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A. OBJECTNAV and Imitation Learning
A.1. OBJECTNAV

In OBJECTNAV an agent is tasked with searching for an in-
stance of the specified object category (e.g., ‘bed’) in an
unseen environment. The agent must perform this task
using only egocentric perceptions. Specifically, a RGB
camera, Depth sensor2, and a GPS+Compass sensor that
provides location and orientation relative to the start po-
sition of the episode. The action space is discrete and
consists of MOVE_FORWARD (0.25m), TURN_LEFT (30◦),
TURN_RIGHT (30◦), LOOK_UP (30◦), LOOK_DOWN (30◦),
and STOP actions. An episode is considered successful if the
agent stops within 1m Euclidean distance of the goal object
within 500 steps and is able to view the object by taking turn
actions [14].
We use scenes from the HM3D-Semantics v0.1 dataset [16].
The dataset consists of 120 scenes and 6 unique goal object
categories. We evaluate our agent using the train/val/test
splits from the 2022 Habitat Challenge3.

A.2. OBJECTNAV Demonstrations

Ramrakhya et al. [1] collected OBJECTNAV demonstrations
for the Matterport3D dataset [15]. We begin our study by
replicating this effort and collect demonstrations for the
HM3D-Semantics v0.1 dataset [16]. We use Ramrakhya et
al.’s Habitat-WebGL infrastructure to collect 77k demon-
strations, amounting to ∼2378 human annotation hours.

A.3. Imitation Learning from Demonstrations

We use behavior cloning to pretrain our OBJECTNAV policy
on the human demonstrations we collect. Let πBC

θ (at | ot)
denote a policy parametrized by θ that maps observations
ot to a distribution over actions at. Let τ denote a trajec-
tory consisting of state, observation, action tuples: τ =(
s0, o0, a0, . . . , sT , oT , aT

)
and T =

{
τ (i)

}N

i=1
denote a

dataset of human demonstrations. The optimal parameters
are

θ∗ = arg minθ

N∑
i=1

∑
(ot,at)∈τ(i)

− log
(
πBC
θ (at | ot)

)
(1)

We use inflection weighting [27] to adjust the loss function to
upweight timesteps where actions change (i.e. at−1 ̸= at).
Our ObjectNav policy architecture is a simple CNN+RNN
model from [28]. To encode RGB input (it = CNN(It)),
we use a ResNet50 [29]. Following [28], the CNN is first
pre-trained on the Omnidata starter dataset [30] using the
self-supervised pretraining method DINO [31] and then fine-
tuned during OBJECTNAV training. The GPS+Compass

2We don’t use this sensor as we don’t find it helpful.
3https://aihabitat.org/challenge/2022/

inputs, Pt = (∆x,∆y,∆z), and Rt = (∆θ), are passed
through fully-connected layers pt = FC(Pt), rt = FC(Rt)
to embed them to 32-d vectors. Finally, we convert the
object goal category to one-hot and pass it through a fully-
connected layer gt =FC(Gt), resulting in a 32-d vector. All
of these input features are concatenated to form an observa-
tion embedding, and fed into a 2-layer, 2048-d GRU at every
timestep to predict a distribution over actions at - formally,
given current observations ot = [it, pt, rt, gt], (ht, at) =
GRU(ot, ht−1). To reduce overfitting, we apply color-jitter
and random shifts [32] to the RGB inputs.

B. RL Finetuning
Our motivation for RL-finetuning is two-fold. First, finetun-
ing may allow for higher performance as behavior cloning
is known to suffer from a train/test mismatch – when train-
ing, the policy sees the result of taking ground-truth actions,
while at test-time, it must contend with the consequences
of its own actions. Second, collecting more human demon-
strations on new scenes or simply to improve performance
is time-consuming and expensive. On the other hand, RL-
finetuning is trivially scalable (once annotated 3D scans are
available) and has the potential to reduce the amount of
human demonstrations needed.

