
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Supplementary Material:

To ensure a comprehensive understanding of our paper and to support reproducibility and reliability,
we present additional results and provide complete proofs for the theorems articulated in the main
paper. This supplementary material is meticulously organized as follows:

Table of Contents
A Extended Related work and Proofs 17

A.1 Extend the Discussion on Related Work . 18
A.2 Generalization, Compositionality and irreducibility assumptions 18
A.3 Element-wise Identifiability given index support i for Piecewise Linear 19
A.4 The Generative Process and The ELBO for Multivariates Mixture Gaussian . . . 21

A.4.1 Variational Lower Bound for TimeCSL 22
A.4.2 The Equivalence Between Matrix Normal and Multivariate Normal Distri-

butions . 24
A.5 Structural Sparsity and Sufficient Partial Selective Pairing Assumptions 25

B Experiments and Implementation Settings 26
B.1 Implementation source. (TimeCSL-Lib) . 26
B.2 Datasets. 27
B.3 Contrastive Partial Selective Pairing - Data Augmentations 27
B.4 Implementation of Metrics and study case . 27

B.4.1 Alignment prior to measuring Weak MCC 28
B.4.2 Measuring Identifiability strong-MCC and weak-MCC 28
B.4.3 Measuring disentanglement of the learned representation 28

B.5 ResTimeCSL Architecture . 29
B.6 Pipeline Correlated samples. 30
B.7 Impact of ReLU/LeakyReLU and Attention layer with GELU activation on Decoder

Behavior . 30
B.8 Validation of results on synthetic Data Generation 31
B.9 Additional Experiment Results. 31

B.9.1 Experiment on REDD and REFIT datasets 31
B.9.2 Experiment on Synthetic Datasets . 33
B.9.3 Comparisons Between TimeCSL and Baselines on KITTI Dataset 33

10 5 0 5 10
z1

7.5

5.0

2.5

0.0

2.5

5.0

7.5

z 2

Run #1

10 5 0 5 10
z1

10

5

0

5

10

z 2

Run #2

5 0
z1

7.5

5.0

2.5

0.0

2.5

5.0

7.5

z 2

Run #3

2 0 2 4
z1

4

2

0

2

4

z 2

Run #4

Figure 7: Recovered latent spaces for 4 runs of TimeCSL on REDD dataset with 5 latents (n =
5, d = 16) {FR, DW, WM, HTR, LT}.

A EXTENDED RELATED WORK AND PROOFS

In this section, we detail the contributions of the paper, including all the details. Although there is no
change in their contents, the formulation of some definitions and theorems are slightly altered here to
be more precise and cover edge cases omitted in the main text. Hence, the numbering of the restated
elements is reminiscent of that used in the main text.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.1 EXTEND THE DISCUSSION ON RELATED WORK

Self-supervised learning (SSL) methods have moved away from using negative pairs, as in contrastive
learning (CL), and instead focus on alignment with various forms of regularization to prevent
collapsed representations. For example, BYOL (Grill et al., 2020) and SimSiam (Chen & He,
2021) use architectural regularization with moving-average updates for a separate target network
(BYOL only) or a stop-gradient operation (for both). Meanwhile, BarlowTwins (Zbontar et al., 2021)
promotes redundancy reduction and alignment by optimizing the cross-correlation between z and z′

to match the identity matrix, ensuring zero off-diagonals and ones on the diagonal. We can interpret
positive augmentation as a modified representation z′ that is connected to the original z through
a conditional distribution p(z′ | z). This implies that the augmented observation x′ shares similar
information with the anchor observation x, and is generated by applying the same mixing function
gθ as defined in data-generating process Eq. (2.2).

Table 3: Related work in nonlinear ICA for time series. A blue check denotes that a method has an
attribute, whereas a red cross denotes the opposite. † indicates an approach we implemented.

Approach Temporal Data Dependent Factors Nonparametric Expression Stationary Process
TCL (Hyvarinen & Morioka, 2016) ✓ ✗ ✗ ✗
PCL (Hyvarinen & Morioka, 2017) ✓ ✗ ✓ ✓
GCL (Hyvarinen et al., 2019) ✓ ✗ ✓ ✗
iVAE (Khemakhem et al., 2020b) ✗ ✗ ✗ ✗
GIN (Sorrenson et al., 2020) ✗ ✗ ✗ ✗
HM-NLICA (Hälvä & Hyvärinen, 2020) ✓ ✗ ✓ ✗
SlowVAE (Klindt et al., 2021) ✓ ✗ ✗ ✓
(Yao et al., 2021) LEAP (Theorem 1) ✓ ✓ ✓ ✗
(Yao et al., 2021) LEAP (Theorem 2) ✓ ✓ ✗ ✓
TimeCSL (our)† TimeCSL (Theorem 1) ✓ ✓ ✓ ✓+ ✗

A.2 GENERALIZATION, COMPOSITIONALITY AND IRREDUCIBILITY ASSUMPTIONS

Compositional contrast In recent work on compositionality (Assouel et al., 2022; Zhao et al.,
2022; Kurth-Nelson et al., 2022) and its importance in learning models that can generalize well
to novel situations, the concept of compositional contrast has emerged as a powerful tool for
evaluating how well a model separates information into independent, non-interacting components.
This concept is particularly relevant in the context of time series analysis or image generation,
where the model’s ability to decompose an input into distinct parts, or ”slots,” can significantly
impact the quality of predictions and interpretability. Compositionality ensures that each slot, or
latent variable, corresponds to a specific factor or component of the data. In highly compositional
models, these components do not interact with each other—each one affects a distinct aspect of the
output. In contrast, non-compositional models tend to mix these components, making it harder to
disentangle the factors and interpret the model’s output. Evaluating how well a model adheres to
compositionality principles can be challenging, as it requires quantifying how independent the slots
are in their contribution to the final output. To address this, Brady et al. (2023) introduced the notion
of compositional contrast, which measures the extent to which the model’s latent variables (slots)
interact when producing the final output. This measure is particularly useful in determining whether
a decoder is truly compositional—that is, whether each slot contributes independently of the others,
or if there are unwanted interactions between them. Before we introduce the formal definition of
compositional contrast, it is important to understand the underlying principle. The intuition behind
the compositional contrast is that if a model is fully compositional, each slot should affect only a
specific subset of the output (e.g., one region of an image or one time series variable) and have
no influence on other components. Conversely, if the model is not compositional, changes in one
slot will influence multiple components of the output simultaneously, indicating that the slots are
not independent. The compositional contrast function captures this idea by calculating how much
the gradients of each slot (with respect to the model’s output) overlap. If the gradients of different
slots with respect to the same output component are non-zero, this suggests interaction between the
slots, indicating a lack of compositionality. The function sums these interactions across all slots
and output components, providing a single value that quantifies the degree of interaction. A lower
compositional contrast value suggests higher compositionality, while a higher value indicates more
interaction between slots. Formally, the compositional contrast is defined as follows:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Definition A.1 (Compositional Contrast). Let gθ : Z → X be differentiable. The compositional
contrast of gθ at z is

Ccomp(gθ, z) =

N∑
n=1

K∑
k=1

K∑
j=k+1

∥∥∥∥∂gθ n

∂zk
(z)

∥∥∥∥∥∥∥∥∂gθ n

∂zj
(z)

∥∥∥∥ . (A.1)

This contrast function was proven to be zero if and only if gθ is compositional according to Eq. (4.5).
The function can be understood as computing each pairwise product of the (L2) norms for each
pixel’s gradients with respect to any two distinct slots k ̸= j and taking the sum. This quantity
is non-negative and will only be zero if each pixel is affected by at most one slot, ensuring that
gθ satisfies Eq. (4.5). We can use this function to measure the compositional of a decoder in our
experiments (see § 4), where it serves as a key indicator of how effectively the model decomposes its
inputs into independent components. More empirical and theoretical details on the function can be
found in Brady et al. (2023).

A.3 ELEMENT-WISE IDENTIFIABILITY GIVEN INDEX SUPPORT I FOR PIECEWISE LINEAR

In this section, we present the proof of Thm. 4.2. To establish a solid foundation for the argument,
we first restate Asm 4.1, which plays a pivotal role in the proof.

Assumption 4.1 (Sufficient Partial Selective Pairing). For each factor k ∈ [n], there exist observa-
tions (x,x′) ∈ X such that the union of the shared support indices i = I(x,x′) that do not include k
must cover all other factors. Formally:⋃

i∈I|k/∈i

i = [n] \ {k} , I := {i ⊆ [n] | p(i) > 0} (4.1)

where I is the set of shared support indices and p(i) := 1
#X · # {S(x) = i, x ∈ X} gives the

probability that the factors indexed by i are active, with k /∈ i inactive.

Additionally, we introduce some notation. For i ∈ I, we assume that the probability measure Pzi

admits a density with respect to the Lebesgue measure on R|i|. We let ≡ denote equality in the
distribution.

