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A RELATIONSHIP BETWEEN RELIC AND OTHER METHODS

Table 5: The objective in eq. (3) recovers state of the art methods depending on design choices (“-”
denotes the identity function and “norml.” means g is constrained to have unit norm).

Method φ g Regl.
CPC (Hénaff et al., 2019) 〈g,Wg〉 PixelCNN -
AMDIM (Bachman et al., 2019) 〈·, ·〉 - -
SimCLR (Chen et al., 2020a) 〈g, g〉 MLP, norml. -
BYOL (Grill et al., 2020) - g1, g2 1 layer MLP, norml. ‖g1(g2)− g2‖2
RELIC (ours) 〈g, g〉 MLP, norml. Eq. (3)

B DISTANCE CONCENTRATION AND GENERALIZATION

Quantifying the generalization performance of representations learned on unlabelled data is a difficult
task without imposing assumptions on the underlying structure of the data and the downstream
tasks of interest. The results in (Saunshi et al., 2019) assume a latent class structure underlying the
data. The similarity of images under each (potentially overlapping) latent class c is measured by
a probability distribution Dc. In the contrastive setting a positive pair of points {x, x+} is said to
be sampled from a distribution EcDc(x)Dc(x+) and a negative example x− is sampled from the
marginal distribution. The task of interest is multi-class classification using the learned representation.
In our setting the augmented data points {xali , x

ak
i } and {xali , xakm }Mm=1 take the roles of the pairs of

positive and negative points, respectively.

In this section, under the same structural assumptions on the data as (Saunshi et al., 2019) we will
show that a similar result holds but under weaker assumptions on the function, f .

Figure 3: Visual represen-
tation of invariance penalty.
Shaded region denotes set of
augmentations around an im-
age.

To intuit the following results, we can view our explicit invariance
constraint through the lens of distance concentration. Its effect can
be seen intuitively in Figure 3. The shaded region represents the set
of augmentations, A around an image. Depicted are two images xi
and xj from the ImageNet class Stingray. The points xali and xakj
are augmentations which correspond to a region of overlap between
the augmentation sets of xi and xj . If the augmentations f(xali ) and
f(xakj ) are similar enough, encouraging f(xi) to be close to f(xali )

and similarly for f(xj) and f(xakj ) indirectly encourages f(xi) to
be close to f(xj). This has the effect of concentrating distances
between similar images. We will make this intuition more formal
in the following discussion.

Consider a modified, Euclidean distance regularized version of our
objective

f̂ ∈ argmin
f∈F

N∑
i=1

∑
alk

`({f(xali )>(f(xaki )− f(xakm ))}Mm=1)

s.t. ‖f(xi)− f(xaki )‖2 ≤ ρ.

(5)

where f ∈ F = {f : X 7→ Rd s.t. ||f ||2 ≤ T} with T ≥ 0. Here `(v) = log(1 +
∑
m exp(vm)) is

the logistic loss. For a single negative, this is equivalent to the standard RELIC objective with an
identity critic.

Assumption 1. We require that the following assumptions hold: (A1) f̂ is L-Lipschitz and minimizes
eq. (5) such that the constraint is active and (A2) x is a bounded variable.

Lemma 1 (Concentration). If assumption (A1) holds for ρ ≤ B
6Lκ , and (A2) holds for x, f̂(x) is a

sub-Gaussian random variable with parameter σ2
f ≤ 1

κσ
2
x.
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See Appendix C for proof. This result states that the Euclidean version of our invariance regularizer
has the effect of contracting the within-class variance of the data. Figure 2 shows that this holds
in practise for the original version of our objective in eq. (3). This guarantees that the following
generalization result from (Saunshi et al., 2019) holds. For brevity we state an informal version of the
Theorem with details deferred to the original publication.
Theorem 2 (Generalization. Adapted from Lemma B.2. from (Saunshi et al., 2019)). Let Lµsup(f)

be the standard (K + 1)-wise hinge loss of the linear classification function Wµf whose cth
column is µx = 1

|Cc|
∑
i∈Cc f(xi) the mean of representations corresponding to class c. Further, let

Lµγ(f),sup(f) use the the hinge loss with margin γ(f) = 1+ c′Mσf (
√
k+

√
log M

ε ) with c′ constant

and M = maxx ‖f(x)‖. If f̂ is the minimizer of eq. (5) and if Assumptions (A1) and (A2) hold then
with high probability

Lµsup(f̂) ≤ γ(f)L
µ
γ(f),sup(f) + GenN + ε (6)

Here, GenN is a standard generalization bound which depends on the Rademacher complexity of the
function class F and the sample size, N .