B.1. Setup

The RL objective is to find a policy πθ(a|s) that maximizes
expected sum of discounted future rewards. Let τ be a
sequence of object, action, reward tuples (ot, at, rt) where
at ∼ πθ(· | ot) is the action sampled from the agent’s policy,
and rt is the reward. For a discount factor γ, the optimal
policy is

π∗ = argmax
π

Eτ∼π[RT ], where RT =

T∑
t=1

γt−1rt. (2)

To solve this maximization problem, actor-critic RL methods
learn a state-value function V (s) (also called a critic) in
addition to the policy (also called an actor). The critic V (st)
represents the expected value of returns Rt when starting
from state st and acting under the policy π, where returns
are defined as Rt =

∑T
i=t γ

i−tri. We use DD-PPO [33], a
distributed implementation of PPO [34], an on-policy RL
algorithm. Given a θ-parameterized policy πθ and a set of
rollouts, PPO updates the policy as follows. Let Ât = Rt −
V (st), be the advantage estimate and pt(θ) =

πθ(at|ot)
πθold (at|ot) be

the ratio of the probability of action at under current policy
and under the policy used to collect rollouts. The parameters
are updated by maximizing:

JPPO(θ) = Et

[
min

(
pt(θ)Ât, clip(pt(θ), 1− ϵ, 1+ ϵ)Ât

)]
(3)
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Figure 5. OBJECTNAV trajectories for policies trained with IL+RL on 1) Human Demonstrations, 2) Shortest Paths, and 3) Frontier
Exploration Demonstrations.

We use a sparse success reward. Sparse success is sim-
ple (does not require hyperparameter optimization) and has
fewer unintended consequences (e.g. Maksymets et al. [17]
showed that typical dense rewards used in OBJECTNAV actu-
ally penalize exploration, even though exploration is neces-
sary for OBJECTNAV in new environments). Sparse rewards
are desirable but typically difficult to use with RL (when ini-
tializing training from scratch) because they result in nearly
all trajectories achieving 0 reward, making it difficult to learn.
However, since we pretrain with IL, we do not observe any
such pathologies.

Figure 6. Learning rate schedule for RL Finetuning.

B.2. Finetuning Methodology

We use the behavior cloned policy πBC
θ weights to initialize

the actor parameters. However, notice that during behavior
cloning we do not learn a critic nor is it easy to do so – a
critic learned on human demonstrations (during behavior
cloning) would be overly optimistic since all it sees are
successes. Thus, we must learn the critic from scratch during
RL. Naively finetuning the actor with a randomly-initialized

critic leads to a rapid drop in performance4 (see Fig. 8) since
the critic provides poor value estimates which influence the
actor’s gradient updates (see Eq.(3)). We address this issue
by using a two-phase training regime:
Phase 1: Critic Learning. In the first phase, we rollout
trajectories using the frozen policy, pre-trained using IL, and
use them to learn a critic. To ensure consistency of rollouts
collected for critic learning with RL training, we sample
actions (as opposed to using argmax actions) from the pre-
trained IL policy: at∼πθ(st). We train the critic until its
loss plateaus. In our experiments, we found 8M steps to be
sufficient. In addition, we also initialize the weights of the
critic’s final linear layer close to zero to stabilize training.
Phase 2: Interactive Learning. In the second phase, we
unfreeze the actor RNN5 and finetune both actor and critic
weights. We find that naively switching from phase 1 to
phase 2 leads to small improvements in policy performance
at convergence. We gradually decay the critic learning rate
from 2.5× 10−4 to 1.5× 10−5 while warming-up the policy
learning rate from 0 to 1.5×10−5 between 8M to 12M steps,
and then keeping both at 1.5× 10−5 through the course of
training. See Fig. 6. We find that using this learning rate
schedule helps improve policy performance. For parameters
that are shared between the actor and critic (i.e. the RNN), we
use the lower of the two learning rates (i.e. always the actor’s
in our schedule). To summarize our finetuning methodology:
– First, we initialize the weights of the policy network with

the IL-pretrained policy and initialize critic weights close
to zero. We freeze the actor and shared weights. The only
learnable parameters are in the critic.

– Next, we learn the critic weights on rollouts collected

4After the initial drop, the performance increases but the improvements
on success are small.

5The CNN and non-visual observation embedding layers remain frozen.
We find this to be more stable.
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from the pretrained, frozen policy.
– After training the critic, we warmup the policy learning

rate and decay the critic learning rate.
– Once both critic and policy learning rate reach a fixed

learning rate, we train the policy to convergence.

