft−H
]

≥ E
[ H∑
i=0

γ2i+2Vπt+i(st+i, at+i)︸ ︷︷ ︸
Xt

|Ft−H
]
, (D.8)

where the first inequality holds due to 0 ≤ r(s, a) ≤ 1, 0 ≤ V πt (s) ≤ 1/(1 − γ) and the second
inequality holds due to Vπt+i(st+i, at+i) ≥ 0. For the random variable Xt, we have

|Xt| ≤
H∑
i=0

γ2i+2

(1− γ)2
≤ 1

(1− γ)3
, Var

[
|Xt||Ft−H

]
≤ (max |Xt|)E[Xt|Ft−H ] ≤ 1

(1− γ)5
,

Since Xt is Ft-measurable and E[Xt|Ft−H ] ≤ 1/(1− γ)2, for each i ∈ [H], by Lemma B.2, with
probability at least 1− δ, we have

T ′∑
j=0

XjH+i ≤
T ′∑
j=0

E[XjH+i|F(j−1)H+i] +

√
2T ′ log(1/δ)

(1− γ)5
+

2 log(1/δ)

3(1− γ)3

≤ T ′

(1− γ)2
+

√
2T ′ log(1/δ)

(1− γ)5
+

2 log(1/δ)

3(1− γ)3
. (D.9)

Taking summation for (D.9) with all i ∈ [H], with probability at least 1−Hδ, we have

T∑
t=1

Xt =

H∑
i=1

T ′∑
j=0

XjH+i
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≤
H∑
i=1

(
T ′

(1− γ)2
+

√
2T ′ log(1/δ)

(1− γ)5
+

2 log(1/δ)

3(1− γ)3

)

≤ T

(1− γ)2
+

√
4T log(1/δ)

(1− γ)6
+

4 log(1/δ)

3(1− γ)4

≤ 2T

(1− γ)2
+

7 log(1/δ)

3(1− γ)4
, (D.10)

where the first inequality holds due to (D.9), the second inequality holds due to T ′ = bT/Hc + 1
and the third inequality holds due to x2 + y2 ≥ 2xy. By the definition of Xt, we have

T∑
t=1

Xt =

T∑
t=1

H∑
i=0

γ2i+2Vπt+i(st+i, at+i)

≥
T∑
t=1

Vπt (st, at)

min {H,t−1}∑
i=0

γ2i+2

=

H∑
i=0

γ2i+2
T∑
t=1

Vπt (st, at)−
H∑
t=1

Vπt (st, at)

H∑
i=t

γ2i+2

≥ γ2 − γ2H+4

1− γ2
T∑
t=1

Vπt (st, at)−
1

(1− γ)2

H∑
t=1

H∑
i=t

γ2i+2, (D.11)

where the first inequality holds due to Vπt (st, at) ≥ 0 and the second inequality holds due to
Vπt (st, at) ≤ 1/(1− γ)2. To further bound (D.11), we have

γ2 − γ2H+4

1− γ2
=

γ2

1− γ2
(1− γ2H+2) ≥ γ2

1− γ2
(1− γ2/(1−γ)) ≥ 4 · γ2

5(1− γ2)
≥ 2γ2

5(1− γ)
,

(D.12)

where the first inequality holds since 2H+ 2 = 2b1/(1−γ)c+ 2 ≥ 2/(1−γ), the second inequality
holds since 0 ≤ γ1/(1−γ) ≤ 0.4 when 0 ≤ γ ≤ 1, the last one holds since 1 + γ ≤ 2. We also have

H∑
t=1

H∑
i=t

γ2i+2 ≤
H∑
t=1

γ2t+2

1− γ2
≤ γ4

(1− γ2)2
≤ γ4

(1− γ)2
. (D.13)

Substituting (D.12) and (D.13) into (D.11), we have

T∑
t=1

Xt ≥
2γ2

5(1− γ)

T∑
t=1

Vπt (st, at)−
γ4

(1− γ)4
. (D.14)

Finally, substituting (D.14) into (D.10), we have

γ2
T∑
t=1

Vπt (st, at) ≤
5T

1− γ
+

35 log(1/δ)

6(1− γ)3
+

5γ4

2(1− γ)3
≤ 5T

1− γ
+

25 log(1/δ)

3(1− γ)3
.

Thus, we complete the proof.

