A Additional Related Work

A.1 Per-Instance Search

Once the neural network is trained over a collection of problem instances, per-instance fine-tuning can
be used to improve the quality of solutions via local search. For DRL solvers, Bello et al. [[7]] fine-tuned
the policy network on each test graph, which is referred as active search. Hottung et al. [28]] proposed
three active search strategies for efficient updating of parameter subsets during search. Zheng
et al. [77] tried a combination of traditional reinforcement learning with Lin-Kernighan-Helsgaun
(LKH) Algorithm [49} 24]. Hottung et al. [27]] performed per-instance search in a differentiable
continuous space encoded by a conditional variational auto-encoder [39]. With a heatmap indicating
the promising parts of the search space, discrete solutions can be found via beam search [31],
sampling [42]], guided tree-search [48]], dynamic programming [44], and Monte Carlo Tree Search
(MCTS) [19]. In this paper, we mainly adopt greedy, sampling, and MCTS as the per-instance search
techniques.

B Per-instance Search

In this section, we describe the decoding strategies used in our paper. Given a fine-tuned (i.e.,

after active search) continuous parameterization 9@ of the solution space, the per-instance search
decoding aims to search for a feasible solution that minimizes the cost function c;.

Greedy Decoding generates the solution through a sequential decoding process similar to the
auxiliary distribution designed for each combinatorial optimization problem, where at each step, the
variable k with the highest score 6}, is chosen to extend the partial solution. For TSP, the first node in
the permutation is picked at random.

Sampling Inspired by Kool et al. [42], we propose to parallelly sample multiple solutions according
to the auxiliary distribution and report the best one. The continuous parameterization is divided by a
temperature parameter 7. The parallel sampling of solutions in DIMES is very efficient due to the

fact that it only relies on the final parameterization BgT) /7 but not on neural networks.

Monte Carlo Tree Search Inspired by [19], for the TSP task, we also leverage a more advanced
reinforcement learning-based searching approach, i.e., Monte Carlo tree search (MCTS), to find
high-quality solutions. In MCTS, k-opt transformation actions are sampled guided by the continuous
parameterization HE,T) to improve the current solutions. The MCTS iterates over the simulation,
selection, and back-propagation steps, until no improving actions exists among the sampling pool.
For more details, please refer to [[19].

C Implementation Details

C.1 Neural Architecture for TSP

Anisotropic Graph Neural Networks We follow Joshi et al. [33]] on the choice of neural archi-
tectures. The backbone of the graph neural network is an anisotropic GNN with an edge gating
mechanism [9]. Let hf and ef. denote the node and edge features at layer ¢ associated with node i
and edge ¢7, respectively. The features at the next layer is propagated with an anisotropic message
passing scheme:

Rt = b+ a(BN(U'h{ + Ajen; (o(ef;) © V'RY))), (18)
et = el + a(BN(P'e}; + Q'hj + R'hj)). (19)

where U é, Vg, Pe, Ql, R’ € R?%4 gre the learnable parameters of layer ¢, o denotes the activation
function (we use SiLU [[15] in this paper), BN denotes the Batch Normalization operator [30], .A
denotes the aggregation function (we use mean pooling in this paper), o is the sigmoid function, ®
is the Hadamard product, and V; denotes the outlinks (neighborhood) of node 7. We use a 12-layer
GNN with width 32.

17

The node and edge features at the first layer h? and e?j are initialized with the absolute position of
the nodes and absolute length of the edges, respectively. After the anisotropic GNN backbone, a
Multi-Layer Perceptron (MLP) is appended and generates the final continuous parameterization 8 for
all the edges. We use a 3-layer MLP with width 32.

Graph Sparsification As described, we focus on developing a neural TSP solver for graphs with
tens of thousands of nodes. Because the number of edges in the graph grows quadratically to the
number of nodes, a densely connected graph is intractable for an anisotropic GNN when it is applied
to large graphs. Therefore, we use a simple heuristic to sparsify the original graph. Specifically, we
prune the outlinks of each node such that it is only connected to k£ nearest neighbors. The continuous
parameterization @ is also pruned accordingly. As a result, the computation complexity of our method
is reduced from O(n?) to O(nk), where n is the number of nodes in the graph.

