
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

ICLR
#18

ICLR
#18

ICLR 2023 Submission #18. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

A. OBJECTNAV and Imitation Learning
A.1. OBJECTNAV

In OBJECTNAV an agent is tasked with searching for an in-
stance of the specified object category (e.g., ‘bed’) in an
unseen environment. The agent must perform this task
using only egocentric perceptions. Specifically, a RGB
camera, Depth sensor2, and a GPS+Compass sensor that
provides location and orientation relative to the start po-
sition of the episode. The action space is discrete and
consists of MOVE_FORWARD (0.25m), TURN_LEFT (30◦),
TURN_RIGHT (30◦), LOOK_UP (30◦), LOOK_DOWN (30◦),
and STOP actions. An episode is considered successful if the
agent stops within 1m Euclidean distance of the goal object
within 500 steps and is able to view the object by taking turn
actions [14].
We use scenes from the HM3D-Semantics v0.1 dataset [16].
The dataset consists of 120 scenes and 6 unique goal object
categories. We evaluate our agent using the train/val/test
splits from the 2022 Habitat Challenge3.

A.2. OBJECTNAV Demonstrations

Ramrakhya et al. [1] collected OBJECTNAV demonstrations
for the Matterport3D dataset [15]. We begin our study by
replicating this effort and collect demonstrations for the
HM3D-Semantics v0.1 dataset [16]. We use Ramrakhya et
al.’s Habitat-WebGL infrastructure to collect 77k demon-
strations, amounting to ∼2378 human annotation hours.

A.3. Imitation Learning from Demonstrations

We use behavior cloning to pretrain our OBJECTNAV policy
on the human demonstrations we collect. Let πBC

θ (at | ot)
denote a policy parametrized by θ that maps observations
ot to a distribution over actions at. Let τ denote a trajec-
tory consisting of state, observation, action tuples: τ =(
s0, o0, a0, . . . , sT , oT , aT

)
and T =

{
τ (i)

}N

i=1
denote a

dataset of human demonstrations. The optimal parameters
are

θ∗ = arg minθ

N∑
i=1

∑
(ot,at)∈τ(i)

− log
(
πBC
θ (at | ot)

)
(1)

We use inflection weighting [27] to adjust the loss function to
upweight timesteps where actions change (i.e. at−1 ̸= at).
Our ObjectNav policy architecture is a simple CNN+RNN
model from [28]. To encode RGB input (it = CNN(It)),
we use a ResNet50 [29]. Following [28], the CNN is first
pre-trained on the Omnidata starter dataset [30] using the
self-supervised pretraining method DINO [31] and then fine-
tuned during OBJECTNAV training. The GPS+Compass

2We don’t use this sensor as we don’t find it helpful.
3https://aihabitat.org/challenge/2022/

inputs, Pt = (∆x,∆y,∆z), and Rt = (∆θ), are passed
through fully-connected layers pt = FC(Pt), rt = FC(Rt)
to embed them to 32-d vectors. Finally, we convert the
object goal category to one-hot and pass it through a fully-
connected layer gt =FC(Gt), resulting in a 32-d vector. All
of these input features are concatenated to form an observa-
tion embedding, and fed into a 2-layer, 2048-d GRU at every
timestep to predict a distribution over actions at - formally,
given current observations ot = [it, pt, rt, gt], (ht, at) =
GRU(ot, ht−1). To reduce overfitting, we apply color-jitter
and random shifts [32] to the RGB inputs.

B. RL Finetuning
Our motivation for RL-finetuning is two-fold. First, finetun-
ing may allow for higher performance as behavior cloning
is known to suffer from a train/test mismatch – when train-
ing, the policy sees the result of taking ground-truth actions,
while at test-time, it must contend with the consequences
of its own actions. Second, collecting more human demon-
strations on new scenes or simply to improve performance
is time-consuming and expensive. On the other hand, RL-
finetuning is trivially scalable (once annotated 3D scans are
available) and has the potential to reduce the amount of
human demonstrations needed.