D.5 Proof of Lemma B.8

Proof of Lemma B.8. On the event E7, we have

T∑
i=1

(V∗(si, ai)− Vπi (si, ai)) ≤
t∑
i=1

[
P
(
(V ∗)2 − (V πi+1)2

)]
(si, ai)

=

T∑
i=1

[
P(V ∗ − V πi+1)(V ∗ + V πi+1)

]
(s, a)
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≤ 2

1− γ

T∑
i=1

[
P(V ∗ − V πi+1)

]
(si, ai)

≤ 2

1− γ

T∑
i=1

(V ∗(si+1)− V πi+1(si+1)) +

√
2T log(1/δ)

(1− γ)2

≤ 2

1− γ
Regret′(T ) +

√
2T log(1/δ)

1− γ
+

2

(1− γ)2
,

where the first inequality holds because of Lemma 5.1, the second inequality holds due to 0 ≤
V ∗(s), V πi+1(s) ≤ 1

1−γ , the third inequality holds due to the definition of E7 and the last inequality
holds due to 0 ≤ V ∗(s) ≤ Vi(s) ≤ 1/1− γ. Thus, we complete the proof.

D.6 Proof of Lemma B.9

Proof of Lemma B.9.
T∑
i=1

(Vi−1(si, ai)− Vπi (si, ai)) =

T∑
i=1

Es′∼Pi−1(·|si,ai)[V
2
i−1(s′)]− Es′∼Pi−1(·|si,ai)[Vi−1(s′)]2

−
T∑
i=1

Es′∼P(·|si,ai)[V
π
i+1(s′)2]− Es′∼P(·|si,ai)[V

π
i+1(s′)]2

≤
T∑
i=1

Es′∼Pi−1(·|si,ai)[V
2
i−1(s′)]− Es′∼P(·|si,ai)[V

2
i−1(s′)]︸ ︷︷ ︸

I1

+

T∑
i=1

Es′∼P(·|si,ai)[V
2
i−1(s′)]− Es′∼P(·|si,ai)[V

π
i+1(s′)2]︸ ︷︷ ︸

I2

+

T∑
i=1

Es′∼P(·|si,ai)[V
∗(s′)]2 − Es′∼Pi−1(·|si,ai)[V

∗(s′)]2︸ ︷︷ ︸
I3

,

where the inequality holds due to Vi−1(s′) ≥ V ∗(s′) ≥ V πi+1(s′).

By the definition of event E8, we have∥∥Pi−1(·|s, a)− P(·|s, a)
∥∥
1
≤
√

2SClog(T/δ)√
Ni−1(s, a) ∨ 1

. (D.15)

Thus, for the term I1, since 0 ≤ V 2
i−1(s′) ≤ 1/(1− γ)2, we have

I1 ≤
T∑
i=1

√
2SClog(T/δ)

(1− γ)2
√
Ni−1(si, ai) ∨ 1

≤
S
√

2ATClog(3T )Clog(T/δ)

(1− γ)2
, (D.16)

where the first inequality holds due to (D.15) and the second inequality holds due to Lemma B.3. For
the term I2, on the event E6, we have

I2 ≤
T∑
i=1

[
P
(
(Vi−1)2 − (V πi+1)2

)]
(si, ai)

=

T∑
i=1

[
P(Vi−1 − V πi+1)(Vi−1 + V πi+1)

]
(s, a)

≤ 2

1− γ

T∑
i=1

[
P(Vi−1 − V πi+1)

]
(si, ai)
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≤ 2

1− γ

T∑
i=1

(Vi−1(si+1)− V πi+1(si+1)) +

√
2TClog(2/δ)

1− γ

≤ 4S

1− γ
+

2

1− γ

T∑
i=1

(Vi+1(si+1)− V πi+1(si+1)) +

√
2Clog(T/δ)

(1− γ)2

≤ 2

1− γ
Regret′(T ) +

√
2TClog(1/δ)

(1− γ)2
+

4S + 2

(1− γ)2
, (D.17)

where the first inequality holds due to Vi−1(s′) ≥ V ∗(s′) ≥ V πi+1(s′), the second inequality holds
due to 0 ≤ Vi−1(s′), V πi+1(s′) ≤ 1/(1− γ), the third inequality holds due to the definition of event
E6 and the forth inequality holds due to Vi−1(s′) ≥ Vi+1(s′).

For the term I3, since 0 ≤ V ∗(s′)2 ≤ 1/(1− γ)2, on the event E8, we have

I3 ≤
T∑
i=1

√
2S log(T/δ)

(1− γ)2
√
Ni−1(si, ai)

≤
S
√

2AT log(T/δ) log(3T )

(1− γ)2
, (D.18)

where the first inequality holds due to (D.15) and the second inequality holds due to Lemma B.3.
Taking an union bound for (D.16), (D.17) and (D.18), with probability at least 1− 3δ, we have

t∑
i=1

(Vi−1(si, ai)− Vπi (si, ai)) ≤
2Regret′(T )

1− γ
+

9S
√

2AT log(T/δ) log(3T )

(1− γ)2
.

D.7 Proof of Lemma B.10

Proof of Lemma B.10. For each i ∈ [H],s ∈ S and t ∈ [T ], if Nt(s) = 0, the we have

Regret′(t, s, h) = 0 ≤
16SAU2

√
Nt(s)

(1− γ)2.5
+

20S2A1.5U4.5

(1− γ)3.5
.