C.2 Neural Architecture for MIS

Graph Convolutional Networks We follow Li et al. [48]] on the choice of neural architecture, i.e.,
using Graph Convectional Network (GCN) [40], since 8 is merely scores for each node. Specifically,

the GCN backbone consists of multiple layers {h'} where h! € RY xC" is the feature layer in the

I-th layer and C' is the number of feature channels in the [-th layer. We initialize the input layer h°
with all ones and h!*?! is computed from the previous layer h! with layer-wise convolutions:

h't! = 5(h'U}, + D-2AD 2h'U!), (20)

where Ué S RE'*C™ and Ul1 S R XC"™™ are trainable weights in the convolutions of the network,
D is the degree matrix of A with its diagonal entry D(i, i) = >, A(j,4), and o(-) is the ReLU [55]
activation function. After the GCN backbone, a 10-layer Multi-Layer Perceptron (MLP) with residual
connections [22]] is appended and generates the final continuous parameterization 6 for all the nodes.

D Experimental Details

D.1 TSP

Training For TSP-500, we train our model for 120 meta-gradient descent steps (1.5 h in total) with
T = 15. For TSP-1000, we train our model for 120 meta-gradient descent steps (1.7 h in total) with
T = 14. For TSP-10000, we train our model for 50 meta-gradient descent steps (10 h in total) with
T = 12. We generate 3 instances per meta-gradient descent step. We use the AdamW optimizer [S0]]
with learning rate 0.005 and weight decay 0.0005 for meta-gradient descent steps, and with learning
rate 0.05 for REINFORCE gradient descent steps. For other learning-based baseline methods, we
download and rerun the source codes published by their original authors based on their pre-trained
models.

Hardware We follow the hardware environment suggested by Fu et al. [[19]]. For the three traditional
algorithms, since their source codes do not support running on GPUs, they run on Intel Xeon Gold
5118 CPU @ 2.30GHz. To ensure fair comparison, learning-based methods run on GTX 1080 Ti
GPU during the testing phase. MCTS runs on Intel Xeon Gold 6230 80-core CPU @ 2.10GHz, where
we use 64 threads for TSP-500 and TSP-1000, and 16 threads for TSP-10000. For the training phase,
we train our model on NVIDIA Tesla P100 16GB GPU.

Reproduction We implement DIMES for TSP based on PyTorch Geometric [[17]] in LibTorch and
PyT(ﬁch [62]. Our code for TSP is publicly available[] The test instances are provided by Fu et al.
(19]

D.2 MIS

Training For SAT, we train our model for 50k meta-gradient steps with 7" = 1. For ER-[700-800],
we train our model for 150k meta-gradient steps with 7' = 1. For ER-[9000-11000], we initialize

"https://github. com/DIMESTeam/DIMES (MIT license)
$https://github.com/Spider-scnu/TSP (MIT license)

18

https://github.com/DIMESTeam/DIMES
https://github.com/Spider-scnu/TSP

our model from the checkpoint of ER-[700-800], and further train it for 200 meta-gradient steps.
We use a batch size of 8 on all datasets and Adam optimizer [38] with learning rate 0.001 for the
meta-gradient descent step, and with learning rate 0.0002 for REINFORCE gradient descent steps.
For other learning-based baseline methods, we mainly use an integrated implementatiorﬂ provided
by Bother et al. [8]].

Hardware All the methods are trained and evaluated on a single NVIDIA Ampere A100 40 GB
GPU, with AMD EPYC 7713 64-Core CPUs.

Reproduction Our code for MIS is publicly avallable@] Following Bother et al. [8], for SAT, we
use the “Random-3-SAT Instances with Controlled Backbone Size” datase and randomly split it
into 39500 training instances and 500 test instances. For the Erd6s-Rényi graphs, both training and
test instances are randomly generated.