B.3. Results

Comparing with the RL-finetuning approach in VPT [21].
We start by comparing our proposed RL-finetuning approach
with the approach used in VPT [21]. Specifically, [21] pro-
posed initializing the critic weights to zero, replacing entropy
term with a KL-divergence loss between the frozen IL policy
and the RL policy, and decay the KL divergence loss coeffi-
cient, ρ, by a fixed factor after every iteration. Notice that
this prevents the actor from drifting too far too quickly from
the IL policy, but does not solve uninitialized critic problem.
To ensure fair comparison, we implement this method within
our DD-PPO framework to ensure that any performance dif-
ference is due to the fine-tuning algorithm and not tangential
implementation differences. Complete training details are
in the Appendix F.3. We keep hyperparameters constant for
our approach for all experiments. Table 3 reports results
on HM3D VAL for the two approaches using 20k human
demonstrations. We find that PIRLNav achieves +2.1%
Success compared to VPT and comparable SPL.

Method Success (↑) SPL (↑)

1) IL 52.0% 20.6%
2) IL→RL-FT w/ VPT [21] 60.1% 29.1%

3) PIRLNav (Ours) 62.2% 28.7%

Table 3. Comparison with VPT on HM3D VAL [16, 35]

Method Success (↑) SPL (↑)

1) IL 52.0% 20.6%
2) IL→RL-FT 54.8% 29.1%
3) IL→RL-FT (+ Critic Learning) 55.5% 26.7%
4) IL→RL-FT (+ Critic Learning, Critic Decay) 59.6% 26.5%
5) IL→RL-FT (+ Critic Learning, Actor Warmup) 58.7% 25.8%

6) PIRLNav 62.2% 28.7%

Table 4. RL-finetuning ablations on HM3D VAL [16, 35]

Ablations. Next, we conduct ablation experiments to quan-
tify the importance of each phase in our RL-finetuning ap-
proach. Table 4 reports results on the HM3D VAL split for
a policy IL-pretrained on 20k human demonstrations and
RL-finetuned for 300M steps, complete training details are
in Appendix F.4. First, without a gradual learning transition
(row 2), i.e. without a critic learning and LR decay phase,
the policy improves by 2.8% on success and 8.5% on SPL.
Next, with only a critic learning phase (row 3), the policy
improves by 3.5% on success and 6.1% on SPL. Using an
LR decay schedule only for the critic after the critic learn-
ing phase improves success by 7.6% and SPL by 5.9%, and
using an LR warmup schedule for the actor (but no critic

Figure 7. Failure modes of our best IL+RL OBJECTNAV policy

LR decay) after the critic learning phase improves success
by 6.7% and SPL by 5.3%. Finally, combining everything
(critic-only learning, critic LR decay, actor LR warmup), our
policy improves by 10.2% on success and 8.1% on SPL.

TEST-STD TEST-CHALLENGE

Method Success (↑) SPL (↑) Success (↑) SPL (↑)

1) Stretch [24] 60.0% 34.0% 56.0% 29.0%
2) ProcTHOR-Large [36] 54.0% 32.0% - -
3) Habitat-Web [1] 55.0% 22.0% - -
4) DD-PPO [37] 26.0% 12.0% - -
5) Populus A. 66.0% 32.0% 60.0% 30.0%
6) ByteBOT 68.0% 37.0% 64.0% 35.0%

7) PIRLNav6 65.0% 33.0% 65.0% 33.0%

Table 5. Results on HM3D TEST-STANDARD and TEST-
CHALLENGE [16, 37]. Unpublished works submitted only to the
OBJECTNAV leaderboard have been grayed out.

ObjectNav Challenge 2022 Results. Using our overall
two-stage training approach of IL-pretraining followed by
RL-finetuning, we achieve state-of-the-art results on OB-
JECTNAV– 65.0% success and 33.0% SPL on both the TEST-
STANDARD and TEST-CHALLENGE splits. Table 5 com-
pares our results with the top-4 entries to the Habitat OB-
JECTNAV Challenge 2022 [37]. Our approach outperforms
Stretch [24] on success rate on both TEST-STANDARD and
TEST-CHALLENGE and is comparable on SPL (1% worse on
TEST-STANDARD, 4% better on TEST-CHALLENGE). Proc-
THOR [36], which uses 10k procedurally-generated envi-
ronments for training, achieves 54% success and 32% SPL
on TEST-STANDARD split, which is 11% worse at success
and 1% worse at SPL than ours. For sake of completeness,
we also report results of two unpublished entries uploaded to
the leaderboard – Populus A. and ByteBOT. Unfortunately,
there is no associated report yet with these entries, so we
are unable to comment on the details of these approaches, or
even whether the comparison is meaningful.

