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Abstract
We introduce and validate the lottery codec hy-
pothesis, which states that untrained subnetworks
within randomly initialized networks can serve as
synthesis networks for overfitted image compres-
sion, achieving rate-distortion (RD) performance
comparable to trained networks. This hypothe-
sis leads to a new paradigm for image compres-
sion by encoding image statistics into the network
substructure. Building on this hypothesis, we
propose LotteryCodec, which overfits a binary
mask to an individual image, leveraging an over-
parameterized and randomly initialized network
shared by the encoder and the decoder. To address
over-parameterization challenges and streamline
subnetwork search, we develop a rewind mod-
ulation mechanism that improves the RD per-
formance. LotteryCodec outperforms VTM and
sets a new state-of-the-art in single-image com-
pression. LotteryCodec also enables adaptive de-
coding complexity through adjustable mask ra-
tios, offering flexible compression solutions for
diverse device constraints and application require-
ments. Project page: https://eedavidwu.
github.io/LotteryCodec/

1. Introduction
Traditional image/video compression algorithms rely on
meticulously designed linear transforms. Recently, conven-
tional methods have been increasingly challenged by emerg-
ing learning-based codecs that replace analysis and synthesis
transforms in classical codecs with neural networks (Ballé
et al., 2018; Cheng et al., 2020a; He et al., 2022). While
achieving impressive performance gains, these autoencoder

1Department of Electrical and Electronic Engineering, Impe-
rial College London, London SW7 2AZ, U.K.. Correspondence
to: Gongpu Chen <gongpu.chen@imperial.ac.uk>, Haotian Wu
<haotian.wu17@imperial.ac.uk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Better

VTM 19.1

Figure 1. Rate-distortion performance (BD-rate) vs. decoding com-
plexity on the CLIC2020 dataset. LotteryCodec achieves a superior
and adaptable RD trade-off than other codecs.

(AE)-based neural codecs often suffer from high decoding
complexity and large number of network parameters, which
limit their practical deployment on resource-constrained de-
vices (Jiang et al., 2023; Wang et al., 2023). In addition, they
require training on extremely large datasets to ensure robust
performance across diverse image distributions — resources
that are not always available. Addressing these issues to
develop low-complexity and robust codecs with competitive
rate-distortion (RD) performance remains a critical open
challenge (Yang et al., 2023).

Implicit neural representations (INRs) (Sitzmann et al.,
2020) has emerged as a promising signal representation
technique that leverages lightweight multi-layer percep-
trons (MLPs) to directly parameterize continuous functions.
INRs have demonstrated impressive performance in vari-
ous modalities and tasks, including modality-agnostic rep-
resentation (Shi et al., 2024), 3D reconstruction (Atzmon
& Lipman, 2020), and view synthesis (Mildenhall et al.,
2021), and have been extended to multi-instance settings
via modulation mechanisms (Mehta et al., 2021). Quantiz-
ing the overfitted network yields a signal compressor. For
image compression, a lightweight neural network can over-
fit a single image by mapping pixel coordinates to their
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corresponding intensities. Building on this idea, the first
INR-based overfitted image codec, COIN, was proposed in
(Dupont et al., 2021). Later, the COOL-CHIC series codecs
(Ladune et al., 2023; Leguay et al., 2023) and C3 (Kim et al.,
2024) further enhanced the RD performance, outperforming
widely used codecs such as BPG (Bellard, 2015), HEVC
(Sullivan et al., 2012), and VCC (Bross et al., 2021a), while
maintaining low decoding complexity.

Despite significant advances, state-of-the-art overfitted im-
age codecs still fall short of the RD performance of com-
petitive classical codecs such as VTM (Bross et al., 2021b).
Further improvements are challenging because achieving
higher reconstruction fidelity typically necessitates larger
networks, which significantly increases the compression
rate. In addition, most overfitted codecs rely on fixed net-
work architectures for a range of images, limiting their RD
performance and adaptability. We thus anticipate a new
paradigm, one that can balance the increasing cost of net-
work complexity with representation capability while en-
abling an adaptive architecture for individual images.

This work is inspired by two key findings: (1) a randomly
initialized neural network can act as a handcrafted prior,
encoding significant image statistics and prior informa-
tion within its network structure (Ulyanov et al., 2018);
and (2) over-parameterized neural networks contain high-
performing untrained subnetworks (Ramanujan et al., 2020).
These insights motivate us to propose the lottery codec hy-
pothesis. Specifically, consider a well-trained overfitted
image codec gW(z), which represents image S as a neural
network parameterized by W, with a latent representation
z as its input. After quantization and entropy coding, the
decoder reconstructs the image as S∗ = gŴ(ẑ) 1. Next, con-
sider an over-parameterized, randomly initialized network
gW′ , along with a learned binary mask τ ′ ∈ {0, 1}|W′| and
a latent z′, where |W′| denotes the number of parameters
of gW′ . The source image is reconstructed via a subnet-
work of gW′ as S′ = gW′⊙τ ′(ẑ′), where ⊙ represents the
Hadamard product, identifying the subnetwork. We propose
the following hypothesis:

Lottery codec hypothesis. Let d denote a distortion func-
tion and H the entropy function. For any overfitted image
codec gW(z), there exists a pair (τ ′, z′) as the ‘winning
tickets’ within a sufficiently over-parameterized and ran-
domly initialized network gW′ satisfying |W′| > |W|, such
that d(S,S′) ≤ d(S,S∗) and H(ẑ′) = H(ẑ).

Note that the equality H(ẑ′) = H(ẑ) implies that the num-
ber of bits required to represent ẑ′ and ẑ after entropy cod-
ing is the same. We conjecture this hypothesis to hold for
the following reasons: (1) Theoretical justification: prior

1In this paper, variables with a hat notation, such as ẑ, represent
their quantized counterparts.

Figure 2. Illustration of LotteryCodec scheme: the source image
is encoded into a binary mask and latent modulations. During
decoding, the receiver initializes a common random network and
uses a modulated subnetwork to reconstruct the source image.

studies (Pensia et al., 2020; da Cunha et al., 2022) suggest
that any target network of width lw and depth ld can be
approximated by pruning a random network that is a factor
O(log(lwld)) wider and twice as deep, suggesting that suf-
ficiently over-parameterized, randomly initialized networks
contain some ‘winning tickets’ even without training. (2)
Empirical evidence: extensive experiments conducted in this
paper evaluate the hypothesis, and the results consistently
support its validity.

The proposed lottery codec hypothesis highlights the poten-
tial of searching untrained but well-performing subnetworks
as overfitted image codecs. While theoretical works and ex-
periments demonstrate that sufficiently over-parameterized
networks can contain untrained subnetworks that match the
performance of well-trained networks, precise guidelines on
the required level of over-parameterization, such as specific
architectural depth or configurations, remain unclear for
reliably obtaining a ‘winning ticket’.

Based on the above hypothesis, we propose a novel overfit-
ted image compression scheme, called LotteryCodec (see
Fig. 2). This method utilizes a randomly initialized network
as the synthesis network and learns a binary mask with la-
tent modulations as the code. With a predefined random
seed, network parameters are eliminated from transmissions;
instead, it is sufficient to transmit only the binary mask and
latent variables for the decoder to reconstruct the image.

To address the challenges of over-parameterization and sub-
network search, we propose a rewind modulation mecha-
nism that introduces image information during the subnet-
work search, simplifying the process and enhancing the RD
performance. To the best of our knowledge, the proposed
LotteryCodec is the first overfitted image codec to surpass
the RD performance of VTM while maintaining a low de-
coding complexity. Furthermore, LotteryCodec sets a new
state-of-the-art for overfitted neural codecs obtained from a
single image. Its adaptive masking strategy enables flexible
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Figure 3. Operational structure of different compression schemes. (a) AE-based neural codecs: source image S is processed through a
pair of encoder and decoder. (b) Overfitted neural codecs: S is fitted by parameters {W, z} via a fitting operation F . (c) LotteryCodec: S
is fitted by parameters {τ, z}, identifying a subnetwork in a randomly initialized network, with masking operations M.

model complexity adjustment based on varying mask ratios,
balancing computational cost and performance, as shown in
Fig. 1.

The contributions of this work are summarized as follows:

• We propose and experimentally verify the lottery codec
hypothesis, which suggests that a subnetwork within a
randomly initialized neural network can directly serve
as a well-performing synthesis network for overfitted
image compression. This hypothesis introduces a new
paradigm for INR-based image compression, empha-
sizing the potential of encoding image statistics into
the structure of a randomly initialized network.

• We propose a novel LotteryCodec scheme, which over-
fits a randomly initialized neural network to the source
image by learning a binary mask and modulation vec-
tors. To alleviate over-parameterization and simplify
subnetwork search, a rewind modulation mechanism
is introduced, significantly improving the RD perfor-
mance.

• We show by extensive experiments that LotteryCodec
achieves state-of-the-art performance among overfitted
image codecs designed for single-image compression
at a reduced computational cost. Additionally, Lot-
teryCodec can adjust its decoding complexity by vary-
ing the mask ratio, thus providing flexible solutions for
diverse computational and performance needs.

