
Under review as a conference paper at ICLR 2021

A LEMMAS

Proof of Lemma 3.3:

Proof. This proof can be easily adapted from Moulines and Bach (2011). From the recursive
definition of ✓t one has

E
⇥
||✓t � ✓

⇤||2
⇤

�
1� 2⌘(µ� L

2
⌘)
�
· E
⇥
||✓t�1 � ✓

⇤||2
⇤
+ 2G2

⌘
2
.

This inequality can be recursively applied to obtain the desired result

E
⇥
||✓t � ✓

⇤||2
⇤

�
1� 2⌘(µ� L

2
⌘)
�t · E

⇥
||✓0 � ✓

⇤||2
⇤
+ 2G2

⌘
2
t�1X

j=0

�
1� 2⌘(µ� L

2
⌘)
�j


�
1� 2⌘(µ� L

2
⌘)
�t · E

⇥
||✓0 � ✓

⇤||2
⇤
+

G
2
⌘

µ� L2⌘

This lemma represents the dynamic of SGD with constant learning rate, where the dependence from
the starting point vanishes exponentially fast, but there is a term dependent on ⌘ that is not vanishing
even for large t.
Lemma A.1. If Assumption 3.4 with m = 4 holds, then for any t, i 2 N one has

E
⇥
||✓t+i � ✓t||4 | Ft

⇤
 ⌘

4
i
4
G

4

Proof. For any j = 1, ..., l, let xj be a vector of length n. Applying Cauchy-Schwarz inequality
twice, we get

||
lX

j=1

xj ||4 = ||
lX

j=1

xj ||2 · ||
lX

j=1

xj ||2 

0

@l ·
lX

j=1

||xj ||2
1

A
2

= l
2

0

@
lX

j=1

||xj ||2
1

A
2

 l
3 ·

lX

j=1

||xj ||4 (10)

Since

✓t+i = ✓t � ⌘

i�1X

j=0

g(✓t+j , Zt+j+1),

then we can use the fact that Fk ✓ Fk+1 for any k, together with Assumption 3.4 and (10), to get that

E
⇥
||✓t+i � ✓t||4 | Ft

⇤
= ⌘

4 · E

2

4||
i�1X

j=0

g(✓t+j , Zt+j+1)||4 | Ft

3

5

 ⌘
4
i
3
i�1X

j=0

E
⇥
||g(✓t+j , Zt+j+1)||4 | Ft

⇤

= ⌘
4
i
3
i�1X

j=0

E
⇥
E
⇥
||g(✓t+j , Zt+j+1)||4 | Ft+j

⇤
| {z }

G4

�� Ft

⇤

 ⌘
4
i
4
G

4

Note that this is a bound that considers the worst case in which all the noisy gradient updates point in
the same direction and are of norm G.

Remark A.2. We can obviously use the same bound for the unconditional squared norm, since

E
⇥
||✓t+i � ✓t||4

⇤
= E

⇥
E
⇥
||✓t+i � ✓t||4 | Ft

⇤⇤
 ⌘

4
i
4
G

4
.

12

Under review as a conference paper at ICLR 2021

Lemma A.3. If Assumption 3.2 and 3.4 with m = 2 hold, then for any i = 1, ..., l and k = 1, 2 we
have that

E
h
||rF (✓(k)t+i)�rF (✓0)||2 | Ft

i
 (L||✓t � ✓0||+ L⌘Gi)2

Proof. By adding and subtracting rF (✓t), and by Lemma A.1, we get.

E
h
||rF (✓(k)t+i)�rF (✓0)||2 | Ft

i
 E

h
||rF (✓(k)t+i)�rF (✓t) +rF (✓t)�rF (✓0)||2 | Ft

i

 ||rF (✓t)�rF (✓0)||2 + E
h
||rF (✓(k)t+i)�rF (✓t)||2 | Ft

i

+ 2||rF (✓t)�rF (✓0)|| · E
h
||rF (✓(k)t+i)�rF (✓t)|| | Ft

i

 L
2||✓t � ✓0||2 + L

2E
h
||✓(k)t+i � ✓t||2 | Ft

i
+ 2L2||✓t � ✓0|| · E

h
||✓(k)t+i � ✓t|| | Ft

i

 L
2||✓t � ✓0||2 + L

2
⌘
2
G

2
i
2 + 2L2||✓t � ✓0||⌘Gi

= (L||✓t � ✓0||+ L⌘Gi)2

Remark A.4. When we consider the unconditional distance of the gradients, we can simply use
smoothness and Remark A.2 to get

E
h
||rF (✓(k)t+i)�rF (✓0)||2

i
 L

2E
h
||✓(k)t+i � ✓0||2

i
 L

2
⌘
2
G

2(t+ i)2

which is the same result that we obtain from Lemma A.3 if at the end we bound ||✓t � ✓0|| with its
expectation, and use the fact that E [||✓t � ✓0||]  ⌘Gt.
Lemma A.5. If Assumption 3.2 and 3.4 with m = 2 hold, then for any i = 1, ..., l and k = 1, 2 we
have that

i) E
h
||rF (✓(k)t+i)||2 | Ft

i
 (||rF (✓0)||+ L||✓t � ✓0||+ L⌘Gi)2

ii) E
h
||rF (✓(k)t+i)||2 | Ft

i
 (L||✓t � ✓

⇤||+ L⌘Gi)2

Proof. We add and subtract rF (✓t) to the gradient on the left hand side, and apply Lemma A.1.

E
h
||rF (✓(k)t+i)||

2 | Ft

i
= E

h
||rF (✓(k)t+i)�rF (✓t) +rF (✓t)||2 | Ft

i

 ||rF (✓t)||2 + E
h
||rF (✓(k)t+i)�rF (✓t)||2 | Ft

i

+ 2||rF (✓t)|| · E
h
||rF (✓(k)t+i)�rF (✓t)|| | Ft

i

 ||rF (✓t)||2 + L
2E
h
||✓(k)t+i � ✓t||2 | Ft

i
+ 2L||rF (✓t)|| · E

h
||✓(k)t+i � ✓t|| | Ft

i

 ||rF (✓t)||2 + L
2
⌘
2
G

2
i
2 + 2||rF (✓t)|| · L⌘Gi (11)

To get part i) we repeat the same trick, this time adding and subtracting rF (✓0) to the terms that
contain rF (✓t).