For all practical purposes, the final generalization result is identical to (Saunshi et al., 2019) stating
that f̂—which is learned by minimizing a contrastive objective on unlabelled data—performs well on
labelled data. However, this crucially depends on the intraclass concentration of the representation,
that f(x) is sub-Gaussian with parameter σ2

f . Whereas in (Saunshi et al., 2019) this was assumed
to hold, our Lemma 1 shows that the necessary concentration is ensured by our invariance penalty.
Experimentally we see this property holds in practise (figure 2).

C ADDITIONAL RESULTS

Proof of Lemma 1. Assume the data x is σ2
x-sub-Gaussian. In practise this holds since x is bounded.

It immediately follows that L-Lipschitz function f(x) sub-Gaussian with parameter at most L. Now
we will characterize the reduction in variance from x to f . Assume there is a ball of radius B around
each point such that for any augmentation xsi of xi ‖xi − xsi‖22 ≤ B. By assumption (A1) we have
that ‖f(xi)− f(xsi )‖22 ≤ ρ. This implies that for points xi and xj such that ‖xi − xj‖22 ≤ 2B, there
exists a region of overlap so that ‖f(xi)− f(xj)‖22 ≤ ‖f(xi)− f(xsi )‖22+ ‖f(xsi )− f(xj)‖22 ≤ 2ρ.

In practise this says that there are augmentations of xi which are sufficiently similar to augmentations
of xj so that their representations should be similar, thereby driving f(xi) and f(xj) to be closer.

The variance of points in f space is

σ2
f =

1

2N2

∑
i

∑
j

‖f(xi)− f(xj)‖22

The overlap B < ‖xi − xj‖22 ≤ 2B induces a graph where we say j ∈ N (i) ∀ j s.t. ‖xi − xj‖22 ≤
2B. For N samples we can decompose the variance as

σ2
f =

1

2N2

∑
i

∑
j

‖f(xi)− f(xj)‖22

=
1

2N2

∑
i

∑
j∈N (i)

‖f(xi)− f(xj)‖22 +
∑

j′ /∈N (i)

‖f(xi)− f(xj′)‖22

By smoothness of f we always have that have ‖f(xi)− f(xj′)‖22 ≤ L‖xi − xj′‖22. By the constraint
we have that ‖f(xi)− f(xj)‖22 ≤

2ρL
B ‖xi − xj‖

2
2 ∀j ∈ N (i) and for δ = 2ρL

B < 1.

Constant proportion overlap. Now, assuming that for each point i there is a constant proportion
of the points, 0 ≤ α ≤ 1 in the set N (i) ∀i we can obtain the following inequality

σ2
f =

1

2N2

∑
i

∑
j

‖f(xi)− f(xj)‖22

≤ αδσ2
x + (1− α)Lσ2

x

= (αδ + (1− α)L)σ2
x (7)
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For σ2
f ≤ σ2

x we require (αδ + (1− α)L) ≤ 1. Since both terms are positive we separately require
(1− α)L ≤ 1:

(1− α)L < 1

(1− α) < 1

L

α > (1− 1

L
)

This condition makes sense since the larger α, the fewer unconnected components in the graph. If the
above holds, we also require α 2ρL

B < 1− (1− α)L to ensure the sum is bounded above by 1. This
implies ρ < (1−(1−α)L)B

2Lα .

However, α is a property of the augmentation set and not directly a user-controllable parameter so if
α is too small or the function is not smooth enough, it might not be possible to set ρ in such a way to
induce contraction in σ2

f .

In the next section we derive a tighter concentration based on the structure of random graphs which
are induced by the connectivity between data points and their augmentations.

Random graphs. Consider the graph G(V,E) induced by the constraints (i, j) ∈
E ∀ ‖xi − xj‖22 ≤ 2B. Call N (i) the set of neighbours of point i. For N points, if there is a
constant probability α that j ∈ N (i) then GN,α is an Erdös-Renyi graph.