C. Failure Modes

To better understand the failure modes of our IL+RL
OBJECTNAV policies, we manually annotate 592 failed
HM3D VAL episodes from our best OBJECTNAV agent.
See Fig. 7. We include videos of various failures modes in
the supplement. The most common failure modes are:

6The approach is called “BadSeed” on the HM3D leaderboard:
eval.ai/web/challenges/challenge-page/1615/leaderboard/3899
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Missing Annotations (27%): Episodes where the agent
navigates to the correct goal object category but the episode
is counted as a failure due to missing annotations in the data.
Inter-Floor Navigation (21%): The object is on a different
floor and the agent fails to climb up/down the stairs.
Recognition Failure (20%): The agent sees the object in its
field of view but fails to navigate to it.
Last Mile Navigation [38] (12%). Repeated collisions
against objects or mesh geometry close to the goal object
preventing the agent from reaching close to it.
Navmesh Failure (9%). Hard-to-navigate meshes blocking
the path of the agent. E.g. in one instance, the agent fails to
climb stairs because of a narrow nav mesh on the stairs.
Looping (4%). Repeatedly visiting the same location and
not exploring the rest of the environment.
Semantic Confusion (5%). Confusing the goal object with
a semantically-similar object. E.g. ‘armchair’ for ‘sofa’.
Exploration Failure (2%). Catch-all for failures
in a complex navigation environment, early termination,
semantic failures (e.g. looking for a chair in a bathroom), etc.

As can be seen in Fig. 7, most of the failures (∼36%) are due
to issues in the OBJECTNAV dataset – 27% due to missing
object annotations + 9% due to holes / issues in the navmesh.
21% failures are due to the agent being unable to climb up/-
down stairs. We believe this happens because climbing up /
down stairs to explore another floor is a difficult behavior to
learn and there are few episodes that require this. Oversam-
pling inter-floor navigation episodes during training can help
address this. Another failure mode is failing to recognize the
goal object – 20% failures where the object is in the agent’s
field of view but it does not navigate to it, and 5% where
the agent navigates to another semantically-similar object.
Advances in the visual backbone and object recognition can
help address these. To this end, prior works [1,24] have used
explicit semantic segmentation modules to recognize objects
at each step of navigation. Incorporating this within the
IL+RL training pipeline could help. 11% failures are due
to last mile navigation, suggesting that equipping the agent
with better goal-distance estimators could help. Finally, only
∼6% failures are due to looping and lack of exploration,
which is promising!

D. Related Work
ObjectGoal Navigation. Prior works on OBJECTNAV have
used end-to-end reinforcement learning (RL) [17, 39, 40],
modular learning [24, 41, 42], and imitation learning [1, 28].
Works that use end-to-end RL have proposed improved vi-
sual representations [39, 43], auxiliary tasks [40], and data
augmentation techniques [17] to improve generalization to
unseen environments. Improved visual representations in-
clude object relation graphs [43] and semantic segmenta-
tions [39]. Ye et al. [40] use auxiliary tasks like predicting