(11)  ||rF (✓0)||2 + ||rF (✓t)�rF (✓0)||2 + 2||rF (✓0)|| · ||rF (✓t)�rF (✓0)||
+ L

2
⌘
2
G

2
i
2 + 2||rF (✓0)|| · L⌘Gi+ 2||rF (✓t)�rF (✓0)|| · L⌘Gi

 ||rF (✓0)||2 + L
2||✓t � ✓0||2 + 2L||rF (✓0)|| · ||✓t � ✓0||

+ L
2
⌘
2
G

2
i
2 + 2||rF (✓0)|| · L⌘Gi+ 2||✓t � ✓0|| · L2

⌘Gi

= (||rF (✓0)||+ L||✓t � ✓0||+ L⌘Gi)2

To get part ii), instead, we can add rf(✓⇤) and get
(11)  L

2||✓t � ✓
⇤||2 + L

2
⌘
2
G

2
i
2 + 2||✓t � ✓

⇤|| · L2
⌘Gi

= (L||✓t � ✓
⇤||+ L⌘Gi)2

13

Under review as a conference paper at ICLR 2021

Remark A.6. For the unconditional squared norm of the gradient we again obtain the same bound
as if in Lemma A.5 we were considering E[||✓t � ✓0||]  ⌘Gt instead of just the argument of the
expectation.

E
h
||rF (✓(k)t+i)||

2
i
= E

h
||rF (✓(k)t+i)�rF (✓0) +rF (✓0)||2

i

 ||rF (✓0)||2 + E
h
||rF (✓(k)t+i)�rF (✓0)||2

i

+ 2||rF (✓0)|| · E
h
||rF (✓(k)t+i)�rF (✓0)||

i

 ||rF (✓0)||2 + L
2
⌘
2
G

2(t+ i)2 + 2||rF (✓0)||L⌘G(t+ i)

= (||rF (✓0)||+ L⌘G(t+ i))2

B PROOF OF THEOREM 3.1

Proof. To slightly simplify the notation, we consider only Q1. For the following windows, the
calculations are equal and just involve some more terms, that are negligible if ⌘ is small enough. We
assume that the Splitting Diagnostic starts after t iterations have already been made. We use the idea
that, for a fixed t, if the learning rate is sufficiently small, the SGD iterate ✓t and ✓0 will not be very
far apart. In particular we will use ⌘ small enough such that ⌘ · (t+ l) is small, making every term of
order O(⌘k(t+ l)k) negligible for k > 1. Thanks to the conditional independence of the errors, the
expectation of Q1 can be written only in terms of the true gradients.

E [Q1] =
1

l2

l�1X

i=0

l�1X

j=0

E
h
hg(✓(1)t+i), g(✓

(2)
t+j)i

i

=
1

l2

l�1X

i=0

l�1X

j=0

E
h
hrF (✓(1)t+i) + ✏(✓(1)t+i),rF (✓(2)t+j) + ✏(✓(2)t+j)i

i

=
1

l2

l�1X

i=0

l�1X

j=0

E
h
hrF (✓(1)t+i),rF (✓(2)t+j)i

i
(12)

We now add and subtract rF (✓0), and use L-smoothness and Remark A.2 to provide a lower bound
for E [Q1]. From (12) we get

E [Q1] =
1

l2

l�1X

i=0

l�1X

j=0

n
hrF (✓0),rF (✓0)i+ E

h
hrF (✓(1)t+i)�rF (✓0),rF (✓(2)t+j)�rF (✓0)i

i

+E
h
hrF (✓0),rF (✓(2)t+j)�rF (✓0)i

i
+ E

h
hrF (✓(1)t+i)�rF (✓0),rF (✓0)i

io

� ||rF (✓0)||2 �
1

l2

l�1X

i=0

l�1X

j=0

E
h
||rF (✓(1)t+i)�rF (✓0)|| · ||rF (✓(2)t+j)�rF (✓0)||

i

� 1

l

l�1X

j=0

E
h
||rF (✓0)|| · ||rF (✓(2)t+j)�rF (✓0)||

i
� 1

l

l�1X

i=0

E
h
||rF (✓0)|| · ||rF (✓(1)t+i)�rF (✓0)||

i

� ||rF (✓0)||2 �
L
2

l2

l�1X

i=0

l�1X

j=0

r
E
h
||✓(1)t+i � ✓0||2

i
· E
h
||✓(2)t+j � ✓0||2

i

� 2L

l

l�1X

i=0

||rF (✓0)|| · E
h
||✓(1)t+i � ✓0||

i

� ||rF (✓0)||2 � L
2
⌘
2
G

2(t+ l)2 � 2L||rF (✓0)||⌘G(t+ l)

= ||rF (✓0)||2 � 2L||rF (✓0)||⌘G(t+ l) +O(⌘2(t+ l)2) (13)

14

Under review as a conference paper at ICLR 2021

Notice that, in the extreme case where ⌘ = 0, we simply have E[Q1] � ||rF (✓0)||2 which is actually
an equality, since we would have ✓t = ✓0 and the noisy gradient at step t would be g(✓0, Zt), whose
expectation is just rF (✓0). We now expand the second moment, and there are a lot of terms to be
considered separately.

l
4 · E

⇥
Q

2
1

⇤
= E

2

4
*

l�1X

i=0

g(✓(1)t+i),
l�1X

j=0

g(✓(2)t+j)

+2
3

5

= E

2

4
*

l�1X

i=0

⇣
rF (✓(1)t+i) + ✏(✓(1)t+i)

⌘
,

l�1X

j=0

⇣
rF (✓(2)t+j) + ✏(✓(2)t+j)

⌘+2
3

5

= E

2

4
*

l�1X

i=0

rF (✓(1)t+i),
l�1X

j=0

rF (✓(2)t+j)

+2
3

5

| {z }
I

+E

2

4
*

l�1X

i=0

rF (✓(1)t+i),
l�1X

j=0

✏(✓(2)t+j)

+2
3

5

| {z }
II

+ E

2

4
*

l�1X

i=0

✏(✓(1)t+i),
l�1X

j=0

rF (✓(2)t+j)

+2
3

5

| {z }
III

+E

2

4
*

l�1X

i=0

✏(✓(1)t+i),
l�1X

j=0

✏(✓(2)t+j)

+2
3

5

| {z }
IV

+ 2E

2

4
*

l�1X

i=0

rF (✓(1)t+i),
l�1X

j=0

rF (✓(2)t+j)

+
·
*

l�1X

h=0

rF (✓(1)t+h),
l�1X

k=0

✏(✓(2)t+k)

+3

5

| {z }
V

+ 2E

2

4
*

l�1X

i=0

rF (✓(1)t+i),
l�1X

j=0

rF (✓(2)t+j)