From Theorem 3, if α ≥ c logN
N for c > 1 then with high probability, there are no unconnected

components in G. That is, every vertex in V is reachable from any other vertex in a finite number of
steps. We can then decompose the contribution to the variance in terms of components in the graph
that are adjacent and those which are reachable within a certain number of steps.

Let the degree—the shortest path—between any two points be at most D we obtain the following
refinement of eq. (7)

σ2
f =

1

2N2

∑
i

∑
j

‖f(xi)− f(xj)‖22

≤ αδσ2
x + (1− α)Dδσ2

x

From Theorem 4 we have with high probability that 3 ≤ D ≤ 4. So for σ2
f ≤ 1

κσ
2
x with κ ≥ 1 we

require ρ ≤ B
2Lκ(α+3(1−α)) ≤

B
6Lκ .

Theorem 3 (Connectedness (Erdős & Rényi, 1960)). If p = c logn
n where c > 1 with high probability

then the graph G(n, p) has no unconnected components.

Definition 1 (Diameter). For a connected graph, G(V,E) the diameter diam(G) = max dist(vi, vj)
where dist(vi, vj) is the minimum number of edges in the path between vi and vj .

Theorem 4 (Diameter of random graphs (Frieze & Karoński, 2016)). Let d ≥ 2 be a fixed positive
integer. For c > 0 and

pdnd−1 = log(n2/c)

Then diam(Gn,p) ≥ d with probability exp(−c/2) and diam(Gn,p) ≤ d + 1 with probability
1− exp(−c/2).

D GENERALIZING CONTRASTIVE LEARNING

D.1 REFINEMENTS

On the unsupervised observed data D, any task as defined by targets Yt induces an equivalence
relation, i.e. Yt partitions D into equivalence classes. It divides D based on values of the target,
D = {{xa|ya = yi}Mi=1} where {y1, . . . , yM} for some M is the set of target values. Here the
equivalence relation associates datapoints based on the value of the target they predict. For example,
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Figure 4: Visualization of a refinement of a set of tasks. The tasks are to classify aquatic vs non-
aquatic life and animal vs non-animal with the individual class boundaries denoted by the dashed and
dotted black lines. A refinement for these tasks is a to classify aquatic animal vs aquatic non-animal
vs non-aquatic animal vs non-aquatic non-animal and the class boundaries are given in teal. The
ellipse indicates the set of points induced by augmenting the image of the ship.

if D is a set of images of cats and dogs and Yt denotes labels cat and dog, then D is partitioned into
two equivalence classes corresponding to cat and dog images by Yt.

Intuitively, a refinement is a subdivision of an existing partition. For a visualization of a refinement
of a set of tasks see Figure 4. To mathematically define refinements, we first need to introduce what it
means for an equivalence relation to be finer than another equivalence relation.

Definition 2. (Fineness). Let∼ and≈ be two equivalence relations on the setD. If every equivalence
class of ∼ is a subset of an equivalence class of ≈, we say that ∼ is finer than ≈.

Now we define what refinements.

Definition 3. (Refinement). LetA,B be sets of equivalence classes induced by equivalence relations
∼ and ≈ over the set D. If ∼ is finer than ≈, then we call A a refinement of B.

Furthermore, we can relate the corresponding sets of equivalence classes.

Lemma 2. Let ∼ and ≈ be two equivalence relationships on the set D and denote the corresponding
induced partitions by A and B. If ∼ is finer than ≈, then every equivalence class of ≈ is a union of
equivalence classes of ∼.

Coming back to the example of cats and dogs, let ≈ be the relation that associates cats with cats and
dogs with dogs. Now the relation ∼ which associated both cats and dogs with their specific breed
(e.g. poodles with other poodles) is finer than ≈. Note that ∼ partitions D into breeds and so we can
easily generate the sets of cats and dogs (i.e. equivalence classes of ≈) by taking a union over all the
corresponding breeds.

D.2 PROOF OF THEOREM 1

Definition 4. (Invariant Representation). Let X and Y be the covariates and target, respectively.
We call f(X) an invariant representation for Y under style S if

pdo(S=si)(Y | f(X)) = pdo(S=sj)(Y | f(X)) ∀ si, sj ∈ S, (8)

where do(S = s) denotes assigning S the value s and S is the domain of S.