environment dynamics, action distributions, and map cov-
erage in addition to OBJECTNAV and achieve promising
results. Maksymets et al. [17] improve generalization of
RL agents by training with artificially inserted objects and
proposing a reward to incentivize exploration.
Modular learning methods for OBJECTNAV have also
emerged as a strong competitor [24, 35, 41]. These methods
rely on separate modules for semantic mapping that build
explicit structured map representations, a high-level seman-
tic exploration module that is learned through RL to solve
the ‘where to look?’ subproblem, and a low-level navigation
policy that solves ‘how to navigate to (x, y)?’.
The current state-of-the-art methods on OBJECTNAV [1,
28] make use of imitation learning (IL) on a large dataset
of 80k human demonstrations. with a simple CNN+RNN
policy architecture. In this work, we improve on them by
developing an effective approach to finetune these imitation-
pretrained policies with RL.
Imitation Learning and RL Finetuning. Prior works have
considered a special case of learning from demonstration
data. These approaches initialize policies trained using be-
havior cloning, and then fine-tune using on-policy reinforce-
ment learning [18, 20–22, 44, 45], On classical tasks like
cart-pole swing-up [18], balance, hitting a baseball [44],
and underactuated swing-up [45], demonstrations have been
used to speed up learning by initializing policies pretrained
on demonstrations for RL. Similar to these methods, we
also use a on-policy RL algorithm for finetuning the pol-
icy trained with behavior cloning. Rajeswaran et al. [20]
(DAPG) pretrain a policy using behavior cloning and use
an augmented RL finetuning objective to stay close to the
demonstrations which helps reduce sample complexity. Un-
fortunately DAPG is not feasible in our setting as it requires
solving a systems research problem to efficiently incorpo-
rate replaying demonstrations and collecting experience on-
line at our scale. [20] show results of the approach on a
dexterous hand manipulation task with a small number of
demonstrations that can be loaded in system memory and
therefore did not need to solve this system challenge. This
is not possible in our setting, just the 256×256 RGB obser-
vations for the 77k demos we collect would occupy over
2 TB memory, which is out of reach for all but the most
exotic of today’s systems. There are many methods for
incorporating demonstrations/imitation learning with off-
policy RL [46–50]. Unfortunately these methods were not
designed to work with recurrent policies and adapting off-
policy methods to work with recurrent policies is challeng-
ing [51]. See the Appendix E for more details. The RL
finetuning approach that demonstrates results with an actor-
critic and high-dimensional visual observations, and is thus
most closely related to our setup is proposed in VPT [21].
Their approach uses Phasic Policy Gradients (PPG) [52]
with a KL-divergence loss between the current policy and
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the frozen pretrained policy, and decays the KL loss weight ρ
over time to enable exploration during RL finetuning. Our ap-
proach uses Proximal Policy Gradients (PPO) [34] instead of
PPG, and therefore does not require a KL constraint, which
is compute-expensive, and performs better on OBJECTNAV.

E. Prior work in RL Finetuning
E.1. DAPG [20]

Preliminaries. Rajeswaran et al. [20] proposed DAPG, a
method which incorporates demonstrations in RL, and thus
quite relevant to our methodology. DAPG first pretrains a
policy using behavior cloning then finetunes the policy using
an augmented RL objective (shown in Eq. (4)). DAPG pro-
poses to use different parts of demonstrations dataset during
different stages of learning for tasks involving sequence of
behaviors. To do so, they add an additional term to the policy
gradient objective:

gaug =
∑

(s,a)∈τ∼πθ

∇θ logπθ
(a|s)Aπ(s, a) +

∑
(s,a)∈τ∼T

∇θ logπθ
(a|s)w(s, a) (4)

Here τ ∼ πθ is a trajectory obtained by executing the current
policy, τ ∼ T denotes a trajectory obtained by replaying a
demonstration, and w(s, a) is a weighting function to alter-
nate between imitation and reinforcement learning. DAPG
uses a heuristic weighting scheme to set w(s, a) to decay the
auxiliary objective:

w(s, a) = λ0λ
k
1 max
(s′ ,a′ )∈τ∼πθ

Aπθ (s
′
, a

′
)∀(s, a) (5)

where λ0 and λ1 are hyperparameters and k is the update
iteration counter. The decaying weighting term λk

1 is used to
avoid biasing the gradient towards the demonstrations data
towards the end of training.
Implementation Details. [20] showed results of using
DAPG on dexterous hand manipulation tasks for object re-
location, in-hand manipulation, tool use, etc. To train the
policy with behavior cloning, they use 25 demonstrations for
each task gathered using the Mujoco HAPTIX system [53].
The small size of the demonstrations dataset and the observa-
tion input allows DAPG to load the demonstrations dataset
in system memory which makes it feasible to compute the
augmented RL objective shown above.
Challenges in adopting [20]’s setup. Compared to [20], our
setup uses high-dimensional visual input (256×256 RGB
observations) and 77k OBJECTNAV demonstrations for train-
ing. Following DAPG’s training implementation, storing
the visual inputs for 77k demonstrations in system memory
would require 2TB, which is significantly higher than what is

possible on today’s systems. An alternative is to leverage on-
the-fly demonstration replay during RL training. However,
efficiently incorporating demonstration replay with experi-
ence collection online requires solving a systems research
problem. Naively switching between online experience col-
lection using the current policy and replay demonstrations
would require 2x the current experience collection time, over-
all hurting the training throughput.