2. Related work
2.1. Neural data compression

Currently, there are two main paradigms for neural data
compression (see Fig. 3): AE-based and overfitted neural
codecs, both designed to balance the trade-off between the
distortion and the rate (Cover, 1999).

AE-based neural codecs. As illustrated in Fig. 3a, an
AE-based neural codec, e.g., (Ballé et al., 2018; Cheng
et al., 2020a; He et al., 2022; Jiang et al., 2023; Wang et al.,

2023), comprises a pair of encoding network E and decod-
ing network D, jointly optimized over a large dataset. A
source image S is encoded by E into a latent representation
z, which is then compressed into R bits by quantization
and entropy coding. At the decoder side, the quantized
latent representation ẑ is first recovered and then used to
reconstruct the source image. Resulting average distortion
is D = ES∼ps [d(S,D(ẑ))], where d denotes the distortion
metric, and the compression rate R is given by:

R = ES∼ps
[
− log2 pQ(E(S)) (ẑ)

]
, (1)

where Q represents quantization operations. Although AE-
based approaches achieve competitive performance, their
decoding complexity is typically high due to reliance on
large and complex architectures for robust latent representa-
tions (see Fig. 1).

Overfitted neural codecs. Overfitting a parametric function
to each single image offers an alternative, where quantized
function parameters serve as the compressed representation.
A low-complexity network is often sufficient since gener-
alization is not required. COIN (Dupont et al., 2021) pio-
neered this by training a lightweight MLP to map pixel co-
ordinates to RGB values. Quantized parameters are entropy-
coded into a bitstream for decoding. COIN++ (Dupont et al.,
2022a) improved generalization with meta-learning. How-
ever, COIN’s RD performance remains limited despite low
complexity and remarkable generalization. Subsequently,
the COMBINER series (Guo et al., 2023; He et al., 2024)
introduces variational INRs and leverages relative entropy
coding for RD-optimized compression.

A significant advancement came with COOL-CHIC
(Ladune et al., 2023), which improves RD performance
by integrating a latent representation and an entropy model
while maintaining a low decoding complexity. As illustrated
in Fig. 3b, COOL-CHIC jointly trains a parametric function
gW with a latent vector z as the input to overfit S. Simi-
larly to COIN, both W and z are compressed into R bits
through quantization and entropy coding. During decoding,
the quantized network and latent vector are used to recon-
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Figure 4. Illustration of the image decoding process in LotteryCodec. The ARM parameters ψ̂ are first retrieved to regress the latent
modulations ẑ. Subsequently, the binary mask τ and initialization seed configure the synthesis network, while the modulation model
parameters θ̂ are decoded to generate the modulations from ẑ to guide the synthesis network to reconstruct the image.

struct the image via the mapping Ŝ = gŴ(ẑ). This results
in average distortion D = ES∼ps

[
d(S, gŴ(ẑ))

]
at a rate

R = ES∼ps

[
− log2 pψ̂

(
ẑ
)
− log2 p(Ŵ) +Rψ̂

]
, (2)

where F denotes the operations that overfit (W, z) parame-
ters to the specific input S, pψ̂(·) is the estimated distribu-

tion with estimation model ψ̂. In practice, entropy coding
of ẑ relies on a lightweight auto-regressive entropy model
(ARM) rψ for distribution estimation. In (2), Rψ̂ represents
the extra bit overhead due to the transmission of this model
parameters.

Extensions like COOL-CHICv2 (Leguay et al., 2023), C3
(Kim et al., 2024; Ballé et al., 2024), and COOL-CHICv3
(Blard et al., 2024) further enhance the RD performance
with advanced architectures and techniques, including soft-
rounding, Kumaraswamy noise, and conditional entropy
models. These advancements allow COOL-CHIC to outper-
form widely used codecs such as BPG and HEVC.

2.2. Lottery ticket hypothesis

Frankle & Carbin (2019) introduced the lottery ticket hy-
pothesis (LTH), stating that a randomly initialized, dense
neural network contains a subnetwork that can match the
test accuracy of the full network with equivalent training.
Zhou et al. (2019) found that ‘winning tickets’ (i.e., masked
subnetworks) can outperform random initialization without
training, while Ramanujan et al. (2020) extended the idea
by showing that even untrained subnetworks can achieve
near state-of-the-art performance, a phenomenon referred
to as the strong lottery ticket hypothesis (SLTH). Building
on these ideas, Choi et al. (2023) applied LTH to video rep-
resentation with multiple supermask overlays and unpruned

biases. This LTH-based video representation method en-
hances expressiveness but increases complexity.

Recently, Malach et al. (2020) theoretically proved the
SLTH for fully connected networks with ReLU activations,
showing that any target network can be approximated by
pruning a sufficiently over-parameterized random network
of polynomial size relative to the target network. Orseau
et al. (2020) and Pensia et al. (2020) relaxed the assumptions
and improved these bounds to logarithmic order, which is
later extended into convolutional neural networks (CNNs)
in (da Cunha et al., 2022).

3. LotteryCodec
Inspired by the lottery codec hypothesis, we propose Lot-
teryCodec, a novel image compression paradigm that en-
codes images by identifying structured subnetworks within
a randomly initialized network. The detailed pseudocode
for the method is provided in Appendix E.

3.1. Workflow

Encoder. As depicted in Fig 3(c), given an over-
parameterized network gW0 with randomly initialized pa-
rameters W0, each image S is overfitted using a subnetwork
of gW0 by learning a binary mask τ and a latent representa-
tion z, such that the subnetwork gτ⊙W0 can well reconstruct
S using ẑ. The quantized latent ẑ and binary mask τ are then
compressed via entropy coding, producing a bitstream rep-
resentation of S. Additional mechanisms, such as ARM rψ
and the modulation model ModNet fθ, are incorporated to
further enhance the RD performance, as will be elaborated
on later.

Decoder. As shown in Fig. 4, the decoder begins by ini-
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Figure 5. Illustration of the ModNet and SuperMask networks: SuperMask network maps pixel coordinates to RGB values by identifying
subnetworks within a randomly initialized network, guided by modulations generated by the ModNet using input ẑ. Solid red lines
indicate active weights, while dashed lines represent masked weights. The weights of the SuperMask network remain frozen during
training; only the binary mask τ and ModNet parameters are learned.

tializing the neural network gW0 using the same random
seed as the encoder. Next, the binary mask τ is extracted
to identify a subnetwork gτ⊙w0 , and the ARM parameters
ψ̂ are retrieved to decode the latent modulation vector ẑ.
Finally, a modulation model fθ̂ is retrieved and applied to
modulate the image generation process based on ẑ as:

Ŝ(x) = gτ⊙w0(fθ̂(ẑ),x), (3)

where x denotes the pixel coordinate vector of the im-
age. The distortion of LotteryCodec is then measured by
D = ES∼ps

[
d(S, Ŝ)

]
. The decoding complexity remains

low because gτ⊙w0 is a lightweight network. Moreover,
LotteryCodec offers flexible decoding complexity by allow-
ing adjustable mask ratios, which dynamically control the
active size of the synthesis network.

RD cost optimization. To balance the rate-distortion trade-
off, LotteryCodec is trained to fit a parameter set, denoted by
Ω ≜ {z, ψ, θ, τ}, with the goal of minimizing the following
loss function (i.e., the RD cost):

L(Ω) = d(S, gτ⊙w0(fθ̂(ẑ),x)) + λR(ẑ), (4)

where R(ẑ) represents the compression rate contributed
by ẑ, and λ is a hyperparameter that controls the trade-off
between distortion and rate. During training, z undergoes
soft-rounding with varying Kumaraswamy noise, whereas

hard-rounding is applied during inference. Notably, the
loss function (4) excludes the rate terms associated with
ψ, θ, and τ , as their contribution to the overall bit rate is
minimal due to their lightweight architectures. In practice,
these parameters are quantized and entropy-coded using a
non-learned distribution after the optimization process is
completed, contributing to the final bitstream.

Overall, the LotteryCodec bitstream consists of four parts:
the ARM parameters ψ̂, learnable latent modulations ẑ,
modulation model parameters θ̂, and the binary mask τ .
Hence, the total compression rate is given by

R = ES∼ps

[
− log2 pψ̂(ẑ)− log2 p(τ) +Rθ̂ +Rψ̂

]
,

(5)

where Rθ̂ and Rψ̂ denote the rate contributed by the trans-
mission of quantized ModNet and ARM. As shown in
Eqs. (2) and (5), the rate of overfitted codecs depends on
{ẑ, ψ̂,Ŵ}, while the rate of our method is determined by
{ẑ, ψ̂, τ, θ̂}. According to the Lottery Codec Hypothesis,
our bit cost for ẑ and ψ̂ matches that of standard overfitted
codecs. While each quantized parameter in Ŵ typically
requires more than 13 bits, our binary mask τ uses up to
1 bits per entry. Despite its higher dimensionality, τ con-
tributes significantly less to the total rate. Moreover, since θ̂
is lightweight, the combined rate of τ and θ̂ remains lower
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than that of Ŵ, resulting in an improved compression effi-
ciency. Note also that τ is transmitted in a lossless fashion
as it does not need to be quantized. In practice, both τ and
θ̂ are entropy-coded using offline-trained models or a static
distribution.