Theorem 4.2 (Element-wise Identifiability given index support i for Piecewise Linear gθ). Let
fϕ : Rd×n → RT×n be a continuous invertible piecewise linear function and ĝθ : Rd×n → RT×n

be a continuous invertible piecewise linear function onto its image. Assume that Asm 4.1, Asm 2.1
holds, and the mixed observations (x,x′)

i.i.d.∼ X , follows the data-generating process Eq. (2.2). The
learnable latent ẑ (resp. ẑ′) of z (resp. z′). If all following conditions hold:

E∥ẑ∥0 ≤ E∥z∥0 and E∥ẑ′∥0 ≤ E∥z′∥0, and, (4.2)

Ralig(ẑ, ẑ
′, i) :=

∑
i∈i

∣∣∣∣ ẑ′⊤
i ẑi

∥ẑ′
i∥2∥ẑi∥2

− 1

∣∣∣∣ = 0. (4.3)

then z is identified by h := ĝ−1
θ (x), i.e., ĝ−1

θ ◦ gθ is a permutation composed with element-wise
invertible linear transformations (Def. 2.2).

Proof. The proving strategy has three steps: Intuitively, based result (Kivva et al., 2022) combined
with contrastivity beteween tow latent based their shared support indices i. This means that for the
data that satisfy Asm 4.1, gθ(z) and ĝθ(ẑ) are equally distributed, then there exists an invertible affine
transformation such that h(z) = z′. Second, we use the strategy of linear identifiability (Lachapelle
& Lacoste-Julien, 2022) to obtain element wise identifiabiltiy:

Step 1) Contrastive Sparsity and Linear Identifiability given pairs i We begin by recalling the
result from Kivva et al. (2022) on the existing of an invertible function affine transformation hk, we
adapt this for the case where if the reconstruction objective is minizzed and alignment. The theorem
on identifiability of MVNs states:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Theorem A.2. Let gθ, g′
θ : Rd×n → RC×T be piecewise affine functions satisfying 2.1. Let

z ∼
J∑

i=1

ωiN (µi,Σi) and z′ ∼
J′∑
j=1

ω′
jN (µ′

j ,Σ
′
j) be a pair of GMMs (in reduced form). Suppose

that gθ(z) and g′
θ(z

′) are equally distributed. Then there exists an invertible affine transformation
h : Rd×n → Rd×n such that h(z) ≡ z′, i.e., J = J ′ and for some permutation π we have ωi = ω′

π(k)

and h♯N (µi,Σi) = N (µ′
π(i),Σ

′
π(i)).

We recall that the transformation and the number of components can be unknown and arbitrary, and
that no assumption of separation or independence is necessary for the distribution.

By Theorem C.2 (Kivva et al., 2022), since contrastive learning involves the minimisation of a
contrastive loss which ensures that similar data points (positive pairs) are moved closer together and
dissimilar data points (negative pairs) are moved further apart. Let the inferred latent representation
(z, z′) be handled by the exact same function fϕ, and we consider the zero reconstruction under
Raling = 0 for all slot indices in i. Alongside this, contrastive loss minimization induces the
distributions of gθ(z) and gθ(z

′) to become indistinguishable on i ∈ i to be well-aligned, apart from
for k /∈ i, but as we consider the Asm 4.1 on the sufficient partial pairing that will cover this factor k
in another pairing sample of the pair (x,x′). Thus, according to Theorem C.2 (Kivva et al., 2022),
there must exist an invertible affine transformation h such that h(z) ≡ z′z). It is more likely to
observe that :

J∑
j=1

ωkgθ♯N (µk, σk) ∼ gθ♯fϕ(

J∑
j=1

ωkN (µk, σk)
)
. (A.2)

In other words, minimizing to hold (i) and zeros error construction, implies a mixture model whose
components are piecewise affine transformations identifiable.

Step 2) Sparsity Pattern of an Invertible Matrix with an element-wise linear transformation
Since x = gθ(z), we can rewrite perfect reconstruction as:

E∥gθ(z)− ĝθ(fϕ(gθ(z)))∥22 = 0 (10)

This means gθ and ĝθ ◦ fϕ ◦ gθ are equal Pz-almost everywhere. Both of these functions are
continuous, gθ by Asm 2.1, and ĝθ ◦ fϕ ◦ gθ because ĝθ is continuous, and gθ, fϕ are linear. Since
they are continuous and equal Pz-almost everywhere Z , this means that they must be equal over the
support of Z , i.e.,

gθ(z) = ĝθ ◦ fϕ ◦ gθ(z), ∀z ∈ Z. (11)
This can be easily shown by contradiction considering any slot latent z′ ∈ Z on which gθ and
ĝθ ◦ fϕ ◦ gθ are different, i.e., ĝθ ◦ fϕ ◦ ĝθ(z′) ̸= gθ(z

′). This would imply that (gθ − ĝθ ◦ fϕ ◦ gθ),
which is also a continuous function, is non-zero at z′ and in its neighborhood, which contradict the
assumption that gθ and ĝθ ◦ fϕ ◦ gθ are the same Pz-almost everywhere. We can now apply the
inverse of ĝθ on both sides to obtain

ĝ−1
θ ◦ gθ(z) = fϕ ◦ gθ(z) = h(z), ∀z ∈ Z. (12)

Since both gθ and fϕ are invertible linear functions, given the fisrt part of the proof (Step 1-App. A.3)
h is also an invertible linear function. We now show that h is a permutation composed with an
element-wise linear transformation. To do this, we leverage the sparsity constraint:

E∥ẑ∥0 ≤ E∥z∥0 (A.3)
E∥fϕ(gθ(z))∥0 ≤ E∥z∥0 (A.4)

E∥h(z)∥0 ≤ E∥z∥0 (A.5)
(A.6)

Since hk is invertible linear transformation, we have that hk(z) = wk · z and its determinant is
non-zero, i.e.,

det(h) :=
∑
π∈P

sign(π)
n∏

k=1

hk,π(k) ̸= 0, (A.7)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

where P denotes the set of all n-permutations. This expression implies that at least one term in the
sum is non-zero, meaning there exists a permutation π ∈ P such that for every k ∈ [n], ∂hk

∂zπ(k)
̸= 0.

Following the steps outlined in Theorem B.4 by (Lachapelle et al., 2022), and under the assumption
of Asm 4.1, we extend the disentanglement analysis to our setting. This leads to the conclusion that
h can be expressed as a permutation composed with an element-wise invertible linear transformation,
based on the shared support indices i of the latent slot within the subspace Zi. Specifically, there
exists a permutation π on [n] such that, for each latent slot k, the corresponding permutation is given
by π(k). Since I is a finite set, which allows us to order its elements as {i1, . . . , i|I|}. Therefore,
we can express Z as the union Z =

⋃|I|
i=1 Z(ii). While we have already shown that h is affine on

each Zi, we now demonstrate that h is linear on Z , i.e., h(z) is a linear function on the entire set
Z =

⋃
i∈I Zi. This completes the proof.

A.4 THE GENERATIVE PROCESS AND THE ELBO FOR MULTIVARIATES MIXTURE GAUSSIAN

We in this subsection how TimeCSL is trained based an a VAE process does similar to (Kivva et al.,
2022; Jang et al., 2017), whcih more kind of unsupervised generative approach for clustering that
performance well, we herein first describe the generative process of TimeCSL. Specifically, suppose
there are n slots latents each has a dimension d, an observed sample x ∼ X is generated by the
following process:

Algorithm 1 Generative Process
1: Input: Prior probabilities w, neural network parameters θ
2: for j = 1, 2, . . . , N do
3: Sample slot k ∼ Cat(w)

4: Sample latent vector z(j) ∼ N (µ
(j)
k ,σ

(j)
k · σ(j)

k I)

5: Compute [µϕ

(
x(j)

)
; logσϕ

(
x(j)

)2
] = gθ(z

(j))

6: Sample observation xj ∼ N (µθ

(
x(j)

)
,σθ

(
x(j)

)2
I) or Ber(µθ

(
x(j)

)
)

7: end for
8: return {x(j), z(j), k}Nj=1

Lemma A.3. Given two multivariate Gaussian distributions q(z) = N (z; µ̂, σ̂2I) and p(z) =
N (z;µ,σ2I), we have:∫

q(z) log p(z) dz =

J∑
j=1

−1

2
log (2πσ2

j)−
σ̂2
j

2σ2
j

− (µ̂j − µj)
2

2σ2
j

, (A.8)

where µj , σj , µ̂j and σ̂j simply denote the jth element of µ, σ, µ̂ and σ̂, respectively, and J = d× n
is the dimensionality of z.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Proof.∫
q(z) log p(z) dz =

∫
N (z; µ̂, σ̂2I) logN (z;µ,σ2I) dz

=

∫ J∏
j=1

1√
2πσ̂2

j

exp(− (zj − µ̂j)
2

2σ̂2
j

) log

 J∏
j=1

1√
2πσ2

j

exp(− (zj − µj)
2

2σ2
j

)

 dz

=

J∑
j=1

∫
1√
2πσ̂2

j

exp(− (zj − µ̂j)
2

2σ̂2
j

) log

 1√
2πσ2

j

exp(− (zj − µj)
2

2σ2
j

)

 dzj

=

J∑
j=1

∫
1√
2πσ̂2

j

exp(− (zj − µ̂j)
2

2σ̂2
j

)

