Under review as a conference paper at ICLR 2025

Supplementary Material:

To ensure a comprehensive understanding of our paper and to support reproducibility and reliability,
we present additional results and provide complete proofs for the theorems articulated in the main
paper. This supplementary material is meticulously organized as follows:
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Figure 7: Recovered latent spaces for 4 runs of TimeCSL on REDD dataset with 5 latents (n =
5,d = 16) {FR, DW, WM, HTR, LT}.

A EXTENDED RELATED WORK AND PROOFS

In this section, we detail the contributions of the paper, including all the details. Although there is no
change in their contents, the formulation of some definitions and theorems are slightly altered here to
be more precise and cover edge cases omitted in the main text. Hence, the numbering of the restated
elements is reminiscent of that used in the main text.
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A.1 EXTEND THE DISCUSSION ON RELATED WORK

Self-supervised learning (SSL) methods have moved away from using negative pairs, as in contrastive
learning (CL), and instead focus on alignment with various forms of regularization to prevent
collapsed representations. For example, BYOL (Grill et al., 2020) and SimSiam (Chen & He,
2021) use architectural regularization with moving-average updates for a separate rarget network
(BYOL only) or a stop-gradient operation (for both). Meanwhile, BarlowTwins (Zbontar et al., 2021)
promotes redundancy reduction and alignment by optimizing the cross-correlation between z and z’
to match the identity matrix, ensuring zero off-diagonals and ones on the diagonal. We can interpret
positive augmentation as a modified representation z’ that is connected to the original z through
a conditional distribution p(z’ | z). This implies that the augmented observation x’ shares similar
information with the anchor observation x, and is generated by applying the same mixing function
gp as defined in data-generating process Eq. (2.2).

Table 3: Related work in nonlinear ICA for time series. A blue check denotes that a method has an
attribute, whereas a red cross denotes the opposite. ™ indicates an approach we implemented.

Approach Temporal Data Dependent Factors Nonparametric Expression Stationary Process

TCL (Hyvarinen & Morioka, 2016) v X X X
PCL (Hyvarinen & Morioka, 2017) v X v v
GCL (Hyvarinen et al., 2019) v X v X
iVAE (Khemakhem et al., 2020b) X X X X
GIN (Sorrenson et al., 2020) X X X X
HM-NLICA (Hilvd & Hyvirinen, 2020) v X v X
SlowVAE (Klindt et al., 2021) v X X v
(Yao et al., 2021) LEAP (Theorem 1) v v v X
(Yao et al., 2021) LEAP (Theorem 2) v v X v
TimeCSL (our)! TimeCSL (Theorem 1) v v v v+ X

A.2 GENERALIZATION, COMPOSITIONALITY AND IRREDUCIBILITY ASSUMPTIONS

Compositional contrast In recent work on compositionality (Assouel et al., 2022; Zhao et al.,
2022; Kurth-Nelson et al., 2022) and its importance in learning models that can generalize well
to novel situations, the concept of compositional contrast has emerged as a powerful tool for
evaluating how well a model separates information into independent, non-interacting components.
This concept is particularly relevant in the context of time series analysis or image generation,
where the model’s ability to decompose an input into distinct parts, or ’slots,” can significantly
impact the quality of predictions and interpretability. Compositionality ensures that each slot, or
latent variable, corresponds to a specific factor or component of the data. In highly compositional
models, these components do not interact with each other—each one affects a distinct aspect of the
output. In contrast, non-compositional models tend to mix these components, making it harder to
disentangle the factors and interpret the model’s output. Evaluating how well a model adheres to
compositionality principles can be challenging, as it requires quantifying how independent the slots
are in their contribution to the final output. To address this, Brady et al. (2023) introduced the notion
of compositional contrast, which measures the extent to which the model’s latent variables (slots)
interact when producing the final output. This measure is particularly useful in determining whether
a decoder is truly compositional—that is, whether each slot contributes independently of the others,
or if there are unwanted interactions between them. Before we introduce the formal definition of
compositional contrast, it is important to understand the underlying principle. The intuition behind
the compositional contrast is that if a model is fully compositional, each slot should affect only a
specific subset of the output (e.g., one region of an image or one time series variable) and have
no influence on other components. Conversely, if the model is not compositional, changes in one
slot will influence multiple components of the output simultaneously, indicating that the slots are
not independent. The compositional contrast function captures this idea by calculating how much
the gradients of each slot (with respect to the model’s output) overlap. If the gradients of different
slots with respect to the same output component are non-zero, this suggests interaction between the
slots, indicating a lack of compositionality. The function sums these interactions across all slots
and output components, providing a single value that quantifies the degree of interaction. A lower
compositional contrast value suggests higher compositionality, while a higher value indicates more
interaction between slots. Formally, the compositional contrast is defined as follows:
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Definition A.1 (Compositional Contrast). Let gg : Z — X" be differentiable. The compositional
contrast of gy at z is

N K
Ccomp 90,%Z Z Z Z

n=1k=1j=k+1

(A1)

ag()n ag(fn
aZk 8ZJ

This contrast function was proven to be zero if and only if gy is compositional according to Eq. (4.5).
The function can be understood as computing each pairwise product of the (L2) norms for each
pixel’s gradients with respect to any two distinct slots k& # j and taking the sum. This quantity
is non-negative and will only be zero if each pixel is affected by at most one slot, ensuring that
gy satisfies Eq. (4.5). We can use this function to measure the compositional of a decoder in our
experiments (see § 4), where it serves as a key indicator of how effectively the model decomposes its
inputs into independent components. More empirical and theoretical details on the function can be
found in Brady et al. (2023).