3.2. Winning a lottery codec

The design of LotteryCodec incorporates four key archi-
tectural components: SuperMask network (gW0⊙τ ), Mod-
Net (fθ), latent modulation (z), and ARM (rψ). As shown
in Fig. 5, the SuperMask network gτ⊙W0 is a high-
performing subnetwork that maps pixel coordinates to RGB
values, obtained by applying the learned mask τ to the over-
parameterized network gW0 . Specifically, gτ⊙W0 com-
prises Lt masked linear layers, with each masked linear
layer followed by modulation operations. The ModNet fθ
includes an upsampling operation and (Lt−1) convolutional
layers with 1× 1 kernel to generate hierarchical modulation
vectors for each layer of gτ⊙W0 from the retrieved ẑ. This
design significantly simplifies the subnetwork search while
improving the RD performance. The latent modulation z is
a set of learnable vectors that serve as a primary compres-
sion component, while the ARM (rψ) is an auto-regressive
entropy model commonly used to compress latent repre-
sentation z in overfitted codecs (Ladune et al., 2023), with
architecture detailed in Appendix A.

Fourier initialization. Initialization plays a critical role
in the SLTH problem to ensure the efficient identification
of “winning tickets” (Ramanujan et al., 2020). In our Lot-
teryCodec, parameters W0 are initialized using a Fourier
initialization approach. This design is based on two main
considerations: (1) From an INR perspective, the Fourier
reparametrization method can address the low-frequency
bias of MLPs and enhance INR with richer textures (Shi
et al., 2024); (2) From an SLTH point of view, this initial-
ization ensures the network retains rich sign information
(Zhou et al., 2019; Oh et al., 2025) while maintaining con-
stant variance between inputs and outputs (Glorot & Bengio,
2010; He et al., 2016).

Specifically, the weight matrix of the i-th MLP layer,
denoted by W(i) ∈ Rdi×di−1 , is re-parameterized as a
weighted combination of fixed Fourier bases:

W(i) = Λ(i)B(i), (6)

where Λ(i) ∈ Rdi×M is the coefficient matrix, and B(i) ∈
RM×di−1 represents a set ofM Fourier bases. Each element
b
(i)
m,n of B(i) (them-th row and n-column) is defined using a

distinct frequency and phase as b(i)m,n = cos(wma
(i)
n +φm),

where a(i) = a
(i)
1 , . . . , a

(i)
di−1

is a positional sequence uni-
formly sampled from [−π, π], and w and φ are the fre-
quency and phase vectors. We adopt P different phases

and 2F different frequencies, hence M = 2FP . The phase
vector is defined as φ ≜ {0, 2π/P, . . . , 2π(P − 1)/P}.
For each phase, the frequency vector is defined as w ≜
{wlow,whigh}, where wlow = {1/F, 2/F, . . . , 1} and
whigh = {1, 2, . . . , F, } denote low-frequency and high-
frequency bases, respectively. Each element λ(i)m,n of Λ(i) is
sampled from:

λ(i)m,n ∼ U

(
−
√

6

M
∑di−1

t=1 (b
(i)
m,t)

2
,

√
6

M
∑di−1

t=1 (b
(i)
m,t)

2

)
.

SuperMask network. We introduce a learnable matrix
P to identify the subnetwork gτ⊙W0

, defined by mask τ ,
that minimizes the loss function. Matrix P shares the same
dimensions as W0, with each element representing a score
of the corresponding weight in W0. During training, the
randomly initialized W0 remains frozen while only P is
updated. The top ra% of weights with the highest scores
across all layers are activated, while the remaining weights
are set to zero.

More formally, let V(i) ≜ {v(i)1 , . . . , v
(i)
di
} denote the values

of nodes for the i-th masked linear layer with di nodes.
The output of the k-th neuron in the i-th layer with the
modulation function m(·) can then be written as:

v
(i)
k = σ

di−1∑
j=1

τ
(i−1)
k,j w

(i−1)
kj m(v

(i−1)
j )

 , (7)

where σ is the activation function and w(i−1)
kj is the weight

connecting the k-th neuron in i-th layer to the j-th neuron
of the (i − 1)-th layer. The mask function returning the
binary mask τ (i−1)

k,j = h (P) is defined as: τ (i−1)
k,j = 1 if the

score p(i−1)
kj for the weight is among the top ra% highest

values, and τ (i−1)
k,j = 0 otherwise. Using the chain rule of

gradient, the gradient of the loss L with respect to p(i−1)
kj

can be estimated by a straight-through gradient estimator:

∂L
∂p

(i−1)
kj

≈ ∂L
∂v

(i)
k

∂v
(i)
k

∂σ
w

(i−1)
kj m(v

(i−1)
j ) ≜ ς

(i−1)
kj . (8)

The above formula holds because τ (i−1)
k,j is a non-decreasing

function of p(i−1)
kj . The activation probability p(i−1)

kj can
then be updated as:

p
(i−1)
kj ← p

(i−1)
kj − ας(i−1)

kj , (9)

where α is the learning rate. When activation or deactivation
swaps occur, the loss decreases for the mini-batch, according
to (Ramanujan et al., 2020; Wortsman et al., 2019).

6



LotteryCodec: Searching the Implicit Representation in a Random Network for Low-Complexity Image Compression

Better

B
et

te
r

(a)

lower complexity
Better RD

C3

(b)

lower complexity
Better RD

C3

(c)

lower complexity
Better RD

C3

(d)

Figure 6. Experimental verification of the lottery codec hypothesis, where C3-lottery (Nt, d) refers to the scheme using an over-
parameterized network with Nt hidden layers and d dimensions per layer. (a) RD curve and BD rate for different over-parameterization
configurations. (b) BD-rate versus different mask ratios. (c)-(d) BD-rate over varying width and depth configurations.

Rewind modulation mechanism. In practice, directly
searching for a well-performing subnetwork from gW0 re-
quires a deep, wide random network, leading to high com-
pression and computational costs. To address this, we intro-
duce ModNet fθ to generate modulations to simplify sub-
network search and improve the RD performance. Specif-
ically, fθ takes the quantized latent modulation ẑ as in-
put, where z ≜ {z1, z2, . . . , zL} comprises L learnable
multi-resolution vectors, with each zi ∈ Z

HW

4i−1 being a
learnable vector. In fθ, ẑ is first upsampled using trans-
pose convolutional operations as in (Blard et al., 2024),
producing U0 = [u1;u2; . . . ;uL] ∈ ZL×HW , where each
ui ≜ Upsample(ẑi) ∈ ZHW . The resultant U0 is then pro-
cessed through convolutional layers as: Ui = f

(i)
θ (Ui−1),

i = 1, . . . , Lt − 1. Here, f (i)θ and Ui denote the operation
and output of the i-th layer of ModNet, respectively.

Inspired by (Mehta et al., 2021; Perez et al., 2018; Zhou
et al., 2019; Oh et al., 2025) and to leverage the network
structure to encode the source image, we propose a rewind
strategy to modulate the synthesis process by concatenating
compensational structural information in a rewind fashion.
The modulation vector for the i-th layer of the synthesis
network gτ⊙W0 is defined as:

Mi = Concatenate(ULt−1,ULt−2, . . . ,ULt−i), (10)

where vectors Ui’s from ModNet are concatenated in re-
verse order to facilitate the search for a high-performing
subnetwork.

The modulation operation concatenates Mi with the inter-
mediate layer output of gτ⊙W0 . Consequently, the output
of each masked linear layer after modulations is given by:

Gi = m(Fi) = Concatenate(Mi,Fi), (11)

where Fi represents the output of the i-th layer of gτ⊙W0 ,
and Gi is the output after corresponding modulation opera-
tions. Intuitively, this concatenation enriches the structure
of the SuperMask network with both sign and magnitude in-
formation, allowing for the reactivation of features in deeper

layers while preserving high-level features. Note that the
proposed LotteryCodec scheme with its rewind modulation
mechanism serves as a general framework, allowing for al-
ternative modulation operations, such as FiLM (Perez et al.,
2018), which are discussed in Appendix D.4.

4. Experimental results
We evaluate our model on the Kodak (24 images) (Kodak,
1991) and CLIC2020 (41 images) (Toderici et al., 2020)
datasets. The mask ratio is selected from [0.1, 0.9]. Lot-
teryCodec is compared with classical codecs (VTM-19.1
(Bross et al., 2021a), HEVC (Sullivan et al., 2012)), AE-
based neural codecs (CST (Cheng et al., 2020b), EVC
(Wang et al., 2023), MLIC+ (Jiang et al., 2023)), and other
overfitted image codecs (including C3 (Kim et al., 2024)
and COOL-CHIC (Leguay et al., 2023)). The peak signal-
to-noise ratio (PSNR) on RGB channels and BD-rate (Gisle,
2001) are used to evaluate the RD performance. The evalua-
tion details and additional experiments, including the abla-
tion study and visualizations, are presented in the appendix
F.