Otherwise, we have

Regret′(t, s, h) =
∑

1≤i≤t,si=s

γh
[
Vi+h(si+h)− V πi+h(si+h)

]
=

∑
1≤i≤t,si=s

γh
[
Qt(si+h, ai+h)− V πi+h(si+h)

]
≤

∑
1≤i≤t,si=s

γh+1[Pi+h−1Vi+h−1](si+h, ai+h) + γhUCBi+h−1(si+h, ai+h)

− γh+1PV πi+h+1(si+h, ai+h)

= I1 + I2 + I3 + γhI4 + Regret′(t, s, h+ 1), (D.19)

where the first inequality holds due to definition update rule (4.2). I1, . . . , I4 are defined as follows.

I1 =
∑

1≤i≤t,si=s

γh+1(Vi+h−1(si+h+1)− Vi+h+1(si+h+1)),

I2 =
∑

1≤i≤t,si=s

γh+1[(Pi+h−1 − P)Vi+h−1](si+h, ai+h),

I3 =
∑

1≤i≤t,si=s

γh+1
[
P(Vi+h−1 − V πi+h+1)

]
(si+h, ai+h),

− γh+1
[
Vi+h−1(si+h+1)− V πi+h+1(si+h+1)

]
,

I4 =
∑

1≤i≤t,si=s

UCBi+h−1(si+h, ai+h).
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For the term I1, we have∑
1≤i≤t,si=s

γh+1(Vi+h−1(si+h+1)− Vi+h+1(si+h+1)) ≤
t∑
i=1

∑
s′∈S

Vi+h−1(s′)− Vi+h+1(s′)

≤ 2S

1− γ
, (D.20)

where the first inequality holds due to Vi+h−1(s′) ≥ Vi+h+1(s′) and the second inequality holds due
to 0 ≤ Vt(s) ≤ 1/(1− γ).

For the term I2, with probability at least 1− δ, we have∑
1≤i≤t,si=s

γh+1[(Pi+h−1 − P)Vi+h−1](si+h, ai+h)

≤
∑

1≤i≤t,si=s

γh+1
√

2SU

(1− γ)
√
Ni+h−1(si+h, ai+h) ∨ 1

≤ γh+1
√

2SU

(1− γ)

√
Nt(s)

∑
1≤i≤t,si=s

1

Ni+h−1(si+h, ai+h) ∨ 1

≤
√

2SU

1− γ
√
Nt(s)SAU

=
SU
√

2Nt(s)A

1− γ
, (D.21)

where the first inequality holds due to Lemma B.1 and the definition of U , the second inequality
holds due to Cauchy-Schwarz inequality and the third inequality holds due to Lemma B.3.

For the term I3, Since the random process si+h+1 ∼ P(·|si+h, ai+h) is dependent with whether
si+1, .., si+h+1 = s, we cannot directly use Lemma B.1 to bound this term. However, we can use the
same technique in the proof of Lemme B.7, which divide the time horizon into H sub-horizon and
use Lemma B.1 for each sub-horizon. Compared with the upper bound of I3 in proof of Theorem 4.5,
this technique will lead to a gap of

√
H and we have∑

i≤t,si=s

γh+1
[
P(Vi+h−1 − V πi+h+1)

]
(si+h, ai+h)− γh+1

[
Vi+h−1(si+h+1)− V πi+h+1(si+h+1)

]
≤
√

2Nt(s)U

(1− γ)

√
H

≤
2U
√
Nt(s)

(1− γ)1.5
, (D.22)

where the second inequality holds due to the definition of U . For the term I4, we have∑
1≤i≤t,si=s

UCBi+h−1(si+h, ai+h)

≤
∑

1≤i≤t,si=s

√
8UVi+h−1(si+h, ai+h)

Ni+h−1(si+h, ai+h) ∨ 1︸ ︷︷ ︸
I41

+
∑

1≤i≤t,si=s

8U

(1− γ)
(
Ni+h−1(si+h, ai+h) ∨ 1

)
︸ ︷︷ ︸

I42

+
∑

1≤i≤t,si=s

√
8
∑
s′ Pi+h(s′|si+h, ai+h) min

{
100Bi+h(s′), 1/(1− γ)2

}
Ni+h−1(si+h, ai+h) ∨ 1︸ ︷︷ ︸

I43

. (D.23)

For the term I41, with probability at least 1− δ, we have∑
1≤i≤t,si=s

√
8UVi+h−1(si+h, ai+h)

Ni+h−1(si+h, ai+h) ∨ 1
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≤
√

8U

√ ∑
1≤i≤t,si=s

Vi+h−1(si+h, ai+h)

√ ∑
1≤i≤t,si=s

1

Ni+h−1(si+h, ai+h) ∨ 1

≤ U
√

8SA

√ ∑
1≤i≤t,si=s

Vi+h−1(si+h, ai+h)

≤ U
√

8SA

√
2Nt(s)

(1− γ)2
, (D.24)

where the first inequality holds due to Cauchy-Schwarz inequality, the second inequality holds due to
Lemma B.3, the last inequality holds due to 0 ≤ Vi+h−1(si+h, ai+h) ≤ 1/(1− γ)2.

