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A PRE-NORMALIZATION

Though we focus on the similarity between qt and d, magnitudes of qt do matter in many practical
situations. For example, if the decision-maker prefers students with balanced math and English
skills and there are two "balanced" students, the decision-maker will certainly prefer the one with
higher scores. Therefore, we propose a pre-normalization procedure to incorporate magnitude
into account. Specifically, we add an additional dimension representing the unobservable “irrelevant
attributes” to q0 and obtain a m ` 1 dimensional complete qualification profile. Meanwhile, we add
an additional dimension to the ideal qualification profile d with 0 as its value; the new ideal profile
becomes rd; 0s. Then we can make the following natural assumption:
Assumption A.1. After adding the dimension of “irrelevant attribute”, for all agents, the norms of
their complete qualification profiles are the same.

Assumption A.1 has been supported by literature in machine learning Liu et al. (2022) and social
science Holmstrom & Milgrom (1991). The "irrelevant" dimension demonstrates all other skills that
belong to an agent but are not important to the decision. Therefore, competency in relevant/measurable
attributes implies weakness in irrelevant/immeasurable attributes and the length of the complete
qualification profile stays the same for all agents. With Assumption A.1 and the distribution of q0 as
Q, we formalize the pre-normalization procedure in Algorithm 1.

Algorithm 1 Pre-normalization procedure

Require: Joint distribution Q for q0, n agents with tqi0ui“n
i“1 where qi0 P r0, 1sm, d P r0, 1sm.

Ensure: Normalized tqi0ui“n
i“1 (i.e., qi0 P r0, 1sm and }qi0} “ 1), new d P r0, 1sm`1.

1: d “ rd, 0s.
2: According to Q, find the largest norm K “ maxq0„Q∥qi0∥ of original profiles.
3: for i P t1, . . . nu do
4: Calculate norm difference zi “

a

K2 ´ ∥qi0∥22.

5: qi0 “
rqi0;z

i
s
T

K P r0, 1sm`1.
6: end for

B DISCUSSION AND GENERALIZATION OF EQUATION 1

Motivating examples of the dynamics in equation 1. In the main paper, we assume the influence of
the one-time effort k is persistent and will enable qt changes gradually during each round. This is
well-supported by the following examples:

1. Creditworthiness: To improve creditworthiness, an individual may learn that an ideal profile would
be a person with a constant high income and long-lasting good credit history. Therefore, she may
exert a significant effort to find a job with a high salary. However, the effort will take several
months or even one year for her to finally build up the ideal profile because she needs to work for
a while to receive money and build a competitive credit history.

2. Job application: An individual who wants to apply for a technology company may learn about the
skill set of an ideal candidate from several resources (e.g., the job description, alumni who work
at the company, info session) and then exert a significant effort to study the required knowledge.
However, it still takes time for her to do exercises and master the skills, resulting in a delay of
finally being qualified.

Model generalization when k changes with t. In the main paper, kt is always equal to k, demonstrat-
ing the effort has a consistent and persistent effect on the improvement of an individual. According
to Lemma 2.1, the similarity xt approaches 1 at an exponential rate. Thus, the case of kt ą k is not
interesting since the convergence is faster and it may not make sense in practice that the effort can be
increasingly effective as time goes on. However, in reality, it may be possible that kt is decreasing.
This is a "middle-point" case between the regular improvement in equation 1 and the forgetting
mechanism equation 9, which may illustrate the "tiredness" when agents stick to improve. However,
we can prove that when kt decreases linearly (i.e., kt “ Θpk

t q), the similarity xt can only converge
to 1 at a speed Θptkq.

Theorem B.1. When kt decreases linearly (i.e., kt “ Θp k
t`1 q), xt converges to 1 at a rate Θptkq
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We prove Thm. B.1 in App. H.5. Basically, this result illustrates that the agents will still improve to
be qualified if kt decreases at a linear rate. Specifically, we can rewrite the equation 2 as:

x´2
t ´ 1 “

px0q´2 ´ 1

pt ` 1q2k
(12)

From equation 12, we can derive similar results of the agents’ best responses and work out the
thresholds for them to improve.