Theorem 1. Let Y = {Yt}Tt=1 be a family of downstream tasks. Let Y R be a refinement for all
tasks in Y . If f(X) is an invariant representation for Y R under changes in style S, then f(X) is an
invariant representation for all tasks in Y under changes in style S, i.e.

pdo(si)(Y R | f(X)) = pdo(sj)(Y R | f(X)) ⇒ pdo(si)(Yt | f(X)) = pdo(sj)(Yt | f(X)) (9)

for all t ∈ {1, . . . , T} and for all si, sj ∈ S with pdo(si) = pdo(S=si). Thus, f(X) is a representation
that generalizes to Y .
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Proof. Let t ∈ {1, . . . , T}. We have

pdo(si)(Yt|f(X)) =

∫
pdo(si)(Yt|Y R)pdo(si)(Y R|f(X))d Y R =

∫
p(Yt|Y R)pdo(si)(Y R|f(X))d Y R

=

∫
p(Yt|Y R)pdo(sj)(Y R|f(X))d Y R = pdo(sj)(Yt|f(X)).

For the first equality, we used the fact that Y R is a refinement of Yt. To see this note that discrete
random variables (e.g. Y R and Yt) induce equivalence relationships on the sample space, i.e. their
events partition the sample space into equivalence classes. Since Y R is a refinement of Yt, we
know that the equivalence relation induced by Y R is finer than the equivalence relation induced by
Yt. By Lemma 2, we then know that every equivalence class induced under Yt can be constructed
from a union of equivalence classes induced under Y R . Thus, we have that Yt is a function of
Y R, i.e. Yt = g(Y R) for some function g and thus we have that p(Yt|Y R) = p(Yt|Y R, f(X)).
For the second and last equality, we used that the mechanism of Yt|Y R is independent of S, i.e.
pdo(si)(Yt|Y R) = pdo(sj)(Yt|Y R). The third equality follows from the assumption that f(X) is
an invariant representation for Y R under changes in S. Thus, we get that f(X) is an invariant
representation for Yt under changes in S. Specifically, for a representation to be an invariant
representation for Yt it is a sufficient condition for it to be an invariant representation for Y R.

E EXPERIMENTAL DETAILS

E.1 IMAGE AUGMENTATIONS

For pretraining the representations in RELIC, we apply the augmentation scheme proposed in
SimCLR (Chen et al., 2020a) and used in (Grill et al., 2020). This consists of the following
augmentations applied in the order they are listed

• random crop – we randomly crop the image using an area randomly selected between 8%
and 100% of the image with an logarithmically sampled aspect ration between 3/4 and 4/3.
After this, we resize the patch to 224× 224;

• random horizontal flip;

• color jittering – we apply in random order perturbations to brightness, contrast, saturation
and hue of the image by shifting them by a random uniform offset;

• grayscale – we randomly apply grayscaling;

• Gaussian blurring – we blur the image using a 23× 23 square Gaussian kernel with standard
deviation uniformly sampled in [0.1, 0.2];

• solarization – we transform all the pixels with x→ x ∗ 1{x<0.5} + (1− x) ∗ 1{x≥0.5}.

We use the same parameters for the augmentations and probabilities of applying individual augmenta-
tions as SimCLR (Chen et al., 2020a). After applying augmentations, we normalize the images with
the mean and standard deviation computed on ImageNet across the color channels.

E.2 ARCHITECTURE

We test RELIC on two different architectures – ResNet-50 (He et al., 2016) and ResNet-50 with
target network as in (Grill et al., 2020). For ResNet-50, we use version 1 with post-activation. We
take the representation to be the output of the final average pooling layer, which is of dimension 2048.
As in SimCLR (Chen et al., 2020a), we use a critic network to project the representation to a lower
dimensional space with a multi-layer perceptron (MLP). When using ResNet-50 as encoder, we treat
the parameters of the MLP (e.g. depth and width) as hyperparameters and sweep over them. This
MLP has batch normalization (Ioffe & Szegedy, 2015) after every layer, rectified linear activations
(ReLU) (Nair & Hinton, 2010). We used a 4 layer MLP with widths [4096, 2048, 1024, 512] and
output size 128 with ResNet-50. When using a ResNet-50 with target networks as in (Grill et al.,
2020), we exactly follow their architecture settings.
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E.3 OPTIMIZATION

We use a batch size of 4096 and the LARS optimizer (You et al., 2017) with a cosine decay learning
rate schedule (Loshchilov & Hutter, 2017) for 1000 epochs with 10 epochs for warm-up. We exclude
the biases and batch normalization parameters from LARS adaptation. We use as the base learning
rate 0.3 for ResNet-50 and 0.2 for ResNet-50 with target network. We scale this learning rate by
batch size/256 and use a global weight decay parameter of 1.5 ∗ 10−6 and exclude the biases and
batch normalization parameters. For the target network, we follow the approach of BYOL (Grill
et al., 2020) and start the exponential moving average parameter τ at τbase = 0.996 and increase it to
one during training via τ = 1− (1− τbase)(cos(πk/K) + 1)/2 with k the current training step and
K the maximum number of training steps.