A.3 ELEMENT-WISE IDENTIFIABILITY GIVEN INDEX SUPPORT I FOR PIECEWISE LINEAR

In this section, we present the proof of Thm. 4.2. To establish a solid foundation for the argument,
we first restate Asm 4.1, which plays a pivotal role in the proof.

Assumption 4.1 (Sufficient Partial Selective Pairing). For each factor k € [n], there exist observa-
tions (x,x’) € X such that the union of the shared support indices i = I(x,x’) that do not include &k
must cover all other factors. Formally:

U i=m\{k} . Z:={Cnl|pd) >0} 4.1

icT|k¢i

where Z is the set of shared support indices and p(i) := #LX - #{S(x) =1, x € X} gives the
probability that the factors indexed by i are active, with k ¢ i inactive.

Additionally, we introduce some notation. For i € 7, we assume that the probability measure P,
admits a density with respect to the Lebesgue measure on R/l We let = denote equality in the
distribution.

Theorem 4.2 (Element-wise Identifiability given index support i for Piecewise Linear gg). Let
Fs : R — RT*" pe g continuous invertible piecewise linear function and gp : R¥*™ — RT>n
be a continuous invertible piecewise linear function onto its image. Assume that Asm 4.1, Asm 2.1

holds, and the mixed observations (x,x") - p , follows the data-generating process Eq. (2.2). The
learnable latent Z (resp. Z') of z (resp. z'). If all following conditions hold:

E|zllo < El|jz]lo and E||2’||0 < EHz’ 0, and, 4.2)
R g AL
Ratig(2,2',i) := _EA 4 (4.3)
g [EAIPEAIP

i€i

then z is identified by h := g, 1(X), ie, g, Yo gg is a permutation composed with element-wise
invertible linear transformations (Def. 2.2).

Proof. The proving strategy has three steps: Intuitively, based result (Kivva et al., 2022) combined
with contrastivity beteween tow latent based their shared support indices i. This means that for the
data that satisfy Asm 4.1, gy (z) and §y(2) are equally distributed, then there exists an invertible affine
transformation such that h(z) = z’. Second, we use the strategy of linear identifiability (Lachapelle
& Lacoste-Julien, 2022) to obtain element wise identifiabiltiy:

Step 1) Contrastive Sparsity and Linear Identifiability given pairsi We begin by recalling the
result from Kivva et al. (2022) on the existing of an invertible function affine transformation hy, we
adapt this for the case where if the reconstruction objective is minizzed and alignment. The theorem
on identifiability of MVNs states:
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Theorem A.2. Let gg,g), : R™>*" — REXT pe piecewise affine functions satisfying 2.1. Let
J J’

z ~ 231 wiN (i, 3;) and z’ ~ 21 wiN (uf;, X") be a pair of GMMs (in reduced form). Suppose
i= Jj=

that go(z) and gj(2z') are equally distributed. Then there exists an invertible affine transformation
h: R9*" — RIX" sych that h(z) = 7/, i.e., J = J' and for some permutation ™ we have w; = w;(k)
and hiN (pi, 3;) = N(IJ’;(Z‘)’ 2;(2‘))‘

We recall that the transformation and the number of components can be unknown and arbitrary, and
that no assumption of separation or independence is necessary for the distribution.

By Theorem C.2 (Kivva et al., 2022), since contrastive learning involves the minimisation of a
contrastive loss which ensures that similar data points (positive pairs) are moved closer together and
dissimilar data points (negative pairs) are moved further apart. Let the inferred latent representation
(z,2) be handled by the exact same function fy, and we consider the zero reconstruction under
Rating = 0 for all slot indices in i. Alongside this, contrastive loss minimization induces the
distributions of gy(z) and gy(2z’) to become indistinguishable on i € i to be well-aligned, apart from
for k ¢ i, but as we consider the Asm 4.1 on the sufficient partial pairing that will cover this factor k
in another pairing sample of the pair (x,x’). Thus, according to Theorem C.2 (Kivva et al., 2022),
there must exist an invertible affine transformation h such that h(z) = z'z). It is more likely to
observe that :

J J
> wrgotN (pk, ox) ~ goﬁfas(zwk/\f(uk,dk))- (A2)

j=1 j=1

In other words, minimizing to hold (i) and zeros error construction, implies a mixture model whose
components are piecewise affine transformations identifiable.