4.1. Verification of the lottery codec hypothesis

We first validate the lottery codec hypothesis through a series
of experiments on the first 10 images of the Kodak dataset.
We implement the C3 scheme with a 16-dimensional ARM
as the baseline. For comparison, we search for a subnet-
work within a randomly initialized network and replace the
well-trained synthesis network in C3 with this subnetwork,
keeping all other components unchanged. This method is
referred to as the C3-Lottery scheme. See Appendix B.4 for
more details.

Fig. 6 presents the RD trade-off across varying net-
work depths and widths. The results demonstrate that
when the randomly initialized network is sufficiently over-
parameterized, the C3-Lottery scheme successfully identi-
fies a subnetwork and an associated latent representation that
achieves the same level of distortion as C3, but at a lower
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Figure 7. Performance of LotteryCodec and other schemes. (a) RD curve and BD rate on Kodak dataset. (b) RD curve and BD rate on
CLIC2020 dataset. (c) BD-rate and decoding complexity across different mask ratios on Kodak dataset.

bitrate. In particular, Fig. 6a presents PSNR versus the rate
contributed by ẑ, demonstrating that RD performance (in
terms of the PSNR-rate curve and BD-rate) improves as the
network width increases. In particular, when depth Nt = 4,
the C3-Lottery scheme matches or even surpasses the per-
formance of well-trained C3 baselines for width d ≥ 64.
Additional results for different depth settings can be found in
Appendix B.4. Fig. 6b illustrates the impact of the mask ra-
tio on performance, revealing that the optimal LotteryCodec
is achieved at a mask ratio of approximately 50%. Intu-
itively, this occurs because a 50% mask ratio maximizes
the entropy of the network structure, allowing more infor-
mation to be encoded into the structure. Figs. 6c and 6d
indicate that increasing both the depth and the width of the
random network can significantly enhance RD performance.
Furthermore, employing adaptive mask ratios for different
images could further boost performance.

4.2. RD performance of the LotteryCodec

We then compare the RD performance of LotteryCodec with
the existing methods. As shown in Fig. 7a, LotteryCodec
outperforms VTM and significantly surpasses other overfit-
ted codecs on the Kodak dataset, achieving BD-rate reduc-
tions of −6.4% over C3 and −3.73% over its adaptive vari-
ant, C3-adapt (relative to VTM-19.1). One of the substantial
performance gains occurs in the low-bpp regime, where net-
work parameters dominate the compression rate in an overfit-
ted codec. By contrast, LotteryCodec achieves a lower rate
by compressing a binary mask instead of real-valued param-
eters, resulting in a superior RD performance. Additional
MS-SSIM evaluations are provided in the appendix (see
Fig. 13), where LotteryCodec closely approaches ELIC and
has a +10.72% BD-rate gap (versus VTM-19.1) compared
to MLIC+.

Fig. 7b shows the results on the CLIC2020 dataset, where
LotteryCodec demonstrates an even greater advantage. In
particular, the performance gain over VTM-19.1 reaches
−8.91%. Consistent improvements are also observed com-

pared to C3 (−6.21% BD-rate), C3-adpt (−3.21% BD-
rate) and COOL-CHIC v2 (−25.55% BD-rate), respec-
tively. From experiments on both the Kodak and CLIC2020
datasets, the LotteryCodec scheme demonstrates state-of-
the-art RD performance among current overfitted codecs. To
the best of our knowledge, LotteryCodec is the first neural
codec to surpass VTM in RD performance while maintain-
ing low decoding complexity, establishing it as the state-of-
the-art for single-image compression. Like other overfitted
codecs, LotteryCodec still falls short of state-of-the-art AE-
based neural codecs such as MLIC+ in RD performance.
But it achieves a BD-rate over VTM that is comparable to
MLIC, with only a +3.21% gap. As shown in Fig. 1, Lot-
teryCodec demonstrates a significant advantage over MLIC+
in terms of decoding complexity, requiring two orders of
magnitude fewer decoding operations. Further discussion
on complexity is provided later.

4.3. The mask ratio and decoding complexity

The impact of the mask ratio is examined in Fig. 7c, which
illustrates the performance of LotteryCodec under different
mask ratios. As expected, the decoding complexity de-
creases linearly as the mask ratio increases, since masking
more weights reduces the overall computation required by
the network. However, RD performance does not follow
a monotonic trend with respect to the mask ratio. Interest-
ingly, with the introduction of the rewind modulation, the
optimal mask ratio for LotteryCodec to achieve the best
BD-rate is around 20%, different from 50% observed in Fig.
6. Intuitively, decreasing the mask ratio from 50% to 20%
significantly reduces the number of possible subnetworks,
demonstrating that rewind modulation effectively simplifies
the subnetwork search process while maintaining strong
compression performance.

Additionally, Fig. 7c demonstrates that LotteryCodec can
flexibly balance RD performance and decoding complexity,
allowing for adaptable trade-offs based on specific require-
ments. Notably, even with a high mask ratio of 80%, which
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results in low decoding complexity, LotteryCodec still out-
performs the C3 baseline scheme. More detailed ablation
studies and additional experiments on varying mask ratios
are presented in Appendix B.5

A more comprehensive comparison of decoding complexity
between LotteryCodec and other neural codecs is presented
in Fig. 1 and Fig. 10a. In particular, compared to most AE-
based schemes, LotteryCodec achieves similar or superior
RD performance with at least an order of magnitude fewer
MACs. For more advanced codecs like ELIC and MLIC+,
while LotteryCodec does not exceed their RD performance,
it reduces MACs by over two orders of magnitude while
maintaining acceptable quality. Compared to other over-
fitted image codecs, such as the COOL-CHIC/C3 family,
LotteryCodec achieves better RD performance with lower
decoding complexity.

Notably, the current figure shows the theoretical minimum
decoding complexity, excluding masked operations. This
lower bound can be approached with sparsity-aware libraries
(e.g., TVM (Chen et al., 2018), cuSparse (Naumov et al.,
2010), DeepSparse (Kurtz et al., 2020)) on compatible hard-
ware. For a comprehensive analysis, we also report real
coding times using structured pruning (see Tables 7 and 8
in the appendix). Additionally, we provide both theoretical
upper and lower bounds on decoding complexity, corre-
sponding to unpruned and active operations, respectively,
with practical complexity lying in between. As shown in
Fig. 11, even without pruning, LotteryCodec outperforms
C3 in BD-rate with similar complexity.

5. Conclusion and future work
This paper introduces and validates the lottery codec hypoth-
esis, which proposes a new paradigm for image compres-
sion: encoding images into structures of randomly initial-
ized networks. Building on this hypothesis, we propose
LotteryCodec, a novel overfitted codec that compresses
an image into modulation vectors and a binary mask for
an over-parameterized, randomly initialized network. The
proposed LotteryCodec achieves state-of-the-art RD perfor-
mance among existing overfitted codecs while maintaining
adaptive and low decoding complexity. Our work advances
the field of overfitted image compression by addressing the
critical challenge of achieving high compression efficiency
with minimal computational cost.

Limitations. LotteryCodec’s low and flexible decoding
cost is particularly beneficial in multi-user streaming scenar-
ios, where encoding can be done once and offline, to support
many users in decoding the same content. While high encod-
ing complexity remains a key bottleneck for all overfitted
codecs, including ours, several potential acceleration strate-
gies exist, such as meta-learning, mixed-precision training,

and neural architecture search. In particular, LotteryCodec
also opens the door to parallel encoding of overfitted codecs
by reparameterizing distinct network learning processes into
a batch of mask learning processes.

Future work. As a novel paradigm in image compression,
LotteryCodec opens several avenues for future research.
First, its performance and efficiency could be further opti-
mized by incorporating advanced strategies, such as those
proposed in (Kim et al., 2024; Ladune et al., 2024). Sec-
ond, LotteryCodec can be extended as a flexible alternative
for video coding. By sharing modulation across adjacent
groups of frames (GoF) and applying distinct masks, it can
also encode temporal information into the network struc-
ture. Moreover, video coding enables adaptive mask ratio
selection across GoF, offering greater flexibility in both com-
putational complexity and rate control. Its low decoding
complexity positions LotteryCodec as a promising approach
for real-world neural compression applications, enabling
efficient deployment in resource-constrained environments.
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of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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Dupont, E., Goliński, A., Alizadeh, M., Teh, Y. W., and
Doucet, A. Coin: Compression with implicit neural rep-
resentations. ICLR 2021-International Conference on
Learning Representations Workshop Neural Compression
2021, 2021.

Dupont, E., Loya, H., Alizadeh, M., Golinski, A., Teh,
Y., and Doucet, A. Coin++: neural compression across
modalities. Transactions on Machine Learning Research,
2022(11), 2022a.

Dupont, R., Amine Alaoui, M., Sahbi, H., and Lebois, A.
Extracting effective subnetworks with gumbel-softmax.
In 2022 IEEE International Conference on Image Pro-
cessing (ICIP), pp. 931–935, 2022b. doi: 10.1109/
ICIP46576.2022.9897718.