C RELATED WORK

C.1 STRATEGIC MANIPULATION

Though our work primarily lies in proposing a new model for improvement behaviors, the problem
settings are also closely related to strategic classification problems Hardt et al. (2016a); Ben-Porat
& Tennenholtz (2017); Dong et al. (2018); Braverman & Garg (2020); Sundaram et al. (2021);
Jagadeesan et al. (2021); Ahmadi et al. (2021); Eilat et al. (2022); Horowitz & Rosenfeld (2023).
Hardt et al. (2016a) formulated classification problems with strategic manipulation as a Stackelberg
game with deterministic cost functions, where the decision maker optimizes classification accuracy
based on individuals’ best responses. Afterwards, more sophisticated analytical frameworks were
proposed Dong et al. (2018); Braverman & Garg (2020); Jagadeesan et al. (2021). Dong et al.
(2018) proposed an online algorithm for strategic classification, and Braverman & Garg (2020) added
randomness to strategic classifiers. On the other hand, Sundaram et al. (2021) analyzes the statistical
learnability of strategic classification with an SVC classifier. Jagadeesan et al. (2021) relaxed
the standard microfoundations assumption where individuals are perfectly rational to alternative
microfoundations where a proportion of individuals may not be strategic, and proposed a noisy
response model to tackle the new problem. Zhang et al. (2022) studied the setting where the decision
maker and individuals only have knowledge of the feature distributions as random variables. Thus,
the strategic manipulation corresponds to a distribution shift and its cost is also a random variable.
Eilat et al. (2022) considered the setting where individual responses are dependent and the classifier
is learned through graph neural networks.

C.2 IMPROVEMENT

However, there are other literature considering improvement behaviorLiu et al. (2019); Rosenfeld
et al. (2020); Shavit et al. (2020); Alon et al. (2020); Zhang et al. (2020); Chen et al. (2020); Kleinberg
& Raghavan (2020); Bechavod et al. (2021); Ahmadi et al. (2022a;b); Raab & Liu (2021). Unlike
strategic manipulation, improvement will incur a label change. Liu et al. (2019) studied the conditions
where fairness interventions can promote improvement among individuals. Rosenfeld et al. (2020)
added regularization in strategic classification algorithms to let a decision maker favor improvement.
Zhang et al. (2020) formulated the label change as a transition matrix where the transition probabilities
are deterministic and difficult to estimate.

Besides, several works consider both behaviors at the same time.Shavit et al. (2020) and Alon et al.
(2020) introduced causal inference frameworks into strategic behaviors including manipulation and
improvement. Kleinberg & Raghavan (2020) proposed a mechanism to incentivize individuals to
invest on specific features where the individuals have a budget to invest strategically on all features
including undesired ones. Chen et al. (2020) divided the features into immutable features, improvable
features and manipulable features and explored linear classifiers which can prevent manipulation and
encourage improvement. Jin et al. (2022) also focused on incentivizing improvement and proposed a
subsidy mechanism to induce improvement actions and improve social well-being metrics. Bechavod
et al. (2021) demonstrated the ability of strategic decision makers to distinguish features influencing
the label of individuals under an online setting. Ahmadi et al. (2022a) proposed a linear model where
strategic manipulation and improvement are both present. Barsotti et al. (2022) conducted several
empirical experiments when both improvement and manipulation are possible where both actions
incur a linear deterministic cost.
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C.3 RECOMMENDATION SYSTEMS

Our work is also related to preference shifts and opinion dynamics in recommendation systems, which
we refer to Castellano et al. (2009) as a comprehensive survey. Among the rich set of works, Dean &
Morgenstern (2022); Gaitonde et al. (2021) proposed geometric models for opinion polarization and
motivate our work.

D ILLUSTRATION OF TABLE 1
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Figure 7: Illustration of Table 1

Table 1 illustrate the minimum requirement of x0 for an individual to improve under different pθ, rq,
and the best attainable profile for individuals with initial similarity x0. We illustrate them in Fig. 7.

Discussions of intervention strategies in real applications. Table 1 further suggest effective strate-
gies that encourage individuals to improve their qualifications, i.e., more individuals are incentivized
to improve if (i) the decision-maker’s acceptance threshold θ is lower; or (ii) the time it takes for
individuals to succeed after investments is shorter. Examples of both strategies in real applications
are as follows.
1. Lower acceptance threshold θ in hiring: Instead of directly recruiting the qualified candidates,

companies first lower the standard by offering internship opportunities to encourage applicants to
improve, and then offer full-time positions. This two-stage hiring process widens the candidate
pool and incentivizes more people to improve.