E.2. Feasibility of Off-Policy RL finetuning

There are several methods for incorporating demonstrations
with off-policy RL [46–50]. Algorithm 1 shows the general
framework of off-policy RL (finetuning) methods.

Algorithm 1 General framework of off-policy RL algorithm

Require: πθ : Policy, B: replay buffer, N : Rounds, I:
Policy Update Iterations
for k = 1 to N do

Trajectory τ ← Rollout πθ(·|s) to collect trajectory
{(s1, a1, r1, h1), ......, (sT , aT , rT , hT )}

B ← {B} ∪ {τ}
πθ ← TrainPolicy(πθ, B) for I iterations

end for

Unfortunately, most of these methods use feedforward state
encoders, which is ill-posed for partially observable settings.
In partially observable settings, the agent requires a state
representation that combines information about the state-
action trajectory so far with information about the current
observation, which is typically achieved using a recurrent
network.
To train a recurrent policy in an off-policy setting, the full
state-action trajectories need to be stored in a replay buffer
to use for training, including the hidden state ht of the RNN.
The policy update requires a sequence input for multiple
time steps

[
(st, at, rt, ht), ......, (st+l, at+l, rt+l, ht+l)

]
∼

τ where l is sampled sequence length. Additionally, it is not
obvious how the hidden state should be initialized for RNN
updates when using a sampled sequence in the off-policy
setting. Prior work DRQN [54] compared two training strate-
gies to train a recurrent network from replayed experience:
1. Bootstrapped Random Updates. The episodes are sam-

pled randomly from the replay buffer and the policy updates
begin at random steps in an episode and proceed only for
the unrolled timesteps. The RNN initial state is initial-
ized to zero at the start of the update. Using randomly
sampled experience better adheres to DQN’s [55] random
sampling strategy, but, as a result, the RNN’s hidden state
must be initialized to zero at the start of each policy update.
Using zero start state allows for independent decorrelated
sampling of short sequences which is important for robust
optimization of neural networks. Although this can help
RNN to learn to recover predictions from an initial state
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that mismatches with the hidden state from the collected
experience but it might limit the ability of the network to
rely on it’s recurrent state and exploit long term temporal
correlations.

2. Bootstrapped Sequential Updates. The full episode
replays are sampled randomly from the replay buffer and
the policy updates begin at the start of the episode. The
RNN hidden state is carried forward throughout the episode.
Eventhough this approach avoids the problem of finding the
correct initial state it still has computational issues due to
varying sequence length for each episode, and algorithmic
issues due to high variance of network updates due to highly
correlated nature of the states in the trajectory.

Even though using bootstrapped random updates with zero
start states performed well in Atari which is mostly fully
observable, R2D2 [51] found using this strategy prevents a
RNN from learning long-term dependencies in more mem-
ory critical environments like DMLab. [51] proposed two
strategies to train recurrent policies with randomly samples
sequences:
1. Stored State. In this strategy, the hidden state is stored

at each step in the replay and use it to initialize the network
at the time of policy updates. Using stored state partially
remedies the issues with initial recurrent state mismatch in
zero start state strategy but it suffers from ‘representational
drfit’ leading to ‘recurrent state staleness’, as the stored
state generated by a sufficiently old network could differ
significantly from a state from the current policy.

2. Burn-in. In this strategy the initial part of the replay
sequence is used to unroll the network and produce a start
state (‘burn-in period’) and update the network on the re-
maining part of the sequence.

While R2D2 [51] found a combination of these strategies to
be effective at mitigating the representational drift and recur-
rent state staleness, this increases computation and requires
careful tuning of the replay sequence length m and burn-in
period l.
Both [51, 54] demonstrate the issues associated with using
a recurrent policy in an off-policy setting and present ap-
proaches that mitigate issues to some extent. Applying these
techniques for Embodied AI tasks and off-policy RL fine-
tuning is an open research problem and requires empirical
evaluation of these strategies.

