
A Task Details

precise multimodal multi-step unseen unseen unseen language
Task placing placing sequencing poses colors objects instruction

put-blocks-in-bowls-seen-colors⇤ 7 3 7 3 7 7 goal
put-blocks-in-bowls-unseen-colors⇤ 7 3 7 3 3 7 goal
assembling-kits-seq-seen-colors 3 3 3 3 7 3 step
assembling-kits-seq-unseen-colors 3 3 3 3 3 3 step
packing-unseen-shapes 7 3 7 3 3 3 goal
stack-block-pyramid-seq-seen-colors 3 3 3 3 7 7 step
stack-block-pyramid-seq-unseen-colors 3 3 3 3 3 7 step
towers-of-hanoi-seq-seen-colors 3 3 3 3 7 7 step
towers-of-hanoi-seq-unseen-colors 3 3 3 3 3 7 step

packing-box-pairs-seen-colors⇤§ 3 3 3 3 7 3 goal
packing-box-pairs-unseen-colors⇤§ 3 3 3 3 3 3 goal
packing-seen-google-objects-seq§ 7 3 3 3 7 7 step
packing-unseen-google-objects-seq§ 7 3 3 3 3 3 step
packing-seen-google-objects-group⇤§ 7 3 7 3 7 7 goal
packing-unseen-google-objects-group⇤§ 7 3 7 3 3 3 goal

align-rope⇤† 3 3 3 3 7 7 goal
separating-piles-seen-colors⇤† 3 3 3 3 7 7 goal
separating-piles-unseen-colors⇤† 3 3 3 3 3 7 goal

§tasks that are commonly found in industry.
⇤tasks that have more than one correct sequence of actions.

†tasks that require manipulating deformable objects and granular media.

Table 3. Language-conditioned tasks in Ravens [2] with their associated challenges.

We extend the Ravens benchmark [2] to 10 language-conditioned. 8 out of 10 tasks have two eval-
uation variants, denoted by seen and unseen in their names. See Table A for an overview of the
challenges associated with each task and split. Figure 5 presents the full list of attributes, shapes,
and objects across seen and unseen splits. All tasks use hand-coded experts to generate expert demon-
strations. These experts use privileged state information from the simulator along with pre-specified
heuristics to complete the tasks. We refer the reader to the original Transporter paper [2] for details
regarding these experts. The following is a description of each language-conditioned task:

A.1 Align Rope

Example: Figure 1(a).

Task: Manipulate a deformable rope to connect its end-points between two corners of a 3-sided
square. There are four possible combinations for aligning the rope: “front left tip to front right tip”.
“front right tip to back right corner”, “front left tip to back left corner”, and “back right corner to
back left corner”. Here ‘front’ and ‘back’ refer to canonical positions on the 3-sided square. The
poses of both the rope and 3-sided square are randomized for each task instance.

Objects: All align-rope instances contain a rope with 20 articulated beads and a 3-sided square.

Success Metric: The poses of all beads match the line segments between the two correct sides.

A.2 Packing Unseen Shapes

Example: Figure 1(b).

Task: Place a specified shape in the brown box. Each task instance contains 1 shape to be picked
along with 4 distractor shapes. The shape colors are randomized but have no relevance to the task.
This task does not require precise placements and is mostly a test of the agent’s semantic under-
standing of arbitrary shapes.

Objects: packing-unseen-shapes is trained with seen shapes but evaluated on unseen shapes from
Figure 5.

Success Metric: The correct shape is inside the bounds of the brown box.

A.3 Assembling Kits Seq

Example: Figure 1(c).

14



Colors

seen

Shapes

Google 
Scanned
Objects

seen

seen unseen

unseen all

unseen

redyellow brown

alarm clock android toy

gray cyan pink whitepurpleorange green blue

black boot
with leopard print

black razer
mouse

ball puzzle black and blue
sneakers

black shoe with
green stripes

black fedora

brown fedora

light brown boot 
with golden laces

lion
figure

pepsi
max box

pepsi
next box

porcelain 
salad plate

porcelain 
spoon

dinosaur
figure

hammerblack sandal black shoe with
orange and black stripes

bull figure butterfinger 
chocolate

c-clamp

can opener

grey soccer shoe
with cleats

nintendo 
cartridge

porcelain
cup

silver tape spatula with 
purple head

spiderman
figure

tablet

purple tape red flashlight rhino figure rocket racoon
figure

scissors

toy school bus nintendo 3DS

office depot
box

orca plush
toy

pepsi gold caffine
free box

pepsi wild cherry
box

red and white
striped towel

toy train

yoshi figure

unicorn figure white razer
mouse

red cup screwdriver

hard drive honey dipper magnifying glass mario figure

crayon box dog statue fry pan green and white
striped towel

Figure 5. Attributes and Objects: Attributes and objects across seen and unseen splits. Shapes objects are from Transporter [2]. Other
tabletop objects are from the Google Scanned Objects dataset [61]

Task: Precisely place each specified shape in the specified hole following the order prescribed in the
language instruction at each timestep. This is one of the hardest tasks in the benchmark requiring
precise placements of unseen shapes of unseen colors and grounding spatial relationships like “the
middle square hole” or “the bottom letter R hole”. Each task instance contains 5 shapes and a kit
with randomized poses.