2. Lower discounting factor r in college admission: Instead of directly rejecting the unqualified high
school graduates, universities incentivize them by issuing conditional transfer offers. Once these
students meet certain requirements, they get admitted. The conditional acceptances encourage
more students to improve by lowering the time it takes for them to receive reward.

Meanwhile, Table 1 also reveals that setting short-term goals will be effective to incentivize individuals
to improve. For instance, teachers may set up several quizzes to break down the grade and make
students more motivated to improve.

E ILLUSTRATION OF THM. 5.1

Table 2: Ranges pxx1,xx2q of initial similarity x0 under which individuals prefer to manipulate.

2*θ 2*r Detection probability P

0 0.1 0.2 0.3 0.4 0.5

0.995 0.1 p0.364, 0.995q p0.435, 0.994q p0.513, 0.993q p0.596, 0.991q p0.686, 0.984q p0.796, 0.966q

0.976 0.05 p0.499, 0.976q p0.613, 0.973q p0.740, 0.958q H H H

0.953 0.01 p0.773, 0.953q H H H H H
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Figure 9: Exam Score: Beta distributions
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Figure 8: Illustration of Thm. 5.1: the left figure shows rU ´ U as functions of x0 under different P
when θ “ 0.995, r “ 0.05; the right plot shows threshold pP under different pairs of pθ, rq.

Thm. 5.1 identifies conditions under which manipulation (or improvement) is preferred by individuals
over the other. As mentioned in Section 5, the specific values of pP , px, xx1, xx2 in Thm. 5.1 depend on
θ, r, and we can empirically find pP , px, xx1, xx2 and verify the theorem, as illustrated in Figure 8 and
Table 2. Specifically, the left plot in Figure 8 shows rU ´ U as functions of initial similarity x0 under
different detection probability P . Because individuals only prefer to manipulate if rU ´ U ą 0, the
plot shows the values of pP , px, xx1, xx2 in Thm. 5.1. The right plot shows threshold pP under different
pairs of pθ, rq, and it shows that pP increases as r increases. Table 2 shows ranges pxx1,xx2q of initial
similarity x0 under different detection probability P , acceptance threshold θ, and discounting factor
r.

F ADDITIONAL EXPERIMENTS

Exam Score Data

Just as Sec. 7 mentions, we acquire the exam score data Kimmons (2012), preprocess the data and fit
beta distributions for both males and females. The fitted distribution and real distribution are shown
in Fig. 9.

FICO Score Data

Just as Sec. 7 mentions, we fit beta distributions for FICO Score Hardt et al. (2016b), and obtain four
distributions for different racial groups as shown in Fig. 10.

Additional Results for FICO Data
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Figure 10: FICO Score: Caucasian (Betap1.11, 0.97q), African American (Betap0.91, 3.84q), His-
panic (Betap0.99, 1.58q), Asian (Betap1.35, 1.13q)
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Figure 11: Optimal thresholds to incentivize improvement (left two plots) and manipulation probabil-
ity under the thresholds (right two plots) for Asians and Hispanic of the FICO data.

Besides Caucasian and African American mentioned in Sec. 7, for Asians and Hispanic, we also
compute the optimal decision threshold and corresponding total improvement under different r.
As shown in Fig. 11, θ˚ always decreases with r and the total amount of improvement decreases.
If comparing Asians and Hispanics, we observe that Hispanics have lower thresholds but larger
improvements. For settings with both manipulation and improvement (Fig. 11), it seems that a larger
(resp. smaller) proportion of Asians tend to manipulate than African Americans under θ˚. More
importantly, the optimal thresholds reveal larger amounts of improvement for Hispanics, suggesting
that the decision-maker’s policy in Sec. 4 is beneficial for the disadvantaged group.

G ESTIMATING THE DISCOUNTING FACTOR r IN SEC.4

We can estimate the discounting factor r if given an experimental population. The decision-maker
can publish an arbitrary threshold θ and observe the lowest score among all individuals who change
their scores, which is x˚pθq. Then the decision-maker can use any expression in Table 1 to estimate
r. Multiple experiments can make the estimation more robust.

H PROOFS

H.1 PROOF DETAILS OF THM. 3.1

To derive k˚, we first take the derivative of equation 5 with respect to k. For simplicity, let K “ k` 1

and the derivative will not change. Also, let R “ r ` 1 and G “ ´ ln
´

b

pθq´2´1
px0q´2´1

¯

. Then show the
results as follows:

BU

BK
“ lnR ¨ R

´G
lnK ¨

G

K ¨ ln2 K
´ 1 (13)

B2U

BK2
“

´G ¨ lnR ¨ R
´G
lnK pln2 K ` 2 lnK ´ G ¨ lnRq

K2 ¨ ln4 K
(14)
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The denominator of B
2U

BK2 is always positive, and the first term ´G ¨ lnR ¨ R
´G
lnK of numerator is

always negative.