B.1. Setup

The RL objective is to find a policy πθ(a|s) that maximizes
expected sum of discounted future rewards. Let τ be a
sequence of object, action, reward tuples (ot, at, rt) where
at ∼ πθ(· | ot) is the action sampled from the agent’s policy,
and rt is the reward. For a discount factor γ, the optimal
policy is

π∗ = argmax
π

Eτ∼π[RT], where RT =

T∑
t=1

γt−1rt. (2)

To solve this maximization problem, actor-critic RL methods
learn a state-value function V (s) (also called a critic) in
addition to the policy (also called an actor). The critic V (st)
represents the expected value of returns Rt when starting
from state st and acting under the policy π, where returns
are defined as Rt =

∑T
i=t γ

i−tri. We use DD-PPO [33], a
distributed implementation of PPO [34], an on-policy RL
algorithm. Given a θ-parameterized policy πθ and a set of
rollouts, PPO updates the policy as follows. Let Ât = Rt −
V (st), be the advantage estimate and pt(θ) =

πθ(at|ot)
πθold (at|ot) be

the ratio of the probability of action at under current policy
and under the policy used to collect rollouts. The parameters
are updated by maximizing:

JPPO(θ) = Et

[
min

(
pt(θ)Ât, clip(pt(θ), 1− ϵ, 1+ ϵ)Ât

)]
(3)

8

https://aihabitat.org/challenge/2022/

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

ICLR
#18

ICLR
#18

ICLR 2023 Submission #18. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 5. OBJECTNAV trajectories for policies trained with IL+RL on 1) Human Demonstrations, 2) Shortest Paths, and 3) Frontier
Exploration Demonstrations.

We use a sparse success reward. Sparse success is sim-
ple (does not require hyperparameter optimization) and has
fewer unintended consequences (e.g. Maksymets et al. [17]
showed that typical dense rewards used in OBJECTNAV actu-
ally penalize exploration, even though exploration is neces-
sary for OBJECTNAV in new environments). Sparse rewards
are desirable but typically difficult to use with RL (when ini-
tializing training from scratch) because they result in nearly
all trajectories achieving 0 reward, making it difficult to learn.
However, since we pretrain with IL, we do not observe any
such pathologies.

Figure 6. Learning rate schedule for RL Finetuning.

B.2. Finetuning Methodology

We use the behavior cloned policy πBC
θ weights to initialize

the actor parameters. However, notice that during behavior
cloning we do not learn a critic nor is it easy to do so – a
critic learned on human demonstrations (during behavior
cloning) would be overly optimistic since all it sees are
successes. Thus, we must learn the critic from scratch during
RL. Naively finetuning the actor with a randomly-initialized

critic leads to a rapid drop in performance4 (see Fig. 8) since
the critic provides poor value estimates which influence the
actor’s gradient updates (see Eq.(3)). We address this issue
by using a two-phase training regime:
Phase 1: Critic Learning. In the first phase, we rollout
trajectories using the frozen policy, pre-trained using IL, and
use them to learn a critic. To ensure consistency of rollouts
collected for critic learning with RL training, we sample
actions (as opposed to using argmax actions) from the pre-
trained IL policy: at∼πθ(st). We train the critic until its
loss plateaus. In our experiments, we found 8M steps to be
sufficient. In addition, we also initialize the weights of the
critic’s final linear layer close to zero to stabilize training.
Phase 2: Interactive Learning. In the second phase, we
unfreeze the actor RNN5 and finetune both actor and critic
weights. We find that naively switching from phase 1 to
phase 2 leads to small improvements in policy performance
at convergence. We gradually decay the critic learning rate
from 2.5× 10−4 to 1.5× 10−5 while warming-up the policy
learning rate from 0 to 1.5×10−5 between 8M to 12M steps,
and then keeping both at 1.5× 10−5 through the course of
training. See Fig. 6. We find that using this learning rate
schedule helps improve policy performance. For parameters
that are shared between the actor and critic (i.e. the RNN), we
use the lower of the two learning rates (i.e. always the actor’s
in our schedule). To summarize our finetuning methodology:
– First, we initialize the weights of the policy network with

the IL-pretrained policy and initialize critic weights close
to zero. We freeze the actor and shared weights. The only
learnable parameters are in the critic.

– Next, we learn the critic weights on rollouts collected

4After the initial drop, the performance increases but the improvements
on success are small.

5The CNN and non-visual observation embedding layers remain frozen.
We find this to be more stable.

9

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

ICLR
#18

ICLR
#18

ICLR 2023 Submission #18. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

from the pretrained, frozen policy.
– After training the critic, we warmup the policy learning

rate and decay the critic learning rate.
– Once both critic and policy learning rate reach a fixed

learning rate, we train the policy to convergence.