Step 2) Sparsity Pattern of an Invertible Matrix with an element-wise linear transformation
Since x = gp(z), we can rewrite perfect reconstruction as:

Ellgo(z) — Go(£s(g0(2)))ll5 =0 (10)

This means gg and gy o fy o go are equal P,-almost everywhere. Both of these functions are
continuous, gs by Asm 2.1, and gg o fy o g¢ because gg is continuous, and gs, f are linear. Since
they are continuous and equal P,-almost everywhere Z, this means that they must be equal over the
support of Z, i.e.,

90(z) = goo fsogo(z), VzeZ. (1n
This can be easily shown by contradiction considering any slot latent z’ € Z on which gy and
§o © fs 0 go are different, i.e., Go o fy 0 Go(2') # go(2'). This would imply that (gg — go © fo © go),
which is also a continuous function, is non-zero at z’ and in its neighborhood, which contradict the
assumption that go and gy o fj o ge are the same P,-almost everywhere. We can now apply the
inverse of gy on both sides to obtain

G, 090(z) = fy090(z) =h(z), VzeZ. (12)

Since both gg and f are invertible linear functions, given the fisrt part of the proof (Step 1-App. A.3)
h is also an invertible linear function. We now show that h is a permutation composed with an
element-wise linear transformation. To do this, we leverage the sparsity constraint:

E|zllo < El|lzo (A3)

E[ fs(go(2))llo < Elz[lo (A4)
Elh(z)[lo < El/z]lo (A.5)
(A.6)

Since hy, is invertible linear transformation, we have that hy(z) = wy - z and its determinant is
non-zero, i.e.,

det(h) := Y sign(m) [ [ he,nge) # 0, (A7)
k=1

TEP
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where P denotes the set of all n-permutations. This expression implies that at least one term in the

sum is non-zero, meaning there exists a permutation 7 € P such that for every k € [n], aihfk) #0

Following the steps outlined in Theorem B.4 by (Lachapelle et al., 2022), and under the assumption
of Asm 4.1, we extend the disentanglement analysis to our setting. This leads to the conclusion that
h can be expressed as a permutation composed with an element-wise invertible linear transformation,
based on the shared support indices i of the latent slot within the subspace Z;. Specifically, there
exists a permutation 7 on [n] such that, for each latent slot k, the corresponding permutation is given
by 7 (k). Since 7 is a finite set, which allows us to order its elements as {ii, ..., iz }. Therefore,

we can express Z as the union Z = Ugl Z()  While we have already shown that h is affine on
each Z;, we now demonstrate that h is linear on Z, i.e., h(z) is a linear function on the entire set
Z = ;7 Zi- This completes the proof. O

A.4 THE GENERATIVE PROCESS AND THE ELBO FOR MULTIVARIATES MIXTURE GAUSSIAN

We in this subsection how TimeCSL is trained based an a VAE process does similar to (Kivva et al.,
2022; Jang et al., 2017), whcih more kind of unsupervised generative approach for clustering that
performance well, we herein first describe the generative process of TimeCSL. Specifically, suppose
there are n slots latents each has a dimension d, an observed sample x ~ X is generated by the
following process:

Algorithm 1 Generative Process

1: Input: Prior probabilities w, neural network parameters 6
cforj=1,2,...,Ndo
Sample slot k ~ Cat(w)

Sample latent vector z0) ~ N (u o) - ¢ 0'T)

Compute [ (x) ;log 7y (x7))%] = gy (21)

Sample observation x; ~ N (g (x) , og (x(j))2 I) or Ber(po (x19)))
end for _
return {x(7), 200k},

A A ol

Lemma A.3. Given two multivariate Gaussian distributions q(z) = N (z; i, 6%1) and p(z) =
N (z; v, 0*1), we have:

J ~2

1 o 0 — )2
/q(z) log p(z) dz = Z —3 log (2707 — T‘]Z - %, (A8)
j=1 J j

where i, 0;, [i; and & ; simply denote the 4™ element of p, o, fu and &, respectively, and J = d x n
is the dimensionality of z.
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Proof.

[ ata)togpa) da = [ Nz 67D log Az .01 da

J

J
1 zj — f1j)? 1 zj — )2
:/H exp(—(]2A2j) )log exp(—(J2 2]) )| dz
j=1 27‘1’5’? gj j=1 1/27T0]2- gj
. 1 (2 — 1) ! (25 — 1)
= = exp(— 552 ) log exp(7272) dz;
=1 262 7; 27r0']2» 7;
J X N
1 (2 — i) [ 1 1 (2 — 13)?\ (25 — 1)
:Z/ exp(— J2A2] ) —§log(27ra]2-) de_/ exp(— J2A23 ) J2 -
=1\ [2m5% g; 2767 9; 9j
L1 2 1 (25 = 13)*\ (25 = 1) + 225 — f1;) (g — pj) + (g — 115)°
=3 Lioglone?) - SNECEINS i
= 2 2%&? 207 207

7 2167 j 9j j
~9 2 2 N 9
1 Tj\ T (g — 1j)
—p_ d _UINT g M j
a?/ oz P )y 207
~2 2 ~
j 1,z AN A )
=b- L [ —(—Z)d SN A S Ve J
p \/ﬁ( 5 ) dlexp(=—7)) 207

where b denotes Z}‘le -1 10g(27r(7]2») for simplicity.

A.4.1 VARIATIONAL LOWER BOUND FOR TIMECSL

A TimeCSL instance is tuned to maximize the likelihood of the given data points. Given the
generative process in Section A.4, by using Jensen’s inequality, the log-likelihood of TimeCSL can
be written as:

logp(x) = log | 3 p(x.2, bz
Z k

p(x,z, k
> Eq(z7k|x) [log q( )

m] = EELBO(X) (A9)

where Lg po is the evidence lower bound (ELBO), ¢(z, k|x) is the variational posterior to approxi-
mate the true posterior p(z, k|x). In TimeCSL, we assume ¢(z, k|x) to be a mean-field distribution
and can be factorized as:

q(z, k[x) = q(z[x)q(k[x). (A.10)
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Then, according to Equation A.10, the Lg; go(x) in Equation A.9 can be rewritten as:

Ew¢wﬁﬁﬁzag}

= EBy(akx) [logp(x, 2, k) — log q(z, k[x)]

= Ey(akxllog p(x|z) + log p(z|k) (A.11)
+log p(k) — log q(z]x) — log q(k|x)]

LriBo (X)

In TimeCSI, similar to VAE, we use a neural network g to model ¢(z|x):

[;log 6] = fu(x;¢) (A.12)
q(zlx) = N(z:f,6°) (A.13)

where ¢ is the parameter of network g.