[
−1

2
log(2πσ2

j)

]
dzj −

∫
1√
2πσ̂2

j

exp(− (zj − µ̂j)
2

2σ̂2
j

)
(zj − µj)

2

2σ2
j

dzj

=

J∑
j=1

−1

2
log(2πσ2

j)−
∫

1√
2πσ̂2

j

exp(− (zj − µ̂j)
2

2σ̂2
j

)
(zj − µ̂j)

2 + 2(zj − µ̂j)(µ̂j − µj) + (µ̂j − µj)
2

2σ̂2
j

σ̂2
j

σ2
j

dzj

=b−
σ̂2
j

σ2
j

∫
1√
2πσ̂2

j

exp(− (zj − µ̂j)
2

2σ̂2
j

)
(zj − µ̂j)

2

2σ̂2
j

dzj −
∫

1√
2πσ̂2

j

exp(− (zj − µ̂j)
2

2σ̂2
j

)
(µ̂j − µj)

2

2σ2
j

dzj

=b−
σ̂2
j

σ2
j

∫
1√
2π

exp(−
x2
j

2
)
x2
j

2
dxj −

(µ̂j − µj)
2

2σ2
j

=b−
σ̂2
j

σ2
j

∫
1√
2π

(−xj

2
) d(exp(−

x2
j

2
))− (µ̂j − µj)

2

2σ2
j

=b−
σ̂2
j

σ2
j

[
1√
2π

(−xj

2
) exp(−

x2
j

2
)
∣∣∣∞
−∞

−
∫

1√
2π

exp(−
x2
j

2
) d(−xj

2
)

]
− (µ̂j − µj)

2

2σ2
j

=

J∑
j=1

−1

2
log (2πσ2

j)−
σ̂2
j

2σ2
j

− (µ̂j − µj)
2

2σ2
j

where b denotes
∑J

j=1 −
1
2 log(2πσ

2
j) for simplicity.

A.4.1 VARIATIONAL LOWER BOUND FOR TIMECSL

A TimeCSL instance is tuned to maximize the likelihood of the given data points. Given the
generative process in Section A.4, by using Jensen’s inequality, the log-likelihood of TimeCSL can
be written as:

log p(x) = log

∫
z

∑
k

p(x, z, k)dz

≥ Eq(z,k|x)[log
p(x, z, k)

q(z, k|x)
] = LELBO(x) (A.9)

where LELBO is the evidence lower bound (ELBO), q(z, k|x) is the variational posterior to approxi-
mate the true posterior p(z, k|x). In TimeCSL, we assume q(z, k|x) to be a mean-field distribution
and can be factorized as:

q(z, k|x) = q(z|x)q(k|x). (A.10)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Then, according to Equation A.10, the LELBO(x) in Equation A.9 can be rewritten as:

LELBO(x) = Eq(z,k|x)

[
log

p(x, z, k)

q(z, k|x)

]
= Eq(z,k|x) [log p(x, z, k)− log q(z, k|x)]
= Eq(z,k|x)[log p(x|z) + log p(z|k) (A.11)

+ log p(k)− log q(z|x)− log q(k|x)]

In TimeCSL, similar to VAE, we use a neural network g to model q(z|x):

[µ̂; log σ̂2] = fϕ(x;ϕ) (A.12)

q(z|x) = N (z; µ̂, σ̂2I) (A.13)

where ϕ is the parameter of network g.

By substituting the terms in Equation A.11 and using the SGVB estimator and the reparameterization
trick, the LELBO(x) can be rewritten as: 5

LELBO(x) =
1

N

N∑
l=1

C×T∑
i=1

[
xi logµ

(l)
xi

+ (1− xi) log fϕ(1− µ(l)
xi
)
]

− 1

2

n∑
k=1

γk

J∑
j=1

(
logσ2

k|j +
σ̂2|j
σ2
k|j

+

(
µ̂|j − µk|j

)2
σ2
k|j

)

+

n∑
k=1

γk log
wk

γk
+

1

2

J∑
j=1

(
1 + log σ̂2|j

)
(A.14)

where N is the number of Monte Carlo samples in the SGVB estimator, C × T is the dimensionality
of x, n is number of slots or factors, and µ

(l)
x , xi is the ith element of x, J is the dimensionality of

µk, σ2
k, µ̂ and σ̂2, and ∗|j denotes the jth element of ∗, n is the number of slots, wk is the prior

probability of slot k, and γk denotes q(k|x) for simplicity. In Equation A.14, we compute µ
(l)
x as

µ(l)
x = fϕ(z

(l); θ), (A.15)

where z(l) is the lth sample from q(z|x) by Equation A.13 to produce the Monte Carlo samples.
According to the reparameterization trick, z(l) is obtained by

z(l) = µ̂+ σ̂ ◦ ϵ(l), (A.16)

where ϵ(l) ∼ N (0, I), ◦ is element-wise multiplication, and µ̂, σ̂ are derived by Equation A.12. We
now describe how to formulate γc ≜ q(k|x) in Equation A.14 to maximize the ELBO. Specifically,
LELBO(x) can be rewritten as:

LELBO(x) = Eq(z,c|x)

[
log

p(x, z, c)

q(z, c|x)

]
=

∫
z

∑
c

q(k|x)q(z|x)
[
log

p(x|z)p(z)
q(z|x) + log

p(k|z)
q(k|x)

]
dz

=

∫
z

q(z|x) log p(x|z)p(z)
q(z|x) dz−

∫
z

q(z|x)DKL(q(k|x)||p(k|z))dz (A.17)

Once the training is done by maximizing the ELBO w.r.t the parameters of {π,µk,σk,θ,ϕ},
k ∈ {1, . . . ,K}, a latent representation z can be extracted for each observed sample x. This is done
by Equation A.12 and Equation A.13.

5This is the case when the observation x is binary. For the real-valued situation, the ELBO can be obtained
in a similar way.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

A.4.2 THE EQUIVALENCE BETWEEN MATRIX NORMAL AND MULTIVARIATE NORMAL
DISTRIBUTIONS

In our formulation, we use a vectorization of the matrix z ∈ Rd×n, which follows a multivariate
Gaussian model. We now show that this can also be interpreted as a Matrix Normal distribution.
The equivalence between the Matrix Normal and the Multivariate Normal density functions can be
established using properties of the trace and the Kronecker product.

Proof. Let z be modeled as a mixture of J Matrix Normal distributions. Each component of this
mixture is characterized by a mean matrix µj ∈ Rd×n and a covariance matrix Σj = Σn ⊗ Σn ∈
Rd×d ⊗ Rn×n, where Σn and Σn are the row and column covariance matrices, respectively. The
probability density function of z is thus given by

fz(z) =

J∑
j=1

ωjN (z | µj ,Σj),

where ωj are the mixing weights such that ωj > 0 and
∑J

j=1 ωj = 1.

The Matrix Normal distribution is defined as

N (z | µj ,Σj) =
1

(2π)
dn
2 |Σj |

n+d
2

exp

(
−1

2
tr
[
Σ−1

d (z− µj)
TΣ−1

n (z− µj)
])

,

where z is a d× n matrix, and the covariance matrix Σj is the Kronecker product Σn ⊗Σn, with
Σn and Σn being the covariance matrices of the rows and columns of z, respectively.

To connect the Matrix Mixture Normal distribution with the Mixture of Multivariate Normal distribu-
tions, we vectorize the matrix z. The vectorization of a matrix z ∈ Rd×n is given by

vec(z) = [z11 z21 · · · zd1 z12 · · · zdn]
T ∈ R1×(d·n)

where zi denotes the i-th column of z, and the resulting vector vec(z) is a d · n-dimensional vector.

Now, substituting the vectorized form of z into the Matrix Normal distribution, we have

N (vec(z) | vec(µj),Σj) =
1

(2π)
dn
2 |Σj |

d+n
2

exp

(
−1

2
z̄TΣ−1

j z̄

)
, (A.18)

where z̄ = vec(z)−vec(µj). Next, observe that the mixture model for z in the original form becomes

fz(z) =

J∑
j=1

ωjN (vec(z) | vec(µj),Σn ⊗ Σn), (A.19)

which is a mixture of multivariate normal distributions in the vectorized space Rd·n. This shows that
the Matrix Mixture Normal distribution is equivalent to a Mixture of Multivariate Normal distributions
upon vectorization. To complete the proof, we use the determinant property of the Kronecker product:

|Σn ⊗Σn| = |Σn|n|Σn|d. (A.20)

Thus, the determinant of the covariance matrix Σn ⊗ Σn can be written as the product of the
determinants of Σn and Σn, raised to the appropriate powers. This confirms that the matrix mixture
normal distribution is indeed equivalent to the mixture of multivariate normal distributions.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

A.5 STRUCTURAL SPARSITY AND SUFFICIENT PARTIAL SELECTIVE PAIRING ASSUMPTIONS

Comparison of Structural Sparsity and Sufficient Partial Selective Pairing Assumptions We
compare two important assumptions in the context of source separation: the Structural Sparsity
assumption from (Ng et al., 2023) and the Sufficient Partial Selective Pairing assumption. The
Structural Sparsity assumption for sources y = {y1, . . . ,yn} in the mixing matrix A stipulates that
for any pair of sources k and ℓ, their supports (denoted supp(yk) and supp(yℓ)) must differ in at least
two observed variables, i.e.,

|supp(yk) ∪ supp(yℓ)| − |supp(yk) ∩ supp(yℓ)| > 1

Here, supp(yk) represents the indices of the observed variables affected by the source yk. This
assumption ensures that the sources yk and yℓ are distinguishable in terms of the observed variables
they influence.