B.3. Results

Comparing with the RL-finetuning approach in VPT [21].
We start by comparing our proposed RL-finetuning approach
with the approach used in VPT [21]. Specifically, [21] pro-
posed initializing the critic weights to zero, replacing entropy
term with a KL-divergence loss between the frozen IL policy
and the RL policy, and decay the KL divergence loss coeffi-
cient, ρ, by a fixed factor after every iteration. Notice that
this prevents the actor from drifting too far too quickly from
the IL policy, but does not solve uninitialized critic problem.
To ensure fair comparison, we implement this method within
our DD-PPO framework to ensure that any performance dif-
ference is due to the fine-tuning algorithm and not tangential
implementation differences. Complete training details are
in the Appendix F.3. We keep hyperparameters constant for
our approach for all experiments. Table 3 reports results
on HM3D VAL for the two approaches using 20k human
demonstrations. We find that PIRLNav achieves +2.1%
Success compared to VPT and comparable SPL.

Method Success (↑) SPL (↑)

1) IL 52.0% 20.6%
2) IL→RL-FT w/ VPT [21] 60.1% 29.1%

3) PIRLNav (Ours) 62.2% 28.7%

Table 3. Comparison with VPT on HM3D VAL [16, 35]

Method Success (↑) SPL (↑)

1) IL 52.0% 20.6%
2) IL→RL-FT 54.8% 29.1%
3) IL→RL-FT (+ Critic Learning) 55.5% 26.7%
4) IL→RL-FT (+ Critic Learning, Critic Decay) 59.6% 26.5%
5) IL→RL-FT (+ Critic Learning, Actor Warmup) 58.7% 25.8%

6) PIRLNav 62.2% 28.7%

Table 4. RL-finetuning ablations on HM3D VAL [16, 35]

Ablations. Next, we conduct ablation experiments to quan-
tify the importance of each phase in our RL-finetuning ap-
proach. Table 4 reports results on the HM3D VAL split for
a policy IL-pretrained on 20k human demonstrations and
RL-finetuned for 300M steps, complete training details are
in Appendix F.4. First, without a gradual learning transition
(row 2), i.e. without a critic learning and LR decay phase,
the policy improves by 2.8% on success and 8.5% on SPL.
Next, with only a critic learning phase (row 3), the policy
improves by 3.5% on success and 6.1% on SPL. Using an
LR decay schedule only for the critic after the critic learn-
ing phase improves success by 7.6% and SPL by 5.9%, and
using an LR warmup schedule for the actor (but no critic

Figure 7. Failure modes of our best IL+RL OBJECTNAV policy

LR decay) after the critic learning phase improves success
by 6.7% and SPL by 5.3%. Finally, combining everything
(critic-only learning, critic LR decay, actor LR warmup), our
policy improves by 10.2% on success and 8.1% on SPL.

TEST-STD TEST-CHALLENGE

Method Success (↑) SPL (↑) Success (↑) SPL (↑)

1) Stretch [24] 60.0% 34.0% 56.0% 29.0%
2) ProcTHOR-Large [36] 54.0% 32.0% - -
3) Habitat-Web [1] 55.0% 22.0% - -
4) DD-PPO [37] 26.0% 12.0% - -
5) Populus A. 66.0% 32.0% 60.0% 30.0%
6) ByteBOT 68.0% 37.0% 64.0% 35.0%

7) PIRLNav6 65.0% 33.0% 65.0% 33.0%

Table 5. Results on HM3D TEST-STANDARD and TEST-
CHALLENGE [16, 37]. Unpublished works submitted only to the
OBJECTNAV leaderboard have been grayed out.

ObjectNav Challenge 2022 Results. Using our overall
two-stage training approach of IL-pretraining followed by
RL-finetuning, we achieve state-of-the-art results on OB-
JECTNAV– 65.0% success and 33.0% SPL on both the TEST-
STANDARD and TEST-CHALLENGE splits. Table 5 com-
pares our results with the top-4 entries to the Habitat OB-
JECTNAV Challenge 2022 [37]. Our approach outperforms
Stretch [24] on success rate on both TEST-STANDARD and
TEST-CHALLENGE and is comparable on SPL (1% worse on
TEST-STANDARD, 4% better on TEST-CHALLENGE). Proc-
THOR [36], which uses 10k procedurally-generated envi-
ronments for training, achieves 54% success and 32% SPL
on TEST-STANDARD split, which is 11% worse at success
and 1% worse at SPL than ours. For sake of completeness,
we also report results of two unpublished entries uploaded to
the leaderboard – Populus A. and ByteBOT. Unfortunately,
there is no associated report yet with these entries, so we
are unable to comment on the details of these approaches, or
even whether the comparison is meaningful.