E Proofs

In this section, we follow the notation introduced in Section 3.

E.1 Convergence of Solution Distributions
The following propositions show that pg and gg converge to the same solution. They imply that we
can optimize gg instead of pg.

Proposition 1 (TSP version). Let 0 < § < 1 be a sufficiently small number. If ¢3>°(f) > 1 — 6 for
a solution f € F, then we also have pg(f) > 1 — O(9).

Proposition 2 (MIS version). Suppose that 6 is normalized (i.e.,), exp(0;) = 1) and uniformly
bounded w.r.t. a solution f € F (i.e., Y, fiexp(0;)/ exp(>_, fi0:) < L for a constant L > 0). Let

0 < & < 1 be a sufficiently small number. If ¢3S (f) > 1 — 6, then we also have pg(f) > 1 — O(0).
Remark. Propositions [T] & 2]imply that if gg converges to f (6 — 0.), then pg also converges to f.

Proof for TSP. Using the bound of qTSP(/), we have for any node j:

arse(my | 77(0) = 5) = ngg™ (f) = Y _ qrsp(my | wp(0) = i) 21)
i#j

>ngg> (f) — (n—1) (22)

>n(l—68)— (n—1)=1—0(). (23)

Thus, for any edge (4, j) in the tour 7, and any edge (i, k) # (i, 7),

91‘73‘ — 91', IOg ((02 Z)) (24)
dolr, () = | m5(0) =)
2108 T g (0 =5 7,0 =) =
qo(my | ms(0) = i)
=18 T oy 177(0) =))
> logl_O(Oag(s). 27

Note that for any edge (i, 7) in the tour f (denoted by (4, j) € 7s) and any solution g € F \ {f},
there exist a unique k7 such that edge (i, k) is in the tour 7y, and (¢, kY) # (i,) for at least one

https://github. com/MaxiBoether/mis-benchmark-framework (No license)
Uhttps://github.com/DIMESTeam/DIMES|(MIT license)
! 1https ://www.cs.ubc.ca/ “hoos/SATLIB/Benchmarks/SAT/CBS/descr_CBS.html

19

https://github.com/MaxiBoether/mis-benchmark-framework
https://github.com/DIMESTeam/DIMES
https://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/CBS/descr_CBS.html

edge (4,j) € my. Then,
1

po(f) =
L+ 3 gemiy P (= Xijyer(0is — 0ine))

1+ 3 gemiry P (= Lajeng(0is — Oire))

1
=z 1-00)
L+ Y gem iy P (- Lijeng 108 55

—1-0(5).

(28)

(29)

(30)

3D
O

Proof for MIS. Let |g| denote the size of a solution g € F, i.e., |g| = >, g;. With a little abuse of

notation, let g € F also denote the corresponding independent set. Note that
max;¢ ¢ exp(;)
max;¢ ¢ exp(f;) + Zzef exp(6;)
< Zig f exp(6;)
N Zigf exp(6;) + Zief exp(0;)

> g exp(0
= X?EJCT ZQMIS ai fl

=qus(ar & f) <1— MIS(f)S(S.

This implies

max exp(6 Z exp(6
i¢f ey

(32)

(33)

(34)

(35)

(36)

Recall that we have assumed in Section 3.2.2 that each f’ € F is not a proper subset of any
other f” € F. Thus for any f,g € F, we have f \ g # &, and g \ f # @. Note also that

exp(0;) < >, exp(f;) = 1 for all nodes i. Hence,

pe(f) - <1 + Z exp(Zi fzel))

e P}
(zeg\f exp(0;)>_1
gef\{f} Hiep @xp ()
S (1 maxzeg\f exp(6;)>_
- gerisy Llieng @p)
- <1 max;¢ ¢ exp(6;))
B gGJ:\{f} Hzefexp(9)
> <1 T— 521efexp(0)> -
N emty e
1
> <1—|— d T3 L)
gef\{f}
—1-

20

(37)

(38)

(39)

(40)

(41)

(42)

(43)
O

E.2 First-Order Approximation of Meta-Gradient

The following proposition gives a first-order approximation formula of the meta-gradient.