E.4 EVALUATION ON IMAGENET

We follow the standard linear evaluation protocol on ImageNet as in (Kolesnikov et al., 2019; Chen
et al., 2020a; Grill et al., 2020). We train a linear classifier on top of the fixed representation, i.e. we
do not update the network parameters or the batch statistics. For training, we randomly crop and
resize images to 224 × 224, and randomly horizontally flip the images after that. For testing, the
images are resized to 256 pixels along the shorter dimension with bicubic resampling after which
we take a center crop of size 224× 224. Both for training and testing, the images are normalized by
substracting the mean and standard deviations across the color channels computed on ImageNet after
the augmentations. We use Stochastic Gradient Descent with a Nestorov momentum of 0.9 and train
for 80 epochs with a batch size of 1024. We do not use any regularization techniques, e.g. weight
decay.

E.5 ROBUSTNESS AND GENERALIZATION

E.5.1 DATASET DETAILS

ImageNet-C. The ImageNet-C dataset (Hendrycks & Dietterich, 2019) consists of 15 different
types of corruptions from the noise, blur, weather, and digital categories applied to the validation
images of ImageNet. This dataset is used for measuring semantic robustness. Figure 5 visualizes the
corruption types. Each type of corruption has 5 levels of severity, i.e. there are 75 distinct corruptions
in the dataset. In Figure 6, we display the Impulse noise corruption for 5 different severity levels. As
can be seen, with increasing severity level the image becomes increasingly corrupted and difficult to
parse. In addition to these 75 corruption types, there are an additional 4 corruption types (speckle
noise, gaussian blur, spatter and saturate) that are provided as a validation set. We use these additional
corruption types for selecting the best hyperparameters. For further details on this dataset, please
refer to (Hendrycks & Dietterich, 2019).

ImageNet-R. The ImageNet-R dataset (Hendrycks et al., 2020) consists of 30, 000 images depicting
various artistic renditions (e.g., paintings, sculpture, origami, cartoon) of 200 ImageNet object classes.
This dataset is used to measure out-of-distribution generalization to various abstract visual renditions
as it emphasizes shape over texture. The data was collected primarily from Flickr and also includes
line drawings from (Wang et al., 2019). The images represent naturally occurring objects and have
different textures and local image statistic to those of ImageNet. Figure 7 visualizes different images
from the dataset. For further details on this dataset, please refer to (Hendrycks et al., 2020).

E.5.2 EVALUATION

To evaluate robustness and generalization of the learned representation, we follow the standard
linear evaluation protocol on ImageNet as in (Chen et al., 2020b;a; Kolesnikov et al., 2019). We
train a linear classifier on top of the frozen representation, i.e. we do not update either the network
parameters nor the batch statistics. During training, we augment the data by randomly cropping,
resizing to 224× 224 and randomly flipping the image. At test time, images are resized to 256 pixels
along the shorter side via bicubic resampling and we take a 224 × 224 center crop. Both during
training and testing, after applying augmentations we normalize the color channels by subtracting the
average color and dividing by the standard deviation that is computed on ImageNet. We optimize the
cross-entropy loss using Stochastic Gradient Descent with Nestorov momentum of 0.9. We sweep
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Gaussian Noise Shot Noise Impulse Noise Defocus Blur Frosted Glass Blur

Motion Blur Zoom Blur Snow Frost Fog

Brightness Contrast Elastic Pixelate JPEG

Figure 5: The ImageNet-C dataset consists of 15 types of corruptions from noise, blur, weather,
and digital categories. Each type of corruption has five levels of severity, resulting in 75 distinct
corruptions. See different severity levels in Figure 6.