C. Failure Modes

To better understand the failure modes of our IL+RL
OBJECTNAV policies, we manually annotate 592 failed
HM3D VAL episodes from our best OBJECTNAV agent.
See Fig. 7. We include videos of various failures modes in
the supplement. The most common failure modes are:

6The approach is called “BadSeed” on the HM3D leaderboard:
eval.ai/web/challenges/challenge-page/1615/leaderboard/3899

10

https://eval.ai/web/challenges/challenge-page/1615/leaderboard/3899

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

ICLR
#18

ICLR
#18

ICLR 2023 Submission #18. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Missing Annotations (27%): Episodes where the agent
navigates to the correct goal object category but the episode
is counted as a failure due to missing annotations in the data.
Inter-Floor Navigation (21%): The object is on a different
floor and the agent fails to climb up/down the stairs.
Recognition Failure (20%): The agent sees the object in its
field of view but fails to navigate to it.
Last Mile Navigation [38] (12%). Repeated collisions
against objects or mesh geometry close to the goal object
preventing the agent from reaching close to it.
Navmesh Failure (9%). Hard-to-navigate meshes blocking
the path of the agent. E.g. in one instance, the agent fails to
climb stairs because of a narrow nav mesh on the stairs.
Looping (4%). Repeatedly visiting the same location and
not exploring the rest of the environment.
Semantic Confusion (5%). Confusing the goal object with
a semantically-similar object. E.g. ‘armchair’ for ‘sofa’.
Exploration Failure (2%). Catch-all for failures
in a complex navigation environment, early termination,
semantic failures (e.g. looking for a chair in a bathroom), etc.

As can be seen in Fig. 7, most of the failures (∼36%) are due
to issues in the OBJECTNAV dataset – 27% due to missing
object annotations + 9% due to holes / issues in the navmesh.
21% failures are due to the agent being unable to climb up/-
down stairs. We believe this happens because climbing up /
down stairs to explore another floor is a difficult behavior to
learn and there are few episodes that require this. Oversam-
pling inter-floor navigation episodes during training can help
address this. Another failure mode is failing to recognize the
goal object – 20% failures where the object is in the agent’s
field of view but it does not navigate to it, and 5% where
the agent navigates to another semantically-similar object.
Advances in the visual backbone and object recognition can
help address these. To this end, prior works [1,24] have used
explicit semantic segmentation modules to recognize objects
at each step of navigation. Incorporating this within the
IL+RL training pipeline could help. 11% failures are due
to last mile navigation, suggesting that equipping the agent
with better goal-distance estimators could help. Finally, only
∼6% failures are due to looping and lack of exploration,
which is promising!

D. Related Work
ObjectGoal Navigation. Prior works on OBJECTNAV have
used end-to-end reinforcement learning (RL) [17, 39, 40],
modular learning [24, 41, 42], and imitation learning [1, 28].
Works that use end-to-end RL have proposed improved vi-
sual representations [39, 43], auxiliary tasks [40], and data
augmentation techniques [17] to improve generalization to
unseen environments. Improved visual representations in-
clude object relation graphs [43] and semantic segmenta-
tions [39]. Ye et al. [40] use auxiliary tasks like predicting