15



Objects: Both assembling-kits-seq-seen-colors and assembling-kits-seq-unseen-colors are trained on seen
shapes but evaluated on unseen shapes from Figure 5. However for color randomization, assembling-
kits-seq-seen-colors is trained and evaluated on seen colors, and assembling-kits-seq-unseen-colors is
trained with seen colors but evaluated on unseen colors from Figure 5.

Success Metric: The pose of each shape matches the specified hole at the correct timestep. The
final score is the total number of shapes that were placed in the correct pose at the correct timestep,
divided by the total number of shapes in the scene (always 5).

A.4 Put Blocks in Bowl

Example: Figure 1(d).

Task: Place all blocks of a specified color in a bowl of specified color. Each bowl fits just one block
and all scenes contain enough bowls achieve the goal. Each task instance contains several distractor
blocks and bowls with randomized colors. The solutions to this task are multi-modal in that there
could be several ways to place the blocks specified in the language goal. This task does not require
precise placements and mostly tests an agent’s ability to ground color attributes.

Objects: put-blocks-in-bowl-seen-colors is trained and evaluated on seen colors from Figure 5 for both
blocks and bowls. put-blocks-in-bowl-unseen-colors is trained on seen colors but evaluated on unseen
colors from Figure 5 for both blocks and bowls.

Success Metric: All blocks of the specified color are within the bounds a bowl of the specified
color. The final score is the total number of correct blocks in the correct bowls, divided by the total
number of relevant color blocks in the scene.

A.5 Packing Box Pairs

Example: Figure 1(e).

Task: Tightly pack all the boxes of two specified colors inside the brown box. All scenes contain
the exact number of relevant color blocks to fill the box completely, but also contain some distractor
boxes of irrelevant colors. The sizes of the boxes and the brown box are randomized. The distractor
objects have equivalent sizes to the relevant objects to make the task more difficult. Sometimes the
scene only contains one of the two specified specified colors and the agent has to actively ignore the
missing color. Overall, this task requires both semantic understanding of colors and precise spatial
reasoning for tightly packing boxes of unknown sizes.

Objects: Boxes with randomized widths and lengths and a brown box. packing-box-pairs-seen-colors
is trained and evaluated on seen color boxes from Figure 5. packing-box-pairs-unseen-colors is trained
on seen color boxes but evaluated on unseen color boxes from Figure 5.

Success Metric: All blocks of the two specified colors are tightly packed inside the bounds of the
brown box. The final score is the total volume of the correct color blocks inside the box, divided by
the total volume of the relevant color blocks in the scene.

A.6 Packing Google Objects Seq

Example: Figure 1(f).

Task: Place the specified objects in the brown box following the order prescribed in the language
instruction at each timestep. This task does not require precise placements and mostly evaluates an
agent’s ability to ground semantic object descriptions. All objects in a scene are unique without any
duplicates. The poses of the objects and the box are randomized for each scene.

Objects: packing-seen-google-objects-seq is trained and evaluated on all 56 objects in Figure 5.
packing-unseen-google-objects-seq is trained on 37 seen objects but evaluated on 19 unseen objects
in Figure 5.

Success Metric: Each specified object is within the bounds of the brown box at the correct timestep.
The final score is the total volume of the correct objects placed inside the box at the correct timestep,
divided by the total volume of the relevant objects.

16



A.7 Packing Google Objects Group

Example: Figure 1(g).

Task: Place all objects of the specified category in the brown box. This task does not require
precise placements or following a specific action sequence. Each scene contains objects of multiple
categories with each category containing at least 2 duplicates. The task cannot be solved by counting
the number of objects since there are distractor objects, each with 2 or more duplicates.

Objects: packing-seen-google-objects-group is trained and evaluated on all 56 objects in Figure 5.
packing-unseen-google-objects-group is trained on 37 seen objects but evaluated on 19 unseen objects
in Figure 5.

Success Metric: All specified objects of a category are within the bounds of the brown box. The
final score is the total volume of the correct objects in the box, divided by the total volume of the
relevant objects of the specified category in the scene.

A.8 Stack Block Pyramid

Example: Figure 1(h).

Task: Build a pyramid of colored blocks in a color sequence specified through the step-by-step
language instructions. Each task contains 6 blocks with randomized colors and 1 rectangular base,
all initially placed at random poses.

Objects: 6 blocks and 1 rectangular base. stack-block-pyramid-seq-seen-colors is trained and evaluated
on seen color blocks from Figure 5. stack-block-pyramid-seq-unseen-colors is trained on seen color
blocks but evaluated on unseen color blocks from Figure 5.

