
A Supplementary material

A.1 Derivation of Theorem 3.1

Let G be a connected Lie group of transformations acting on the n-th dimensional manifold X . Let
F : X → Rl, l ≤ n. With this, we define a system of algebraic equations:

Fν(x) = 0, ν = 1, · · · , l,

and assume that the system is of maximal rank, meaning that the Jacobian matrix
(

∂Fν

∂xk

)
is of rank l

for every solution x of the system. Then G is a symmetry group of the system if and only if:

h[Fν(x)] = 0, whenever Fν(x) = 0,

for every infinitesimal generator h of G.

In our special case, the infinitesimal generator h is a matrix, which generates the one parameter
group of transformations equal to exp(h · t). That means that in the theorem, h is an element of the
symmetry group if and only if dFν(exp(h·t)·x)

dt |t=0 = 0, whenever Fν(x) = 0. But

dFν(exp(h · t) · x)
dt

|t=0 =

i=n∑
i=1

∂Fν(x)

∂xi
·
(
exp(h · t) · x

)
i

dt
|t=0 =

n∑
i=1

∂Fν(x)

∂xi
·

n∑
j=1

hij · xj =

i=n,j=n∑
i=1,j=1

∂Fν

∂xi
· hij · xj

A.2 LieGG sample complexity

LieGG computation requires finding a nullspace of the network polarization matrix. The dimension-
ality of the network polarization matrix depends on the number of samples in a dataset. Since the
dimensionality of a full-scale dataset may be prohibitively large, we conduct the sample complexity
study to investigate if the usage of all samples in a dataset is necessary to effectively retrieve the
symmetries learned by a neural network.

We conduct the empirical sample complexity study for O(5) synthetic regression and rotation-MNIST
classification tasks. For the synthetic regression, we take the trained model from A.3.1 and compute
the symmetry variance and bias using only a fraction of the training samples. We then compare the
results with the symmetry variance and bias computed from all available training data. The resulting
empirical sample complexity is presented in Figure 1. For the rotation-MNIST, we follow the same
procedure and study the sample complexity of LieGG applied to retrieve symmetries from the trained
6-layer perceptron from A.3.2. The resulting empirical sample complexity for the rotation-MNIST
is presented in Figure 2. Note that in both cases, the model is trained using all available training
data. The sample complexity study is only to investigate how many samples are needed to effectively
extract the symmetries from the trained model.

For the synthetic regression task, it suffices to use only 0.25% of the training samples to extract
the symmetry as precisely as when utilizing all available training data. For the more challenging
rotation-MNIST, we have to use at least 5% of the training samples to obtain a precise estimation of
the symmetry bias. The results suggest that we can effectively extract the learned symmetry using
only a fraction of the data to create the network polarization matrix.

A.3 Experiments

Here we provide additional experiments and details on the experiments in the main paper. All of the
experiments are performed with Pytorch 1.7.0 [3] on Nvidia Titan X GPU with the CUDA version
10.1. The results and error bars are reported over 8 fixed random seeds [1-8].
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Figure 1: The sample complexity of LieGG for the O(5) synthetic regression task. The red line
indicates the symmetry variance and the symmetry bias computed using 100% of available samples.

Figure 2: The sample complexity of LieGG for the rotation-MNIST classification task. The red line
indicates the symmetry variance and the symmetry bias computed using 100% of available samples.

A.3.1 Retrieving symmetries from the synthetic regression

To fit the regression function we employ the multi-layer perceptron that consists of linear layers
followed by Swish [4] activations with the following dimensions: (10 × 32) → 3 ∗ (32 × 32) →
(32× 1). The network takes input coordinates and outputs the predicted function value. We use a
mean squared error loss to supervise the model. We utilize Adam optimizer [2] with a learning rate
of 10−3 and train the network for a total of min(900000/N, 1000) epochs, where N is the size of
the training dataset. [1] reports this training schedule is enough for convergence.

To compute the mean symmetry variance per a training set size, we average the last 10 singular
values of the network polarization matrix. These singular values correspond to the O(5) symmetry as
indicated by the corresponding symmetry biases.

A.3.2 Retrieving symmetries from the rotation-MNIST

We employ two models: shallow (2-layer) and deep (6-layer) perceptrons with 40000 and 160000
parameters respectively. The hidden dimensions for the shallow and deep networks are 47 and 116
respectively. Both models are trained for 300 epochs with Adam optimizer with the learning rate set
to 10−3. We use a cross-entropy loss to supervise the model.