Proposition 3. Let Fg(ks, As) be a GNN F with parameter @ and input (ks, As), L(® | {s})
be a loss function, and o« > 0 be a learning rate. Suppose 4520) = @, and digt) = 45?_1) —
avq)(tq)ﬁ(!ﬁgt_l) | {s}) for 1 <t < T, and 6" = Fyor)(Ks, As). Then,

VQO V¢(T)F gT)(KS,AS) + O(a).
Proof. The proof resembles [38]. By chain rule,

) (44)

S

Vg ® =

=l
<
j
I

T

= [[Ve @0 —aV a0 L@ | {s}) (45)
t=1
T

=T —aV2e v L@ | {s})) (46)

o~
Il
-

I
~
+
(]~
2
=

> HV% L@V | {s)) @7)

k=1 1<ty <<t <Ti=1
— I+0(a) (48)
Hence,
VnggT) = VQ(SO)@((QT)V(PET) F’pgT) (Ifs7 AS) 49)
= (I + O(a))v(pgT)Fqng)(Iis,As) (50)
= VégT)F(PgT)(HS,AS) +O(Oz) (29
O]

F Additional Experiments for TSP

F.1 Performance on TSP-100

We trained DIMES on TSP-100 and evaluate it on TSP-100 with 7' = 10 and O (i.e., with and without
meta-learning). Since MCTS is the best per-instance search scheme for DIMES (see Table 1), we also
use MCTS here. When using AS, we fine-tune DIMES on each instance for 100 steps. We compare
DIMES with learning-based methods listed in Section 4.1.2. Results of baselines are taken from Fu
et al. [19]]. The results are presented in Table[z_f}

As is shown in the table, DIMES outperforms all learning-based methods, and its results are very
close to optimal lengths given by exact solvers. The results suggest that DIMES achieves the best in-
distribution performance among learning-based methods. Notably, with meta-learning (7" = 10), even
when DIMES does not fine-tune (i.e., no active search) for each problem instance in evaluation, it still
outperforms all other learning-based methods. This again demonstrates the efficacy of meta-learning
to DIMES.

F.2 Extrapolation Performance

We evaluate the exptrapolation performance of DIMES (i.e., trained on smaller graphs and tested on
larger graphs). We train the model on TSP-100 and test it on TSP-500/1000/10000. For testing, we
use RL+S (7 = 0.01) without active search. The results are reported in Table[5]in comparison with
corresponding results trained on larger graphs (TSP-n).

21

Table 4: Results on TSP-100. * indicates the baseline for computing the performance drop.

Method Type Length | Drop |
Concorde OR (exact) 7.7609* —
Gurobi OR (exact) 7.7609* —
LKH-3 OR 7.7611 0.0026%
EAN RL+S 8.8372 13.8679%
EAN RL+S+2-OPT 8.2449 6.2365%
AM RL+S 7.9735 2.7391%
AM RL+G 8.1008 4.3791%
AM RL+BS 7.9536 2.4829%
GCN SL+G 8.4128 8.3995%
GCN SL+BS 7.8763 1.4828%
Att-GCN SL+MCTS 7.7638 0.0370%
DIMES (T = 0) RL+MCTS 7.7647 0.0490%
DIMES (T = 0) RL+AS+MCTS 7.7618 0.0116%
DIMES (T' = 10) RL+MCTS 7.7620 0.0142%
DIMES (T" = 10) RL+AS+MCTS 7.7617 0.0103%

Table 5: Results of DIMES (RL+S). “Trained on TSP-100" indicates extrapolation performance.