Example of Structural Sparsity Assumption Consider a scenario where we have three sources
y1,y2,y3 and four observed variables x1,x2,x3,x4. The observed data x = [x1,x2,x3,x4] is a
mixture of the sources. The supports for the sources are defined as follows:

supp(y1) = {1}, supp(y2) = {2}, supp(y3) = {3}

For the Structural Sparsity assumption to hold between sources y1 and y2, the supports must differ in
at least two observed variables. For example, we have:

|supp(y1) ∪ supp(y2)| − |supp(y1) ∩ supp(y2)| = 2− 0 = 2

This satisfies the assumption, as the supports of sources y1 and y2 differ in at least two variables. If,
however, both sources share the same support:

supp(y1) = {1}, supp(y2) = {1}

Then the assumption would not hold because the supports are identical, and they do not differ by at
least two observed variables.

Sufficient Partial Selective Pairing Assumption (Assumption 1) The Sufficient Partial Selective
Pairing assumption requires that for each factor k ∈ [n], there exist observations (x,x′) ∈ X such
that the union of the shared support indices i = I(x,x′) that do not include k must cover all other
factors. Formally, we have:

⋃
i∈I|k/∈i

i = [n] \ {k}, I := {i ⊆ [n] | p(i) > 0} (A.21)

Here, I is the set of shared support indices, and p(i) is the probability that the factors indexed by i
are active, with k /∈ i inactive. The assumption ensures that when one factor is inactive, the shared
support indices from the remaining factors provide enough information to reconstruct all active
factors.

Example of Sufficient Partial Selective Pairing Assumption In the same scenario with three
sources y1,y2,y3 and observed variables x1,x2,x3,x4, we can define the shared support indices
for each observation. Let’s assume that the following shared support indices hold:

- Observation 1: i = {1, 2} - Observation 2: i = {2, 3} - Observation 3: i = {3, 4}
Now, for the Sufficient Partial Selective Pairing assumption to hold for factor k = 1, we must ensure
that the union of the shared supports where factor 1 is inactive covers all other factors. For example,
if we exclude k = 1, the union of the shared supports for the remaining factors should cover y2 and
y3:

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

⋃
i|1/∈i

i = {2, 3, 4} = [2, 3, 4]

This satisfies the assumption because when y1 is inactive, the shared support indices from y2 and y3

cover all remaining factors.

Why the Sufficient Partial Selective Pairing Assumption is More Flexible

• It does not require the supports of every pair of sources to differ by exactly two observed
variables.

• It only requires that when one factor is inactive, the shared support indices must still cover
all other active factors, which allows for more overlap between the supports of different
sources.

• This assumption is better suited for real-world scenarios where the supports of factors may
not be completely distinct but still provide enough information to disentangle the factors.

In contrast, the Structural Sparsity assumption proposed in (Ng et al., 2023) can be too strict in cases
where factors share common supports, and it would fail to identify factors in such cases.

Example.1 (Assumption-1 fails) This ensures distinct influences across observed variables. If the
supports are nearly identical, Assumption-1 fails. For example, consider the mixing matrix A:

x1(t)
x2(t)
x3(t)
x4(t)

 =

 1 0.5 0 0.2
0.3 1 0.4 0
0 0.2 1 0.5
0.1 0 0.6 1


y1(t)
y2(t)
y3(t)
y4(t)

+ ϵ

with supports supp(a1) = {1, 2, 4}, supp(a2) = {1, 2, 3}, supp(a3) = {2, 3, 4}, and supp(a4) =
{1, 3, 4}. For y1 and y2, the difference in support is 2 (validating Assumption-1), as is the case for
y3 and y4. However, the significant overlap in the observed variables they influence (y1 and y2 both
affect x1(t),x2(t), and y3 and y4 affect x3(t),x4(t)) limits the ability to uniquely identify each
source, pointing to a practical challenge in real-world data.

B EXPERIMENTS AND IMPLEMENTATION SETTINGS

B.1 IMPLEMENTATION SOURCE. (TIMECSL-LIB)

We have implemented the ResTimeCSL architecture from scratch, and our code is available
at https://anonymous.4open.science/r/TimeCSL-4320. Some components of our
code are inspired by the following works:

• The GMM-based VAE sampling is inspired by VaDE (Jiang et al., 2016), and
we adapted the implementation from https://github.com/mperezcarrasco/
Pytorch-VaDE.

• For the Diffusion model D3VAE (Li et al., 2023), we utilized the authors’ implemen-
tation from https://github.com/PaddlePaddle/PaddleSpatial/tree/
main/research/D3VAE.

• Regarding the methods listed in Tab. 3, the TCL model was adapted from https:
//github.com/hmorioka/TCL/tree/master/tcl, while the other models are
derived from https://github.com/rpatrik96/nl-causal.

• For iVAE (Khemakhem et al., 2020b), we used the implementation available at https:
//github.com/MatthewWilletts/algostability.

Our experiments were conducted with 5 different random seeds, and we report the average results
along with standard deviations. The experiments were run using 8 NVIDIA A100 GPUs.

26

https://anonymous.4open.science/r/TimeCSL-4320
https://github.com/mperezcarrasco/Pytorch-VaDE
https://github.com/mperezcarrasco/Pytorch-VaDE
https://github.com/PaddlePaddle/PaddleSpatial/tree/main/research/D3VAE
https://github.com/PaddlePaddle/PaddleSpatial/tree/main/research/D3VAE
https://github.com/hmorioka/TCL/tree/master/tcl
https://github.com/hmorioka/TCL/tree/master/tcl
https://github.com/rpatrik96/nl-causal
https://github.com/MatthewWilletts/algostability
https://github.com/MatthewWilletts/algostability

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

B.2 DATASETS.

In this section, we provide details about the datasets used for our experiments. We consider both
real-world and synthetic datasets, each with specific characteristics relevant to the study. The table
below summarizes the key properties of these datasets, including the number of samples, input
dimensions, the number of sources/factors, and the names of the factors. The real-world datasets
include REDD, REFIT, and UKDALE, which are commonly used in energy consumption modeling.
Additionally, we employ synthetic datasets (Synthetic-1, Synthetic-2, and Synthetic-3) to simulate
various scenarios with varying factors and input sizes. These datasets allow for comprehensive testing
of our proposed method across different contexts.

Table 4: Synthetic and real-world datasets

Dataset # Samples Input Dim # Sources/Factors Factors name
REDD 5400 256 3 {FR, DW, WM, HTR, LT}
REFIT 1299 256 5 {FR, DW, WM, HTR, LT}
UKDALE 1300 256 5 {FR, DW, WM, HTR, LT}
Synthetic-1 12000 24 3 {FR, LT, HTR}
Synthetic-2 11000 96 5 {FR, LT, HTR}
Synthetic-3 11000 64 3 {FR, LT, HTR}
Synthetic-4 23000 256 5 {FR, DW, WM, HTR, LT}

B.3 CONTRASTIVE PARTIAL SELECTIVE PAIRING - DATA AUGMENTATIONS

Four augmentations were sequentially applied to all contrastive methods’ pipeline branches. The
parameters from the random search are: 1) Crop and delay: applied with a 0.5 probability and
a minimum size of 50% of the initial sequence. 2) Cutout or Masking: time cutout of 5 steps
with a 0.8 probability. 3) Channel Masks powers: each time series is randomly masked out with
a 0.4 probability. 4) Gaussian noise: random Gaussian noise is added to window input x with a
standard deviation form 0.1 to 0.3. Further details in App. B.3. Also in our experiments, we utilize
a composition of three data augmentations, applied in the following order - scaling, shifting, and
jittering, activating with a probability of 0.3 to 0.5.

Scaling The time-series is scaled by a single random scalar value, obtained by sampling ϵ ∼
N (0, 0.5), and each time step is x′

t = ϵxt.

Shifting The time-series is shifted by a single random scalar value, obtained by sampling ϵ ∼
N (0, 0.5) and each time step is x′

t = xt + ϵ.

Jittering I.I.D. Gaussian noise is added to each time step, from a distribution ϵt ∼ N (0, 0.5),
where each time step is now x′

t = xt + ϵt.