+
·
*

l�1X

h=0

✏(✓(1)t+h),
l�1X

k=0

rF (✓(2)t+k)

+3

5

| {z }
V I

+ 2E

2

4
*

l�1X

i=0

rF (✓(1)t+i),
l�1X

j=0

rF (✓(2)t+j)

+
·
*

l�1X

h=0

✏(✓(1)t+h),
l�1X

k=0

✏(✓(2)t+k)

+3

5

| {z }
V II

+ 2E

2

4
*

l�1X

i=0

rF (✓(1)t+i),
l�1X

j=0

✏(✓(2)t+j)

+
·
*

l�1X

h=0

✏(✓(1)t+h),
l�1X

k=0

rF (✓(2)t+k)

+3

5

| {z }
V III

+ 2E

2

4
*

l�1X

i=0

rF (✓(1)t+i),
l�1X

j=0

✏(✓(2)t+j)

+
·
*

l�1X

h=0

✏(✓(1)t+h),
l�1X

k=0

✏(✓(2)t+k)

+3

5

| {z }
IX

+ 2E

2

4
*

l�1X

i=0

✏(✓(1)t+i),
l�1X

j=0

rF (✓(2)t+j)

+
·
*

l�1X

h=0

✏(✓(1)t+h),
l�1X

k=0

✏(✓(2)t+k)

+3

5

| {z }
X

In the squared terms I to IV , the errors are independent from the other argument of the dot product,
conditional on Ft, since they are evaluated on different threads. However, in the double products (V
to X), some errors are used to generate the subsequent values of the SGD iterates on the same thread.
This means that we cannot just ignore them, but we instead have to carefully find an upper bound for
each one.

15

Under review as a conference paper at ICLR 2021

• In I we use the Cauchy-Schwarz inequality and Lemma A.5, after exploiting the indepen-
dence of the two threads conditional on Ft.

E

2

4
*

l�1X

i=0

rF (✓(1)t+i),
l�1X

j=0

rF (✓(2)t+j)

+2
3

5  l
4 ·max

i,j
E
D

rF (✓(1)t+i),rF (✓(2)t+j)
E2�

 l
4 ·max

i,j
E
h
E
h
||rF (✓(1)t+i)||

2 | Ft

i
· E
h
||rF (✓(2)t+j)||

2 | Ft

ii

 l
4 · E

h
(||rF (✓0)||+ L||✓t � ✓0||+ L⌘Gl)4

i

. l
4 · E

⇥
||rF (✓0)||4 + 4L||rF (✓0)||3 · ||✓t � ✓0||+ 4||rF (✓0)||3 · L⌘Gl +O(⌘2(t+ l)2)

⇤

. l
4 ·
�
||rF (✓0)||4 + 4L⌘G||rF (✓0)||3(t+ l) +O(⌘2(t+ l)2)

�

In the first approximate inequality denoted by ., we have included most of the terms of the
expansion in the O(⌘2(t+ l)2), even if technically we could have done it only after taking
the expected value. Notice that here it was important to have a bound in Remark A.2 up to
the fourth order.

• Terms II and III are equal, since the two threads are identically distributed, and the errors
in one thread are a martingale difference sequence independent from the updates in the other
thread. We will use the bound for the error norm

E
⇥
||✏t||2 | Ft

⇤
= E

⇥
✏
T
t ✏t | Ft

⇤
= E

⇥
tr(✏t✏Tt) | Ft

⇤
 d · �max (14)

which is a consequence of Assumption 3.3, and condition on Ft to use independence of the
errors. In the last line we use Remark A.6.

E

2

4
*

l�1X

i=0

rF (✓(1)t+i),
l�1X

j=0

✏
(2)
t+j

+2
3

5 =
l�1X

j=0

E

2

4
*

l�1X

i=0

rF (✓(1)t+i), ✏
(2)
t+j

+2
3

5

 l
2 max

i

l�1X

j=0

E
���
���rF (✓(1)t+i)

���
���
2
· ||✏(2)t+j ||

2

�

= l
3 ·max

i
E

E
h
||✏(2)t ||2 | Ft

i
· E
���
���rF (✓(1)t+i)

���
���
2
| Ft

��

 l
3 · d�max ·max

i
E
h
||rF (✓(1)t+i)||

2
i

. l
3 · d�max ·

�
||rf(✓0)||2 + 2||rf(✓0)||LG⌘(t+ l) +O(⌘2(t+ l)2)

�

• In IV , we use the conditional independence of the two threads, and the fact that the errors
are a martingale difference sequence, to cancel out all the cross products. An upper bound is
then

E

2

4
*

l�1X

i=0

✏
(1)
t+i,

l�1X

j=0

✏
(2)
t+j

+2
3

5 =
l�1X

i=0

l�1X

j=0

E
D

✏
(1)
t+i, ✏

(2)
t+j

E2�


l�1X

i=0

l�1X

j=0

E
h
||✏(1)t+i||

2 · ||✏(2)t+j ||
2
i

=
l�1X

i=0

l�1X

j=0

E
h
E
h
||✏(1)t+i||

2 | Ft

i
· E
h
||✏(2)t+j ||

2 | Ft

ii

 l
2
d
2
�
2
max

Now we start dealing with the double products. The problem here is that these terms are not all
null, since the errors are used in the subsequent updates in the same thread, and they are then not
independent.

16

Under review as a conference paper at ICLR 2021

• V and V I are distributed in the same way. We can cancel out some terms using the
conditional independence given Ft, and use the conditional version of Cauchy-Schwarz
inequality separately on the two threads.

E

2

4
*

l�1X

i=0

rF (✓(1)t+i),
l�1X

j=0

rF (✓(2)t+j)

+
·
*

l�1X

h=0

rF (✓(1)t+h),
l�1X

k=0

✏(✓(2)t+k)

+3

5

=
l�1X

i,j,h,k=0

E
hD

rF (✓(1)t+i),rF (✓(2)t+j)
E
·
D
rF (✓(1)t+h), ✏(✓

(2)
t+k)

Ei

=
l�1X

i,j,h,k=0

E
hD

rF (✓0) +
⇣
rF (✓(1)t+i)�rF (✓0)

⌘
,rF (✓0) +

⇣
rF (✓(2)t+j)�rF (✓0)

⌘E
⇥

⇥
D
rF (✓0) +

⇣
rF (✓(1)t+h)�rF (✓0)

⌘
, ✏(✓(2)t+k)

Ei

=
l�1X

i,j,h,k=0

E
hD

rF (✓0),rF (✓(2)t+j)�rF (✓0)
E
·
D
rF (✓0), ✏(✓

(2)
t+k)