Frankle, J. and Carbin, M. The lottery ticket hypothe-
sis: Finding sparse, trainable neural networks. In In-
ternational Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=rJl-b3RcF7.

Gisle, B. Calculation of average psnr differences between
rd curves. In ITU-T SG16 Doc. VCEG-M33, 2001.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 249–256. JMLR
Workshop and Conference Proceedings, 2010.

Guo, Z., Flamich, G., He, J., Chen, Z., and Hernández-
Lobato, J. M. Compression with Bayesian implicit neu-
ral representations. In Advances in Neural Information
Processing Systems 36: Annual Conference on Neural In-
formation Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023, 2023.

Han, S., Mao, H., and Dally, W. J. Deep compres-
sion: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015a.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural network.
Advances in neural information processing systems, 28,
2015b.

He, D., Yang, Z., Peng, W., Ma, R., Qin, H., and Wang, Y.
Elic: Efficient learned image compression with unevenly
grouped space-channel contextual adaptive coding. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 5718–5727, 2022.

He, J., Flamich, G., Guo, Z., and Hernández-Lobato, J. M.
Recombiner: Robust and enhanced compression with
Bayesian implicit neural representations. In International
Conference on Learning Representations, 2024.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

10

https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7


LotteryCodec: Searching the Implicit Representation in a Random Network for Low-Complexity Image Compression

Jiang, W., Yang, J., Zhai, Y., Ning, P., Gao, F., and Wang, R.
Mlic: Multi-reference entropy model for learned image
compression. In Proceedings of the 31st ACM Interna-
tional Conference on Multimedia, pp. 7618–7627, 2023.

Kim, H., Bauer, M., Theis, L., Schwarz, J. R., and Dupont,
E. C3: High-performance and low-complexity neural
compression from a single image or video. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 9347–9358, 2024.

Kodak. Kodak dataset. 1991. URL http://r0k.us/
graphics/kodak/.

Kurtz, M., Kopinsky, J., Gelashvili, R., Matveev, A., Carr,
J., Goin, M., Leiserson, W., Moore, S., Nell, B., Shavit,
N., and Alistarh, D. Inducing and exploiting activa-
tion sparsity for fast inference on deep neural networks.
In III, H. D. and Singh, A. (eds.), Proceedings of the
37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Re-
search, pp. 5533–5543, Virtual, 13–18 Jul 2020. PMLR.
URL http://proceedings.mlr.press/v119/
kurtz20a.html.

Ladune, T., Philippe, P., Henry, F., Clare, G., and Leguay, T.
Cool-chic: Coordinate-based low complexity hierarchical
image codec. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 13515–13522,
2023.

Ladune, T., Philippe, P., Clare, G., Henry, F., and Leguay, T.
Cool-chic: Perceptually tuned low complexity overfitted
image coder. In 2024 Data Compression Conference
(DCC), pp. 565–565. IEEE, 2024.

Leguay, T., Ladune, T., Philippe, P., Clare, G., Henry, F., and
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Appendix
A. Quantization and entropy coding methods
For compression, the latent modulation z and network parameters θ, ψ are quantized into ẑ, θ̂ and ψ̂, respectively, and
subsequently entropy-coded into a bitstream, using standard methods, as in (Kim et al., 2024; Ladune et al., 2024). More
details can be seen in the Table 1.

A.1. Latent modulation

Quantization. Similar to (Kim et al., 2024), we adopt a two-stage quantization-aware optimization approach for optimizing
z. During the training stage, z is learned in a continuous space for discrete optimization, with quantization approximated
using Kumaraswamy noise. This soft-rounding technique ensures that the quantization process remains differentiable with
respect to z. In the inference stage, uniform quantization with hard-rounding is applied to z as:

ẑ =

{
ST (z) + ukum, Training Stage I
Q(z), Training Stage I & Inference Stage,

(12)

where ST denotes soft-rounding operation with temperature T , Q represents hard-rounding, and ukum is the Kumaraswamy
noise term. The temperature and noise strengths are controlled to shape the Kumaraswamy distribution, transitioning from a
peaked form (low noise) at the beginning of the training stage to a uniform distribution by its end.

Entropy coding. Similar to (Ballé et al., 2018; Ladune et al., 2023; Minnen et al., 2018), we introduce a factorized auto-
regressive model rψ to estimate the distribution of ẑ, which is necessary in the entropy coding algorithm. The distribution of
each latent element of ẑi,j (the j-th element of zi) is conditioned on C spatially neighboring elements ci,j ∈ ZC as:

pψ(ẑ) =
∏
i,j

pψ(ẑi,j |ci,j), (13)

where pψ(ẑ) is modeled by an integrated Laplace distribution as

pψ(ẑi,j |ci,j) =
∫ ẑi,j+0.5

ẑi,j−0.5

g(z)dz. (14)

The expectation and scale parameters are estimated via context elements as g ∼ L(µi,j , σi,j), where µi,j , σi,j = rψ(ci,j).

With this estimated distribution of ẑ, the range coding algorithm is used (range-coder in PyPI), as (Kim et al., 2024), to
compress ẑ. The resulting rate contributed by ẑ is then given by:

R(ẑ) = − log2 pψ(ẑ) = −
∑
i,j

log2 pψ(ẑi,j |ci,j). (15)

A.2. Model compression

The parameters of ModNet and ARM are essential for decoding and are therefore compressed. Specifically, we first quantize
ψ, θ using a scalar quantizer Q(·,∆) with step size ∆ as:

θ̂ = Q(θ,∆θ), and ψ̂ = Q(ψ,∆ψ). (16)

The quantized parameters θ̂ and ψ̂ are then entropy-coded, where the discrete distribution of each quantized parameter is
modeled by a continuous Laplace distribution. Specifically, the probability of a quantized parameter from θ (similarly for ψ)
is given by:

p(θ̂i) =

∫ θ̂i+0.5

θ̂i−0.5

g(θ)dθ, with g ∼ L(0, stddev(θ̂)), (17)

where g follows a Laplace distribution with zero mean and a standard deviation stddev (θ̂) of the quantized parameters.
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Then, the total rate contribution from both ARM and ModNet can be expressed as:

RMLP = Rθ̂ +Rψ̂ =
∑
i

− log2 p(θ̂i) +
∑
i

− log2 p(ψ̂i). (18)

A greedy search over quantization steps selects optimal ∆θ and ∆ψ by minimizing the following rate-distortion cost:

min
∆ψ,∆θ

D(S, gτ⊙W0(fθ̂(ẑ),x)) + λR, (19)

where R is the same as that in Eqn. (5).

B. Implementation details.
B.1. Baseline choices

LotteryCodec is compared against classical codecs, including VTM (Bross et al., 2021a) and HEVC (Sullivan et al., 2012), as
well as autoencoder-based neural codecs: CST (Cheng et al., 2020b) (a competitive neural codec), EVC (Wang et al., 2023)
(optimized RD performance with low decoding complexity), and MLIC+ (Jiang et al., 2023) (one of the state-of-the-art
neural codec). Additionally, we compare with overfitted INR-based codecs such as C3 (Kim et al., 2024) (state-of-the-art
overfitted image codec) and COOL-CHICv2 (Leguay et al., 2023) (an optimized version of COOL-CHIC version). We
measure PSNR on RGB channels and quantify RD performance using the BD-rate metric (Gisle, 2001). The baseline results
were obtained using their official implementations or directly using the reported results (C3, MLIC+) from their papers. For
VTM, we use the CompressAI library (Bégaint et al., 2020) for an updated VTM-19.1 (YUV 10 bits) version, where code
and datapoints are provided on our project website.

B.2. Datasets

Unless specified otherwise, we use the Kodak dataset and CLIC2020 professional validation sets for evaluation. Specifically,
the Kodak dataset consists of 24 images, each with a resolution of 512× 768. The CLIC2020 professional validation set
includes 41 images with resolutions ranging from 439× 720 to 1370× 2048.

B.3. Model architecture

We provide the detailed architecture setting for the proposed LotteryCodec scheme in Table 1.

For the ARM model with c contextual elements as input, denoted as ARM-c model, there are three linear or 1 × 1
convolutional layer, followed by GELU activation functions, with input and output dimension given as (c× c)→ GELU→
(c× c)→ GELU→ (c× 2). For the proposed LotteryCodec, we employ c ∈ {8, 16, 24, 32}.

The ModNet model, using L-dimensional latent modulation as the input, comprising Lt − 1 layers (Lt = 4 and L = 7
in this paper), the input and output dimension are given as: (7× d) → GELU → (d× 3) → GELU → (3× 3). For the
proposed LotteryCodec, we employ c ∈ {32, 48} for Kodak and CLIC2020 dataset.

For the SuperMask model using pixel coordinates as the input, comprising Lt = 4 layers, the input and output dimension
are given as: (2× 32)→ GELU→ ([32 + 3]× 24)→ GELU→ ([24 + 3+ 3]× 16)→ ([16 + 3+ 3+ d]× 3)→ Tanh.