By substituting the terms in Equation A.11 and using the SGVB estimator and the reparameterization
trick, the Lg1po(X) can be rewritten as: °

N CXT
1
Lerpo(x N Z Z {xv log pul!) + (1 — a;) log f(1 — uﬂ))}
=1 =1
n J al 7 2
1 o Kl — HElj
33 (ol + T 4 (e
=1 =1 oili 7kls
L S ) i
=

where N is the number of Monte Carlo samples in the SGVB estimator, C' x T is the dimensionality

of x, n is number of slots or factors, and p,;”, x; is the i™ element of x, .J is the dimensionality of

K, o',%, [t and 62, and >|<|j denotes the jth element of *, n is the number of slots, wy is the prior

probability of slot &, and ;, denotes ¢(k|x) for simplicity. In Equation A.14, we compute ug) as

pd) = f4(29;0), (A.15)

where z() is the I"™ sample from ¢(z|x) by Equation A.13 to produce the Monte Carlo samples.
According to the reparameterization trick, z") is obtained by

29 =p+60ed, (A.16)

where €Y ~ N(0,1), o is element-wise multiplication, and f, & are derived by Equation A.12. We
now describe how to formulate . = ¢(k|x) in Equation A.14 to maximize the ELBO. Specifically,

Lero(x) can be rewritten as:

Leso(X) = Eq(z,c/x) {log (( C|X))}

/Zq Kx)q(z]x) {log p(x|z )p§Z) 4 log p(kIZ)} da

q(z| q(klx)
- px|z)p(z) ,
= [ atalx)tog P 28 s | g(alx) Dice alo) (i) (A17)
Once the training is done by maximizing the ELBO w.r.t the parameters of {=, uy, o, 0, ¢},
k € {1,..., K}, alatent representation z can be extracted for each observed sample x. This is done

by Equation A.12 and Equation A.13.

SThis is the case when the observation x is binary. For the real-valued situation, the ELBO can be obtained
in a similar way.
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A.4.2 THE EQUIVALENCE BETWEEN MATRIX NORMAL AND MULTIVARIATE NORMAL
DISTRIBUTIONS

In our formulation, we use a vectorization of the matrix z € R%*™, which follows a multivariate
Gaussian model. We now show that this can also be interpreted as a Matrix Normal distribution.
The equivalence between the Matrix Normal and the Multivariate Normal density functions can be
established using properties of the trace and the Kronecker product.

Proof. Let z be modeled as a mixture of J Matrix Normal distributions. Each component of this
mixture is characterized by a mean matrix p; € R?" and a covariance matrix £; = ¥, ® £, €
R*d @ R"*" where 3,, and X, are the row and column covariance matrices, respectively. The
probability density function of z is thus given by

J
fz(z) = ZWJN(Z ‘ ll’jvzj)»
i=1

where w; are the mixing weights such that w; > 0 and Z]‘.le w; = 1.

The Matrix Normal distribution is defined as

1 1
N(z | p;, X nexp(tr > Nz — p)TE Nz — p, ),
(z | pj, X5) (277)%”23‘# 9 [ a (2= mj) ( H’J)]

where z is a d X n matrix, and the covariance matrix 3; is the Kronecker product ¥,, ® X,,, with
3, and 3, being the covariance matrices of the rows and columns of z, respectively.

To connect the Matrix Mixture Normal distribution with the Mixture of Multivariate Normal distribu-
tions, we vectorize the matrix z. The vectorization of a matrix z € R?*™ is given by

vec(z) = [211 221 ++r Za1 Z12 - Zdn]TeRlx(dm,)

where z; denotes the i-th column of z, and the resulting vector vec(z) is a d - n-dimensional vector.

Now, substituting the vectorized form of z into the Matrix Normal distribution, we have

1 1
NS = - _ 7Ty 1z A.l
N (vec(z) | vec(p;), ;) %] j|dJ5" exp < 52 % z) ) (A.18)

where Z = vec(z) — vec(p ;). Next, observe that the mixture model for z in the original form becomes

J
falz) = wiN(vec(z) | vee(p;), B @ By,), (A.19)
j=1

which is a mixture of multivariate normal distributions in the vectorized space R%™. This shows that
the Matrix Mixture Normal distribution is equivalent to a Mixture of Multivariate Normal distributions
upon vectorization. To complete the proof, we use the determinant property of the Kronecker product:

1=, @2, = 2,"2.% (A.20)

Thus, the determinant of the covariance matrix ¥,, ® ¥, can be written as the product of the
determinants of 3,, and X,,, raised to the appropriate powers. This confirms that the matrix mixture
normal distribution is indeed equivalent to the mixture of multivariate normal distributions. O
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A.5 STRUCTURAL SPARSITY AND SUFFICIENT PARTIAL SELECTIVE PAIRING ASSUMPTIONS