B.4 IMPLEMENTATION OF METRICS AND STUDY CASE

Previous work has relied on the Mean Correlation Coefficient (MCC) as a metric to quantify identi-
fiability. For consistency with previous work, we report this metric, but also propose a new metric
to quantify identifiability up to an affine transformation. There are two challenges in designing
such a metric: Firstly, for two Gaussian mixtures, standard distance metrices such as TV-distance or
KL-divergence do not have a closed form. Secondly, we need to find an affine map A that best aligns
a pair of Gaussian mixtures. Therefore, developing a metric to quantify identifiability up to an affine
transformation has natural challenges. We propose d aff ,L2, defined below, as an additional metric in
this setting.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

B.4.1 ALIGNMENT PRIOR TO MEASURING WEAK MCC

We seek an affine map Γ to align two GMMs using two methods. One approach, used in previous
works on MCC, is Canonical Correlation Analysis (CCA). Alternatively, we explore a different
method. For two GMMs, we iterate over all permutations of the components, and for each permutation,
we compute the optimal map Γ that aligns the components. While ideally Γ would align both the
means and the covariance matrices, solving this as an optimization problem is challenging. Thus, we
focus on aligning the means of the first GMM to those of the second GMM. The map Γ is found by
solving the least-squares problem:

min
Γ

∑
i

∥µ(i)
1 − Γµ

(i)
2 ∥2 (B.1)

This can be efficiently solved using Singular Value Decomposition (SVD). Empirically, aligning the
means provides good results.

B.4.2 MEASURING IDENTIFIABILITY STRONG-MCC AND WEAK-MCC

The other metric we consider is the Mean Correlation Coefficient (MCC) metric which had been used
in prior works (Khemakhem et al., 2020a). There are two versions of MCC that have been used:

1. The weak MCC is defined to be the MCC after alignment via the affine map Γ transformation
see App. B.4.1.

2. The strong MCC is defined to be the MCC before alignment.

Furthermore, in this work, we consider two different metrics. For a pair of distributions p1, p2, we
define d aff ,L2 loss as

d aff ,L2(p1, p2) = min
A:Rm→Rm,

affine

∆L2
(Γ♯p1, p2), where ∆L2

(p1, p2) =
∥p1 − p2∥L2

∥p1∥1/2L2
∥p2∥1/2L2

(B.2)

In our experiments, we report both the strong MCC and weak MCC. Moreover, all reported MCC s are
out-of-sample, i.e. the optimal affine map Γ is computed over half the dataset and then reused for the
other half of the dataset.

B.4.3 MEASURING DISENTANGLEMENT OF THE LEARNED REPRESENTATION

In implementing the disentanglement metrics, we adhere to the methodology outlined in (Locatello
et al., 2019), expanding it to accommodate time series data. For the computation of DCI metrics, we
employ a gradient boosted tree from the scikit-learn package.

β-VAE Metric Disentanglement is then measured as the accuracy of a linear classifier that predicts
the index of the fixed factor based on the coordinate-wise sum of absolute differences between the rep-
resentation vectors in the two mini-batches. (Higgins et al., 2016) suggest fixing a random attributes
of variation in the underlying generative model and sampling two mini-batches of observations x.
We sample two batches of 256 points with a random factor fixed to a randomly sampled value across
the two batches, and the others varying randomly. We compute the mean representations for these
points and take the absolute difference between pairs from the two batches. We then average these 64
values to form the features of a training (or testing) point.

FactorVAE Metric (Kim & Mnih, 2019) (Kim & Mnih, 2019) address several issues with this
metric by using a majority vote classifier that predicts the index of the fixed ground-truth attribute
based on the index of the representation vector with the least variance. First, we estimate the variance
of each latent dimension by embedding 10k random samples from the data set, excluding collapsed
dimensions with variance smaller than .05. Second, we generate the votes for the majority vote
classifier by sampling a batch of 64 points, all with a factor fixed to the same random value. Third,
we compute the variance of each dimension of their latent representation and divide it by the variance
of that dimension computed on the data without interventions. The training point for the majority
vote classifier consists of the index of the dimension with the smallest normalized variance. We train
on 10k points and evaluate on 5k points.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Mutual Information Gap Metric (Chen et al., 2018b) β-VAE metric and the FactorVAE metric
are neither general nor unbiased as they depend on some hyperparameters (Chen et al., 2018b).
They compute the mutual information between each ground-truth factor and each dimension in the
computed representation r(x). For each ground-truth factor zk, they then consider the two dimensions
in r(x) that have the highest and second highest mutual information with zk. The Robust Mutual
Information Gap (MIG) is then defined as the average, normalized difference between the highest
and second highest mutual information of each factor with the dimensions of the representation. The
original metric was proposed evaluating the sampled representation. Instead, we consider the mean
representation, in order to be consistent with the other metrics. We estimate the mutual information
by binning each dimension of the representations. Then, the score is computed as follows:

RMIG =
1

K

K∑
k=1

[I(vjk, zk)−max I(vj , zk)]

Where zk is a factor of variation, vi is a dimension of the latent representation. The MIG score of all
factors are averaged to report one score.

Disentanglement, Completeness and Informativeness (DCI) In (Carbonneau et al., 2022), a
framework is proposed to evaluate disentangled representations using metrics for modularity, compact-
ness, and explicitness, referred to as disentanglement, completeness, and informativeness. Regressors
predict factors from codes, with modularity and compactness estimated by importance weights Rij .
These weights are computed using a lasso regressor or random forests. The compactness for factor vi

is defined as:

Ci = 1 +

d∑
j=1

pij logd pij , pij =
Rij∑d
k=1 Rik

.

Compactness for the entire representation is the average over all factors. The modularity for code
dimension zj is:

Dj = 1 +

M∑
i=1

pij logM pij , pij =
Rij∑M

k=1 Rkj

.

The modularity score is the weighted average over all code dimensions, with weights ρj reflecting
their importance in predicting factors. Explicitness is defined by the MSE of the regressor, normalized
between 0 and 1:

Explicitness = 1− 6 · MSE, MSE = E[(x− y)2] =
1

6
.

.

Time Disentanglement Score TDS Time series data often exhibit variations that may not always
align with conventional metrics, especially when considering the presence or absence of underlying
attributes. To address this challenge, (Oublal et al., 2024) introduce the Time Disentanglement
Score (TDS), a metric designed to assess the disentanglement of attributes in time series data. The
foundation of TDS lies in an Information Gain perspective, which measures the reduction in entropy
when an attribute is present compared to when it’s absent.

TDS =
1

dim(z)

∑
n ̸=m

∑
k

||zm − z+n,k||2

Var[zm]
, (B.3)

In the context of TDS, we augment factor m in a time series window x with a specific objective:
to maintain stable entropy when the factor is present and reduce entropy when it’s absent. This
augmentation aims to capture the essence of attribute-related information within the data.

B.5 RESTIMECSL ARCHITECTURE

The architecture employs multiple ResTimeCSL residual units Fig. 8 to model both the encoder and
decoder for temporal sequential data. The input size is T = 256 (time steps) with C = 1 (features).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

The encoder compresses the input into a latent representation of size n = 5 × d = 16, while the
decoder reconstructs the sequence into an output of size T = 256 × n = 5. An additive layer is
applied after decoding to sum the n components at each time step t, ensuring the output matches
the input dimensions. Let x ∈ RT×C represent the input sequence. A linear patching operation is
applied to preprocess the input: xpatch = LinearPatching(x). The encoder comprises multiple stacked
”ResTimeCSL” residual units to map the input into a latent representation z ∈ Rn×d, where n = 5
and d = 16. Each ”ResTimeCSL” block performs:

hout = TCN(Affine(hin) + SkipConnections),
with hin and hout denoting the input and output of a block, respectively. Similarly, the decoder uses
multiple ”ResTimeCSL” blocks to reconstruct the sequence, producing an output y ∈ RT×n, where
n = 5. Finally, an additive layer combines the n components at each time step t:

yfinal(t) =

n∑
i=1

yi(t),

ensuring that the final output size matches the input: yfinal ∈ RC×T , with C = 1. This hierarchical
structure, powered by multiple ”ResTimeCSL” units, ensures effective representation learning and
reconstruction while maintaining temporal and feature dimensions.

Af
fin

e
+

Pe
rm

ut
.

Lin
ea

rP
at

ch
in

g

Skip-Connection
Af

fin
e

Lin
ea

r

Re
LU

Lin
ea

r

Af
fin

e

TC
N

Bl
oc

k

Skip-Connection

Ou
tp
ut

In
pu

t

Lin
ea

r+
 P

er
m

ut
.

Figure 8: The residual unit ResTimeCSL, is employed in both the encoder and decoder.

The training process uses the Adamax (Kingma & Ba, 2014) optimizer with an initial learning rate
of 10−3 and β1 = 0.9, β2 = 0.999. A cosine annealing learning rate decay is applied to improve
convergence

B.6 PIPELINE CORRELATED SAMPLES.

Robustness of the model to correlations between data is assessed by examining different pairs. We
focus mainly on linear correlations between two different devices and on the case where one device
correlates with two others. To do this, we parameterize the correlations by sampling a dataset from
the common distribution. We build on the correlation time series framework by introducing a pairwise
correlation between the attributes ym and yn as follows: p(ym, yn) ∝ exp

(
−||ym − αyn||2/2σ2

)
,

where α is a scaling factor. A high value of σ indicates a lower correlation between the normalised
attributes ym and yn (No.Corr, σ = ∞). We also extend this framework to cover correlations between
several attributes in the time window T . Therefore, we consider correlation pair scenarios such as :
No correlation; Pair:1 washer-dryer; Pair:2 dryer-oven and, finally, a Random pair: approach with
randomly selected appliances.