environment dynamics, action distributions, and map cov-
erage in addition to OBJECTNAV and achieve promising
results. Maksymets et al. [17] improve generalization of
RL agents by training with artificially inserted objects and
proposing a reward to incentivize exploration.
Modular learning methods for OBJECTNAV have also
emerged as a strong competitor [24, 35, 41]. These methods
rely on separate modules for semantic mapping that build
explicit structured map representations, a high-level seman-
tic exploration module that is learned through RL to solve
the ‘where to look?’ subproblem, and a low-level navigation
policy that solves ‘how to navigate to (x, y)?’.
The current state-of-the-art methods on OBJECTNAV [1,
28] make use of imitation learning (IL) on a large dataset
of 80k human demonstrations. with a simple CNN+RNN
policy architecture. In this work, we improve on them by
developing an effective approach to finetune these imitation-
pretrained policies with RL.
Imitation Learning and RL Finetuning. Prior works have
considered a special case of learning from demonstration
data. These approaches initialize policies trained using be-
havior cloning, and then fine-tune using on-policy reinforce-
ment learning [18, 20–22, 44, 45], On classical tasks like
cart-pole swing-up [18], balance, hitting a baseball [44],
and underactuated swing-up [45], demonstrations have been
used to speed up learning by initializing policies pretrained
on demonstrations for RL. Similar to these methods, we
also use a on-policy RL algorithm for finetuning the pol-
icy trained with behavior cloning. Rajeswaran et al. [20]
(DAPG) pretrain a policy using behavior cloning and use
an augmented RL finetuning objective to stay close to the
demonstrations which helps reduce sample complexity. Un-
fortunately DAPG is not feasible in our setting as it requires
solving a systems research problem to efficiently incorpo-
rate replaying demonstrations and collecting experience on-
line at our scale. [20] show results of the approach on a
dexterous hand manipulation task with a small number of
demonstrations that can be loaded in system memory and
therefore did not need to solve this system challenge. This
is not possible in our setting, just the 256×256 RGB obser-
vations for the 77k demos we collect would occupy over
2 TB memory, which is out of reach for all but the most
exotic of today’s systems. There are many methods for
incorporating demonstrations/imitation learning with off-
policy RL [46–50]. Unfortunately these methods were not
designed to work with recurrent policies and adapting off-
policy methods to work with recurrent policies is challeng-
ing [51]. See the Appendix E for more details. The RL
finetuning approach that demonstrates results with an actor-
critic and high-dimensional visual observations, and is thus
most closely related to our setup is proposed in VPT [21].
Their approach uses Phasic Policy Gradients (PPG) [52]
with a KL-divergence loss between the current policy and

11

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

ICLR
#18

ICLR
#18

ICLR 2023 Submission #18. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

the frozen pretrained policy, and decays the KL loss weight ρ
over time to enable exploration during RL finetuning. Our ap-
proach uses Proximal Policy Gradients (PPO) [34] instead of
PPG, and therefore does not require a KL constraint, which
is compute-expensive, and performs better on OBJECTNAV.

E. Prior work in RL Finetuning
E.1. DAPG [20]

Preliminaries. Rajeswaran et al. [20] proposed DAPG, a
method which incorporates demonstrations in RL, and thus
quite relevant to our methodology. DAPG first pretrains a
policy using behavior cloning then finetunes the policy using
an augmented RL objective (shown in Eq. (4)). DAPG pro-
poses to use different parts of demonstrations dataset during
different stages of learning for tasks involving sequence of
behaviors. To do so, they add an additional term to the policy
gradient objective:

gaug =
∑

(s,a)∈τ∼πθ

∇θ logπθ
(a|s)Aπ(s, a) +

∑
(s,a)∈τ∼T

∇θ logπθ
(a|s)w(s, a) (4)

Here τ ∼ πθ is a trajectory obtained by executing the current
policy, τ ∼ T denotes a trajectory obtained by replaying a
demonstration, and w(s, a) is a weighting function to alter-
nate between imitation and reinforcement learning. DAPG
uses a heuristic weighting scheme to set w(s, a) to decay the
auxiliary objective:

w(s, a) = λ0λ
k
1 max
(s′ ,a′)∈τ∼πθ

Aπθ (s
′
, a

′
)∀(s, a) (5)

where λ0 and λ1 are hyperparameters and k is the update
iteration counter. The decaying weighting term λk

1 is used to
avoid biasing the gradient towards the demonstrations data
towards the end of training.
Implementation Details. [20] showed results of using
DAPG on dexterous hand manipulation tasks for object re-
location, in-hand manipulation, tool use, etc. To train the
policy with behavior cloning, they use 25 demonstrations for
each task gathered using the Mujoco HAPTIX system [53].
The small size of the demonstrations dataset and the observa-
tion input allows DAPG to load the demonstrations dataset
in system memory which makes it feasible to compute the
augmented RL objective shown above.
Challenges in adopting [20]’s setup. Compared to [20], our
setup uses high-dimensional visual input (256×256 RGB
observations) and 77k OBJECTNAV demonstrations for train-
ing. Following DAPG’s training implementation, storing
the visual inputs for 77k demonstrations in system memory
would require 2TB, which is significantly higher than what is

possible on today’s systems. An alternative is to leverage on-
the-fly demonstration replay during RL training. However,
efficiently incorporating demonstration replay with experi-
ence collection online requires solving a systems research
problem. Naively switching between online experience col-
lection using the current policy and replay demonstrations
would require 2x the current experience collection time, over-
all hurting the training throughput.