Ei

+
l�1X

i,j,h,k=0

E
hD

rF (✓0),rF (✓(2)t+j)�rF (✓0)
E
·
D
rF (✓(1)t+h)�rF (✓0), ✏(✓

(2)
t+k)

Ei

+
l�1X

i,j,h,k=0

E
hD

rF (✓(1)t+i)�rF (✓0),rF (✓(2)t+j)�rF (✓0)
E
·
D
rF (✓0), ✏(✓

(2)
t+k)

Ei

+
l�1X

i,j,h,k=0

E
hD

rF (✓(1)t+i)�rF (✓0),rF (✓(2)t+j)�rF (✓0)
E
⇥

⇥
D
rF (✓(1)t+h)�rF (✓0), ✏(✓

(2)
t+k)

Ei

 l
2||rF (✓0)||2

l�1X

j,k=0

E
h
||rF (✓(2)t+j)�rF (✓0)|| · ||✏(✓(2)t+k)||

i

+ l||rF (✓0)||
l�1X

j,h,k=0

E
h
||rF (✓(2)t+j)�rF (✓0)|| · ||rF (✓(1)t+h)�rF (✓0)|| · ||✏(✓(2)t+k)||

i

+ l||rF (✓0)||
l�1X

i,j,k=0

E
h
||rF (✓(1)t+i)�rF (✓0)|| · ||rF (✓(2)t+j)�rF (✓0)|| · ||✏(✓(2)t+k)||

i

+
l�1X

i,j,h,k=0

E
h
||rF (✓(1)t+i)�rF (✓0)|| · ||rF (✓(2)t+j)�rF (✓0)||⇥

⇥||rF (✓(1)t+h)�rF (✓0)|| · ||✏(✓(2)t+k)||
i

We bound the four pieces separately. For the first, we can just apply Cauchy-Schwarz and
L-smoothness, together with Remark A.2

E
h
||rF (✓(2)t+j)�rF (✓0)|| · ||✏(✓(2)t+k)||

i
 L

r
E
h
||✓(2)t+j � ✓0||2

i
· E
h
||✏(✓(2)t+k)||2

i


p

d�max · L⌘G(t+ l)

The bound for the second and third term is equal. We use the conditional independence of
the two threads and Lemma A.3.

E
h
||rF (✓(2)t+j)�rF (✓0)|| · ||rF (✓(1)t+h)�rF (✓0)|| · ||✏(✓(2)t+k)||

i
=

= E
h
E
h
||rF (✓(2)t+j)�rF (✓0)|| · ||✏(✓(2)t+k)|| | Ft

i
· E
h
||rF (✓(1)t+h)�rF (✓0)|| | Ft

ii

17

Under review as a conference paper at ICLR 2021

 E
"r

E
h
||rF (✓(2)t+j)�rF (✓0)||2 | Ft

i
· E
h
||✏(✓(2)t+k)||2 | Ft

i
⇥

⇥ E
h
||rF (✓(1)t+h)�rF (✓0)|| | Ft

i �


p
d�max · E

⇥
(L||✓t � ✓0||+ L⌘Gl)2

⇤


p
d�max · L2

⌘
2
G

2(t+ l)2

The last term again makes use of conditional independence and Lemma A.3.

E
h
||rF (✓(1)t+i)�rF (✓0)|| · ||rF (✓(2)t+j)�rF (✓0)|| · ||rF (✓(1)t+h)�rF (✓0)|| · ||✏(✓(2)t+k)||

i
=

= E
h
E
h
||rF (✓(1)t+i)�rF (✓0)|| · ||rF (✓(1)t+h)�rF (✓0)|| | Ft

i
⇥

⇥ E
h
||rF (✓(2)t+j)�rF (✓0)|| · ||✏(✓(2)t+k)|| | Ft

ii

 E
"r

E
h
||rF (✓(1)t+i)�rF (✓0)||2 | Ft

i
· E
h
||rF (✓(1)t+h)�rF (✓0)||2 | Ft

i
⇥

⇥
r
E
h
||rF (✓(2)t+j)�rF (✓0)||2 | Ft

i
· E
h
||✏(✓(2)t+k)||2 | Ft

i#


p
d�max · E

⇥
(L||✓t � ✓0||+ L⌘Gl)3

⇤


p
d�max · L3

⌘
3
G

3(t+ l)3

The last inequality follows from the use of Remark A.2 to bound the moments of ||✓t � ✓0||
up to order three.

• The upper bound for V II and V III is the same, even if the error terms are in different
positions. Again we invoke conditional independence to get rid of the dot products that only
contain rF (✓0), and subsequently apply Cauchy-Schwarz inequality.

E

2

4
*

l�1X

i=0

rF (✓(1)t+i),
l�1X

j=0

rF (✓(2)t+j)

+
·
*

l�1X

i=0

✏(✓(1)t+i),
l�1X

j=0

✏(✓(2)t+j)

+3

5

=
l�1X

i,j,h,k=0

E
hD

rF (✓0) +
⇣
rF (✓(1)t+i)�rF (✓0)

⌘
,rF (✓0) +

⇣
rF (✓(2)t+j)�rF (✓0)

⌘E
⇥

⇥
D
✏(✓(1)t+h), ✏(✓

(2)
t+k)

Ei

=
l�1X

i,j,h,k=0

E
hD

rF (✓(1)t+i)�rF (✓0),rF (✓(2)t+j)�rF (✓0)
E
·
D
✏(✓(1)t+h), ✏(✓

(2)
t+k)

Ei

 L
2

l�1X

i,j,h,k=0

E
h
||✓(1)t+i � ✓0|| · ||✓(2)t+j � ✓0|| · ||✏(✓(1)t+h)|| · ||✏(✓

(2)
t+k)||

i

 L
2

l�1X

i,j,h,k=0

E
h
E
h
||✓(1)t+i � ✓0|| · ||✏(✓(1)t+h)|| | Ft

i
· E
h
||✓(2)t+j � ✓0|| · ||✏(✓(2)t+k)|| | Ft

ii

 L
2

l�1X

i,j,h,k=0

E
"r

E
h
||✓(1)t+i � ✓0||2 | Ft

i
· E
h
||✏(✓(1)t+h)||2 | Ft

i
⇥

⇥
r
E
h
||✓(2)t+j � ✓0||2 | Ft

i
· E
h
||✏(✓(2)t+k)||2 | Ft

i#

 l
4
L
2
⌘
2
G

2(t+ l)2d�max

18

Under review as a conference paper at ICLR 2021

• Also the upper bounds for IX and X are equal. In the first one, when k 6= j we can
condition on F (1)

t+l and F (2)
t+max{k,j} to get that the expectation is null. Then we are only left

with a sum on three indexes i, j, h and k = j. In the last passage we again condition on the
appropriate �-algebras to bound separately the two threads.