Success Metric: The pose of each block at the corresponding timestep matches the specified loca-
tion. The final score is the total number of blocks in the correct pose at the correct timestep, divided
by the total number of blocks (always 6).

A.9 Separating Piles

Example: Figure 1(i).

Task: Sweep the pile of blocks into the specified zone. Each scene contains two square zones: one
relevant to the task, another as a distractor. The pile and zones are placed at random poses on the
table.

Objects: A pile of colored blocks and two squares. separating-piles-seen-colors is trained and evalu-
ated on seen colors from Figure 5 for all blocks and squares. separating-piles-unseen-colors is trained
on seen colors but evaluated on unseen colors from Figure 5 for all blocks and squares.

Success Metric: All blocks are inside the bounds of the specified zone. The final score is the total
number of blocks inside the correct zone, divided by the total number of blocks in the scene.

A.10 Towers of Hanoi Seq

Example: Figure 1(j).

Task: Move the ring to the specified peg in the language instruction at each timestep. The sequence
of ring placements is always the same, i.e. the perfect solution to three-ring Towers of Hanoi. This
task can be solved without using colors by just observing the ring sizes. However, it tests the agent’s
ability to ignore irrelevant concepts to the task (color in this case). The task involves precise pick
and place actions for moving the rings from peg to peg.

Objects: 1 peg base and 3 rings (small, medium, and big). towers-of-hanoi-seen-colors is trained and
evaluated on seen ring colors from Figure 5. towers-of-hanoi-unseen-colors is trained on seen ring
colors but evaluated on unseen ring colors from Figure 5.

Success Metric: The pose of each ring at the corresponding timestep matches the specified peg
location. The final score is the total number of correct ring placements, divided by total steps in the
perfect solution (7 for three-ring Towers of Hanoi).

17



B Evaluation Workflow and Validation Results

packing-box-pairs
seen-colors

packing-box-pairs
unseen-colors

packing-seen-google
objects-seq

packing-unseen-google
objects-seq

packing-seen-google
objects-group

packing-unseen-google
objects-group

Method 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000

Transporter-only [2] 48.9 57.2 59.4 60.6 37.8 52.3 54.5 60.7 30.2 41.6 42.4 46.3 26.3 37.1 42.9 40.8 56.3 52.8 55.6 54.5 30.8 55.3 53.6 56.0
CLIP-only 37.1 72.3 87.4 90.9 36.1 61.8 67.2 62.9 30.5 76.5 89.1 97.7 37.8 48.9 55.2 58.9 53.3 66.1 90.6 94.6 46.7 63.3 76.7 78.1
RN50-BERT 40.0 64.4 94.7 90.5 42.1 58.7 62.4 72.2 29.7 49.8 90.4 94.6 39.9 41.8 57.5 57.2 48.5 56.9 83.1 93.6 44.8 55.3 71.7 77.9
CLIPORT (single) 51.9 84.7 95.9 98.0 47.1 66.9 70.0 71.9 14.4 63.9 95.3 96.9 25.0 50.6 62.7 62.0 53.3 72.5 90.3 95.6 54.9 68.5 78.3 73.3
CLIPORT (multi) 68.6 90.0 96.0 96.3 55.9 70.3 76.6 72.9 45.7 78.4 83.8 83.4 50.8 60.8 65.1 68.8 69.4 86.2 92.2 93.2 66.9 73.4 82.0 81.7
CLIPORT (multi-attr) – – – – 46.2 72.0 86.2 80.3 – – – – 35.4 45.1 78.7 87.4 – – – – 48.6 69.3 84.8 89.1

stack-block-pyramid
seq-seen-colors

stack-block-pyramid
seq-unseen-colors

separating-piles
seen-colors

separating-piles
unseen-colors

towers-of-hanoi
seq-seen-colors

towers-of-hanoi
seq-unseen-colors

1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000

Transporter-only [2] 4.8 4.0 6.8 5.7 4.8 5.3 5.0 5.0 42.8 52.9 54.7 55.6 47.8 53.4 52.6 54.8 25.1 74.4 100 100 25.6 46.4 77.0 81.7
CLIP-only 5.5 30.0 58.7 59.0 2.0 16.3 5.7 19.3 39.7 69.6 90.4 92.9 46.4 61.6 76.9 74.4 10.9 48.1 88.6 52.9 15.9 44.7 67.1 58.1
RN50-BERT 5.7 35.5 94.0 98.0 5.2 10.5 19.7 33.3 33.3 55.9 53.0 48.7 35.7 52.2 53.1 57.0 26.4 68.1 92.7 95.9 16.3 75.0 82.0 84.3
CLIPORT (single) 29.0 68.8 95.0 99.3 15.8 29.0 32.7 41.8 45.1 58.6 96.8 99.9 50.7 56.5 83.8 83.0 55.3 94.1 99.9 100 66.6 91.9 96.4 100
CLIPORT (multi) 38.3 71.0 97.0 97.3 27.8 31.8 39.3 33.3 53.2 73.0 92.7 89.2 55.5 71.2 79.5 76.7 67.6 94.0 99.1 100 55.6 68.6 79.1 67.0
CLIPORT (multi-attr) – – – – 17.2 45.2 65.3 81.5 – – – – 49.9 51.8 48.2 59.8 – – – – 56.7 78.0 88.3 96.9