Comparison of Structural Sparsity and Sufficient Partial Selective Pairing Assumptions We
compare two important assumptions in the context of source separation: the Structural Sparsity
assumption from (Ng et al., 2023) and the Sufficient Partial Selective Pairing assumption. The
Structural Sparsity assumption for sources y = {y1, ..., yn | in the mixing matrix A stipulates that
for any pair of sources k and ¢, their supports (denoted supp(yx) and supp(y,)) must differ in at least
two observed variables, i.e.,

Isupp(yx) U supp(ye)| — [supp(yx) N supp(ye)| > 1

Here, supp(yy) represents the indices of the observed variables affected by the source yj. This
assumption ensures that the sources vy and y, are distinguishable in terms of the observed variables
they influence.

Example of Structural Sparsity Assumption Consider a scenario where we have three sources
Y1, Y2, ys3 and four observed variables X1, X2, X3, X4. The observed data x = [x1,X2,X3,X4] is a
mixture of the sources. The supports for the sources are defined as follows:

supp(y1) = {1}, supp(y2) = {2}, supp(ys) = {3}

For the Structural Sparsity assumption to hold between sources y; and ys, the supports must differ in
at least two observed variables. For example, we have:

|supp(y1) U supp(y2)| — [supp(y1) Nsupp(yz)| =2 —0 =2

This satisfies the assumption, as the supports of sources y; and y- differ in at least two variables. If,
however, both sources share the same support:

supp(y1) = {1}, supp(y2) = {1}

Then the assumption would not hold because the supports are identical, and they do not differ by at
least two observed variables.

Sufficient Partial Selective Pairing Assumption (Assumption 1) The Sufficient Partial Selective
Pairing assumption requires that for each factor k € [n], there exist observations (x,x’) € X such
that the union of the shared support indices i = I(x,x’) that do not include k& must cover all other
factors. Formally, we have:

U i=WkI\{k}, Z:={iCn|p() >0} (A21)

i€T|kei

Here, 7 is the set of shared support indices, and p(i) is the probability that the factors indexed by i
are active, with k ¢ i inactive. The assumption ensures that when one factor is inactive, the shared
support indices from the remaining factors provide enough information to reconstruct all active
factors.

Example of Sufficient Partial Selective Pairing Assumption In the same scenario with three
sources Y1, Y2, Y3 and observed variables x1, X2, X3, X4, We can define the shared support indices
for each observation. Let’s assume that the following shared support indices hold:

- Observation 1: i = {1, 2} - Observation 2: i = {2, 3} - Observation 3: i = {3,4}

Now, for the Sufficient Partial Selective Pairing assumption to hold for factor £ = 1, we must ensure
that the union of the shared supports where factor 1 is inactive covers all other factors. For example,
if we exclude k = 1, the union of the shared supports for the remaining factors should cover y» and

Ys3:
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U i=1{2,34} =12,3,4]
i|1¢i

This satisfies the assumption because when y; is inactive, the shared support indices from y- and y3
cover all remaining factors.

Why the Sufficient Partial Selective Pairing Assumption is More Flexible

* It does not require the supports of every pair of sources to differ by exactly two observed
variables.

* It only requires that when one factor is inactive, the shared support indices must still cover
all other active factors, which allows for more overlap between the supports of different
sources.

 This assumption is better suited for real-world scenarios where the supports of factors may
not be completely distinct but still provide enough information to disentangle the factors.

In contrast, the Structural Sparsity assumption proposed in (Ng et al., 2023) can be too strict in cases
where factors share common supports, and it would fail to identify factors in such cases.

Example.1 (Assumption-1 fails) This ensures distinct influences across observed variables. If the
supports are nearly identical, Assumption-1 fails. For example, consider the mixing matrix A:

x1(t) 1 05 0 0.2] [yi(t)
xp(t)| 103 104 0| |wa(t)|
x3(t)| — [0 02 1 05| |ys(t)
x4() 01 0 06 1] |yalt)

with supports supp(ai) = {1, 2,4}, supp(az) = {1,2,3}, supp(as) = {2,3,4}, and supp(ay) =
{1,3,4}. For y; and ys,, the difference in support is 2 (validating Assumption-1), as is the case for
ys and y4. However, the significant overlap in the observed variables they influence (y; and y2 both
affect x;(t),x2(t), and y3 and y4 affect x3(t), x4(¢)) limits the ability to uniquely identify each
source, pointing to a practical challenge in real-world data.

B EXPERIMENTS AND IMPLEMENTATION SETTINGS

B.1 IMPLEMENTATION SOURCE. (TIMECSL-LIB)

We have implemented the ResTimeCSL architecture from scratch, and our code is available
at https://anonymous.4open.science/r/TimeCSL-4320. Some components of our
code are inspired by the following works:

e The GMM-based VAE sampling is inspired by VaDE (Jiang et al., 2016), and
we adapted the implementation from https://github.com/mperezcarrasco/
Pytorch-VabDE.

* For the Diffusion model D3VAE (Li et al., 2023), we utilized the authors’ implemen-
tation from https://github.com/PaddlePaddle/PaddleSpatial/tree/
main/research/D3VAE.