E.2. Feasibility of Off-Policy RL finetuning

There are several methods for incorporating demonstrations
with off-policy RL [46–50]. Algorithm 1 shows the general
framework of off-policy RL (finetuning) methods.

Algorithm 1 General framework of off-policy RL algorithm

Require: πθ : Policy, B: replay buffer, N : Rounds, I:
Policy Update Iterations
for k = 1 to N do

Trajectory τ ← Rollout πθ(·|s) to collect trajectory
{(s1, a1, r1, h1),, (sT , aT , rT , hT)}

B ← {B} ∪ {τ}
πθ ← TrainPolicy(πθ, B) for I iterations

end for

Unfortunately, most of these methods use feedforward state
encoders, which is ill-posed for partially observable settings.
In partially observable settings, the agent requires a state
representation that combines information about the state-
action trajectory so far with information about the current
observation, which is typically achieved using a recurrent
network.
To train a recurrent policy in an off-policy setting, the full
state-action trajectories need to be stored in a replay buffer
to use for training, including the hidden state ht of the RNN.
The policy update requires a sequence input for multiple
time steps

[
(st, at, rt, ht),, (st+l, at+l, rt+l, ht+l)

]
∼

τ where l is sampled sequence length. Additionally, it is not
obvious how the hidden state should be initialized for RNN
updates when using a sampled sequence in the off-policy
setting. Prior work DRQN [54] compared two training strate-
gies to train a recurrent network from replayed experience:
1. Bootstrapped Random Updates. The episodes are sam-

pled randomly from the replay buffer and the policy updates
begin at random steps in an episode and proceed only for
the unrolled timesteps. The RNN initial state is initial-
ized to zero at the start of the update. Using randomly
sampled experience better adheres to DQN’s [55] random
sampling strategy, but, as a result, the RNN’s hidden state
must be initialized to zero at the start of each policy update.
Using zero start state allows for independent decorrelated
sampling of short sequences which is important for robust
optimization of neural networks. Although this can help
RNN to learn to recover predictions from an initial state

12

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

ICLR
#18

ICLR
#18

ICLR 2023 Submission #18. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

that mismatches with the hidden state from the collected
experience but it might limit the ability of the network to
rely on it’s recurrent state and exploit long term temporal
correlations.

2. Bootstrapped Sequential Updates. The full episode
replays are sampled randomly from the replay buffer and
the policy updates begin at the start of the episode. The
RNN hidden state is carried forward throughout the episode.
Eventhough this approach avoids the problem of finding the
correct initial state it still has computational issues due to
varying sequence length for each episode, and algorithmic
issues due to high variance of network updates due to highly
correlated nature of the states in the trajectory.

Even though using bootstrapped random updates with zero
start states performed well in Atari which is mostly fully
observable, R2D2 [51] found using this strategy prevents a
RNN from learning long-term dependencies in more mem-
ory critical environments like DMLab. [51] proposed two
strategies to train recurrent policies with randomly samples
sequences:
1. Stored State. In this strategy, the hidden state is stored

at each step in the replay and use it to initialize the network
at the time of policy updates. Using stored state partially
remedies the issues with initial recurrent state mismatch in
zero start state strategy but it suffers from ‘representational
drfit’ leading to ‘recurrent state staleness’, as the stored
state generated by a sufficiently old network could differ
significantly from a state from the current policy.

2. Burn-in. In this strategy the initial part of the replay
sequence is used to unroll the network and produce a start
state (‘burn-in period’) and update the network on the re-
maining part of the sequence.

While R2D2 [51] found a combination of these strategies to
be effective at mitigating the representational drift and recur-
rent state staleness, this increases computation and requires
careful tuning of the replay sequence length m and burn-in
period l.
Both [51, 54] demonstrate the issues associated with using
a recurrent policy in an off-policy setting and present ap-
proaches that mitigate issues to some extent. Applying these
techniques for Embodied AI tasks and off-policy RL fine-
tuning is an open research problem and requires empirical
evaluation of these strategies.