Symmetries are extracted from the models with the highest validation accuracy over 300 training
epochs. Additionally, to account for a possible difference in the magnitudes of the network outputs,
we normalize the network output logits to be unit L2 norm.

A.3.3 Retrieving symmetries from the rotation-augmented CIFAR10

We follow the Experiment 5.2 of the main paper for the rotation-augmented CIFAR10 dataset to check
if LieGG retrieves symmetries from the dataset, which is more complex than the rotation-MNIST.

We employ the 7-layer perceptron with a hidden dimension equal to 400. We train the model for 300
epochs on the CIFAR10 dataset augmented with random rotations. We use Adam optimizer with
the learning rate of 10−3. We select the best epoch model on the validation subset and visualize the

2



Figure 3: (a) The spectrum of the network polarization matrix and the symmetry bias for the MLP
trained on the CIFAR10. (b) the visualization of learned Lie algebras for various rotation angles.

symmetrical properties retrieved in Figure 3. Similar to the rotation-MNIST, LieGG retrieves the
correct symmetry as indicated by zeroing symmetry bias.

A.3.4 Symmetries in networks with different configurations

To evaluate networks with various configurations (width, depth, number of parameters), we consider
the following family of architectures: (784 × hdim) → p ∗ (hdim × hdim) → (hdim × 10),
where p stands for the number of hidden layers and hdim is the dimension of a hidden layer. Given
the required number of parameters and the number of hidden layers, we can calculate the hidden
dimension of the network. By varying the number of parameters and the number of hidden layers we
create wide and deep networks.

We follow the same procedure as in A.3.2 to train the models and extract symmetries.

A.4 LieGG implementation

We provide the PyTorch implementation of the network polarization matrix computation used in the
synthetic regression and the rotation-MNIST experiments. Symmetries are retrieved by performing
a singular-value decomposition of the network polarization matrix as described in Section 4 of the
main paper.

▶ synthetic regression:

def polarization_matrix(model, data, dim = 5):
# data: torch.FloatTensor(B, 2*dim)
B = data.shape[0]
data.requires_grad = True
data.retain_grad()

# compute network grads
model.eval()
y_pred = model(data)
y_pred.backward(gradient=torch.ones_like(y_pred))

# get grads and data per input dimension
dF_1 = data.grad[...,:dim].view(B, dim, 1)
data_1 = data[...,:dim].view(B, 1, dim)

dF_2 = data.grad[...,dim:].view(B, dim, 1)
data_2 = data[...,dim:].view(B, 1, dim)

# collect into the network polarization matrix
C = torch.bmm(dF_1, data_1) + torch.bmm(dF_2, data_2)

return C
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▶ rotation-MNIST:

def polarization_matrix_R2(model, data):
# LieGG implementation with the groups acting on R^2
# data: torch.FloatTensor(B, 28, 28)

B, H, W = data.shape

# compute image grads
data_grad_x = data[:, 1:, :-1] - data[:, :-1, :-1]
data_grad_y = data[:, :-1, 1:] - data[:, :-1, :-1]
dI = torch.stack([data_grad_x, data_grad_y], -1)

# compute network grads
data = data.reshape(B, -1)
data.requires_grad = True
data.retain_grad()

output = model(data)
output.backward(torch.ones_like(output))

dF = data.grad.reshape(B, H, W)
dF = dF[:, :-1, :-1]

# coordinate mask
xy = torch.meshgrid(torch.arange(0, H-1), torch.arange(0, H-1))
xy = torch.stack(xy, -1)
xy = xy / (H // 2) - 1

# collect into the network polarization matrix
C = dF[..., None, None] * dI[..., None] * xy[None, :, :, None, :]
C = C.view(B, -1, 2, 2).sum(1)

return C

References

[1] Marc Finzi, Max Welling, and Andrew Gordon Wilson. A practical method for constructing
equivariant multilayer perceptrons for arbitrary matrix groups. In International Conference on
Machine Learning (ICML), 2021.

[2] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[3] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems
(NeurIPS). 2019.

[4] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation functions. CoRR,
abs/1710.05941, 2017.

4


	Supplementary material
	Derivation of Theorem 3.1
	LieGG sample complexity
	Experiments
	Retrieving symmetries from the synthetic regression
	Retrieving symmetries from the rotation-MNIST
	Retrieving symmetries from the rotation-augmented CIFAR10
	Symmetries in networks with different configurations

	LieGG implementation