E

2

4
*

l�1X

i=0

rF (✓(1)t+i),
l�1X

j=0

✏(✓(2)t+j)

+
·
*

l�1X

h=0

✏(✓(1)t+h),
l�1X

k=0

✏(✓(2)t+k)

+3

5

=
l�1X

i,j,h=0

E
hD

rF (✓0) +
⇣
rF (✓(1)t+i)�rF (✓0)

⌘
, ✏(✓(2)t+j)

E
·
D
✏(✓(1)t+h), ✏(✓

(2)
t+j)

Ei

=
l�1X

i,j,h=0

E
hD

rF (✓(1)t+i)�rF (✓0), ✏(✓
(2)
t+j)

E
·
D
✏(✓(1)t+h), ✏(✓

(2)
t+j)

Ei


l�1X

i,j,h=0

E
h
||rF (✓(1)t+i)�rF (✓0)|| · ||✏(✓(2)t+j)||

2 · ||✏(✓(1)t+h)||
i


l�1X

i,j,h=0

E
h
E
h
||rF (✓(1)t+i)�rF (✓0)|| · ||✏(✓(1)t+h)|| | Ft

i
· E
h
||✏(✓(2)t+j)||

2 | Ft

ii

 l
3
L⌘G(t+ l) (d�max)

3/2

We put together all these upper bounds, leaving in extended form all the terms that are more significant
than O(⌘2(t+ l)2). We get

V ar (Q1) = E
⇥
Q

2
1

⇤
� E [Q1]

2

. 2||rF (✓0)||2d�max

l
+

d
2
�
2
max

l2

+ ⌘ ·
✓
4d�max||rF (✓0)||LG(t+ l)

l
+

2LG(t+ l)(d�max)3/2

l

◆

+ ⌘ ·
⇣
8LG||rF (✓0)||3(t+ l) + 2||rF (✓0)||2LG(t+ l)

p
d�max

⌘
+O(⌘2(t+ l)2)

which immediately translates to a bound for the standard deviation of the following form

sd (Q1) .
||rF (✓0)||

p
2d�maxp

l
+

d�max

l
(15)

+
p
⌘ ·
⇣
8LG||rF (✓0)||3(t+ l) + 2||rF (✓0)||2LG(t+ l)

p
d�max

⌘1/2

+
p
⌘ ·
✓
4d�max||rF (✓0)||LG(t+ l)

l
+

2LG(t+ l)(d�max)3/2

l

◆1/2

+O(⌘(t+ l))

We combine (15) with the fact, consequence of (13), that E[Q1]/||rF (✓0)||2 & 1 +O(⌘(t+ l)), to
get the desired inequality

sd(Q1) . C1(⌘, l) · E[Q1]
where

C1(⌘, l) =
1

||rF (✓0)||2
·
⇢
||rF (✓0)||

p
2d�maxp

l
+

d�max

l

+
p
⌘ ·
⇣
8LG||rF (✓0)||3(t+ l) + 2||rF (✓0)||2LG(t+ l)

p
d�max

⌘1/2

+
p
⌘ ·
✓
4d�max||rF (✓0)||LG(t+ l)

l
+

2LG(t+ l)(d�max)3/2

l

◆1/2
)

This confirms that C1(⌘, l) = O(1/
p
l) +O(

p
⌘(t+ l)).

19

Under review as a conference paper at ICLR 2021

C PROOF OF THEOREM 3.2

Proof. As before, we only consider Q1 for simplicity. To provide an upper bound for |E[Q1]|, we
use the fact that rF (✓⇤) = 0 together with Assumption 3.2. Starting from (12) we have

|E [Q1] | =
1

l2

������

l�1X

j=0

l�1X

k=0

E
h
hrF (✓(1)t+j),rF (✓(2)t+k)i

i
������

 1

l2

l�1X

j=0

l�1X

k=0

E
h
||rF (✓(1)t+j)�rF (✓⇤)|| · ||rF (✓(2)t+k)�rF (✓⇤)||

i

 L
2

l2

l�1X

j=0

l�1X

k=0

E
h
||✓(1)t+j � ✓

⇤|| · ||✓(2)t+k � ✓
⇤||
i

 L
2

l2

l�1X

j=0

l�1X

k=0

r
E
h
||✓(1)t+j � ✓⇤||2

i
· E
h
||✓(2)t+k � ✓⇤||2

i

Now we can use Lemma 3.3 that states that, for ⌘  µ
L2 ,

E
⇥
||✓t � ✓

⇤||2
⇤

�
1� 2⌘(µ� L

2
⌘)
�t · E

⇥
||✓0 � ✓

⇤||2
⇤
+

G
2
⌘

µ� L2⌘
. (16)

As t ! 1 we have that E
⇥
||✓t � ✓

⇤||2
⇤
. G2⌘

µ�L2⌘ . L-smoothness combined with (16) also gets

E
⇥
||rF (✓t)||2

⇤
. L

2
G

2
⌘

µ� L2⌘
as t ! 1. (17)

Since the first term of (16) is decreasing in t, our bound on the expectation of Q1 is

|E [Q1] |  L
2 ·
✓�

1� 2⌘(µ� L
2
⌘)
�t · E

⇥
||✓0 � ✓

⇤||2
⇤
+

G
2
⌘

µ� L2⌘

◆
(18)

To deal with the second moment, we introduce the notation

Sk :=
l�1X

i=0

g(✓(k)t+i, Z
(k)
t+i+1) =

l�1X

i=0

rF (✓(k)t+i) +
l�1X

i=0

✏(✓(k)t+i) =: Gk + ek.

where Gk is the true signal in the first window of thread k and ek the related noise. Conditional on
Ft, the random variables S1 and S2 are independent and identically distributed. Then we can write

l
4 · E[Q2

1] = E
⇥
hS1, S2i2

⇤
= E

⇥
S
T
2 S1S

T
1 S2

⇤

= E
⇥
Tr(ST

2 S1S
T
1 S2)

⇤
= E

⇥
Tr(S1S

T
1 S2S

T
2)
⇤

= Tr
�
E
⇥
S1S

T
1 S2S

T
2

⇤�
= Tr

�
E
�
E
⇥
S1S

T
1 | Ft

⇤
· E
⇥
S2S

T
2 | Ft

⇤ �

= Tr
⇣
E
�
E
⇥
S1S

T
1 | Ft

⇤2 ⌘

The goal is now to show that the matrix E
⇥
S1S

T
1 |Ft

⇤
is positive definite, and provide a lower bound

for its second moment using the fact that if A ⌫ �I for � � 0, then A
2 ⌫ �

2
I . We can write

E
⇥
S1S

T
1 |Ft

⇤
= E

⇥
(G1 + e1)(G1 + e1)