B.7 IMPACT OF RELU/LEAKYRELU AND ATTENTION LAYER WITH GELU ACTIVATION ON
DECODER BEHAVIOR

In this study, we evaluate the impact of different activation functions on the decoder’s behavior to
satifies Asm 2.1. Specifically, we compare the use of ReLU (a piecewise affine activation) and GELU
(a smooth, nonlinear activation) within an MLP decoder. The results suggest that the choice of
activation function has a significant impact on the latent representation produced by the model.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

ReLU Activation: The decoder becomes piecewise affine, meaning that it can be broken down into
affine transformations over different regions of the input space. This causes the decoder to create
latent representations that reflect distinct linear transformations in various regions of the input. As a
result, the learned latent space is structured around these distinct affine regions, potentially making
the model more sensitive to certain regions of the data space and leading to more discrete or sharply
defined latent representations.

LeakyReLU Activation: In contrast, the GELU activation is smooth and nonlinear across the
entire input space. This means that the decoder no longer operates piecewise affine, and the latent
space learned by the model is more continuous and smooth. Since GELU smoothly transforms the
input, it enables the decoder to create more nuanced, continuous latent representations. The absence
of piecewise linear behavior allows for better modeling of complex, smooth relationships in the data,
which may improve generalization to unseen data or tasks that require such smooth transformations.

B.8 VALIDATION OF RESULTS ON SYNTHETIC DATA GENERATION

We simulate time-series data for energy disaggregation by leveraging the appliance signatures
yk ∈ RT from the REDD and REFIT datasets, where T is the number of time steps. The observed
mixed signal x ∈ RT is generated as the sum of the individual appliance contributions, i.e., xt =∑n

k=1 yk,t + ϵt where ϵt ∼ N (0, σ2) is Gaussian noise. Each appliance signature yk represents
the time-series power consumption of appliance k, and these signatures are directly taken from the
dataset. The final mixed signal x is the result of combining the contributions from multiple appliances,
with each yk corresponding to the power usage of a particular appliance in the dataset. This model
serves as a foundation for evaluating energy disaggregation methods.

0 5000 10000 15000
0

25

50

75

100

125

150

175

200 lighting

0 5000 10000 15000
0

250

500

750

1000

1250

1500

1750 microwave

0 5000 10000 15000
0

50

100

150

200

250

300

350 oven

0 5000 10000 15000
0

200

400

600

800
refrigerator

0 5000 10000 15000
0

500

1000

1500

2000 Mixed Signal

Figure 9: An example of a mixed signal from four sources in the REDD dataset.

B.9 ADDITIONAL EXPERIMENT RESULTS.

B.9.1 EXPERIMENT ON REDD AND REFIT DATASETS

Remark B.1. In Tab. 6 , we observe a similarity in metrics across the REDD and REFIT datasets
(with 5 seed experiments), despite their differences, can be explained by the fact that certain factors,
particularly ”FR”, are highly represented in both datasets. This suggests that these common factors
capture underlying patterns relevant to both datasets, leading to similar model performance. However,
factors like ”LT” and ”HTR” are less prominent, which means their influence on the results is smaller.
To address this and more accurately evaluate our approach in real datasets, we consider a broader set
of factors such as {FR, DW, WM, HTR, LT}for REDD and UKDALE datasets, which would better
capture the unique characteristics of each dataset and provide a more nuanced evaluation.

10 5 0 5 10
z1

7.5

5.0

2.5

0.0

2.5

5.0

7.5

z 2

Run #1

10 5 0 5 10
z1

10

5

0

5

10

z 2

Run #2

5 0
z1

7.5

5.0

2.5

0.0

2.5

5.0

7.5

z 2

Run #3

2 0 2 4
z1

4

2

0

2

4

z 2

Run #4

Figure 10: Recovered latent spaces for 4 runs of TimeCSL on REDD dataset with 5 latents (n =
5, d = 16) {FR, DW, WM, HTR, LT}.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Table 5: Average performance, considering factors {FR, DW, WM, HTR, LT} with 5 seed on real
datasets REDD and REFIT. Metrics reported are DCI, RMIG and RMSE. Lower values are better for
all metrics. (↓ lower is better, ↑ higher is worse Top-1 , Top-2).

Sc. Methods σ = ∞ σ = 0.3 σ = 0.8

Metrics ⇒ DCI ↓ RMIG ↓ RMSE ↓ DCI ↓ RMIG ↓ RMSE ↓ DCI ↓ RMIG ↓ RMSE ↓

Sy
nt

he
tic

-1

◦ BertNILM - - 52.81 ± 25.41 - - 75.78 ± 7.76 - - 66.50 ± 6.69◦ S2S - - 47.99 ± 24.45 - - 63.64 ± 20.56 - - 67.93 ± 15.57◦ Autoformer - - 61.52 ± 7.66 - - 52.23 ± 11.25 - - 48.45 ± 9.31◦ Informer - - 48.59 ± 10.89 - - 59.29 ± 11.36 - - 63.45 ± 10.52• TimesNet - - 63.57 ± 10.61 - - 67.02 ± 9.10 - - 69.93 ± 9.89◦ C-DSVAE 72.83 ± 11.71 1.08 ± 0.45 40.50 ± 6.45 71.76 ± 9.74 1.08 ± 0.44 51.67 ± 7.88 72.64 ± 10.89 1.23 ± 0.51 55.26 ± 7.80◦ SlowVAE 82.31 ± 11.96 1.08 ± 0.47 43.46 ± 7.93 81.65 ± 10.75 1.08 ± 0.46 54.81 ± 5.93 84.09 ± 6.93 1.27 ± 0.49 53.65 ± 7.48• CoST 79.86 ± 10.86 1.16 ± 0.23 50.14 ± 6.77 79.16 ± 10.49 1.15 ± 0.22 55.91 ± 5.72 80.16 ± 9.68 1.25 ± 0.20 58.76 ± 5.51• SlowVAE+HDF 88.69 ± 1.11 1.11 ± 0.24 65.87 ± 8.13 85.99 ± 1.34 0.97 ± 0.21 69.94 ± 7.29 89.47 ± 0.58 1.14 ± 0.24 72.21 ± 7.47• C-DSVAE + HDF 76.94 ± 6.38 0.89 ± 0.37 33.61 ± 5.80 75.66 ± 6.53 0.84 ± 0.33 37.92 ± 5.88 74.45 ± 5.78 0.89 ± 0.40 42.58 ± 6.49• SparseVAE 71.35 ± 8.48 0.67 ± 0.25 26.46 ± 5.68 72.67 ± 8.54 0.68 ± 0.27 31.07 ± 5.34 73.98 ± 8.23 0.74 ± 0.29 32.56 ± 5.16• TimeCSL 75.44 ± 6.93 0.59 ± 0.17 25.53 ± 6.69 74.50 ± 6.29 0.61 ± 0.19 29.23 ± 6.57 76.66 ± 5.70 0.74 ± 0.16 33.76 ± 6.73

Sy
nt

he
tic

-2

◦ BertNILM - - 60.83 ± 5.80 - - 72.63 ± 2.25 - - 71.02 ± 2.55◦ S2S - - 53.73 ± 5.84 - - 65.57 ± 5.35 - - 69.21 ± 4.06◦ Autoformer - - 54.60 ± 1.70 - - 50.48 ± 2.82 - - 50.39 ± 2.26◦ Informer - - 45.92 ± 3.03 - - 53.77 ± 2.86 - - 61.08 ± 2.51• TimesNet - - 54.68 ± 3.68 - - 55.28 ± 3.02 - - 59.24 ± 3.41◦ C-DSVAE 74.83 ± 5.72 1.12 ± 0.23 47.04 ± 3.14 73.42 ± 2.40 1.10 ± 0.21 53.02 ± 3.49 75.29 ± 3.34 1.21 ± 0.14 54.81 ± 3.46• SlowVAE 80.92 ± 2.73 1.10 ± 0.20 44.58 ± 3.11 79.95 ± 2.64 1.09 ± 0.18 51.92 ± 2.58 81.45 ± 1.57 1.21 ± 0.14 50.69 ± 2.99• CoST 71.18 ± 3.83 1.04 ± 0.06 47.10 ± 1.66 71.01 ± 3.86 1.05 ± 0.05 53.58 ± 1.39 70.56 ± 3.50 1.14 ± 0.04 55.29 ± 1.22• SlowVAE+HDF 81.13 ± 0.17 0.85 ± 0.08 60.50 ± 3.01 80.21 ± 0.19 0.79 ± 0.07 62.72 ± 2.77 81.68 ± 0.10 0.89 ± 0.05 64.03 ± 2.99• C-DSVAE + HDF 74.77 ± 1.56 0.78 ± 0.05 35.62 ± 2.52 74.39 ± 1.51 0.75 ± 0.05 38.40 ± 1.83 74.88 ± 0.98 0.79 ± 0.07 39.95 ± 1.62• SparseVAE 69.84 ± 4.10 0.62 ± 0.06 27.28 ± 2.59 69.95 ± 4.15 0.60 ± 0.05 29.61 ± 1.67 72.52 ± 3.77 0.65 ± 0.07 30.35 ± 1.45• TimeCSL 71.72 ± 3.23 0.46 ± 0.04 25.02 ± 2.77 71.21 ± 2.58 0.51 ± 0.03 25.91 ± 2.62 72.68 ± 2.33 0.61 ± 0.02 28.82 ± 2.83

10 5 0 5 10
z1

10

5

0

5

10

z 2

Run #1

10 0 10
z1

30

20

10

0

10

20

30

z 2

Run #2

5 0
z1

20

10

0

10

20

z 2

Run #3

2.5 0.0 2.5 5.0
z1

7.5

5.0

2.5

0.0

2.5

5.0

7.5

z 2

Run #4

Figure 11: Recovered latent spaces for 4 runs of TDRL on REDD dataset with 5 latents (n = 5, d =
16) {FR, DW, WM, HTR, LT}.