Clean Severity = 1 Severity = 2 Severity = 3 Severity = 4 Severity = 5

Figure 6: The 5 different levels of severity of Impulse noise corruption available in the ImageNet-C
dataset. With increasing severity the dog image is markedly corrupted.

over number for epochs {30, 50, 60, 90}, learning rates {0.4, 0.3, 0.2, 0.1, 0.05, 0.01} and batch sizes
{1024, 2048, 4096}. We select hyperparameters on the validation set provided in ImageNet-C and
report the performance on ImageNet-R and on the test set of ImageNet-C under the best validation
hyperparameters. We do not use any regularization techniques such as weight decay, gradient clipping,
tanh clipping or logits regularization.

Figure 7: Example images from the dataset ImageNet-R which contains 30, 000 images of 200
ImageNet classes. This dataset emphasizes shape over texture and has different textures and local
image statistic to those of ImageNet.
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E.5.3 ROBUSTNESS METRICS AND FURTHER RESULTS

Let f be a classifier that has not been trained on ImageNet-C. For each corruption type c and level
of severity 1 ≤ s ≤ 5, denote the top-1 error of this classifier as Efs,c. Different corruption types
pose different levels of difficulty. To make error rates across corruption types more comparable, the
error rates are divided by AlexNet’s errors. This standardized measure is the Corruption Error and is
computed as

CEfc =

(
5∑
s=1

Efs,c

)
/

(
5∑
s=1

EAlexNets,c

)
The average error across all 15 corruption types is called the mean Corruption Error (mCE). Corruption
Errors and mCE measure absolute robustness.

To better assess robustness, we also report the relative Corruption Error which measures relative
robustness, i.e. loss in performance under corruptions. Denote by Efclean the top-1 error rate for f on
the clean test set of ImageNet. The relative Corruption Error is given as

rCEfc =

5∑
s=1

(
Efs,c − E

f
clean

)
/

5∑
s=1

(
EAlexNets,c − EAlexNetclean

)
The mean relative Corruption Error (mrCE) is the mean of the relative Corruption Errors across all
the corruption types. For more details and intuitions about there measures please refer to (Hendrycks
& Dietterich, 2019).

In Table 6, we report Corruption Errors for Blur, Weather, and Digital corruption types. In Table 7, we
report the relative robustness. As per (Hendrycks & Dietterich, 2019), we used the following values
as the average AlexNet errors across severities, i.e. 1

5

∑5
s=1E

AlexNet
s,c , to normalize the Corruption

Error values – Gaussian Noise 88.6%, Shot Noise 89.4%, Impulse Noise 92.3%, Defocus Blur 82.0%,
Glass Blur 82.6%, Motion Blur 78.6%, Zoom Blur 79.8%, Snow 86.7%, Frost 82.7%, Fog 81.9%,
Brightness 56.5%, Contrast 85.3%, Elastic Transformation 64.6%, Pixelate 71.8%, JPEG 60.7%,
Speckle Noise 84.5%, Gaussian Blur 78.7%, Spatter 71.8%, Saturate 65.8%.

Table 6: Mean Corruption Error (mCE) and Corruption Error values for Blur, Weather, and Digital
corruption types on ImageNet-C. All models are trained only using clean ImageNet images.

Blur Weather Digital
Method mCE Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

Supervised 76.7 75 89 78 80 78 75 66 57 71 85 77 77
Using ResNet-50:

SimCLR 87.5 94.8 103.3 101.8 101.9 83.7 80.6 65.6 71.5 54 106.8 105.2 93
ReLIC 76.4 81.4 96.9 92.7 93.2 73.7 71.2 54.5 60.2 46.9 97.4 85.5 77.2

ResNet-50 with target network:
BYOL 72.3 75 93.6 86.3 87.9 74.3 69.1 48.5 55 48.6 90.4 74.3 73
ReLIC 70.8 73.2 94 81.9 87 73.2 68 47.5 54.2 48.4 89.5 75.6 71.8

Table 7: Mean relative Corruption Error (mrCE) and relative Corruption Error values for different
corruptions and methods on ImageNet-C. The mrCE value is the mean relative Corruption Error of
the corruptions in Noise, Blur, Weather, and Digital columns. All models are trained only using clean
ImageNet images. RELIC-t denotes using RELIC with a ResNet-50+target network architecture as
in BYOL (Grill et al., 2020).