T |Ft

⇤

= E
⇥
G1G

T
1 |Ft

⇤
+ E

⇥
G1e

T
1 |Ft

⇤
+ E

⇥
e1G

T
1 |Ft

⇤
+ E

⇥
e1e

T
1 |Ft

⇤

We immediately have that E
⇥
G1G

T
1 |Ft

⇤
⌫ 0, because, for any x 2 Rd,

x
TE
⇥
G1G

T
1 |Ft

⇤
x = E

⇥
x
T
G1G

T
1 x |Ft

⇤
= E

⇥
||xT

G1||2 |Ft

⇤
� 0.

Moreover we can also find an easy lower bound for the error term using Assumption 3.3,

E
⇥
e1e

T
1 |Ft

⇤
= E

2

64

l�1X

i=0

✏(✓(1)t+i)

!0

@
l�1X

j=0

✏(✓(1)t+j)

1

A
T ����Ft

3

75

20

Under review as a conference paper at ICLR 2021

=
l�1X

i=0

E
n
E
h
✏(✓(1)t+i)✏(✓

(1)
t+i)

T |Ft+i�1

io

⌫ l · �min · I

To lower bound the remaining terms we introduce a simple Lemma.

Lemma C.1. If u, v 2 Rd, then uv
T + vu

T ⌫ �2||u|| · ||v|| · I

Proof. We apply the Cauchy-Schwarz inequality and get, for any x 2 Rd,

x
T (uvT + vu

T + 2||u|| · ||v|| · I)x = x
T
uv

T
x+ x

T
vu

T
x+ 2||u|| · ||v|| · xT

x

= hx, uihv, xi+ hx, vihu, xi+ 2||u|| · ||v|| · ||x||2 � 0

Using Lemma C.1, and Lemma A.5 ii) in the last inequality, we immediately get that

E
⇥
G1e

T
1 |Ft

⇤
+ E

⇥
e1G

T
1 |Ft

⇤
⌫ �2E [||G1|| · ||e1|| |Ft] · I

⌫ �2
lX

i=1

lX

j=1

E
h
||rF (✓(1)t+i)|| · ||✏(✓

(1)
t+j)|| |Ft

i
· I

⌫ �2
l�1X

i=0

l�1X

j=0

r
E
h
||rF (✓(1)t+i)||2 |Ft

i
· E
h
||✏(✓(1)t+j)||2 |Ft

i
· I

⌫ �2l2 ·
p
d�max · (L||✓t � ✓

⇤||+ L⌘Gl) · I

Notice that we could improve the bound using the fact that ✏(✓(1)t+j) is independent from rF (✓(1)t+i)
for any j � i. Putting the pieces together we get that

E
⇥
S1S

T
1 |Ft

⇤
⌫
⇣
l�min � 2l2 ·

p
d�max · (L||✓t � ✓

⇤||+ L⌘Gl)
⌘
· I

) E
⇥
S1S

T
1 |Ft

⇤2 ⌫
⇣
l�min � 2l2 ·

p
d�max · (L||✓t � ✓

⇤||+ L⌘Gl)
⌘2

· I

⌫
⇢
l
2
�
2
min + 4l4d�max · (L||✓t � ✓

⇤||+ L⌘Gl)2

� 4l3�min

p
d�max · (L||✓t � ✓

⇤||+ L⌘Gl)

�
· I

and then, using the asymptotic bound in (16),

E
h
E
⇥
S1S

T
1 |Ft

⇤2i ⌫
⇢
l
2
�
2
min � 4l3�min

p
d�max · (L · E [||✓t � ✓

⇤||] + L⌘Gl)

�
· I

t!1!
⌫
⇢
l
2
�
2
min � 4l3�min

p
d�max ·

LG

p
⌘

p
µ� L2⌘

+ L⌘Gl

!�
· I

which finally gives the bound on the second moment, which is

l
4 · E[Q2

1] & d ·

l
2
�
2
min � 4l3�min

p
d�maxLG

p
⌘ ·

1p
µ� L2⌘

+ l
p
⌘

!!

� dl
2
�
2
min �K1l

3p
⌘ �K2l

4
⌘

Using the fact shown before, that

E[Q1]
2 . L

4
G

4
⌘
2

(µ� L2⌘)2
as t ! 1,

21

Under review as a conference paper at ICLR 2021

we can bound the variance of Q1 from below with

V ar(Q1) = E[Q2
1]� E[Q1]

2 � d�
2
min

l2
�

K1
p
⌘

l
�K2⌘ � L

4
G

4
⌘
2

(µ� L2⌘)2

and then

V ar(Q1) &
✓
d�

2
min

l2
�

K1
p
⌘

l
+O(⌘)

◆
· E[Q1]2(µ� L

2
⌘)2

L4G4⌘2
.

The desired inequality is finally

|E[Q1]| . C2(⌘) · sd(Q1)

with

C2(⌘) =
L
2
G

2
⌘

(µ� L2⌘)
·
✓
d�

2
min

l2
�

K1
p
⌘

l
+O(⌘)

◆�1/2

= C2 · ⌘ + o(⌘).

D PROOF OF PROPOSITION 3.4

Proof. We first notice that the averaging at the end of each diagnostic can be ignored, and replaced
by simply considering each diagnostic as a single thread made of wl iterates. For the first diagnostic,
for example, we have that

E
⇥
k✓D1 � ✓

⇤k2
⇤
 E

"
k
✓
(1)
t1+wl + ✓

(2)
t1+wl � 2✓⇤

2
k2
#

=
1

4

⇣
E
⇥
k✓(1)t1+wl � ✓

⇤k2
⇤
+ E

⇥
k✓(2)t1+wl � ✓

⇤k2
⇤
+ 2 · E

h
h✓(1)t1+wl � ✓

⇤
, ✓

(2)
t1+wl � ✓

⇤i
i⌘

 E
⇥
k✓(1)t1+wl � ✓

⇤k2
⇤

where we have used the fact that each thread is identically distributed, together with the Cauchy-
Schwarz inequality. The same inequality, with appropriate indexes, is true for all the diagnostics.