align-rope packing-unseen-shapes assembling-kits-seq
seen-colors

assembling-kits-seq
unseen-colors

put-blocks-in-bowls
seen-colors

put-blocks-in-bowls
unseen-colors

1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000

Transporter-only [2] 6.3 24.7 39.8 48.2 28.0 34.0 27.0 32.0 6.8 15.2 30.8 32.6 9.4 15.6 30.4 30.0 18.8 45.2 63.2 69.0 12.2 16.8 20.5 21.7
CLIP-only 15.4 47.6 76.7 74.3 26.0 36.0 40.0 43.0 1.4 6.4 19.0 27.2 4.2 5.6 12.0 16.2 22.3 62.2 94.7 98.5 15.8 29.7 38.3 24.7
RN50-BERT 6.8 26.9 69.8 61.1 22.0 31.0 29.0 30.0 2.4 6.8 15.2 23.0 2.2 7.6 15.2 19.4 10.8 46.3 82.3 92.2 14.0 24.2 29.7 27.7
CLIPORT (single) 14.8 66.2 93.2 98.2 22.0 42.0 35.0 40.0 11.0 28.8 51.6 72.0 17.2 23.2 33.0 38.0 21.7 73.0 98.2 100 17.2 32.5 40.2 48.3
CLIPORT (multi) 19.2 52.4 80.2 72.2 29.0 42.0 47.0 41.0 17.4 37.2 48.2 57.6 12.2 23.8 36.4 29.0 59.7 94.0 100 100 33.8 42.7 55.3 43.3
CLIPORT (multi-attr) – – – – – – – – – – – – 9.0 18.4 41.6 39.8 – – – – 23.0 41.8 66.5 75.7

Table 4. Validation Results. Task success scores (mean %) from 100 evaluation instances vs. # of training demonstrations (1, 10, 100,
or 1000). The challenges pertaining to each task can be found in Appendix A. CLIPORT (single) models are trained on seen splits, and
evaluated on both seen and unseen splits. CLIPORT (multi) models are trained on seen splits of all 10 tasks with 1T, 10T, 100T, and 1000T
demonstrations where T = 10. CLIPORT (multi-attr) indicate CLIPORT (multi) models trained on seen-and-unseen splits from all tasks
except for that one particular heldout task, for which it is trained only the seen split. See Figure 6 for an overview with average scores.

Evaluation Workflow. All simulated experiments in Section 4.1 follow a four-phase workflow: (1)
generate train, validation, and test sets, (2) train agents on the train set, (3) optimize on the validation
set to find the best checkpoint, (4) evaluate the best checkpoint on the test set. Both validation and
test sets consist of 100 evaluation instances each. We found that validation loss is a poor metric
for determining the best checkpoint as actions are often multi-modal. In a task like “put the yellow
blocks in the red bowl” where there are three possible yellow blocks to choose from, the validation
loss is high if the agent chooses a different yellow block to the expert, but in fact choosing any
yellow block would suffice in achieving the goal. This issue is addressed by determining the best
checkpoint through task execution performance on the validation set.

Validation Performances. During validation, we evaluate a trained agent across fixed checkpoints
between 1K-200K iterations for single-task settings and 1K-600K iterations for multi-task settings.
We then choose the best-performing checkpoint for each task. Table 4 presents validation results
for all tests in Section 4.1. Following Transporter [2], we use a learning rate of 1e-4 with no addi-
tional hyperparameter tuning. We note that better learning rate schedules and other hyperparameter
optimizations could possibly improve the performance of agents, especially in multi-task settings.

Figure 6. Average validation scores across seen and unseen splits for all tasks in Table 4.

18



Conv Block, 3x3, 256, /2

Indentity Block, 3x3, 256, /1

RGB-D

RGB

Spatial Dense Features

Spatial

Semantic

Language

6x320x320

dx320x320

3x3 conv, 64, /1

Conv & Identity Block

Up Block

3x3 conv, 1024, /1

Up Block, 512

Conv Block, 3x3, 64, /1

Identity Block, 3x3, 64, /1

3x320x320

2048x7x7

CLIP ResNet50 (Frozen)