Also, because K P r1, 2s, ln2 K ` 2 lnK P p0, ln2 2 ` 2 ln 2q. Thus, we have following situations:

1) If G ¨ lnR ą ln2 2 ` 2 ln 2, B
2U

BK2 is always positive when K P r1, 2s. This means BU
BK is increasing.

Then, noticing that limKÑ 1`
BU
BK “ ´1, we know BU

BK is always negative when K P r1, 2s. This
means U is monotonically decreasing. Also, when k “ 0, U “ 0. This ensures U is always
non-positive and individuals will never choose to invest any effort.

2) If G ¨ lnR ď ln2 2 ` 2 ln 2, B
2U

BK2 is first positive, then negative when K P r1, 2s. Also, if plugging
K “ 2 into equation 13, we know limKÑ 2

BU
BK ă 0. These facts reveal that BU

BK is firstly increasing
from a negative number and then decreasing to a negative number. And there must exist a unique
maximum point when K “ K

1

, K
1

should satisfy:

ln2 K
1

` 2 lnK
1

´ G ¨ lnR “ 0 (15)

Plug equation 15 into equation 13. Denote lnK
1

as t P r0, ln 2s, and denote BU
BK at K

1

as L:

L “
t ` 2

t ¨ e2t`2
´ 1 (16)

Then take the derivative of L:

BL

Bt
“

´2pt ` 1q2 ¨ e2t`2

t2 ¨ e4t`4
ă 0 (17)

equation 17 shows L is decreasing. Also, noticing that limtÑ 0` Lptq “ `8 and limtÑ ln 2 Lptq ă
3

2e2 ´ 1 ă 0, we know there must exist a t
1

P p0, ln 2q as the root of M . We can explicitly solve
t

1

“ 0.1997.

Thus, we now know that when t P r0, t
1

s, L ě 0. With the plausible domain of t and equation 15, we
would know: When G lnR P r0, t

12 ` 2t
1

s, L ě 0 and thereby U has an extreme large point with
value U˚. At this maximum point, equation 13 equals 0, and equation 14 is smaller than 0.

Finally, we derive the condition for U˚ ą 0: Denote G lnR as C and lnK as z, U can be simplified
to:

U “ e
´C
z ´ ez ` 1 (18)

Because z P r0, ln 2s, for any t fixed, limCÑ 0 U “ 2 ´ ez ě 0 and limCÑ 0 U “ 1 ´ ez ď 0. With
the fact that BU

BC ă 0, we know U is monotonically decreasing with C, so is U˚. Thus, there must
exist a threshold m, when C ă m, U˚ ą 0. And if U˚ ą 0, individuals will decide to improve.
Then Thm. 3.1 is proved and we can numerically solve the threshold m “ 0.316.

Although we believe exponential discounting is general and fits our setting well, we also note that
we can still use derivative analysis when the discounting changes (e.g., hyperbolic discounting).
Specifically, if denoting the discounted reward as dpr, tq, we would have U “ dpr, T q ´ k. Then if
taking the derivative we will get BU

Bk “ Bd
BT ¨ BT

Bk ´ 1. Noticing that T is known, then discussing the
properties of d with different choices of discounting is enough to derive the nature of U .

H.2 PROOF DETAILS OF THM. 4.1 AND COROLLARY 4.2

H.2.1 PROOF OF THM. 4.1

First prove Udpθq has a maximize θ˚ P p0, 1q:
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With the definition of Udpθq in equation 7, we already know Ud is continuous. We can first observe
that Udp0q “ 0, Udp1q “ 1. These hold simply because x˚p0q “ 0andx˚p1q “ 1. Next noticing that
for any θ P p0, 1q, Udpθq ą 0 holds. This suggests that θ will reach its maximum point according to
the Weierstrass extreme value theorem.

Next, noticing that Udpθq ą 0 P p0, 1q we can derive that BUd

Bθ p0q ą 0 and BUd

Bθ p0q ă 0. Then if it
only has one root in p0, 1q, we would know Ud must first increase and then decrease because there is
at most one inflection point. Thus, a unique maximum exists.