F. Training Details

F.1. Imitation Learning

We use a distributed implementation of behavior cloning
by [1] for our imitation learning pretraining. Each worker
collects 64 frames of experience from 8 environments par-
allely by replaying actions from the demonstrations dataset.
We then perform a policy update using supervised learn-
ing on 2 mini batches. For all of our IL experiments, we

Parameter Value

Number of GPUs 64
Number of environments per GPU 8
Rollout length 64
Number of mini-batches per epoch 2
Optimizer Adam

Learning rate 1.0× 10−3

Weight decay 0.0
Epsilon 1.0× 10−5

DDPIL sync fraction 0.6

Table 6. Hyperparameters used for Imitation Learning.

Parameter Value

Number of GPUs 16
Number of environments per GPU 8
Rollout length 64
PPO epochs 2
Number of mini-batches per epoch 2
Optimizer Adam

Weight decay 0.0
Epsilon 1.0× 10−5

PPO clip 0.2
Generalized advantage estimation True

γ 0.99
τ 0.95

Value loss coefficient 0.5
Max gradient norm 0.2
DDPPO sync fraction 0.6

Table 7. Hyperparameters used for RL finetuning.

train the policy for 500M steps on 64 GPUs using Adam
optimizer with a learning rate 1.0× 10−3 which is linearly
decayed after each policy update. Tab. 6 details the default
hyperparameters used in all of our training runs.

F.2. Reinforcement Learning

To train our policy using RL we use PPO with Generalized
Advantage Estimation (GAE) [56]. We use a discount factor
γ of 0.99 and set GAE parameter τ to 0.95. We do not use
normalized advantages. To parallelize training, we use DD-
PPO with 16 workers on 16 GPUs. Each worker collects 64
frames of experience from 8 environments parallely and then
performs 2 epochs of PPO update with 2 mini batches in each
epoch. For all of our experiments, we RL finetune the policy
for 300M steps. Tab. 7 details the default hyperparameters
used in all of our training runs.

F.3. RL Finetuning using VPT

To compare with RL finetuning approach proposed in VPT
[21] we implement the method in DD-PPO framework.

13

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

ICLR
#18

ICLR
#18

ICLR 2023 Submission #18. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Specifically, we initialize the critic weights to zero, replace
the entropy term in PPO [34] with a KL-divergence loss be-
tween the frozen IL policy and RL policy, and decay the KL
divergence loss coefficient, ρ, by a fixed factor after every
iteration. This loss term is defined as:

Lkl_penalty = ρKL(πBC
θ , πθ) (6)

where πBC
θ is the frozen IL policy, πθ is the current policy,

and ρ is the loss weighting term. Following, VPT [21] we
set ρ to 0.2 at the start of training and decay it by 0.995
after each policy update. We use learning rate of 1.5× 10−5

without a learning rate decay for our VPT [21] finetuning
experiments.

F.4. RL Finetuning Ablations

Figure 8. A policy pretrained on the OBJECTNAV task is used as
initialization for actor weights and critic weights are initialized ran-
domly for RL finetuning using DD-PPO. The policy performance
immediately starts dropping early on during training and then re-
covers leading to slightly higher performance with further training.

Method Success (↑) SPL (↑)

1) IL 52.0% 20.6%
2) IL→RL-FT 54.8% 29.1%
3) IL→RL-FT (+ Critic Learning) 55.5% 26.7%
4) IL→RL-FT (+ Critic Learning, Critic Decay) 59.6% 26.5%
5) IL→RL-FT (+ Critic Learning, Actor Warmup) 58.7% 25.8%

6) PIRLNav 62.2% 28.7%

Table 8. RL-finetuning ablations on HM3D VAL [16, 35]

For ablations presented in Sec. 4.3 of the main paper (also
shown in Tab. 8) we use a policy pretrained on 20k human
demonstrations using IL and finetuned for 300M steps using
hyperparameters from Tab. 7. We try 3 learning rates (1.5×
10−4, 2.5× 10−4, and 1.5× 10−5) for both IL→ RL (row
2) and IL→ RL (+ Critic Learning) (row 3) and we report
the results with the one that works the best. For PIRLNav
we use a starting learning rate of 2.5 × 10−4 and decay
it to 1.5 × 10−5, consistent with learning rate schedule of

our best performing agent. For ablations we do not tune
learning rate parameters of PIRLNav, we hypothesize tuning
the parameters would help improve performance.
We find IL→ RL (row 2) works best with a smaller learning
rate but the training performance drops significantly early on,
due to the critic providing poor value estimates, and recovers
later as the critic improves. See Fig. 8. In contrast when
using proposed two phase learning setup with the learning
rate schedule we do not observe a significant drop in training
performance.

14