10 0 10
z1

5

0

5

z 2

Run #1

10 5 0 5 10
z1

30

20

10

0

10

20

30

z 2

Run #2

10 5 0 5
z1

40

20

0

20

40

z 2

Run #3

2.5 0.0 2.5 5.0
z1

7.5

5.0

2.5

0.0

2.5

5.0

7.5

z 2

Run #4

Figure 12: Recovered latent spaces for 4 runs of SlowVAE on REDD dataset with 5 latents (n =
5, d = 16) {FR, DW, WM, HTR, LT}.

10 0 10
z1

5

0

5

z 2

Run #1

10 0 10
z1

30

20

10

0

10

20

30

z 2

Run #2

5 0
z1

20

10

0

10

20

z 2

Run #3

2.5 0.0 2.5 5.0
z1

7.5

5.0

2.5

0.0

2.5

5.0

7.5

z 2

Run #4

Figure 13: Recovered latent spaces for 4 runs of iVAE on REDD dataset with 5 latents (n = 5, d =
16) {FR, DW, WM, HTR, LT}.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

B.9.2 EXPERIMENT ON SYNTHETIC DATASETS

Table 6: Average performance, considering factors {FR, LT, HTR} with 5 seed on synthetics datasets
(1 & 2). Metrics reported are: DCI, RMIG and RMSE. Lower values are better for all metrics. (↓
lower is better, ↑ higher is worse Top-1 , Top-2).

Sc. Methods σ = ∞ σ = 0.3 σ = 0.8

Metrics ⇒ DCI ↓ RMIG ↓ RMSE ↓ DCI ↓ RMIG ↓ RMSE ↓ DCI ↓ RMIG ↓ RMSE ↓

Sy
nt

he
tic

-1

◦ BertNILM - - 36.86 ± 1.68 - - 45.84 ± 1.00 - - 46.29 ± 0.76◦ S2S - - 35.46 ± 2.04 - - 45.36 ± 2.47 - - 45.76 ± 2.26◦ Autoformer - - 32.45 ± 0.56 - - 33.02 ± 1.49 - - 34.68 ± 1.13◦ Informer - - 32.92 ± 1.67 - - 35.03 ± 1.71 - - 38.47 ± 1.54• TimesNet - - 32.12 ± 1.99 - - 33.38 ± 1.83 - - 35.84 ± 1.61• CoST 44.68 ± 1.57 0.61 ± 0.02 31.14 ± 0.93 48.01 ± 1.57 0.64 ± 0.09 34.81 ± 0.71 46.98 ± 1.13 0.65 ± 0.01 38.14 ± 0.57◦ SlowVAE 50.96 ± 0.71 0.61 ± 0.09 28.26 ± 1.54 53.04 ± 1.26 0.61 ± 0.09 32.15 ± 0.78 52.14 ± 0.58 0.70 ± 0.08 35.74 ± 1.03• SlowVAE+HDF 52.17 ± 0.07 0.42 ± 0.02 37.35 ± 1.49 53.00 ± 0.12 0.46 ± 0.05 38.86 ± 1.26 52.53 ± 0.03 0.47 ± 0.01 40.22 ± 1.06• TDRL 42.34 ± 1.02 0.28 ± 0.04 18.64 ± 1.41 49.75 ± 0.87 0.31 ± 0.01 17.18 ± 1.36 50.43 ± 0.69 0.38 ± 0.08 20.91 ± 1.07◦ D3VAE 41.30 ± 1.97 0.26 ± 0.05 27.64 ± 1.40 41.55 ± 0.91 0.33 ± 0.26 30.11 ± 1.10 43.47 ± 1.31 0.44 ± 0.03 32.77 ± 0.51◦ C-DSVAE 47.35 ± 2.14 0.59 ± 0.05 31.78 ± 1.61 47.79 ± 0.99 0.62 ± 0.26 34.55 ± 1.18 50.02 ± 1.42 0.71 ± 0.03 37.57 ± 0.53• C-DSVAE + HDF 44.31 ± 1.93 0.56 ± 0.05 29.68 ± 1.51 45.01 ± 0.92 0.59 ± 0.25 32.42 ± 1.04 46.68 ± 1.33 0.66 ± 0.03 35.12 ± 0.50• SparseVAE 40.15 ± 0.86 0.25 ± 0.09 13.72 ± 1.30 43.98 ± 0.81 0.28 ± 0.21 14.81 ± 1.20 44.53 ± 0.58 0.31 ± 0.07 18.89 ± 1.30• TimeCSL 39.02 ± 0.87 0.23 ± 0.07 12.03 ± 1.26 42.51 ± 0.74 0.27 ± 0.15 12.72 ± 1.16 42.91 ± 0.59 0.31 ± 0.05 14.76 ± 0.92

Avg. 45.62 ± 1.27 0.52 ± 0.07 31.02 ± 1.26 48.02 ± 0.85 0.58 ± 0.12 34.08 ± 1.04 48.92 ± 1.18 0.64 ± 0.06 35.67 ± 0.91

Sy
nt

he
tic

-2

◦ BertNILM - - 40.06 ± 2.41 - - 44.14 ± 1.22 - - 45.04 ± 0.99◦ S2S - - 38.48 ± 2.87 - - 45.07 ± 2.71 - - 46.22 ± 2.26◦ Autoformer - - 33.56 ± 0.79 - - 34.13 ± 2.07 - - 37.51 ± 1.81◦ Informer - - 36.02 ± 2.37 - - 37.61 ± 1.98 - - 38.81 ± 2.36• TimesNet - - 36.69 ± 2.08 - - 39.08 ± 2.71 - - 42.55 ± 2.35• CoST 50.87 ± 1.13 0.58 ± 0.06 28.93 ± 1.81 53.10 ± 1.23 0.61 ± 0.14 30.72 ± 1.31 52.63 ± 1.19 0.67 ± 0.14 33.15 ± 1.12◦ SlowVAE 48.11 ± 1.06 0.45 ± 0.05 31.73 ± 2.19 50.15 ± 1.35 0.47 ± 0.06 34.12 ± 1.57 50.97 ± 0.78 0.55 ± 0.02 35.27 ± 1.06• SlowVAE + HDF 51.09 ± 1.64 0.34 ± 0.04 32.85 ± 2.40 51.97 ± 1.07 0.39 ± 0.05 35.72 ± 2.17 51.85 ± 1.58 0.43 ± 0.06 37.38 ± 2.51• TDRL 45.12 ± 2.15 0.39 ± 0.05 22.87 ± 1.36 50.61 ± 1.53 0.44 ± 0.03 23.98 ± 1.41 51.18 ± 0.90 0.49 ± 0.08 27.13 ± 2.30◦ D3VAE 43.77 ± 1.31 0.36 ± 0.06 28.43 ± 1.61 46.17 ± 0.86 0.39 ± 0.04 30.14 ± 1.35 48.02 ± 1.23 0.44 ± 0.06 32.46 ± 1.10◦ C-DSVAE 49.68 ± 2.12 0.55 ± 0.07 31.03 ± 2.15 49.92 ± 1.05 0.58 ± 0.08 33.60 ± 1.77 51.51 ± 1.76 0.61 ± 0.03 35.38 ± 1.42• C-DSVAE + HDF 47.38 ± 1.19 0.53 ± 0.05 30.76 ± 2.13 48.85 ± 1.62 0.56 ± 0.03 32.89 ± 2.04 49.98 ± 1.34 0.60 ± 0.05 34.25 ± 1.22• SparseVAE 46.56 ± 2.49 0.44 ± 0.08 19.88 ± 2.06 50.49 ± 1.07 0.47 ± 0.06 21.42 ± 2.53 50.83 ± 1.73 0.53 ± 0.05 23.59 ± 2.17• TimeCSL 43.45 ± 1.12 0.33 ± 0.02 16.32 ± 2.16 47.33 ± 1.29 0.35 ± 0.04 17.22 ± 2.01 48.09 ± 0.81 0.39 ± 0.06 18.95 ± 2.08

Avg. 47.02 ± 1.56 0.45 ± 0.06 28.04 ± 1.84 50.43 ± 1.19 0.48 ± 0.09 30.32 ± 1.56 50.95 ± 1.26 0.54 ± 0.07 32.83 ± 1.57

Table 7: Average performance, considering factors {FR, DW, WM, HTR, LT} with 5 seed on synthetics
datasets. Metrics reported are DCI, RMIG and RMSE. Lower values are better for all metrics. (↓
lower is better, ↑ higher is worse Top-1 , Top-2).