To optimize the RD performance, we can further add a 3 × 3 convolutional operation in ModNet: (7 × d) → GELU →
(d×3)→ GELU→ (3×3)→ GELU→ (3×3), where the last two output are concatenated as the first modulation input. As
a result, the SuperMask mapping becomes: (2×32)→ GELU→ ([32+3+3]×24)→ GELU→ ([24+3+3+3]×16)→
([16 + 3 + 3 + 3 + d]× 3). This additional modification can be omitted if lower complexity is prioritized.

B.4. over-parameterization experiments

This section outlines the detailed experimental settings of Section 4.1.

Datasets. Section. 4.1 trains over-parameterized models with varying mask ratios {10%, 20%, 30%, 50%, 70%, 90%}
and different λ ∈ {2e− 2, 1e− 2, 5e− 3, 1e− 3, 5e− 4, 2e− 4} to compute the BD rate, which yields 36 models for each
image. Considering extensive experiments, we use the first 10 images of Kodak dataset to compare the average performance,
which indicates that each point in the figure corresponds to an average performance of 360 well-trained INR models.
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Hyper parameter Initial values Final values
Values of λ {2e−2, 1e−2, 5e−3, 1e−3, 5e−4, 2e−4}

Quantization – Stage I
Number of encoding steps 105

Learning rate β 10−2 0
Scheduler for learning rate Cosine scheduler
Temperature T for soft rounding 0.3 0.1
Noise strength α for Kumaraswamy noise 2.0 1.0
Scheduler for Soft-rounding and Kumaraswamy noise Linear scheduler

Quantization – Stage II
Number encoding steps 104

Learning rate 10−4 10−8

Decay learning rate if loss has not improved for this many steps 40
Decay factor 0.8
Temperature T for soft rounding 10−4

Architecture – Latent modulations Values
Number of latent vectors L 7
Initialization of z 0
Architecture – ModNet Values
Output channels of the 1× 1 convolutions {48, 3} vs. {32, 3}
Number of 3× 3 residual convolutions {1} vs {2}
Architecture – Entropy model
Alternative widths of the 3 layers residual 1× 1 convolutions (ARM-c) c ∈ {8/16/24/32}
Activation function GELU
Log-scale of Laplace is shifted before exp 4
Scale parameter of Laplace is clipped to [10−2, 150]
Architecture – SuperMask network Values
Output dimensions of MLP layers {32, 24, 16, 3}
Mask ratios {0.1, 0.9} with 0.05 intervals
Initialization of MLP FFN initialization
FFN initialization phase number P 32
FFN initialization low/high frequency number F 64/64
Initialization of score matrix P Kaiming uniform initialization
Learning rate α for P 0.1
Scheduler Cosine scheduler

Table 1. Hyper-parameter settings

Model architecture As illustrated in Fig. 8, we replace the synthesis network of C3 with an over-parameterized network,
denoted as C3-Lottery. We present architecture with different over-parameterization levels, as in Table 3 and Table 4.

For a fair comparison, we employ the same ARM model for the C3 in Section 4.1 as the target network. To ensure a fair
evaluation of our hypothesis, only the synthesis network is replaced while all other components are kept unchanged for both
schemes, as seen in Fig. 8.

Fast implementation. Given that LotteryCodec requires adaptive adjustments to mask ratios and model architectures
across images, which may incur extra computational costs, we provide in Table 2 a recommended configuration that achieves
near state-of-the-art performance with easier adaptation and faster training.

More experimental results. We also provide additional experimental results on the impact of increasing the depth of
the over-parameterized network, as shown in Fig. 9. Specifically, Fig. 9a and Fig. 9b present the PSNR vs. rate term of ẑ
(bpp) and the corresponding BD-rate performance for randomly initialized networks with hidden dimensions of 48 and 64,
respectively. We observe that, in both cases, a deeper network generally increases the likelihood of finding a winning lottery
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Architecture – ModNet Values
Output channels of the 1× 1 convolutions {48, 3}
Number of 3× 3 residual convolutions {2}
Architecture – Entropy model
Alternative widths of the 3 layers residual 1× 1 convolutions (ARM-c) c ∈ {16/24}
SuperMask network Values
Mask ratios {0.15, 0.3} with 0.05 intervals

Table 2. Fast implementation of LotteryCodec

Figure 8. Illustration of the experiments in Section 4.1: the synthesis network is replaced with a randomly initialized over-parameterized
network, where only a binary mask is learned, while all other components remain unchanged for a fair comparison.

ticket, leading to improved RD performance. Notably, for d = 64, lower distortion is achieved with fewer layers.

C3-Lottery model C3-Lottery (4, 24) C3-Lottery (4, 32) C3-Lottery (4, 64) C3-Lottery (4, 128)
Masked linear layers (7, 24) (7, 32) (7, 64) (7, 128)

(24, 24)× 4 (32, 32)× 4 (64, 64)× 4, (128, 128)× 4
(24, 3) (32, 3) (64, 3) (128, 3)

Baseline C3 (7, 18); (18, 3); (3, 3); (3, 3)

Table 3. Going wider: Model architectures (input-output channels) for over-parameterization experiments, where all models employ an
auto-regressive entropy model (ARM-16). The mask ratios for the experiments are {0.1, 0.3, 0.5, 0.7, 0.9}.

C3-Lottery model C3-Lottery (1,48) C3-Lottery (2,48) C3-Lottery (4,48) C3-Lottery (6,48) C3-Lottery (8,48)
Masked linear layers (7, 48) (7, 48) (7, 48) (7, 48) (7, 48)

(48, 48)× 1 (48, 48)× 2 (48, 48)× 4, (48, 48)× 6 (48, 48)× 8
(48, 3) (48, 3) (48, 3) (48, 3) (48, 3)

C3-Lottery model O64−1 O64−2 O64−4 O64−6 O64−8

Masked linear layers (7, 48) (7, 64) (7, 64) (7, 64) (7, 64)
(64, 64)× 1 (64, 64)× 2 (64, 64)× 4, (64, 64)× 6 (64, 64)× 8

(64, 3) (64, 3) (64, 3) (64, 3) (64, 3)
Baseline C3 (7, 18); (18, 3); (3, 3); (3, 3)

Table 4. Going deeper: Model architectures (input-output channels) for over-parameterization experiments, where all models employ an
auto-regressive entropy model (ARM-16). The mask ratios for the experiments are {0.3, 0.5, 0.7}.
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(a) (b)

Figure 9. Verification of the lottery codec hypothesis across varying network depths when hidden dimension is 48 and 64.

Better

VTM 19.1

(a)

Better

VTM 19.1

(b)

Figure 10. Performance of LotteryCodec (mask ratios ∈ [0.15, 0.4]) across different decoding complexities (a) BD-rate across different
decoding complexities on Kodak dataset. (b) BD-rate across different decoding complexities on the CLIC2020 dataset.

B.5. More experiments: BD rate vs. decoding complexity

We report the BD-rate (vs. VTM 19.1) on the Kodak and CLIC dataset in Fig. 10. We note that VTM configurations vary
between implementations (Kim et al., 2024; Blard et al., 2024), and the BD-rate computation depends on both configurations
and datapoints. For a fair and more aligned comparison, we update VTM baseline into VTM-19.1 from CompressAI (Bégaint
et al., 2020) and recompute BD-rates for all codecs under similar λ settings. Full datapoints and code are available on our
project page for future alignment.

Due to computation constraints, BD-rate computation of LotteryCodec is evaluated within the ratio [0.15, 0.4] for the
CLIC2020 dataset, and [0.15, 0.9] for Kodak dataset (λ ∈ {1e−2, 5e−3, 1e−3, 5e−4, 2e−4, 1e−4}), yet the method still
achieves strong performance. Further optimized RD–complexity trade-offs are expected with broader mask ratio selection.

B.6. Theoretical vs. practical decoding complexity

The current figure reports the theoretical minimum decoding complexity, excluding the multiplication operations of masked
parameters, an evaluation approach also adopted in (Han et al., 2015a;b). This lower bound can be approached with
sparsity-aware libraries (e.g., TVM (Chen et al., 2018), cuSparse (Naumov et al., 2010), DeepSparse (Kurtz et al., 2020)) on
appropriate hardware. We adopt this metric because practical MACs per pixel and runtime for unstructured sparse networks
are highly dependent on implementation-specific engineering factors, making fair comparisons difficult to conduct.
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(a) Kodak (b) CLIC2020

Figure 11. Flexible complexity region for Kodak and CLIC2020, where the dashed region is achievable via varying the mask ratios.

(a) (b)

Figure 12. Ablation study on initialization methods: (a) PSNR performance vs. coding step. (b) RD performance vs. coding step. The
model is evaluated every 10 coding steps, and the best-performing model at each step is plotted. Results are presented for kodim01 as an
example.

For a comprehensive analysis, we report real coding times using a simple structured pruning strategy (see Tables 7
8), highlighting LotteryCodec’s efficiency, especially on high-resolution images. Additionally, we also provide both
theoretical upper and lower bounds on decoding complexity: the upper bound accounts for all operations without pruning,
while the lower bound considers only active components. Practical complexity lies between these bounds, depending on
implementation. As shown in Fig. 11, even without pruning, LotteryCodec achieves better BD-rate than C3 scheme, with
comparable complexity.