H.2.2 PROOFS OF WHY UNIFORM DISTRIBUTION HAS A UNIQUE MAXIMIZED θ˚

If BUd

Bθ only has one root. We know it is first larger than 0, then becomes smaller than 0. Next,
according to the Leibniz integral rule, we can get:

BUd

Bθ
“

ż θ

x˚pθq

P pxqdx ´ pθ ´ x˚pθqq ¨ P px˚pθqq ¨
Bx˚pθq

Bθ

Use Lagrange’s Mean Value Theorem, we can write the above equation as:

pθ ´ x˚pθqq ¨ rP pθ
1

q ´ P px˚pθqq ¨
Bx˚pθq

Bθ
s

where θ
1

is between x˚pθq, θ. Thus, the second term P pθ
1

q ´ P px˚pθqq ¨
Bx˚

pθq

Bθ must also be first
larger than 0 then smaller than 0. Next, noticing that P pθ

1

q “ P px˚pθqq in uniform distribution and
Bx˚

pθq

Bθ is increasing, the equation will be smaller than 0 when Bx˚
pθq

Bθ ă 1 and vice versa. Thus, we
prove the result for the uniform distribution.

H.2.3 PROOF OF COROLLARY 4.2

We now know BUd

Bθ “ pθ ´ x˚pθqq ¨ rP pθ
1

q ´ P px˚pθqqs ¨
Bx˚

pθq

Bθ s. Then according to the expression

of x˚pθq, it is true that both x˚pθq and Bx˚
pθq

Bθ increase with r. Thus, when the probability distribution
remains unchanged, the root of BUd

Bθ when r increases becomes smaller.

H.3 PROOF DETAILS OF THM. 5.1

Denote ln
´

b

θ´2´1
x´2
0 ´1

¯

as Gpx0q. Gpx0q is always negative and monotonically increasing with

x0 P p0, θq.

1. Situation when P = 0

According to Sec. 3 and equation 8, we can write the maximum improvement utility U˚ as p1 `

rq
Gpx0q

lnpk˚`1q ´ k˚, and write manipulation utility rU as p1 ` rq
Gpx0q

ln2 ´ pθ ´ x0q.

Then take the derivative of both:
BU˚

Bx0
ě

BG

Bx0
¨
lnp1 ` rq

lnpk˚ ` 1q
¨ p1 ` rq

Gpx0q

lnpk˚`1q (19)

B rU

Bx0
“

BG

Bx0
¨
lnp1 ` rq

ln2
¨ p1 ` rq

Gpx0q

ln2 ` 1 (20)

The "ě" in equation 19 occurs because k˚ is actually a function of x0, but if we regard k˚ at x0 as a
constant, the derivative here serves as a lower bound of BU˚

Bx0
.

Firstly, we prove when x0 Ñ θ, U˚ ă rU : when x0 Ñ θ, we know k˚ Ñ 0 since individuals invest
an arbitrarily small effort to immediately qualified. However, according to Sec. H.1, k˚ should let
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Figure 13: Shapes of k2u ´ k2

B
2U

Bk2 ă 0. This inequality will give us the bound of k˚: lnpk˚ ` 1q ą
´Gpx0q¨lnp1`rq

3 . With this

bound, we can plug k˚ into equation 19, and know lnp1`rq

lnpk˚`1q
Ñ `8, and p1 ` rq

Gpx0q

lnpk˚`1q is larger

than a constant because of the bound. Therefore, BU˚

Bx0
ě BG

Bx0
¨ `8. Then according to equation 20,

when x0 Ñ θ, B rU
Bx0

ă BG
Bx0

¨
lnp1`rq

ln2 ` 1. Since BG
Bx0

is always positive, when x0 Ñ θ, we prove that
BU˚

Bx0
ą B rU

Bx0
. Meanwhile, when x0 “ θ, U˚ “ rU “ 1. This means when x0 Ñ θ, U˚ ă rU .

Secondly, when x0 “ 0: rU “ ´θ and U˚ “ 0. So rU ă U˚ when x0 “ 0.

Thus. there must be an intersection between rU and U˚. Then noticing that if we increase θ, rU is
always decreasing to converge to function y “ x ´ 1, while U˚ ě 0 always holds. This suggests
when θ is sufficiently close to 1, we can guarantee the first intersection of U˚ and rU occurs arbitrarily
close to 1, meaning this first intersection is the only intersection.