Multiply

1x1 Conv Fusion

Add for Pick
1x1 Conv for Place

1 for Pick
3 for Place

1x1 conv, 128, /1

3x3 conv, 128, /2

1x1 conv, 128, /1

1x1 conv, 128, /1

3x3 conv, 128, /1

1x1 conv, 128, /1

Conv Block, 3x3, 128, /2

Identity Block, 3x3, 128, /1

Conv Block, 3x3, 256, /2

Identity Block, 3x3, 256, /1

Conv Block, 3x3, 256, /2

Identity Block, 3x3, 256, /1

Conv Block, 3x3, 512, /2

Identity Block, 3x3, 512, /1

Conv Block, 3x3, 1024, /2

Identity Block, 3x3, 1024, /1

Conv Block, 3x3, 1024, /2

2x Bilinear Upsample

Identity Block, 3x3, 1024, /1

Conv Block, 3x3, 512, /2

2x Bilinear Upsample

Identity Block, 3x3, 512, /1

Conv Block, 3x3, 256, /2

2x Bilinear Upsample

Identity Block, 3x3, 256, /1

Conv Block, 3x3, 128, /2

2x Bilinear Upsample

Identity Block, 3x3, 128, /1

2x Bilinear Upsample

Concat

3x3 conv, 128, /1

3x3 conv, 128, /1

Conv Block, 3x3, 64, /2

2x Bilinear Upsample

Identity Block, 3x3, 64, /1

Conv Block, 3x3, 32, /2

2x Bilinear Upsample

Identity Block, 3x3, 32, /1

Conv Block, 3x3, 16, /2

Bilinear Downsample

Identity Block, 3x3, d, /1

Semantic Dense Features

dx320x320

Conv Block, 3x3, 128, /2

2x Bilinear Upsample

Identity Block, 3x3, 128, /1

Conv Block, 3x3, 64, /2

2x Bilinear Upsample

Identity Block, 3x3, 64, /1

Conv Block, 3x3, 32, /2

2x Bilinear Upsample

Identity Block, 3x3, 32, /1

Conv Block, 3x3, 16, /2

Bilinear Downsample

Identity Block, 3x3, d, /1

Stem

Layer 1

Layer 2

Layer 4

Layer 3

Up Block, 256

Up Block, 128

1024x1

1024x7x7

512x14x14

256x28x28

Transformer

FC & Tile (7x7)

FC & Tile (14x14)

FC & Tile (28x28)

CLIP Sentence Encoder (Frozen)

d

Figure 7. CLIPORT Two-Stream Architecture: A detailed architecture diagram of the semantic and spatial pathways.

19



C Two Stream Architecture Details

Figure 7 provides a detailed architecture diagram of CLIPORT’s two-stream design. We use ReLU
activations after each conv and identity blocks without any Batch Normalization. Note that
we repeat the depth input to match the dimensions of the RGB image RH⇥W⇥1 ! RH⇥W⇥3

following Transporter [2]. All models were implemented in PyTorch [64]. For CLIP, we use the
implementation and pre-trained checkpoint released by the authors3.

D Robot Setup

Figure 8. Real-Robot Experimental Setup.

Hardware Setup. All real-robot experiments were
conducted on a Franka Panda robot with a parallel-
gripper. For perception, we use a Kinect-2 RGB-D cam-
era mounted on a tripod, tilted down looking at the table.
Although the Kinect-2 provides images at a resolution of
1280⇥ 720, we use downsampled 960⇥ 540 images for
a faster user-interface. The extrinsic calibration between
the camera and the robot base-frame is computed with an
AR Marker through ARUCO ROS4. See Figure 8 for an
overview of the setup.

Demonstrations and Execution. For collecting demon-
strations with the Franka Panda, we developed a 2D in-
teractive tool that uses the top-down RGB view from the
Kinect-2 to specify pick-and-place locations. The user
first selects a 2D bounding box on the live RGB feed, and
then picks a discrete rotation angle by clicking around the
bounding box. For grasping, we use a simple heuristic to
determine the height at which to close the fingers. First
we segment the pointcloud encapsulated by the bound-
ing box, then we vertically crop the pointcloud up to the
height of the gripper fingers, and then compute a 3D cen-
troid of the selected points by taking an average. This 3D centroid is used to plan a path for the
end-effector with an RRT* motion-planner to execute a predefined sequence – go down, open/close
the gripper, raise up. For executing a trained CLIPORT model, a similar grasping approach is used,
but instead of the user-specified bounding box, we take 32⇥ 32 crops centered around the pick and
place predictions (i.e. affordance argmax) to compute 3D centroids from the pointcloud. Only the
sweeping and folding actions are different in that the end-effector does not raise up after grasping.

Pick Rotations for Parallel Grippers. The suction gripper used in simulation does not require a
pick rotation since the grasps are specified as pin-point locations. However, with the Franka Panda,
the parallel gripper requires a specific yaw rotation at which to grasp an object. To handle this, we
separate the pick module Qpick into two components: locator and rotator. The locator predicts a pixel
location (u, v) given the full observation and language input. The rotator takes a 64⇥ 64 crop of the
observation at (u, v) along with the language input and predicts a discrete rotation angle by selecting
from one of k rotated crops. We use k = 36 in all our hardware experiments. While it’s possible to
predict both the location and rotation with a single module, this decoupled approach allows us to fit
the model on a single GPU (NVIDIA P100) with reduced memory usage from cropped rotations.