C. Qualitative analysis
Justification of Lottery Codec Hypothesis (LCH). Although a rigorous bound supporting the LCH is not available, we
can provide a rough validation based on existing proofs for Strong Lottery Tickets Hypothesis (SLTH). Suppose a codec
gW(z) is overfitted to an image S, resulting in distortion σ. According to SLTH, for any ϵ > 0, there exists a subnetwork
within a sufficiently over-parameterized network gW′ , defined by a supermask τ , such that d(gW(z), gW′⊙τ (z)) ≤ ϵ. Thus,
reconstructing the image S using gW′⊙τ (z) results in a distortion of at most σ + ϵ. Now, we can further decrease the
distortion by optimizing the latent vector over a set of z′ satisfying H(z′) = H(z), along with the supermask τ . Since ϵ can
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be made arbitrarily small, it is highly likely that we can find a pair of (τ ′, z′) such that d(S, gW′⊙τ ′(z′)) ≤ σ.

Intuition Behind the Advantages of LotteryCodec. Based on the LCH, we can intuitively justify why the proposed
LotteryCodec outperforms previous overfitted codecs in terms of the rate-distortion performance. The rate formulations for
overfitted codecs and our LotteryCodec are given in Eqs. (2) and (5), respectively. They show that the rate of overfitted
codecs depends on {ẑ, ψ̂,Ŵ}, while our method is determined by {ẑ, ψ̂, τ, θ̂}. According to LCH, to achieve the same
level of distortion, we can find a pair of (ẑ, τ) such that the bit cost for ẑ and ψ̂ is equal to that of overfitted codecs. While
each quantized parameter in Ŵ typically requires over 13 bits, our binary mask τ uses just 1 bit per entry. Despite its higher
dimensionality, τ contributes significantly less to the total rate. Moreover, since θ̂ is lightweight, the combined rate of τ and
θ̂ remains lower than that of Ŵ, resulting in a lower compression rate and improved RD performance.

D. Ablation studies
D.1. Impact of each component in LotteryCodec

To clarify the impact of each component in our design, we conduct an ablation study on each component. As shown in Table 5
below, removing the Supermask network and using only the modulation network increases BD-rate by +12.45%, highlighting
the importance of the random network. Removing ModNet and directly feeding z into the random network (with different
overparameterization configurations) results in a performance drop of up to +14.99% due to high overparameterization
costs. Additional ablation studies and visualizations of other components are provided in Table 6.

LotteryCodec w/o SuperMask Random network w/o ModNet: (4, 32)/(4, 48)/(4, 64)
0 +12.45% +13.02%/+ 11.98%/+ 14.99%

Table 5. Change in BD-rate due to removal of individual components from LotteryCodec, ARM dimension 16.

D.2. MS-SSIM distortion metric

In addition, we evaluate LotteryCodec against baseline methods in terms of MS-SSIM distortion on the Kodak dataset, as
shown in Fig. 13. Specifically, we train our method with an MS-SSIM loss with λ ∈ {3e−1, 1e−1, 3e−2, 2e−2, 1e−2}. It
achieves up to a −43.39% BD-rate reduction over VTM-19.1, closely approaching ELIC and showing a +10.41% BD-rate
gap compared to MLIC+.
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Figure 13. Rate-distortion performance for MS-SSIM metric.
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D.3. Other initialization methods

We conduct different initialization methods, the overall BD performance is presented in Table 6. To simplify the validation,
here we employ the same training steps of 60000 in Stage I and 6000 for Stage II for all schemes. We also present the
PSNR performance and loss values during the coding process in Fig. 12. We can observe that the Fourier initialization we
employed can enhance the performance and coding process.

Model Variant BD rate vs. LotteryCodec

LotteryCodec scheme 0.0%

⇒ Kaiming normal initialization (He et al., 2016) +1.55%

⇒ Signed Kaiming constant initialization (Ramanujan et al., 2020) +0.63%

⇒ FilM modulation methods (Perez et al., 2018) +2.21%

⇒ Score-based same layer masking algorithm (Ramanujan et al., 2020) +1.77%

⇒ NeRF positional encoding module (Mildenhall et al., 2021) Not work well

⇒ Xavier normal initialization (He et al., 2016) Not work well

⇒ Gumble-softmax for mask ratio learning (Miles & Mikolajczyk, 2020; Dupont et al., 2022b) Not work well

⇒ Bernoulli-based masking algorithm (Zhou et al., 2019) Not work well

Table 6. Ablation study on different mechanisms, conducted on the first 10 Kodak images using an ARM-16 model and a mask ratio of
20%, where λ ∈ {2e−2, 1e−2, 5e−3, 1e−3, 2e−4, }. A higher BD rate indicates worse RD performance, and “Not work well” signifies
lack of robustness and unsatisfactory results

D.4. Other Modulation methods

Figure 14. Different alternative modulation methods of the LotteryCodec. (a). A FilM-based modulation approach. (b). Concatenation-
based approach

Note that LotteryCodec is a flexible framework that supports various modulation methods. We also implement a FiLM-based
modulation (Perez et al., 2018), as shown in Fig. 14 (a), whose performance is presented in the Table 6. Interestingly,
experiments show that additive bias alone achieves competitive performance, although it falls short of the proposed
concatenation-based method. This approach, however, provides the potential of reducing inference complexity and exploring
alternative modulation strategies in future research.

D.5. Alternative masking learning approach

This section presents various trials we explored. While some did not yield satisfactory results, we include them for
completeness and future reference. Specifically, to achieve an adaptive mask ratio, we employed a Gumbel-Softmax scheme
for dynamically controlling the pruning rate, following (Miles & Mikolajczyk, 2020; Dupont et al., 2022b), but it did not
produce satisfactory results. A similar Bernoulli-based approach, as in (Zhou et al., 2019), also underperformed compared
to the current LotteryCodec. Additionally, we evaluated a mask learning algorithm applying a fixed pruning rate across
each layer (Ramanujan et al., 2020), which resulted in worse performance. Lastly, positional encoding, similar to (Shi et al.,
2024), did not yield performance gains in the context of overfitted codecs.
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D.6. Coding latency across various resolutions

We present the coding cost of various schemes in Table 7, and report resolution-dependent coding costs in Table 8. The
proposed method shows scalability to ultra-high-resolution images, albeit with increased coding time. An additional example
of 2K image encoding is shown in Table 9. Overall, our method has a slightly higher encoding time than other overfitted
codecs due to additional gradient-based mask learning, but it offers greater flexibility and faster decoding. Notably, the
lottery codec hypothesis provides potential for parallel encoding by re-parameterizing distinct network optimizations into
batch-wise mask learning, highlighting its advantage of scalability for efficient large-scale image encoding.

All of these results are based on unoptimized code and current hardware, which can be significantly improved with proper
engineering optimization. For example, we can accelerate inference via ONNX and DeepSparse libraries to reduce the
decoding time to 20–80 ms on a CPU. Additional techniques (Blard et al., 2024), such as symmetric/separable kernels,
filter-based upsampling, and wavefront decoding, can further enhance the speed of overfitted codecs.

Models Encoding time Decoding time
VTM 19.1 85.53 (s) 352.52 (ms)

EVC (S/M/L) 20.23/32.21/51.35 (ms) 18.82/23.73/32.56 (ms)
MLIC+ 205.60 (ms) 271.31 (ms)

LotteryCodec (d = 8/16/24) 13.86/14.64/14.92 (sec/1k steps) 261.33/267.58/278.31 (ms)
C3 (d = 12/18/24) 13.10/13.98/14.32 (sec/1k steps) 272.15/284.67/295.03 (ms)

Table 7. Coding time for Kodak images on NVIDIA L40S (GPU) and Intel Xeon Platinum 8358 (CPU) with a masking ratio of 0.8 under
structured pruning. Orange indicates GPU computation; blue indicates CPU computation.

LotteryCodec vs. C3 LotteryCodec vs. C3 vs. MLIC+
Input resolution GPU Encoding CPU Decoding Peak Memory usuage during the training

(sec/1k steps) (ms) (GB)
512× 512 10.71 vs. 10.43 232.46 vs. 228.43 0.56 vs. 0.31 vs. 1.98
1024× 1024 56.81 vs. 38.54 565.22 vs. 576.51 2.15 vs. 1.24 vs. 3.61
1536× 1536 136.81 vs. 84.79 984.01 vs. 1086.92 4.82 vs. 2.78 vs. 9.15
2048× 2048 257.93 vs. 155.02 1595.86 vs. 1807.35 8.53 vs. 4.95 vs. 24.37
2560× 2560 407.68 vs. 237.45 3003.24 vs. 3269.02 13.36 vs. 7.72 vs. OM
3840× 2160 446.09 vs. 301.56 4014.21 vs. 4216.11 16.89 vs. 9.84 vs. OM

Table 8. Encoding time for images across different resolutions, where mask ratio 0.8 and ARM model of d = 16 are employed. OM
means out of memory (> 32 GB).