Sc. Methods σ = ∞ σ = 0.3 σ = 0.8

Metrics ⇒ DCI ↓ RMIG ↓ RMSE ↓ DCI ↓ RMIG ↓ RMSE ↓ DCI ↓ RMIG ↓ RMSE ↓

Sy
nt

he
tic

-3

◦ BertNILM - - 56.4 ± 2.58 - - 70.2 ± 1.45 - - 70.92 ± 1.15◦ S2S - - 54.3 ± 3.12 - - 69.5 ± 3.56 - - 69.95 ± 3.26◦ Autoformer - - 49.7 ± 0.81 - - 50.5 ± 2.15 - - 52.95 ± 1.63◦ Informer - - 50.3 ± 2.41 - - 53.5 ± 1.98 - - 58.95 ± 1.89◦ FEDformer - - 50.3 ± 2.12 - - 52.5 ± 2.45 - - 59.01 ± 1.76• TimesNet - - 49.24 ± 2.87 - - 51.10 ± 2.64 - - 54.91 ± 2.31◦ C-DSVAE 72.42 ± 3.10 0.96 ± .15 48.6 ± 2.32 73.12 ± 1.43 0.95 ± .15 52.9 ± 2.31 74.29 ± 2.04 1.08 ± .09 52.99 ± 1.91◦ SlowVAE 78.0 ± 1.09 0.94 ± .13 43.2 ± 2.23 78.0 ± 1.09 0.94 ± .13 49.2 ± 1.13 79.74 ± 0.84 1.07 ± .11 49.65 ± 1.43• CoST 68.4 ± 2.41 0.97 ± .03 47.7 ± 1.35 68.4 ± 2.41 0.97 ± .03 53.2 ± 1.02 69.95 ± 1.63 1.00 ± .02 53.45 ± 0.82• SlowVAE+HDF 79.8 ± .10 0.64 ± .05 57.2 ± 2.15 79.8 ± .10 0.64 ± .05 61.3 ± 1.82 80.37 ± .05 0.72 ± .03 61.64 ± 1.52• C-DSVAE + HDF 73.1 ± 1.01 0.69 ± .02 34.4 ± 1.89 73.1 ± 1.01 0.69 ± .02 38.1 ± 1.34 74.25 ± 0.59 0.73 ± .05 38.48 ± 1.04• SparseVAE 67.2 ± 2.01 0.52 ± .02 24.3 ± 1.81 67.2 ± 2.01 0.52 ± .02 27.4 ± 1.13 71.79 ± 1.27 0.58 ± .04 27.77 ± 0.83• TimeCSL 63.5 ± 1.35 0.38 ± .02 19.6 ± 1.95 69.3 ± 1.2 0.44 ± .02 20.3 ± 1.79 70.12 ± 0.91 0.51 ± .01 23.63 ± 1.49

Sy
nt

he
tic

-4

◦ BertNILM - - 61.42 ± 3.47 - - 67.61 ± 1.95 - - 69.06 ± 1.43◦ S2S - - 59.08 ± 4.15 - - 68.60 ± 3.91 - - 70.68 ± 3.25◦ Autoformer - - 49.87 ± 0.92 - - 51.53 ± 1.48 - - 51.88 ± 1.34◦ Informer - - 54.23 ± 1.78 - - 57.70 ± 1.78 - - 62.51 ± 1.55◦ FEDformer - - 52.84 ± 1.69 - - 55.83 ± 1.82 - - 61.92 ± 1.57• TimesNet - - 51.37 ± 2.41 - - 55.35 ± 2.23 - - 58.47 ± 2.21◦ C-DSVAE 72.97 ± 3.44 1.04 ± 0.16 47.17 ± 2.11 73.60 ± 1.82 0.98 ± 0.14 52.16 ± 1.89 73.96 ± 2.46 1.11 ± 0.12 53.73 ± 1.79◦ SlowVAE 77.41 ± 1.67 0.94 ± 0.15 46.61 ± 1.91 77.80 ± 1.63 0.95 ± 0.14 49.82 ± 1.71 79.47 ± 1.26 1.04 ± 0.13 50.88 ± 1.58• CoST 70.75 ± 2.01 0.96 ± 0.09 48.92 ± 1.62 70.87 ± 2.04 0.96 ± 0.09 52.73 ± 1.34 71.93 ± 1.84 0.98 ± 0.09 54.46 ± 1.19• SlowVAE+HDF 79.97 ± 0.14 0.72 ± 0.05 56.96 ± 2.34 79.77 ± 0.14 0.72 ± 0.05 59.75 ± 2.21 80.22 ± 0.07 0.75 ± 0.03 60.77 ± 2.22• C-DSVAE + HDF 73.85 ± 0.85 0.69 ± 0.05 34.19 ± 1.47 73.71 ± 0.85 0.69 ± 0.05 37.53 ± 1.21 74.34 ± 0.56 0.71 ± 0.04 39.35 ± 1.06• TDRL 70.86 ± 0.816 0.57 ± 0.041 32.80 ± 1.41 70.75 ± 0.816 0.57 ± 0.041 36.04 ± 1.16 71.94 ± 0.54 0.58 ± 0.033 37.83 ± 1.02• SparseVAE 70.13 ± 1.44 0.61 ± 0.04 25.46 ± 1.10 70.13 ± 1.44 0.61 ± 0.04 28.99 ± 1.22 71.44 ± 1.30 0.63 ± 0.05 29.47 ± 1.10• TimeCSL 66.14 ± 1.66 0.40 ± 0.04 19.81 ± 1.29 69.00 ± 1.41 0.44 ± 0.04 20.46 ± 1.45 70.41 ± 1.22 0.48 ± 0.03 22.08 ± 1.36

B.9.3 COMPARISONS BETWEEN TIMECSL AND BASELINES ON KITTI DATASET

We evaluate TimeCSL on time-sequential data using preprocessed frames from the KITTI and
MOTSChallenge datasets. The original KITTI image resolutions are 1080× 1920 or 480× 640 for
MOTSChallenge, and between 370–374 pixels tall by 1224–1242 pixels wide for KITTI MOTS. The
video frame rates vary from 14 to 30 fps, as described in (Milan, 2016). To preprocess the data, we
apply nearest-neighbor down-sampling to reduce each frame’s height to 64 pixels while maintaining
the aspect ratio for the width. Using a horizontal sliding window, we extract six equally spaced
windows of size 64 × 64 (with overlap) from each sequence in both datasets. This preprocessing
produces a sequence of shape 64 × 64 × T , where T represents the number of time steps in the
sequence. Our approach assumes reasonable invariance to horizontal translation and scale within

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

the dataset. Scale invariance is supported by the fact that the data was collected from a car-mounted
camera, leading to varying distances to pedestrians. To validate translation invariance, we conducted
an ablation study on the number of horizontal sliding windows. Using only two horizontally spaced
windows, instead of six, resulted in no significant changes in key statistics, such as kurtosis (remaining
within ±10% of the original value for ∆x transitions). This experiment results Fig. 14 demonstrates
the robustness of TimeCSL to time-sequential data, showcasing its potential for applications beyond
its original domain.

Figure 14: Validation on KITTI dataset. Left. MCC correlation matrix of the top 3 latents
corresponding to y-position (1), x-position (2) and scale (3). Right. Images produced by varying the
TimeCSL latent unit that corresponds to the corresponding row in the MCC matrix.

34

	 Supplementary Material:
	Extended Related work and Proofs
	Extend the Discussion on Related Work
	Generalization, Compositionality and irreducibility assumptions
	Element-wise Identifiability given index support i for Piecewise Linear
	The Generative Process and The ELBO for Multivariates Mixture Gaussian
	Variational Lower Bound for TimeCSL
	The Equivalence Between Matrix Normal and Multivariate Normal Distributions

	Structural Sparsity and Sufficient Partial Selective Pairing Assumptions

	Experiments and Implementation Settings
	Implementation source. (TimeCSL-Lib)
	Datasets.
	Contrastive Partial Selective Pairing - Data Augmentations
	Implementation of Metrics and study case
	Alignment prior to measuring Weak MCC
	Measuring Identifiability strong-MCC and weak-MCC
	Measuring disentanglement of the learned representation

	ResTimeCSL Architecture
	Pipeline Correlated samples.
	Impact of ReLU/LeakyReLU and Attention layer with GELU activation on Decoder Behavior
	Validation of results on synthetic Data Generation
	Additional Experiment Results.
	Experiment on REDD and REFIT datasets
	Experiment on Synthetic Datasets
	Comparisons Between TimeCSL and Baselines on KITTI Dataset