E Data Augmentation

Following common practice and the original Transporter implementation [2], we augment the train-
ing samples by applying random SE(2) transformations. Augmentations where Tpick or Tplace are out
of frame after the transformation are discarded. These augmentations are particular important for
learning spatially-equivariant representations with FCNs without overfitting to images from limited
training demonstrations.

3https://github.com/openai/CLIP
4https://github.com/pal-robotics/aruco_ros

20

https://github.com/openai/CLIP
https://github.com/pal-robotics/aruco_ros


Figure 9. Data Augmentation: SE(2) transform applied to RGB-D input. The left image shows the original input, and the right image shows
the transformed input along with expert Tpick (red) and Tplace (green) actions.

F Ablations and Baselines

stack-block-pyramid
seq-seen-colors

stack-block-pyramid
seq-unseen-colors

packing-seen-google
object-seq

packing-unseen-google
object-seq

Method 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000

One-Stream Transporter-only 4.5 2.3 5.2 4.5 3.0 4.0 2.3 5.8 26.2 39.7 45.4 46.3 19.9 29.8 28.7 37.3
One-Stream CLIP-only 6.3 28.7 55.7 54.8 2.0 12.2 18.3 19.5 52.5 62.0 89.6 92.7 43.4 65.9 73.1 70.0
One-Stream Language Transporter 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.1 0.0 0.0
One-Stream Image-Goal Transporter 1.8 1.3 7.0 6.8 2.5 4.7 4.2 4.8 64.5 67.0 81.8 85.4 47.7 62.8 71.0 83.3

Two-Stream CLIP-Transporter w/o skips 0.0 4.3 3.8 3.3 4.2 5.2 3.2 2.5 22.9 26.1 36.9 38.9 24.4 29.9 33.7 38.3
Two-Stream Untrained-Sem-Transporter 3.0 12.7 61.5 51.2 1.0 6.8 17.2 15.7 28.8 40.5 67.1 79.7 27.2 34.7 33.0 34.8
Two-Stream RN50-BERT-Transporter 5.3 35.0 89.0 97.5 6.2 12.2 21.5 30.7 32.9 48.4 87.9 94.0 29.3 48.5 48.3 56.1
Two-Stream CLIP-Transporter (ours) 28.3 64.7 93.3 98.8 13.7 24.3 31.2 41.3 14.8 59.5 86.8 96.2 27.2 50.0 65.5 71.9

Table 5. Ablations and Baselines. Evaluation scores (mean %) for stack-block-pyramid-seq and packing-google-objects-seq tasks from 100
evaluation runs. Stacking block pyramids involves both semantic and precise spatial reasoning, whereas packing objects mostly involves
semantic grounding without requiring any precise placements.

Table 5 presents various baselines and ablations from our simulated experiments. The following is
a description of each model:

One-Stream Transporter-only is the original Transporter [2] with RGB-D input, or equivalently, the
spatial stream of CLIPORT. For all experiments, we implemented our own version of Transporter in
PyTorch and did not use the modeling code provided with the original paper. Our Transporter models
are also trained for 200K iterations instead of 40k iterations.

One-Stream CLIP-only is the semantic stream of CLIPORT with RGB and language input.

One-Stream Language Transporter is Transporter [2], but the bottleneck features are conditioned
with CLIP language features in a similar fashion to the semantic stream in CLIPORT. This model
performs very poorly because the high-level language features corrupt the low-level spatial features
necessary for precise pick-and-place actions.

One-Stream Image-Goal Transporter is a goal-conditioned version of Transporter [6] which re-
ceives a goal-image as input. For sequential tasks with a specific order (indicated with seq in their
name), we provide the goal-image from the next timestep, and for non-sequential tasks we provide
the goal-image from the final timestep. The implementation follows the goal-conditioned Trans-
porter proposed in [6], except we found that element-wise addition worked better than element-wise
product for combining goal-image features with Qplace features.

Two-Stream CLIP-Transporter w/o skips is a variant of the CLIPORT model without skip connec-
tions from the CLIP-ResNet encoder to the decoder layers. The results in Table 5 show that these
skip connections are particularly important for good performance. We hypothesize that utilizing
different levels of semantic information from the visual encoder – patterns, shapes, parts, objects,
and high-level concepts, is crucial for conditioning the semantic stream decoders.

Two-Stream RN50-BERT-Transporter is the same two-stream architecture as CLIPORT, except in-
stead of the CLIP ResNet50, we use a standard ResNet50 [62] pre-trained on ImageNet classifi-
cation. And instead of the CLIP sentence encoder, we use a pretrained DistilBERT model [65] to
extract language embeddings. CLIP offers the benefit of multi-modal alignment between vision and
language features while not being restricted to instance segmentation or bounding box detection
pipelines.

21



Two-Stream Untrained-Sem-Transporter uses an untrained ResNet50 and Transformer language en-
coder for the semantic stream. Even without any pre-training, the random features from the seman-
tic stream somewhat help in conditioning policies. However, the performances are substantially
worse than models with pre-trained multimodal features.