Let the only intersection be x̂, we prove situation 1. The shapes of rU and U˚ are illustrated in Fig.
12.
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Figure 12: rU,U˚

2. Situation when P ą 0

From equation 8: when x0 Ñ θ, rU Ñ 1 ´ P . However, at this time
U˚ Ñ 1 ą 1 ´ P . This demonstrates x̂2 must exist.

When P Ñ 0, according to situation 1 and the continuity of rU with
respect to P , x̂1 must exist. However, when P Ñ 1, rU is always
negative, making x̂1 does not exist.

Thus, there must exist a threshold P̂ , when P ď P̂ , x̂1, x̂2 exist.
Otherwise, U˚ ą rU is always true.

H.4 PROOF DETAILS OF THM. 6.2

First let us prove following two lemmas:

Lemma H.1. For any initial qualification score x0, There exists
a pk P p0, 1q, when k P r0,pk), ku ą k. Let xx0 be the only root of
2x2

0 ` 2x3
0 ´ 1 “ 0 within p0, 1q, then pk is given by:

pk “ minp
xx0

2

2xx0
2

` 2xx0
3 ,

x0 ¨ px2
0 ` x0 ´

a

x4
0 ´ x2

0 ` 1q

2x2
0 ` 2x3

0 ´ 1
q (21)

Proof

According to Thm. 6.1, k2u “ } rd}2 ¨ x2
0 and } rd}2 “ k2 ` p1 ´ kq2 ´ 2kp1 ´ kqx0. We can get

following expression:
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k2u ´ k2 “ p2x2
0 ` 2x3

0 ´ 1qk2 ´ p2x2
0 ` 2x3

0qk ` x2
0 (22)

Firstly, when 2x2
0 ` 2x3

0 ´ 1 “ 0, xx0 “ 0.565. Thus, when k ă xx0
2

2xx0
2`2xx0

3 “ 0.319, k2u ą k2.

Except the above situation, We can regard equation 22 as a quadratic function of k and solve the two
roots:

x0 ¨ px2
0 ` x0 ˘

a

x4
0 ´ x2

0 ` 1q

2x2
0 ` 2x3

0 ´ 1
(23)

We then prove a claim that when x0 P p0, 1q, x0¨px2
0`x0`

?
x4
0´x2

0`1q

2x2
0`2x3

0´1
is either larger than 1 or smaller

than 0:

1) When 2x2
0 ` 2x3

0 ´ 1 ă 0, the denominator of equation 23 is negative, while the numerator is
always positive. Thus, equation 23 is negative.

2) When 2x2
0 ` 2x3

0 ´ 1 ą 0:

x0 ¨ px2
0 ` x0 `

a

x4
0 ´ x2

0 ` 1q

2x2
0 ` 2x3

0 ´ 1
ą

x0 ¨ px2
0 ` x0 ` x2

0q

2x3
0 ` x2

0

“ 1 (24)

equation 24 means equation 23 is larger than 1. Thus, the claim is proved.

Thus, k2u ´ k2 only has one root within p0, 1q. Also from equation 22 we know when k “ 0, ku ą k

and when k “ 1, ku ď k. With these facts we immediately know: When k ď
x0¨px2

0`x0´
?

x4
0´x2

0`1q

2x2
0`2x3

0´1
,

k2u ´ k2 ě 0. Otherwise, k2u ´ k2 ă 0. In fact, besides the exception 2x2
0 ` 2x3

0 ´ 1 “ 0, there
are only two possibilities of the shape of k2u ´ k2 as shown in Fig. 13. Because k and ku are both
non-negative, the relationship of the square must be the same for their values.

Then if we define k̂ as:

k̂ “ minp
xx0

2

2xx0
2

` 2xx0
3 ,

x0 ¨ px2
0 ` x0 ´

a

x4
0 ´ x2

0 ` 1q

2x2
0 ` 2x3

0 ´ 1
q (25)

Then ku ą k when k P r0, k̂q. Proved.

Lemma H.2. For any individual with initial qualification score x0 and the admission threshold θ,
there must exist a r to let there exists a k̄ P r0,pkq, Upk̄, θ, r, x0q ą 0

Proof. If we let z “ lnpk ` 1q be z and recall that Cpθ, x0, rq “ ´ ln
´

b

pθq´2´1
px0q´2´1

¯

¨ lnp1 ` rq, we

would have U “ e
´C
z ´ ez ` 1.