Settin TSP-500 TSP-1000 TSP-10000

g Length | Drop | Length | Drop | Length | Drop |
Trained on TSP-n 18.84 13.84% 26.36 14.01% 85.75 19.48%
Trained on TSP-100 19.21 16.07% 27.21 17.69% 86.24 20.16%

From the table we can observe that the performance of DIMES does not drop much, which demon-
strates the nice extrapolation performance of DIMES. One of our hypotheses is that graph sparsifica-
tion in our neural network (see Appendix [C.I)) avoids the explosion of activation values in the graph
neural network. Another hypothesis is that meta learning tends to not generate too extreme values in
(see point 9 of our previous response) and hence improve the generalization capability.

F.3 Stability of Training

We compare the training settings of AM [42], POMO [45], and DIMES in Table[6] The training costs
of AM and POMO are obtained from their papersE]A training step means a gradient descent step of
the GNN. That is, for AM/POMO, a training step means a gradient descent step over a batch; for
DIMES, a training step means a meta-gradient descent step.

The table shows that DIMES is much more sample-efficient than AM/POMO. Notably, DIMES
achieves stable training using only 3 instances per meta-gradient descent step. Hence, its total training
time is accordingly much shorter, even though its per-step time is longer. Moreover, the stability of
training enables us to use a larger learning rate, which also accelerates training.

To further illustrate the fast stable training of DIMES, we compare the dynamics of training among
AM, POMO, and DIMES in Figure[I] We closely follow the training settings of their papers, i.e., we
train AM/POMO on TSP-100 and DIMES on TSP-500. For AM/POMO, we train their models on
our hardware by re-running their public source code. The performance is evaluated using TSP-500
test instances. For DIMES, we use RL+S in evaluation.

From Figure|lal we can observe that DIMES stably converges to a better performance within fewer
time, while the dynamics of training AM/POMO are slower and less stable. From Figure[Tb we can
observe that DIMES converges at much fewer training steps. The results again demonstrate that the
training of DIMES is fast and stable.

"2For AM/POMO, per-step training time is estimated by total training time divided by total training steps.

22

Table 6: Comparison of training settings for TSP-500/1000/10000.

Setting AM POMO DIMES
Training problem scale TSP-100 TSP-100 TSP-500/1000/ 10000
Training descent steps 250,000 312,600 120/120/50
Per-step training instances 512 64 3
Total training instances 128,000,000 20,000,000 360/360/150
Per-step training time 0.66s 0.28s 45s/51s/12m
Total training time 2d 1d 1.5h/1.7h/10h
Training GPUs 2 1 1
45 70
— AM — AM
40 - POMO 60 - POMO
—— DIMES —— DIMES
35 1 50
=
£ =
g 240
= 30 K]
25 4 30 4
201
20 A
10 20 30 40 50 100 150 200

Training Time / min Training Steps

(a) Performance vs training time.

Figure 1: Evaluation performance vs training cost.

23

(b) Performance vs training steps.

	Introduction
	Related Work
	DRL-Based Construction Heuristics Learners
	DRL-Based Improvement Heuristics Learners
	Supervised Learners for CO Problems

	Proposed Method
	Formal Definitions
	Gradient-Based Optimization
	Auxiliary Distribution for TSP
	Auxiliary Distribution for MIS

	Meta-Learning Framework
	Per-Instance Search
	Graph Neural Networks

	Experiments
	Experiments for Traveling Salesman Problem
	Experimental Settings
	Main Results
	Ablation Study

	Experiments For Maximal Independent Set
	Experimental Settings
	Main Results

	Conclusion & Discussion
	Additional Related Work
	Per-Instance Search

	Per-instance Search
	Implementation Details
	Neural Architecture for TSP
	Neural Architecture for MIS

	Experimental Details
	TSP
	MIS

	Proofs
	Convergence of Solution Distributions
	First-Order Approximation of Meta-Gradient

	Additional Experiments for TSP
	Performance on TSP-100
	Extrapolation Performance
	Stability of Training