Noise Blur Weather Digital
Method mrCE Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

Supervised 105 104 107 107 97 126 107 110 101 97 79 62 89 146 111 132
Using ResNet-50:

SimCLR 111.9 88 92.7 106.6 122.2 139.6 140.5 139.4 96.9 91.6 59.9 74.8 36.7 181.5 158.3 149.8
ReLIC 87.7 67.3 73.1 84.8 96.1 128.7 123 123.1 79.3 74.4 38.9 33.4 24.6 157.5 112 99.8

ResNet-50 with target network:
BYOL 90 72.5 77.2 86.7 93 132 120 122.5 89.7 80.2 36.6 41.5 37.8 155 97.6 108.4
ReLIC 88.4 69.1 73 79.2 90.4 134.2 111.6 121.9 88.5 79.2 35.6 41.7 38.5 154.5 102.7 106.8

E.6 EVALUATION ON ATARI

For our experiments on Atari, we use the agent from R2D2 (Kapturowski et al., 2019) with standard
hyperparameters noted below. We train each agent on approximately 15 billion frames and add a
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second encoder with the same architecture used in the Q-Network of the original agent. This second
encoder is trained with a separate optimizer with only a representation learning objective. The agent
then takes the output of this encoder as a given input. We use standard augmentations used in prior
work (Kostrikov et al., 2020) where we pad the frames on all sides with 4 pixels copied from the
borders and then randomly cropping 84 windows. We randomly shift pixel intensity according to the
distribution s = 1.0 + 0.1 ∗ N ′ where N ′ is the standard Normal distribution with values clipped
between -2 and 2. s is then multiplied by the original image to return the augmented image.

RELIC and SimCLR For our implementation of RELIC and SimCLR, we do not use a critic
embedding at all and utilize the last layer of the encoder for the objective. As in CURL (Srinivas
et al., 2020) we utilize a target encoder for the second augmentation where we update the weights
with a momentum of .99. We also clipped the gradients of our optimizer using a global norm ratio of
40. We report the hyperparameters in Table 8

Table 8: RELIC and SimCLR Details

Parameter Value

Normalize Inputs True
Temperature 1.0 Constant

Scaling of Embeddings False
Optimizer Adam

Learning Rate 5e-4
Epsilon 0.01
Beta 1 0.9
Beta 2 0.999

CURL For CURL, we use a second encoder as noted before. With the exception of the encoder
architecture and the optimizer parameters, all hyperparameters are the same as in (Srinivas et al.,
2020) including the momentum value for the target network weight updates. We utilize the same
architecture in the paper with a linear layer as a critic embedding for the target encoder.

Table 9: CURL Details

Parameter Value

Optimizer Adam
Learning Rate 1e-3

Epsilon 0.01
Beta 1 0.9
Beta 2 0.999

BYOL In BYOL, we utilize two-layer perceptron networks as our predictor and projection layers.
For both networks, the number of hidden units in the two layers was 1024 and 512. We use a target
network update momentum of .99. The optimizer parameters are the same as in Table 8.

Direct Augmentation We also compared against direct augmentation of the observations in the
replay buffer as in DrQ (Kostrikov et al., 2020). We keep the architecture the same in this instance
and use two duplicate encoders as input to the agent. In this case, the optimizer can jointly update
both encoders and train them end-to-end.
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Table 10: Individual Mean Episode Return on Atari.

Games Average Human Random RELIC SimCLR CURL BYOL Augmentation
alien 7127.70 227.80 8766.57 10082.54 8506.48 9671.89 5201.93

amidar 1719.50 5.80 28449.26 28141.18 27213.75 25965.05 867.66
assault 742.00 222.40 92963.07 36109.84 7139.67 13565.20 1539.71
asterix 8503.30 210.00 998426.72 997305.51 661431.39 986307.92 26239.64

asteroids 47388.70 719.10 83669.38 7299.90 76612.17 55936.02 101340.17
atlantis 29028.10 12850.00 1575940.94 1584392.76 1584698.01 1530122.45 794011.79

bank heist 753.10 14.20 1521.38 2467.62 4095.29 1659.94 771.60
battle zone 37187.50 2360.00 452831.48 278903.14 287792.06 338695.47 31511.75
beam rider 16926.50 363.90 136695.24 98551.42 116794.58 87454.20 46894.14

berzerk 2630.40 123.70 146213.60 1301.36 73754.38 1265.21 73645.52
bowling 160.70 23.10 205.09 193.50 230.31 172.21 164.68
boxing 12.10 0.10 100.00 100.00 100.00 100.00 100.00