Our proof is now divided in two parts. First we show that, in the extreme case where each diagnostic
detects stationarity deterministically, the learning rate does not decay too fast and we still have
convergence to ✓

⇤. Then we prove that eventually the learning rate decreases to zero when the number
of diagnostics goes to infinity. We initially notice that

�
1� 2⌘�b(µ� L

2
⌘�

b)
�t1/�b

 e
�2⌘(µ�L2⌘)t1 =: c1

where c1 2 (0, 1). We also have

G
2
⌘�

b

µ� L2⌘�b
 G

2
⌘�

b

µ� L2⌘
=: c2 · �b

We define Lb to be the expected square distance from the minimizer, E
⇥
k✓Db � ✓

⇤k2
⇤
, at the end of

the bth diagnostic, and L0 = E
⇥
k✓0 � ✓

⇤k2
⇤
. If the learning rate decreases deterministically, then

we have that after the bth diagnostic, the learning rate is ⌘�b and the length of the single thread is
bt1/�bc. By recursion, using Lemma 3.3 in the main text, we have that

Lb+1 
�
1� 2⌘�b(µ� L

2
⌘�

b)
�t1/�b

· Lb +
G

2
⌘�

b

µ� L2⌘�b

 c1 · Lb + c2 · �b

 c
b+1
1 · L0 + c2 ·

bX

i=0

�
b�i

c
i
1

 c
b+1
1 · L0 + c2 · b ·max{�, c1}b

Since �, c1 2 (0, 1), this proves that Lb ! 0 as the number of diagnostics b ! 1.

22

Under review as a conference paper at ICLR 2021

To prove that it is impossible for the learning rate to remain fixed on a certain value for infinite many
iterations, we show that the probability that the learning rate reaches a point where it never decreases
is zero. We assume by contradiction that there exists a point in the SplitSGD procedure where the
learning rate is ⌘⇤ and, from that moment on, it is never reduced again. Following Dieuleveut et al.
(2017), we know that the Markov chain {✓t} defined as (2 in the main text) with constant learning
rate ⌘

⇤ will converge in distribution to its stationary distribution ⇡⌘⇤ . This means that

sup
s,t�T

kE[✓t]� E[✓s]k ! 0 as T ! 1 (19)

and if we let s = t+ 1 we realise that kE[g(✓t, Zt+1)]k ! 0 as t ! 1. Notice that also the Markov
chain {g(✓t, Zt+1)} converges to a stationarity distribution when {✓t} does, so we can use the Central
Limit Theorem for Markov chains (Maxwell and Woodroofe, 2000) to get that

1p
l

lX

j=1

g(✓t+j , Zt+j+1)
d! N(0,�2) as l ! 1 (20)

where �
2
> 0. We are now going to use the fact that sign (Qi) = sign (l ·Qi). Thanks to (20) we

can now write

l ·Qi =

*
1p
l

lX

j=1

g
(1)
t+(i�1)l+j ,

1p
l

lX

j=1

g
(2)
t+(i�1)l+k

+

= hX1 + op(1), X2 + op(1)i
= hX1, X2i+ op(1)

where X1, X2 are independent N(0,�2) (the independence being true for l ! 1 and i = 2, ..., w)
and the op(1) are defined as l ! 1. Since l ·Qi is approximately distributed as hX1, X2i, which
has mean zero and positive variance, then for any choice of q < (w � 1)/w we know that there is a
positive probability ↵ > 0 that the proportion of negative gradient coherences observed is greater
than q, which means that stationarity is detected. The probability that the learning rate ⌘

⇤ never
decays is then bounded above by limb!1(1� ↵)b = 0, so the learning rate gets eventually reduced
with probability 1.

E MORE COMMENTS ON THE EXPERIMENTS SECTION

In this section we discuss some topics that for reasons of space did not fit in the main paper.

E.1 DESCRIPTION OF THE CONVEX SETTING AND CHOICE OF THE TOLERANCE PARAMETER q

For the experiments in the convex setting we use a feature matrix X 2 Rn⇥d with standard normal
entries and n = 1000, d = 20. We set ✓⇤j = 5 · e�j/2 for j = 1, ..., 20 to guarantee some difference
in the entries. We generate the linear data as yi = Xi · ✓⇤ + ✏i, where ✏i ⇠ N(0, 1), and the data
for logistic regression from a Bernoulli with probability (1 + e

�Xi·✓⇤
)�1. The other parameters

that are used through all Section 4.1 are the numbers of windows w = 20 of size l = 50 (so that
each diagnostic consists of one epoch), the length of the first single thread t1 = 4 epochs, and the
acceptance proportion q = 0.4.

As we say in the main text, in general we would like w, l, t1 and the number of diagnostics B to be
as large as possible, given the computational budget that we have. The tolerance q, instead, is more
tricky. In Theorem 3.2 and Figure 3 we shown that, as t1 ! 1, the distribution of the sign of the
gradient coherence is approximately a coin flip, provided that ⌘ is small enough. This means that,
once stationarity is reached, we want q not to be too big, so that we will not observe a proportion
of negative gradient coherences smaller than q just by chance too often (and erroneously think that
stationarity has not been reached yet). If we were then to assume independence between the Qi, we
should set q to control the probability of a type I error (returning TD = N even though stationarity
has been reached), which is

1

2w

bw·qc�1X

i=0

✓
w

i

◆

23

Under review as a conference paper at ICLR 2021

● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●0.00

0.05

0.10

0.15

0.0 0.2 0.4 0.6 0.8 1.0

D
en
si
ty

●●●

●●●

●●●

0.5

0.25

0.2

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●0.00

0.03

0.06

0.09

0.12

0.0 0.2 0.4 0.6 0.8 1.0

D
en
si
ty

●●●

●●●

●●●

0.5

0.25

0.2

Figure 7: Continuous representation of the probability mass function of Binomial distributions. On the
left we set w = 30 and q = 0.4, on the right w = 75 and q = 0.4, for both the probability of success
(observing a negative gradient coherence) is p 2 {0.2, 0.25, 0.5}. When p = 0.5 (stationarity) the
type I error happens with probability approximated by the shaded blue region. When p < 0.5 (non
stationarity) we erroneously declare stationarity with probability approximated by the shaded red and
orange region.

Figure 8: (left) starting around ✓
⇤, large learning rate. (middle) starting around ✓

⇤, small learning
rate. (right) starting around ✓s, small learning rate.