G Performance on Demo-Conditioned Tasks

block-insertion place-red-in-green towers-of-hanoi align-box-corner stack-block-pyramid

Method 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000

Transporter [2] 97.0 100 100 100 100 100 100 100 52.3 90.3 98.7 100 69.0 85.0 100 97.0 51.7 74.8 96.8 99.3
CLIPORT w/o Lang 100 100 100 100 100 100 100 100 88.7 99.0 99.7 100 59.0 98.0 99.0 99.0 71.0 92.0 95.3 97.8
Transporter (multi) [2] 98.0 99.0 100 100 91.5 99.5 100 100 49.6 79.6 96.3 92.9 50.0 99.0 99.0 100 16.3 37.3 36.0 26.7
CLIPORT w/o Lang (multi) 0.0 99.0 100 100 0.0 94.7 100 92.5 0.0 57.6 85.9 75.3 0.0 86.0 98.0 100 0.0 66.0 80.8 77.7

palletizing-boxes assembling-kits packing-boxes manipulating-rope sweeping-piles

1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000

Transporter [2] 91.6 99.0 99.9 99.9 33.2 67.4 98.2 100 88.6 96.0 98.2 100 62.7 78.5 93.7 97.8 98.8 100 99.9 99.8
CLIPORT w/o Lang 89.4 98.6 99.6 99.4 52.8 83.2 92.8 97.8 96.9 99.5 100 100 69.4 93.6 97.9 100 99.2 100 100 100
Transporter (multi) [2] 90.7 98.7 99.7 99.1 22.6 58.6 66.8 68.8 93.4 96.6 100 100 34.3 68.7 87.2 83.7 92.5 97.0 95.6 97.3
CLIPORT w/o Lang (multi) 0.0 61.1 94.9 86.4 0.0 86.6 95.2 89.0 0.4 98.8 99.3 100 0.4 90.0 85.2 93.2 6.5 99.8 100 100

Table 6. Demo-Conditioned Tasks. Validation task success scores (mean %) from 100 evaluation instances vs. # of demonstration episodes
(1, 10, 100, or 1000) used in training.

To investigate if our framework can be applied to demo-conditioned tasks that do not require lan-
guage instructions, we run evaluations on the original Transporter tasks [2]. Table 6 compares our
two-stream architecture without language conditioning to Transporter. Our method outperforms
Transporter in 30/40 = 75% of the evaluations in Table 6, especially in low-data regimes with
100 demonstrations or less. Particularly for the assembling-kits and manipulating-rope tasks, the two-
stream architecture shows significant performance gains. We hypothesize that this is because the
CLIP-ResNet model provides a strong visual prior on object representations for learning generaliz-
able policies.

H Affordance Prediction Examples

Figure 10 showcases more examples of affordance predictions from trained CLIPORT (multi) mod-
els. Traditional object-centric representations like pose and instance segmentation generally struggle
to represent piles of beans or squares on a chessboard. In such cases, a single detector would have to
be trained (with supervision data) to detect every bean and square on the chessboard, which is often
infeasible, especially in multi-task settings.

“pack the black shoe with
orange stripes in the brown box” 

“pick all the cherries
and put them in the box”

“put the cyan blocks
in the yellow bowl”

“move the rook
one block forward”

“align the rope from front right 
tip to back right”

In
pu

t
Pi

ck
Pl

ac
e

Figure 10. More examples of pick and place affordance predictions from CLIPORT (multi). The left three columns are from simulated tasks,
and the right two columns are from real-world tasks.

22



I Limitations and Risks

While CLIPORT is highly capable, it is not without issues. In the following sections we discuss
various limitations and risks of using CLIPORT for real-world manipulation.

Balanced Datasets. CLIPORT can learn generalizable policies from very few demonstrations, but it
relies heavily on a balanced training dataset with a good converge of expected skills and invariances.
As discussed in Section 4.3, the model will exploit any bias, e.g. always place “yellow blocks” inside
‘blue bowls” if that is the only example of yellow blocks that it’s provided with. Sometimes these
biases can be hard to spot since everything (from perception to action) is trained end-to-end through
demonstrations. During our real-world experiments we ended up iteratively refining some datasets
after finding such biases during execution.

Hand-Eye Calibration and Closed-Loop Control. The execution of policies is sensitive to the
accuracy of the hand-eye calibration. The action-space of CLIPORT is 2D pixels with yaw-rotations.
Translating these pixel coordinates to end-effector poses relies on carefully calibrated extrinsics
between the robot’s base frame and the RGB-D camera. Further, while the framework takes closed-
loop actions across discrete pick-and-place timesteps, the execution of each pick and place primitive
itself is open-loop. This restricts usage to mostly quasi-static tasks and leads to issues if objects
move while the robot is executing a pick or place primitive. Future works could incorporate a
separate visuo-servoing mechanism for more robust grasping.