* Regarding the methods listed in Tab. 3, the TCL model was adapted from https:
//github.com/hmorioka/TCL/tree/master/tcl, while the other models are
derived from https://github.com/rpatrik96/nl-causal.

* For iVAE (Khemakhem et al., 2020b), we used the implementation available at https:
//github.com/MatthewWilletts/algostability.

Our experiments were conducted with 5 different random seeds, and we report the average results
along with standard deviations. The experiments were run using 8 NVIDIA A100 GPUs.
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B.2 DATASETS.

In this section, we provide details about the datasets used for our experiments. We consider both
real-world and synthetic datasets, each with specific characteristics relevant to the study. The table
below summarizes the key properties of these datasets, including the number of samples, input
dimensions, the number of sources/factors, and the names of the factors. The real-world datasets
include REDD, REFIT, and UKDALE, which are commonly used in energy consumption modeling.
Additionally, we employ synthetic datasets (Synthetic-1, Synthetic-2, and Synthetic-3) to simulate
various scenarios with varying factors and input sizes. These datasets allow for comprehensive testing
of our proposed method across different contexts.

Table 4: Synthetic and real-world datasets

Dataset # Samples Input Dim  # Sources/Factors Factors name
REDD 5400 256 3 {FR, DW, WM, HTR, LT}
REFIT 1299 256 5 {FR, DW, WM, HTR, LT}
UKDALE 1300 256 ) {FR, DW, WM, HTR, LT}
Synthetic-1 12000 24 3 {FR, LT, HTR}
Synthetic-2 11000 96 5) {FR, LT, HTR}
Synthetic-3 11000 64 3 {FR, LT, HTR}
Synthetic-4 23000 256 5 {FR, DW, WM, HTR, LT}

B.3 CONTRASTIVE PARTIAL SELECTIVE PAIRING - DATA AUGMENTATIONS

Four augmentations were sequentially applied to all contrastive methods’ pipeline branches. The
parameters from the random search are: 1) Crop and delay: applied with a 0.5 probability and
a minimum size of 50% of the initial sequence. 2) Cutout or Masking: time cutout of 5 steps
with a 0.8 probability. 3) Channel Masks powers: each time series is randomly masked out with
a 0.4 probability. 4) Gaussian noise: random Gaussian noise is added to window input x with a
standard deviation form 0.1 to 0.3. Further details in App. B.3. Also in our experiments, we utilize
a composition of three data augmentations, applied in the following order - scaling, shifting, and
jittering, activating with a probability of 0.3 to 0.5.

Scaling The time-series is scaled by a single random scalar value, obtained by sampling € ~
N(0,0.5), and each time step is x'; = ex;.

Shifting The time-series is shifted by a single random scalar value, obtained by sampling € ~
N(0,0.5) and each time step is x'; = z; + €.

Jittering 1.1.D. Gaussian noise is added to each time step, from a distribution ¢, ~ N(0,0.5),
where each time step is now x'; = z; + €.

B.4 IMPLEMENTATION OF METRICS AND STUDY CASE

Previous work has relied on the Mean Correlation Coefficient (MCC) as a metric to quantify identi-
fiability. For consistency with previous work, we report this metric, but also propose a new metric
to quantify identifiability up to an affine transformation. There are two challenges in designing
such a metric: Firstly, for two Gaussian mixtures, standard distance metrices such as TV-distance or
KL-divergence do not have a closed form. Secondly, we need to find an affine map A that best aligns
a pair of Gaussian mixtures. Therefore, developing a metric to quantify identifiability up to an affine
transformation has natural challenges. We propose d .t . 1.2, defined below, as an additional metric in
this setting.
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B.4.1 ALIGNMENT PRIOR TO MEASURING WEAK MCC

We seek an affine map I to align two GMMs using two methods. One approach, used in previous
works on MCC, is Canonical Correlation Analysis (CCA). Alternatively, we explore a different
method. For two GMMs, we iterate over all permutations of the components, and for each permutation,
we compute the optimal map I' that aligns the components. While ideally I"' would align both the
means and the covariance matrices, solving this as an optimization problem is challenging. Thus, we
focus on aligning the means of the first GMM to those of the second GMM. The map I is found by
solving the least-squares problem:

: @) _ p,, @2
m;nZHm Loy’ | (B.1)

This can be efficiently solved using Singular Value Decomposition (SVD). Empirically, aligning the
means provides good results.

B.4.2 MEASURING IDENTIFIABILITY STRONG-MCC AND WEAK-MCC

The other metric we consider is the Mean Correlation Coefficient (MCC) metric which had been used
in prior works (Khemakhem et al., 2020a). There are two versions of MCC that have been used:

1. The weak MCC is defined to be the MCC after alignment via the affine map I transformation
see App. B.4.1.

2. The strong MCC is defined to be the MCC before alignment.

Furthermore, in this work, we consider two different metrics. For a pair of distributions p;, p2, we
define d 45,12 loss as

. [p1 — p2|
d ot L2(p1,p2) = g Ap,(Dgp1,p2),  where Ap,(p1,p2) = 1/2—%/2 (B.2)
Fatfne P, [Ip2llL,

In our experiments, we report both the strong MCC and weak MCC. Moreover, all reported MCC s are
out-of-sample, i.e. the optimal affine map I" is computed over half the dataset and then reused for the
other half of the dataset.

