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A IMPLEMENTATION DETAILS

The models are implemented in PyTorch and experiments are run on a NVIDIA-SMI v100 GPU with
100Gb of storage. The learnable parameters are initialized as ⌧ = 1, and � = � = 1/2. For MTS
datasets with dimension d < 70, we set dmodel = dk = 64; otherwise, we use dmodel = dk = 128.
For PEMS-SF, we set dmodel = dk = 180. If dk < 100, we fix � = 1/2 in Equation 5. The
hyperparameter c in the k = cdlog(T )e of TopK is chose among c 2 {1, 2, 3}, where we pick out the
value with best result. For the mixture-of-head attention, we use h = 16 and m = 8, i.e. 8 heads for
temporal attentions and 8 heads for correlated attentions. The loss for classification is entropy, while
the loss for imputation and anomaly detection is MSE. We use ADAM for training with the default
hyperparameter configuration. Batch size is set to 16 for imputation and classification, and 128 for
anomaly detection. The number of epochs is set to 30. If the validation loss does not decreases for 10
epochs, the training is stopped.

B ABLATION STUDIES

The main components of CAB are the lagged cross-correlation filtering step (Equation 5), which
involves the learnable � to untangle auto-correlation and cross-feature correlation, and score aggre-
gation step (Equation 6), which involves the learnable � to balance instantaneous cross-correlation
and lagged cross-correlation. A key component for the seamless integration of CAB into base Trans-
formers is the mixture-of-head attention (MOHA) that utilizes a mixture of temporal and correlated
attention heads. To test each of the aforementioned components, we use the same experimental setting
for classification as in Section 4, and consider the following ablation versions of Transformer+CAB,
the best performing model for this task:

• pure-CAB-Transformer: (testing MOHA) In this model, we simply replace the self-
attention of vanilla Transformer with the most basic correlated attention setting where
lagged cross-correlation filtering step is disabled, i.e. no learning of �, and � is set to 0;
hence score aggregation steps just returns the instantaneous cross-correlation. In short,
self-attention is now replaced by:

CORRELATED-ATTENTION(Q,K, V ) = V SOFTMAX(
1

⌧
K̂

>
Q̂),

to test how this simple mechanism can take place of self-attention.

• static-Transformer+CAB: (testing lagged cross-correlation filtering) In this model, we
use 8 self-attention heads and 8 correlated attention heads, and enable back the lagged
cross-correlation filtering, yet hard-fix � = � = 1/2, i.e. there is no learning of these
parameters. This is to test the simplified lagged cross-correlation filtering’s efficiency.

• �-Transformer+CAB: (testing �) This is the same as static-Transformer+CAB except that
we now allow � to be learnable parameter. � is fixed to 1/2.

• �-Transformer+CAB: (testing �) This is the same as static-Transformer+CAB except that
we now allow � to be learnable parameter. � is fixed to 1/2.

Table 5: Ablation studies where the original model Transformer+CAB is compared to the variants with different
disabled components.

Dataset/Method Transformer+CAB pure-CAB-Transformer static-Transformer+CAB �-Transformer+CAB �-Transformer+CAB

Ethanol 31.94 30.79 28.14 29.28 30.42
FaceDetection 71.11 68.81 69.67 70.20 70.83
Handwriting 29.06 20.94 23.88 24.35 29.06

Heartbeat 75.12 72.68 75.61 74.15 75.12
JapaneseVowels 97.84 96.76 95.68 95.68 97.84

PEMS-SF 86.71 72.83 79.77 76.88 84.39
SCP1 91.47 86.01 90.44 88.74 91.13
SCP2 56.11 58.89 57.22 55.00 55.00

SpokenArabic 99.05 98.45 98.54 99.27 99.05
UWaveGesture 85.94 80.00 83.13 82.50 85.31

Average 72.44 68.62 70.01 69.60 71.82
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Results. The results from Table 5 indicate the importance of every main component of the overall
design of CAB. First, while MOHA is disabled, the pure-CAB-Transformer obtains poor perfor-
mance, as opposed to the other three ablation variants. Second, despite being in its simplified
version, lagged cross-correlation is crucial and demonstrates significant improvement from pure-
Transformer+CAB to static-Transformer+CAB. The decrease in performance of �-Transformer+CAB
from static-Transformer+CAB demonstrates that for low-dimensional MTS data, leanrable � is un-
necessary. Nevertheless, for high-dimensional data, such as FaceDetection, learnable � results in
efficiency gain. Finally, from the good performance of �-Transformer+CAB, we conclude that the
score aggregation step with learnable � is important in the pipeline of CAB. All in all, for all the
ablation versions, the drops in accuracies are insignificant, thereby showing the robustness of our
model. Furthermore, the two most crucial components of the CAB that account for the most signifi-
cant efficiency boost are the lagged cross-correlation filtering (as shown in static-Transformer+CAB
versus pure-CAB-Transformer) and the learnable � for balancing between instantaneous and lagged
cross-correlation in Equation 6 (as shown in �-Transformer+CAB versus static-Transformer+CAB).