Training steps Training time (s) bpp PSNR (dB)
5k 678 0.24 36.51

10k 1347 0.22 36.92
20k 2685 0.21 37.02
30k 4026 0.20 37.10
50k 6733 0.199 37.14

Table 9. Encoding cost for a 2K image (size 1292× 1945), “davide-ragusa-716 in CLIC2020 with optimal result PSNR 37.18 at bpp
0.196” (d = 24, ratio 0.2, peak memory 5.64 G), where 10-20k steps can yield a descent performance.

E. Pseudocode for the algorithm
This section provides detailed encoding and decoding algorithm of LotteryCodec, as shown in Algorithm 1 and Algorithm 2.

F. Visualization
Compression Cost. This section visualizes the compression cost of each component in the bitstream of LotteryCodec.
As shown in Fig. 15, thanks to the introduction of ModNet, bit cost of the binary mask can be minimal, particularly for
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(a) (b)

Figure 15. Visualization of the compression cost distribution across the rate within the LotteryCodec scheme using a ARM-24 model and
a mask ratio of 0.2: (a) Rate share of compression cost on the Kodak. (b) Rate share of compression cost on the CLIC2020.

Flexible part

mask ratio
0%100%

Figure 16. Decoding complexity of each component in LotteryCodec, where ARM-d denotes ARM model with a hidden dimension of d.

higher-resolution images like those in the CLIC2020 dataset, where the same network is used with a lower bpp contribution
from binary mask. As bpp increases, modulation bit cost rises, allowing finer image details to be preserved within the given
bit budget. Since the network architecture is fixed, then the relative bit cost (%) contribution from the network and binary
mask decreases as bpp increases.

Decoding Complexity Analysis. To illustrate the adaptive complexity advantage, we visualize the decoding complexity
of each component in the LotteryCodec scheme in Fig. 16. The SuperMask network contributes significantly to the total
decoding complexity, which can be adaptively controlled via different mask ratios, enabling flexible complexity management
across various regimes. Specifically, for LotteryCodec using ARM-8, the SuperMask accounts for more than 60% of the
total complexity, demonstrating its remarkable adaptability and efficiency, particularly in low-bpp regimes.

Effect of modulations in different SuperMask layers. We visualize the effect of different modulations from each
ModNet layer in Fig. 17, where we employ a three-layer ModNet and a four-layer SuperMask network. When considering
the mask ratio: a lower mask ratio tends to require more complex modulations to aid the LotteryCodec to search the
subnetwork, which is reflected in the increased variability of signs and entropy, leading to stronger representational ability.
The variability of signs also indicates a greater dependence on the randomly initialized network, especially with a low mask
ratio. At lower mask ratios and lower compression rates, the ModNet output also exhibits a more complex distribution,
demonstrating the utilization of the random network for representation.

Additionally, the shallow ModNet layers play a more crucial role, as they are directly connected to the deeper SuperMask
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Figure 17. Visualization of ModNet outputs and their effects in LotteryCodec scheme, where 0.2/27.34/0.0751 represent reconstruction
with a 0.2 mask ratio, 27.34 PSNR, and 0.0751 bpp. Mod i represents the visualization of the i-th layer of ModNet. The first row shows
reconstructions with all but the selected latent outputs set to zero, while the second row displays the averaged feature outputs, upscaled to
match the resolution of the reconstructed image. Visualizations are provided for both low bit-rate (a) and high bit-rate (b) scenarios.

layers without rewinding, significantly influencing the synthesis process. In contrast, the deeper ModNet layers provide
coarser information, such as lighting and overall structure, which is repeatedly fed into different layers in a rewind fashion.

Effect of different input latent modulations. We also visualize the effect of the input latent modulations in Fig. 18. As
shown in the figure, we observe that the highest resolution latent grid primarily captures luminance and structural details of
the image, while lower resolution latent grids provide complementary information for the overall image reconstruction.

Effect of latent modulations across different bit rates. Comparing Fig. 18 (a) and Fig. 18 (b), we observe that in
low-bpp scenarios, lower-resolution modulations play a dominant role in reconstruction, while higher-resolution modulations
contribute minimally. This highlights an RD trade-off, where lower-resolution modulations prioritize rate efficiency at the
cost of higher distortion. Conversely, in high-bpp scenarios, reconstruction is primarily influenced by higher-resolution
modulations, capturing finer image details.

Effect of different mask ratios. Comparing a mask ratio of 0.2 with 0.8, we observe that a lower mask ratio distributes
more details across each layer of modulation (from z1 to z7), allowing the synthesis process to utilize richer structural
information. In contrast, at a higher mask ratio of 0.8, the generation process is predominantly influenced by high-resolution
latent representations, with less contribution from lower-resolution modulations.

Interpretation of the design. From the above visualizations, we interpret modulation as additional “bias”, where
concatenating neurons with a learned weight mask is equivalent to adding a flexible bias to the subsequent layers. This
design demonstrates that the SuperMask network aims to encode images into the network structure, while ModNet introduces
a flexible “adaptive bias” to enhance representation flexibility. As shown in Fig. 17, modulation outputs from different
ModNet layers contribute varying compensatory information for image reconstruction.
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Algorithm 1 Encoding stage of the LotteryCodec
Input: Source image S, coordinate vector x, random seed e,
learning rates α for mask scores (P), β for modulations (z), and networks (ModNet θand ARM ψ).
cosine scheduler for learning rate for Stage I and II: C1, C2,
linear scheduler for soft-rounding temperature and Kumaraswamy noise strength for Stage I and II: l1, l2.
Greedy search for quantization step: G.
Output: Bits stream of z, ψ, θ, τ : bz, bψ , bθ, bτ .

1: W0 = ΛB, // Fourier initialization for g(·) based on e
2: P ∼ Uk, // Kaiming uniform initialization
3: for the i-th step within the Stage I do
4: τ = h(P), g = gτ⊙w0 // Configure network by masking k% weights based on P
5: ẑ = ST (z) + ukum, // Quantization-aware training
6: Ŝ = gτ⊙w0(fθ(ẑ),x), // Modulate the reconstruction
7: L = D(S, Ŝ) + λRψ(ẑ), // Compute the RD cost loss function
8: P← P− α∇PL, // Update the scores for mask
9: z← z− β∇zL, // Update latent modulations

10: θ ← θ − β∇θL, // Update ModNet
11: ψ ← ψ − β∇ψL, // Update ARM
12: α = C1(α, i), β = C1(β, i) // Update learning rate
13: T = l1(T, i), ukum = l1(ukum, i) // Update noise strength
14: end for
15: for the i-th step within the Stage II do
16: τ = h(P), g = gτ⊙w0 // Mask k% weights based on updated P
17: ẑ = Q(z), // Hard rounding
18: Ŝ = gτ⊙w0(fθ(ẑ),x), // Modulate the reconstruction
19: L = D(S, Ŝ) + λRψ(ẑ), // Compute the RD cost loss
20: P← P− α∇PL, // Update the scores for mask
21: z← z− β∇zL, // Update latent modulations
22: θ ← θ − β∇θL, // Update ModNet
23: ψ ← ψ − β∇ψL, // Update ARM
24: α = C2(α, i), β = C2(β, i) // Update learning rate
25: T = l2(T, i), ukum = l2(ukum, i) // Update noise strength
26: end for
27: bz = A(Q(z)) // Bit stream of z after quantization and entropy coding
28: bτ = A(τ) // Bit stream of τ after entropy coding
29: ∆θ,∆ψ = G(θ, ψ) // Search for a optimal quantization step for networks
30: bθ = A(Q(θ,∆θ)) // Bit stream of θ after quantization and entropy coding
31: bψ = A(Q(ψ,∆ψ)) // Bit stream of ψ after quantization and entropy coding

Algorithm 2 Decoding stage of the LotteryCodec
Input: Coordinate vector x, random seed e, Bits stream: bz, bψ , bθ, bτ .
Output: Reconstruction of image Ŝ.

1: W0 = ΛB, // Fourier initialization for g based on a given seed e.
2: τ = A(bτ ), g = gτ⊙w0 // Entropy decode mask and configure SuperMask network locally
3: ψ̂ = Q(A(bψ)), θ̂ = Q(A(bθ)), // Entropy decode and de-quantize parameters ψ̂ and θ̂
4: ẑ = A(fψ̂,bz), // Entropy decode z

5: Ŝ = gτ⊙w0(fθ̂(ẑ),x), // Reconstruct the source image
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0.8/ 27.33 dB/  0.0787

0.2/ 27.34 dB/ 0.0751

(a)

0.8/ 40.45 dB/ 1. 42

0.2/ 40.84 dB/ 1.41

(b)

Figure 18. Visualization of the LotteryCodec scheme using kodim19 as an example, where 0.2/27.34/0.0751 represent reconstruction
with a 0.2 mask ratio, 27.34 PSNR, and 0.0751 bpp. From left to right: reconstructed image followed by latent modulations z1 to z7,
arranged from high to low resolution. The first row shows reconstructions where all but zi latent are set to zero. The second row displays
the raw latents, upscaled to match the output resolution. (a). Reconstruction and visualization at a low bit-rate (around 0.078 bpp). (b).
Reconstruction and visualization at a high bit-rate (around 1.41 bpp).
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