However, if we set q to be too small, then in the initial phases of the procedure we might think that
we have already reached stationarity only because by chance we observed a proportion of negative
dot products larger than q. This trade-off, represented in Figure 7, is particularly relevant if we cannot
afford a large number of windows w, but it loses importance as w grows.

E.2 COMPARISON WITH PFLUG DIAGNOSTIC WITH DIFFERENT PARAMETERS

In Figure 8 and Figure 9 we see other configurations for the experiment reported in the left panels of
Figure 4. There, the starting point was set to be around ✓s, where ✓s,j = 5·e�(d�j)/2 for j = 1, ..., 20.
Here we consider the same starting point for the panels on the right (for both linear and logistic
regression) but a smaller learning rate. In both cases it is extremely clear that the pflug Diagnostic
is detecting stationarity too late, and often (in the case of linear regression) running to the end of
the budget. This can be a big problem in practice, because after stationarity has been reached all
the iterations that keep using the same learning rate are not going to improve convergence, and are
fundamentally wasted. In the left and middle panel of both figures we consider a starting point for the
procedures around the minimizer ✓⇤. In this scenario, for both larger and smaller learning rates, we
see that both procedure are either very precise or detect stationarity a bit too early. This is a smaller
problem in practice, since at that point the learning rate is reduced but the SGD procedures keep
running, even if with a smaller learning rate. The speed of convergence is then slower, but the steps
that we make are still important towards convergence.

24

Under review as a conference paper at ICLR 2021

Figure 9: (left) starting around ✓
⇤, large learning rate. (middle) starting around ✓

⇤, small learning
rate. (right) starting around ✓s, small learning rate.

E.3 CHANGES TO THE SPLITSGD PROCEDURE IN DEEP LEARNING

The differences between the SplitSGD procedure that we analysed in Section 2 and its adaptation to
deep learning are the following:

• momentum of SGD: while in the convex setting we study the behavior of vanilla SGD,
when training deep neural networks the standard choice is to use SGD with momentum
(Sutskever et al., 2013), which updates as

�✓t = � ·�✓t�1 � ⌘t · g(✓t, Zt+1)

✓t+1 = ✓t +�✓t (21)

If the learning rate is kept constant, SGD with momentum still goes through a transient
phase before reaching stationarity. Even in this case, as we already saw in (3), we have that
E✓⇠⇡⌘ [g(✓, Z)] = 0 since we see from (21) that E✓⇠⇡⌘ [�✓] = 0. This justifies the use of
the gradient coherence as defined in (6) also when considering SGD with momentum.

• gradient coherence on layers: when considering a parameter space of dimension d, the
gradient coherence is a dot product of two d-dimensional vectors. In deep learning, the
parameter space is usually extremely large, so we decided to divide these vectors into pieces
to try to extract more information about the stationarity of the SGD updates, by computing
the dot product of each of the pieces. In practice, let’s divide the vectors u and v into p

pieces not necessarily of equal length, so that v = (v1, v2, ..., vp) and u = (u1, u2, ..., up).
Instead of computing the single dot product hv, ui we store the p dot products hvi, uii. In
this way, we can also relax the trade-off between l and w (remember that we want to allocate
a single epoch to the diagnostic, so that 2lw is fixed to be the size of the training set). By
computing more than a single value of Q for each pair of vectors, we can allow to set w
smaller.
A natural division of the parameter space into smaller pieces comes from the layers of the
network, so each time we compute the gradient coherence of the two threads we actually
compute a separate value for each layer and then store all of them together. In the final
count, as we did in the non-convex setting, we look at the proportion of these values that are
negative to decide whether to decay the learning rate.

• length of the single thread: since training deep neural networks is usually computationally
expensive, we decided not to increase the length of the single thread after stationarity was
detected. This is made simply to avoid situations where stationarity is detected early and the
length of the single thread increases so fast that we do not have time to decay the learning
rate by much before reaching the end of the computational budget that we allocated.

• hyperparameters for the diagnostic: we set the relevant hyperparameters w and q to take
value w = 4 and q = 0.25. The value of w is much smaller than the one used in the convex
setting for the reason explained above that we compute the gradient coherence separately for
each layer. With this choice, we can dedicate 1/8 of the updates of each epoch to compute
for each thread the average of the gradients and be sure that we averaged out a lot of the
noise. The choice of setting q = 0.25 comes from the empirical results that we observed,

25

Under review as a conference paper at ICLR 2021

and a deeper study of this parameter is probably needed. We performed a sensitivity analysis
on these two parameters in Section 4.3 and noticed that a departure from these values is not
changing the performance by much.

E.4 OTHER EXPERIMENTS IN DEEP LEARNING

We add here the description of two more experiments in Deep Learning that did not fit in the main
body of the paper, together with the plots that we already included in Figure 5 but this time with the
addition of the 90% confidence bands. We see that the Splitting Diagnostic increases the variability
of SplitSGD with respect to other methods in some settings, but the interpretation that we gave in
Section 4.2 of the better performance of SplitSGD and the lack of overfitting holds.

Figure 10: This is the same as Figure 5 but here we also added 90% confidence bands for each
method.

Feedforward neural networks (FNNs). We train a FNN with three hidden layers of size 256, 128
and 64 on the Fashion-MNIST dataset (Xiao et al., 2017). The network is fully connected, with ReLu
activation functions. The initial learning rates are ⌘ 2 {1e�2, 3e�2, 1e�1} for SGD and SplitSGD
and ⌘ 2 {3e�4, 1e�3, 3e�3} for Adam. In the first panel of Figure 11 we see that most methods
achieve very good accuracy, but SplitSGD reaches the overall best test accuracy when ⌘ = 1e�1 and
great accuracy with small oscillations when ⌘ = 3e�2. The peaks in the SplitSGD performance are
usually due to the averaging, while the smaller oscillations are due to the learning rate decay.

VGG19. When training the neural network VGG192 on CIFAR-10, we observe a similar behavior to
what already shown when training ResNet (second panel of Figure 5). SplitSGD, with both learning
rates 1e�1 and 1e�2 achieves the same test accuracy of the manually tuned SGD, but in less epochs,
and beats the performance of SGD and Adam. Also here it is possible to see the spikes given by the
averaging, followed by the smoothing caused by the learning rate decay.

2More details can be found in https://pytorch.org/docs/stable/torchvision/models.html

26

https://pytorch.org/docs/stable/torchvision/models.html

Under review as a conference paper at ICLR 2021

Figure 11: Compare the accuracy of SGD, Adam and SplitSGD in training FNN on Fashion-MNIST
(left) and VGG19 on CIFAR-10 (right).

27