C ADDITIONAL EXPERIMENTAL RESULTS FOR LONG-TERM FORECASTING

The decoder architecture of many prevalent Transformers (e.g. (Vaswani et al., 2017; Liu et al., 2022))
is comprised of a masked multi-head attention block and a usual multi-head attention block (i.e.
without masking). In its current form, CAB has not been designed to be fully integrated into decoder
architecture of Transformers yet, since it lacks the suitable masking mechanism. Nevertheless, we still
consider the naive design of decoder architecture that still maintains the masked multi-head attention
block of the base Transformer, yet (for the non-masked block) deploys mixture-of-head attention
block combining the base temporal attention with CAB. We then test the effectiveness of the above
decoder architecture integrated with CAB in MTS long-term forecasting, and believe that with proper
masking mechanism for CAB in the future work, the performance increase can be further improved.
Specifically, we augment Nonstationary Transformer (Liu et al., 2022), well-known for its competitive
performance in long-term forecasting, with CAB, and experiment Nonstationary+CAB on the two
common datasets ETTh (Zhou et al., 2021) (using ETTh2 as a representative), Weather (Wetterstation)
and Exchange (Lai et al., 2018). We follow the experimental settings of (Wu et al., 2022b; 2023)
where the past sequence length is set to 96, and the prediction length is one of {96, 192, 336, 720}. We
compare the empirical performance with the latest and state-of-the-art Transformer-models including
Nonstationary Transformer (Liu et al., 2022), Fedformer (Zhou et al., 2022) and Autoformer (Wu
et al., 2022b).

Table 6: Long-term forecasting task on ETTh2, Weather and Exchange.

Datasets Prediction
Length

Nonstationary
(Liu et al., 2022)

Nonstationary+CAB
(Ours)

Fedformer
(Zhou et al., 2022)

Autoformer
(Wu et al., 2022b)

MSE MAE MSE MAE MSE MAE MSE MAE

ETTh2 96 0.476 0.458 0.376 0.407 0.358 0.397 0.346 0.388
ETTh2 192 0.512 0.493 0.513 0.476 0.429 0.439 0.456 0.452
ETTh2 336 0.552 0.551 0.522 0.486 0.496 0.487 0.482 0.486
ETTh2 720 0.562 0.560 0.549 0.508 0.463 0.474 0.515 0.511

Average 0.526 0.516 0.490 0.469 0.437 0.449 0.450 0.459

Weather 96 0.173 0.223 0.189 0.241 0.217 0.296 0.266 0.336
Weather 192 0.245 0.285 0.242 0.285 0.276 0.336 0.307 0.367
Weather 336 0.321 0.338 0.307 0.333 0.339 0.380 0.359 0.395
Weather 720 0.414 0.410 0.379 0.382 0.403 0.428 0.419 0.428

Average 0.288 0.314 0.279 0.310 0.309 0.360 0.338 0.382

Exchange 96 0.111 0.237 0.123 0.249 0.148 0.278 0.197 0.323
Exchange 192 0.219 0.335 0.224 0.340 0.271 0.380 0.300 0.369
Exchange 336 0.421 0.476 0.327 0.416 0.460 0.500 0.509 0.524
Exchange 720 1.092 0.769 0.983 0.757 1.195 0.841 1.447 0.941

Average 0.461 0.454 0.414 0.440 0.519 0.500 0.613 0.539
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Results. As shown in Table 6, CAB, when integrated with Nonstationary Transformer, consistently
improves the performance of the base model on all of the considered datasets spanning different
disciplines. Moreover, Nonstationary+CAB even achieves the best performance among the baselines
on the Weather and Exchange datasets. This demonstrates the potential of CAB and the mixture-of-
head attention design even in MTS predictive tasks.

D RUN-TIME ANALYSIS

We further provide performance measurement of the baselines for the imputation task on ETTh
(Zhou et al., 2021) (using ETTh1 as a representative). In Table 7, we report the average run-time per
iteration (s / iter) of all the methods tested in Section 4.1.

Table 7: Run-time per iteration in (s / iter) for imputation task on ETTh1.

Series Length
TimesNet

(Wu et al., 2023)
Nonstationary

(Liu et al., 2022)
Nonstationary+CAB

(Ours)

Transformer
(Vaswani et al., 2017)

Transformer+CAB
(Ours)

FEDformer
(Zhou et al., 2022)

DLinear
(Zeng et al., 2022)

Autoformer
(Wu et al., 2022b)

384 0.024 0.046 0.069 0.024 0.067 0.807 0.006 0.070
768 0.040 0.118 0.121 0.082 0.103 1.055 0.006 0.071

1536 0.045 0.467 0.542 0.104 0.278 1.482 0.007 0.129

Results. As shown in Table 7, the CAB incurs only minimal overhead to the base Transformers,
especially for the Nonstationary+CAB baseline which achieves the state-of-the-art results for imputa-
tion. We note that the two baselines TimesNet and DLinear with superior run-time performance are
non-Transformer models and sub-optimal in their achievable error performance.

17


	Introduction
	Related Work
	Methodology
	Background
	Correlated Attention Block and Mixture-of-head Attention
	Limitation of Temporal Attention
	Correlated Attention Block
	Mixture-of-head Attention


	Experiments
	Imputation
	Anomaly Detection
	Classification

	Conclusion and Future Work
	Implementation Details
	Ablation Studies
	Additional Experimental Results for Long-term Forecasting
	Run-time Analysis