For the term I42, by Lemma B.3, we have∑
1≤i≤t,si=s

8U

(1− γ)
(
Ni+h−1(si+h, ai+h) ∨ 1

) ≤ 8SAU2

1− γ
. (D.25)

For the term I43, with probability at least 1− 2δ, we have

∑
1≤i≤t,si=s

√
8
∑
s′ Pi+h(s′|si+h, ai+h) min

{
100Bi+h(s′), 1/(1− γ)2

}
Ni+h−1(si+h, ai+h) ∨ 1

≤
√

8
∑

1≤i≤t,si=s

1

Ni+h−1(si+h, ai+h) ∨ 1

·

√√√√ ∑
1≤i≤t,si=s

∑
s′

Pi+h(s′|si+h, ai+h) min

{
100Bi+h(s′),

1

(1− γ)2

}

≤
√

8SAU

√√√√ ∑
1≤i≤t,si=s

∑
s′

Pi+h(s′|si+h, ai+h) min

{
100Bi+h(s′),

1

(1− γ)2

}

≤
√

8SAU

[ ∑
1≤i≤t,si=s

( √
SU

(1− γ)2
√
Ni+h−1(si+h, ai+h) ∨ 1

+
∑
s′

P(s′|s, a) min

{
100Bi+h(s′),

1

(1− γ)2

})]1/2
≤
√

8SAU

[
SU
√
ANt(s)

(1− γ)2
+

√
2Nt(s)U

(1− γ)2

+
∑

1≤i≤t,si=s

min

{
100S2A2U5

(1− γ)5
(
Ni+h−1(si+h+1) ∨ 1

) , 1

(1− γ)2

}]1/2

≤
√

8SAU

√
SU
√
ANt(s)

(1− γ)2
+

√
2Nt(s)U

(1− γ)2
+

100S3A2U6

(1− γ)5
, (D.26)

where the first inequality holds due to Cauchy-Schwarz inequality, the second inequality holds due to
Lemma B.3, the third inequality holds due to Lemma B.1, the forth inequality holds due to Lemma
B.1 and the last inequality holds due to Lemma B.3. Substituting (D.20), (D.21), (D.22), (D.23) into
(D.19), with probability at least 1− 4Hδ, we have

Regret′(t, s, h) ≤ Regret′(t, s, h+ 1) +
16SAU

√
Nt(s)

(1− γ)1.5
+

20S2A1.5U3.5

(1− γ)2.5
. (D.27)

Notice that

Regret′(t, s,H) =
∑

1≤i≤t,si=s

γH
[
Vi+H(si+H)− V πi+H(si+H)

]
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≤
∑

1≤i≤t,si=s

γH

1− γ

≤
∑

1≤i≤t,si=s

1

T

≤ 1,

where the first inequality holds due to Vi+H(si+H) − V πi+H(si+H) ≤ 1/(1− γ) and the second
inequality holds due to definition of H . Thus, taking summation of (D.27) with all h ∈ [H], with
probability at least 1−H2δ, we have

Regret′(t, s, 0) ≤
16SAU2

√
Nt(s)

(1− γ)2.5
+

20S2A1.5U4.5

(1− γ)3.5
. (D.28)

In addition, if Nt(s) > 0, we have

Vt(s)− V ∗(s) ≤
1

Nt(s)

∑
1≤i≤t,si=s

Vi(s)− V ∗(s)

≤ 1

Nt(s)

∑
1≤i≤t,si=s

[Vi(s)− V πi (s)]

≤ 16SAU2

(1− γ)2.5
√
Nt(s)

+
20S2A1.5U4.5

(1− γ)3.5Nt(s)
,

where the first inequality holds due to Vi(s) is decreasing, the second inequality holds due to V ∗(s) ≥
V πi (s) and the third inequality holds due to (D.28). Notice that when Nt(s) ≥ S2AU3/(1− γ)2,
we have

Vt(s)− V ∗(s) ≤
16SAU2

(1− γ)2.5
√
Nt(s)

+
20S2A1.5U4.5

(1− γ)3.5Nt(s)
≤ 36SAU2

(1− γ)2.5
√
Nt(s)

.

Otherwise, we have

Vt(s)− V ∗(s) ≤
1

1− γ
≤ 36SAU2

(1− γ)2.5
√
Nt(s)

.

Thus, we complete the proof of Lemma B.10.
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