breakout 30.50 1.70 405.05 404.06 407.14 409.48 150.67
centipede 12017.00 2090.90 220886.86 99544.92 167779.11 146735.67 20152.01

chopper command 7387.80 811.00 999900.00 999900.00 999900.00 962003.61 5399.56
crazy climber 35829.40 10780.50 272179.68 266870.81 301689.62 210477.39 96538.00

defender 18688.90 2874.50 576405.57 522617.05 560816.84 493410.36 78750.19
demon attack 1971.00 152.10 143774.79 143786.19 143737.36 143574.86 821.98
double dunk -16.40 -18.60 24.00 24.00 24.00 24.00 14.82

enduro 860.50 0.00 2371.27 2366.19 2373.12 2368.00 1361.66
fishing derby -38.70 -91.70 68.17 83.00 72.21 70.11 19.93

freeway 29.60 0.00 33.00 32.93 33.04 33.00 32.00
frostbite 4334.70 65.20 10156.41 11171.49 3693.20 5793.80 5708.35
gopher 2412.50 257.60 123170.74 122368.21 122371.64 120317.04 43711.82
gravitar 3351.40 173.00 4186.09 3601.14 4997.87 4048.25 2014.59

hero 30826.40 1027.00 13615.35 13523.98 13620.78 13558.04 8957.00
ice hockey 0.90 -11.20 56.39 48.27 45.06 59.70 -2.43
jamesbond 302.80 29.00 15632.87 5714.62 10052.04 10099.81 1441.95
kangaroo 3035.00 52.00 14342.59 14215.11 11674.19 14471.65 7249.73

krull 2665.50 1598.00 137099.65 100426.69 86049.99 80414.04 16626.09
kung fu master 22736.30 258.50 230241.57 220076.57 228943.94 208064.38 64632.42

montezuma revenge 4753.30 0.00 1066.67 733.33 1072.30 419.54 26.67
ms pacman 6951.60 307.30 13367.55 12053.76 13465.80 12726.79 3238.90

name this game 8049.00 2292.30 48669.30 46657.55 47417.82 44848.29 13416.57
phoenix 7242.60 761.40 803108.37 253542.40 580969.56 20317.80 6264.39
pitfall 6463.70 -229.40 0.00 0.00 0.00 0.00 0.00
pong 14.60 -20.70 21.00 21.00 21.00 21.00 21.00

private eye 69571.30 24.90 10154.93 5115.34 5190.28 470.68 111.77
qbert 13455.00 163.90 353197.13 24340.75 208207.97 57261.24 11051.97

riverraid 17118.00 1338.50 23525.44 20400.83 20230.02 22206.57 10487.59
road runner 7845.00 11.50 213173.15 236235.30 241917.98 238880.54 440430.17

robotank 11.90 2.20 97.65 82.60 98.13 62.54 49.98
seaquest 42054.70 68.40 999999.00 999999.00 666700.67 29160.93 37397.26
skiing -4336.90 -17098.10 -24761.06 -23076.73 -15497.66 -26028.08 -22162.91
solaris 12326.70 1236.30 4594.37 4571.27 4276.39 4331.03 4142.69

space invaders 1668.70 148.00 3625.52 3619.94 3542.48 3613.93 835.37
star gunner 10250.00 664.00 283499.72 289099.89 129720.84 175486.67 43167.07
surround 6.50 -10.00 10.00 9.96 1.60 9.56 -0.64

tennis -8.30 -23.80 0.00 0.00 0.00 0.00 0.12
time pilot 5229.20 3568.00 309297.74 92888.66 400326.69 48011.44 14198.37
tutankham 167.60 11.40 371.17 306.45 337.61 285.36 144.30
up n down 11693.20 533.40 577256.03 520666.59 566912.89 552110.67 143512.38

venture 1187.50 0.00 1929.53 1945.20 1906.84 1881.76 733.29
video pinball 17667.90 0.00 978292.52 993332.08 932523.58 623223.24 37584.71
wizard of wor 4756.50 563.50 123513.74 89462.62 106801.20 68256.44 5940.82
yars revenge 54576.90 3092.90 228704.52 99636.25 229221.52 86847.75 48041.63

zaxxon 9173.30 32.50 120830.77 57379.66 85906.74 48067.61 23688.22
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