Dexterous Manipulation. Extending CLIPORT’s action-space to 6-DOF or N-DOF control for
dexterous non-quasi-static manipulation is non-trivial. The SE(2) action-space is one of the key
factors that make Transporter and CLIPORT highly data efficient. Since the actual end-effector
control is abstracted away, the model can easily reason about high-level affordances at discrete
timesteps, but at the price of loosing dexterity. Similarly, extending SE(2) equivariance to SE(3)
equivariance is also non-trivial. Cross-correlating in voxelized 3D spaces might be expensive and
slow.

Grasping Novel Objects. CLIPORT has some limited capacity in grasping unseen instances of
objects in one-shot or few-shot settings. While CLIP is a pure vision-language model with no
understanding of affordances, actions, or physical properties, in CLIPORT we fine-tune CLIP’s
visual representations in the semantic decoder layers to produce visual affordance predictions – like
grasping pliers by the handle. We illustrate this in Figure 11 with an example of one-shot learning.
Despite having seen just a single training example with pliers, CLIPORT is able to correctly grasp
the handles of 2/3 unseen pliers of different shapes, sizes, and colors. The model fails in Test 3
where the instance is significantly outside the training distribution. But even so, the model is able
to correctly localize the pliers among the distractor objects, and with a few more training examples
it might be able to correctly grasp the instance. In contrast, RN50-BERT struggles to identify pliers
with just a single example since pliers are not part of the 1000 ImageNet classes [66]. Further,
without the appropriate language goal to condition the policy, e.g. when provided with a nonsensical
object name like “dax”, the model falls back to the most familiar object seen during training.

Grounding Complex Object Relationships. In general, CLIPORT struggles with complex object-
relationships that require reasoning about several objects. The model performs poorly on assembling-
kits-seq tasks that involve grounding spatial relationships like “middle” with unseen shapes and lan-
guage. The model’s capacity to infer these relationships purely from dense global features might be
limited. Also, CLIPORT cannot count objects since it does not maintain a history or belief across
timesteps, thus limiting instructions to ‘any’ or ‘all’ quantifiers. Future works could explore neuro-
symbolic [67] or attention-based [68] methods for better generalization to novel object-relationships.

Scope of Language Grounding. CLIPORT’s understanding of verb-noun phrases is tightly
grounded in the demonstrations and tasks seen during training. For instance, an user could have
used “sort out all the Mars bars from the pile and put them in the yellow bin” while demonstrating
a task. Here the model only understands ‘sort’ in the context of separating something from the pile
and putting it in a bin, and not in the most generic sense that is applicable in any context, like sorting
numbered blocks in descending order.

Task Completion. CLIPORT relies on an expert to indicate task-completion. For real-world tasks,
this means the model keeps taking actions until an user stops the execution. Future works can address
this issue by training a success classifier [2] to predict task completion from RGB-D observations.

23



Risks from Pre-Trained Models. CLIP was trained with massive amounts of “in-the-wild” image-
caption pairs from the internet. This makes it prone to unchecked biases and associations [59, 69]
that can be harmful to certain individuals and communities. The end-to-end framework is also
vulnerable to adversarial attacks [59] that try to maliciously affect the model’s behavior. These
issues are further exacerbated by the fact that we use CLIP’s representations to take actions with a
physical robot. For safe deployment in the real-world, keeping humans in the loop – both during
the training phase and while instructing the robot, might help in mitigating some of these issues and
potential risks.

One Training Example

Test 1 Test 2 Test 3

“put the pliers in the brown box”

“put the pliers in the brown box”

“put the pliers in the brown box” “put the pliers in the brown box” “put the pliers in the brown box”

CL
IP

or
t

In
pu

t
RN

50
-B

ER
T

CL
IP

or
t

“put the dax in the brown box” “put the dax in the brown box” “put the dax in the brown box”

w
ith

 n
on

se
ns

ic
al

 g
oa

ls

“put the pliers in the brown box” “put the pliers in the brown box”

Pick 
Success

Pick 
Success

Pick 
Failure

Pick 
Failure

Wrong
Object

Wrong
Object

Figure 11. One-Shot Learning. Selected examples of grasping pliers with CLIPORT, RN50-BERT, and CLIPORT with nonsensical goals.

24


	Introduction
	Related Work
	CLIPort
	Language-Conditioned Manipulation
	Implementation Details

	Results
	Simulation Setup
	Simulation Results
	Real-Robot Experiments

	Conclusion
	Task Details
	Align Rope
	Packing Unseen Shapes
	Assembling Kits Seq
	Put Blocks in Bowl
	Packing Box Pairs
	Packing Google Objects Seq
	Packing Google Objects Group
	Stack Block Pyramid
	Separating Piles
	Towers of Hanoi Seq

	Evaluation Workflow and Validation Results
	Two Stream Architecture Details
	Robot Setup
	Data Augmentation
	Ablations and Baselines
	Performance on Demo-Conditioned Tasks
	Affordance Prediction Examples
	Limitations and Risks