B.4.3 MEASURING DISENTANGLEMENT OF THE LEARNED REPRESENTATION

In implementing the disentanglement metrics, we adhere to the methodology outlined in (Locatello
et al., 2019), expanding it to accommodate time series data. For the computation of DCI metrics, we
employ a gradient boosted tree from the scikit-learn package.

B-VAE Metric Disentanglement is then measured as the accuracy of a linear classifier that predicts
the index of the fixed factor based on the coordinate-wise sum of absolute differences between the rep-
resentation vectors in the two mini-batches. (Higgins et al., 2016) suggest fixing a random attributes
of variation in the underlying generative model and sampling two mini-batches of observations x.
We sample two batches of 256 points with a random factor fixed to a randomly sampled value across
the two batches, and the others varying randomly. We compute the mean representations for these
points and take the absolute difference between pairs from the two batches. We then average these 64
values to form the features of a training (or testing) point.

Factor VAE Metric (Kim & Mnih, 2019) (Kim & Mnih, 2019) address several issues with this
metric by using a majority vote classifier that predicts the index of the fixed ground-truth attribute
based on the index of the representation vector with the least variance. First, we estimate the variance
of each latent dimension by embedding 10k random samples from the data set, excluding collapsed
dimensions with variance smaller than .05. Second, we generate the votes for the majority vote
classifier by sampling a batch of 64 points, all with a factor fixed to the same random value. Third,
we compute the variance of each dimension of their latent representation and divide it by the variance
of that dimension computed on the data without interventions. The training point for the majority
vote classifier consists of the index of the dimension with the smallest normalized variance. We train
on 10k points and evaluate on 5k points.
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Mutual Information Gap Metric (Chen et al., 2018b) 3-VAE metric and the FactorVAE metric
are neither general nor unbiased as they depend on some hyperparameters (Chen et al., 2018b).
They compute the mutual information between each ground-truth factor and each dimension in the
computed representation (x). For each ground-truth factor 2, they then consider the two dimensions
in 7(x) that have the highest and second highest mutual information with z;. The Robust Mutual
Information Gap (MIG) is then defined as the average, normalized difference between the highest
and second highest mutual information of each factor with the dimensions of the representation. The
original metric was proposed evaluating the sampled representation. Instead, we consider the mean
representation, in order to be consistent with the other metrics. We estimate the mutual information
by binning each dimension of the representations. Then, the score is computed as follows:

RMIG = — Z (Vjk, 2k) — max I (vj, 2x)]

Where zj, is a factor of variation, v; is a dimension of the latent representation. The MIG score of all
factors are averaged to report one score.

Disentanglement, Completeness and Informativeness (DCI) In (Carbonneau et al., 2022), a
framework is proposed to evaluate disentangled representations using metrics for modularity, compact-
ness, and explicitness, referred to as disentanglement, completeness, and informativeness. Regressors
predict factors from codes, with modularity and compactness estimated by importance weights 2;;.
These weights are computed using a lasso regressor or random forests. The compactness for factor v;

is defined as:
d

Ci=1+ Zpij logypij, pij = diR
j=1 > k=1 Rik
Compactness for the entire representation is the average over all factors. The modularity for code
dimension z; is:

M R..
Dj:1+Zpij10gMpija pij:%'
p Zk:leﬂ

The modularity score is the weighted average over all code dimensions, with weights p; reflecting
their importance in predicting factors. Explicitness is defined by the MSE of the regressor, normalized
between 0 and 1:

Explicitness = 1 — 6 - MSE, MSE = E[(x —y)?] = -.

Time Disentanglement Score TDS Time series data often exhibit variations that may not always
align with conventional metrics, especially when considering the presence or absence of underlying
attributes. To address this challenge, (Oublal et al., 2024) introduce the Time Disentanglement
Score (TDS), a metric designed to assess the disentanglement of attributes in time series data. The
foundation of TDS lies in an Information Gain perspective, which measures the reduction in entropy
when an attribute is present compared to when it’s absent.

zm — 25 |12
TDS = “n, B.3
dzm 721 zk: Varlz,,] (B-3)

In the context of TDS, we augment factor m in a time series window x with a specific objective:
to maintain stable entropy when the factor is present and reduce entropy when it’s absent. This
augmentation aims to capture the essence of attribute-related information within the data.

B.5 RESTIMECSL ARCHITECTURE

The architecture employs multiple ResTimeCSL residual units Fig. 8 to model both the encoder and
decoder for temporal sequential data. The input size is 7' = 256 (time steps) with C' = 1 (features).
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The encoder compresses the input into a latent representation of size n = 5 x d = 16, while the
decoder reconstructs the sequence into an output of size 7" = 256 x n = 5. An additive layer is
applied after decoding to sum the n components at each time step ¢, ensuring the output matches
the input dimensions. Let x € RT*¢ represent the input sequence. A linear patching operation is
applied to preprocess the input: Xpycn = LinearPatching(x). The encoder comprises multiple stacked
”ResTimeCSL” residual units to map the input into a latent representation z € R”*¢, where n = 5
and d = 16. Each "ResTimeCSL” block performs:
h,y = TCN(Affine(h;,) + SkipConnections),

with h;, and h,,, denoting the input and output of a block, respectively. Similarly, the decoder uses
multiple "ResTimeCSL” blocks to reconstruct the sequence, producing an output y € R7*", where
n = 5. Finally, an additive layer combines the n components at each time step ¢:

n
Yﬁnal(t) = Z yi(t)a
i=1
ensuring that the final output size matches the input: ygna € RE*T with C' = 1. This hierarchical

structure, powered by multiple "ResTimeCSL” units, ensures effective representation learning and
reconstruction while maintaining temporal and feature dimensions.
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Figure 8: The residual unit ResTimeCSL, is employed in both the encoder and decoder.

