Table 5: Trained and Untrained MPNNs (3-layer, 512-hidden-dimension) with *mean* aggregation and mean (graph-level) pooling, denoted by "MPNN-mean". We report the mean accuracy \pm std over ten data splits. Although our theoretical results do not apply to mean aggregation, we still see that untrained MPNNs are competitive compared to their trained counterparts. | Accuracy ↑ | MUTAG | IMDB-BINARY | IMDB-MULTI | NCI1 | PROTEINS | REDDIT-BINARY | |----------------------------|------------------|------------------|------------------|------------------|------------------------------------|------------------| | GIN-mean (trained) | 74.63 ± 2.93 | 49.48 ± 1.56 | 33.70 ± 1.35 | 73.74 ± 0.45 | $71.53 \pm 0.93 \\ 70.33 \pm 0.95$ | 50.04 ± 0.70 | | GIN-mean (untrained) | 72.46 ± 2.56 | 49.18 ± 1.83 | 33.03 ± 1.12 | 77.16 ± 0.39 | | 49.90 ± 0.83 | | GraphConv-mean (trained) | 65.87 ± 3.24 | 49.32 ± 1.35 | 33.15 ± 1.19 | 54.39 ± 1.25 | 66.76 ± 0.96 | 49.68 ± 0.82 | | GraphConv-mean (untrained) | 63.30 ± 3.55 | 48.80 ± 1.91 | 32.51 ± 0.90 | 55.84 ± 0.53 | 70.73 ± 0.69 | 49.39 ± 0.48 |