For any z there exists Cz , when C ă Cz , U ą 0.

So we can just let k be an arbitrary point P r0,pkq and we can get the corresponding Cz , then we can
only let r satisfy:

lnp1 ` rq ă
Cz

´ ln
´

b

pθq´2´1
px0q´2´1

¯ (26)

Then we find the plausible r. Proved.

Proof of Thm. 6.2

21



Under review as a conference paper at ICLR 2024

According to Lemma H.1, when k̄ P r0,pkq, ku ą k, so the convergence speed of the individual
to d˚ under forgetting mechanism will be faster than the convergence speed of the individual to d
without forgetting mechanism, so that the reward under forgetting mechanism is discounting less.
Meanwhile, according to Lemma H.2, there exists a r where Upk̄, θ, r, x0q ą 0. Combine them
together, pUpk̄, θ, r, x0q ą Upk̄, θ, r, x0q ą 0 and Thm. 6.2 is proved.

H.5 PROOF OF THM. B.1

Assume kt “ k
t`1 when t ě 0. From equation 1 and similar to Dean & Morgenstern (2022), we know

pqTt`1 ¨dq´2 ´1 “
pqTt ¨dq

´2
´1

kt`1

2

. This will lead to pqTt ¨dq´2 ´1 “
śt´1

i“0p k
i`1 `1q´2ppqT0 ¨dq´2 ´1q.

Then consider
śt´1

i“0p k
i`1 ` 1q´1 “

śt´1
i“0p i`1

k`i`1 q “ 1
k`1 ¨ 2

k`2 .... When k “ 1, The expression
is 1

2 ¨ 2
3 ¨ 3

4 ...
t´1
t “ 1

t , demonstrating the convergence rate is linear. Note that this expression is
decreasing as k decreases, so the convergence rate in our model is always slower than linear. Next,
consider the general expression

śt´1
i“0p i`1

k`i`1 q “ 1
k`1 ¨ 2

k`2 ... and k ă 1. Let a “ 1
k which is larger

than 1, and j “ i ` 1 which is larger than 0. We slightly abuse the definition of a to let it be an
integer. Then the expression becomes

śt´1
i“0p

ja
1`ja q “ a

a`1 ¨ 2a
2a`1 ...

ta
ta`1 .

Then for any a we can bound this expression. Basically, we already know 1
2 ¨ 2

3 ¨ 3
4 ...

t´1
t “ 1

t .
Noticing that when a ą 1, it is just equal to erase some terms of this expression. We can utilize this
fact to get the lower bound and upper bound:

1. Lower bound: consider the following a´1 sets of expressions and each set consists of t terms:
t 1
2 ¨ a`1

a`2 ¨ 2a`1
2a`2 ... ¨

pt´1qa`1
pt´1qa`2u, t 2

3 ¨ a`2
a`3 ¨ 2a`2

2a`3 ... ¨
pt´1qa`2
pt´1qa`3u..., ta´1

a ¨ 2a´1
2a ¨ 3a´1

3a ... ¨ ta´1
ta u.

Then each of the a ´ 1 expressions are smaller than
śt

j“1p
ja

1`ja q “ a
a`1 ¨ 2a

2a`1 ...
ta

ta`1 .

Denote
śt

j“1p
ja

1`ja q “ a
a`1 ¨ 2a

2a`1 ...
ta

ta`1 as I , we will have Ia ě 1
ta`1 , so the convergence

rate is smaller than a
?
ta “ Θptkq

2. Upper bound: consider the following a ´ 1 sets of expressions and each set consists of t
terms: ta`1

a`2 ¨ 2a`1
2a`2 ... ¨ ta`1

ta`2u, ta`2
a`3 ¨ 2a`2

2a`3 ... ¨ ta`2
ta`3u..., t 2a´1

2a ¨ 3a´1
3a ... ¨

pt`1qa´1
pt`1qa u. Then

each of the a ´ 1 expressions are larger than
śt

j“1p
ja

1`ja q “ a
a`1 ¨ 2a

2a`1 ...
ta

ta`1 . Denote
śt

j“1p
ja

1`ja q “ a
a`1 ¨ 2a

2a`1 ...
ta

ta`1 as I , we will have Ia ď 1
pt`1q

, so the convergence rate
is larger than a

?
ta “ Θptkq

Thus, take the limit and apply the Sandwich Theorem, the convergence rate is Θptkq.
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