F. Training Details

F.1. Imitation Learning

We use a distributed implementation of behavior cloning
by [1] for our imitation learning pretraining. Each worker
collects 64 frames of experience from 8 environments par-
allely by replaying actions from the demonstrations dataset.
We then perform a policy update using supervised learn-
ing on 2 mini batches. For all of our IL experiments, we

Parameter Value

Number of GPUs 64
Number of environments per GPU 8
Rollout length 64
Number of mini-batches per epoch 2
Optimizer Adam

Learning rate 1.0× 10−3

Weight decay 0.0
Epsilon 1.0× 10−5

DDPIL sync fraction 0.6

Table 6. Hyperparameters used for Imitation Learning.

Parameter Value

Number of GPUs 16
Number of environments per GPU 8
Rollout length 64
PPO epochs 2
Number of mini-batches per epoch 2
Optimizer Adam

Weight decay 0.0
Epsilon 1.0× 10−5

PPO clip 0.2
Generalized advantage estimation True

γ 0.99
τ 0.95

Value loss coefficient 0.5
Max gradient norm 0.2
DDPPO sync fraction 0.6

Table 7. Hyperparameters used for RL finetuning.

train the policy for 500M steps on 64 GPUs using Adam
optimizer with a learning rate 1.0× 10−3 which is linearly
decayed after each policy update. Tab. 6 details the default
hyperparameters used in all of our training runs.

F.2. Reinforcement Learning

To train our policy using RL we use PPO with Generalized
Advantage Estimation (GAE) [56]. We use a discount factor
γ of 0.99 and set GAE parameter τ to 0.95. We do not use
normalized advantages. To parallelize training, we use DD-
PPO with 16 workers on 16 GPUs. Each worker collects 64
frames of experience from 8 environments parallely and then
performs 2 epochs of PPO update with 2 mini batches in each
epoch. For all of our experiments, we RL finetune the policy
for 300M steps. Tab. 7 details the default hyperparameters
used in all of our training runs.

F.3. RL Finetuning using VPT

To compare with RL finetuning approach proposed in VPT
[21] we implement the method in DD-PPO framework.
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Specifically, we initialize the critic weights to zero, replace
the entropy term in PPO [34] with a KL-divergence loss be-
tween the frozen IL policy and RL policy, and decay the KL
divergence loss coefficient, ρ, by a fixed factor after every
iteration. This loss term is defined as:

Lkl_penalty = ρKL(πBC
θ , πθ) (6)

where πBC
θ is the frozen IL policy, πθ is the current policy,

and ρ is the loss weighting term. Following, VPT [21] we
set ρ to 0.2 at the start of training and decay it by 0.995
after each policy update. We use learning rate of 1.5× 10−5

without a learning rate decay for our VPT [21] finetuning
experiments.

F.4. RL Finetuning Ablations

Figure 8. A policy pretrained on the OBJECTNAV task is used as
initialization for actor weights and critic weights are initialized ran-
domly for RL finetuning using DD-PPO. The policy performance
immediately starts dropping early on during training and then re-
covers leading to slightly higher performance with further training.

Method Success (↑) SPL (↑)

1) IL 52.0% 20.6%
2) IL→RL-FT 54.8% 29.1%
3) IL→RL-FT (+ Critic Learning) 55.5% 26.7%
4) IL→RL-FT (+ Critic Learning, Critic Decay) 59.6% 26.5%
5) IL→RL-FT (+ Critic Learning, Actor Warmup) 58.7% 25.8%

6) PIRLNav 62.2% 28.7%

Table 8. RL-finetuning ablations on HM3D VAL [16, 35]

For ablations presented in Sec. 4.3 of the main paper (also
shown in Tab. 8) we use a policy pretrained on 20k human
demonstrations using IL and finetuned for 300M steps using
hyperparameters from Tab. 7. We try 3 learning rates (1.5×
10−4, 2.5× 10−4, and 1.5× 10−5) for both IL→ RL (row
2) and IL→ RL (+ Critic Learning) (row 3) and we report
the results with the one that works the best. For PIRLNav
we use a starting learning rate of 2.5 × 10−4 and decay
it to 1.5 × 10−5, consistent with learning rate schedule of

our best performing agent. For ablations we do not tune
learning rate parameters of PIRLNav, we hypothesize tuning
the parameters would help improve performance.
We find IL→ RL (row 2) works best with a smaller learning
rate but the training performance drops significantly early on,
due to the critic providing poor value estimates, and recovers
later as the critic improves. See Fig. 8. In contrast when
using proposed two phase learning setup with the learning
rate schedule we do not observe a significant drop in training
performance.
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