The training process uses the Adamax (Kingma & Ba, 2014) optimizer with an initial learning rate
of 1073 and B; = 0.9, 83 = 0.999. A cosine annealing learning rate decay is applied to improve
convergence

B.6 PIPELINE CORRELATED SAMPLES.

Robustness of the model to correlations between data is assessed by examining different pairs. We
focus mainly on linear correlations between two different devices and on the case where one device
correlates with two others. To do this, we parameterize the correlations by sampling a dataset from
the common distribution. We build on the correlation time series framework by introducing a pairwise
correlation between the attributes y,,, and y,, as follows: p(ym,, Yn) X exp (*| |Ym — ayn|?/ 202),
where « is a scaling factor. A high value of ¢ indicates a lower correlation between the normalised
attributes y,, and y,, (No.Corr, ¢ = o0). We also extend this framework to cover correlations between
several attributes in the time window 7'. Therefore, we consider correlation pair scenarios such as :
No correlation; Pair:1 washer-dryer; Pair:2 dryer-oven and, finally, a Random pair: approach with
randomly selected appliances.

B.7 IMPACT OF RELU/LEAKYRELU AND ATTENTION LAYER WITH GELU ACTIVATION ON
DECODER BEHAVIOR

In this study, we evaluate the impact of different activation functions on the decoder’s behavior to
satifies Asm 2.1. Specifically, we compare the use of ReLU (a piecewise affine activation) and GELU
(a smooth, nonlinear activation) within an MLP decoder. The results suggest that the choice of
activation function has a significant impact on the latent representation produced by the model.
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ReLU Activation: The decoder becomes piecewise affine, meaning that it can be broken down into
affine transformations over different regions of the input space. This causes the decoder to create
latent representations that reflect distinct linear transformations in various regions of the input. As a
result, the learned latent space is structured around these distinct affine regions, potentially making
the model more sensitive to certain regions of the data space and leading to more discrete or sharply
defined latent representations.

LeakyReLU Activation: In contrast, the GELU activation is smooth and nonlinear across the
entire input space. This means that the decoder no longer operates piecewise affine, and the latent
space learned by the model is more continuous and smooth. Since GELU smoothly transforms the
input, it enables the decoder to create more nuanced, continuous latent representations. The absence
of piecewise linear behavior allows for better modeling of complex, smooth relationships in the data,
which may improve generalization to unseen data or tasks that require such smooth transformations.

B.8 VALIDATION OF RESULTS ON SYNTHETIC DATA GENERATION

We simulate time-series data for energy disaggregation by leveraging the appliance signatures
Y € R7 from the REDD and REFIT datasets, where 7 is the number of time steps. The observed
mixed signal x € R” is generated as the sum of the individual appliance contributions, i.e., ; =
> h_i Ykt + € where e, ~ N(0, 02) is Gaussian noise. Each appliance signature 7;, represents
the time-series power consumption of appliance k, and these signatures are directly taken from the
dataset. The final mixed signal x is the result of combining the contributions from multiple appliances,
with each y;, corresponding to the power usage of a particular appliance in the dataset. This model
serves as a foundation for evaluating energy disaggregation methods.

200 lighting 1750 microwave 350 —— oven —— refrigerator 2000 —— Mixed Signal
1500 300
1250 250 1500
1000 200
750 150 400 1000
50 500 100

25 250 50

0 5000 10000 15000 0 5000 10000 15000 0 5000 10000 15000 0 5000 10000 15000 0 5000 10000 15000

Figure 9: An example of a mixed signal from four sources in the REDD dataset.
B.9 ADDITIONAL EXPERIMENT RESULTS.
B.9.1 EXPERIMENT ON REDD AND REFIT DATASETS

Remark B.1. In Tab. 6 , we observe a similarity in metrics across the REDD and REFIT datasets
(with 5 seed experiments), despite their differences, can be explained by the fact that certain factors,
particularly ”FR”, are highly represented in both datasets. This suggests that these common factors
capture underlying patterns relevant to both datasets, leading to similar model performance. However,
factors like "LT” and "HTR” are less prominent, which means their influence on the results is smaller.
To address this and more accurately evaluate our approach in real datasets, we consider a broader set
of factors such as {FR, DW, WM, HTR, LT }for REDD and UKDALE datasets, which would better
capture the unique characteristics of each dataset and provide a more nuanced evaluation.

' 0.0

-2 0 2 4
Z1

Figure 10: Recovered latent spaces for 4 runs of TimeCSL on REDD dataset with 5 latents (n =
5,d = 16) {FR, DW, WM, HTR, LT}.
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Table 5: Average performance, considering factors {FR, DW, WM, HTR, LT} with 5 seed on real
datasets REDD and REFIT. Metrics reported are DCI, RMIG and RMSE. Lower values are better for
all metrics. (] lower is better, 1 higher is worse Top-1, Top-2 ).

Sc.  Methods | o=00 =03 =08
Metrics = | DCI | RMIG | RMSE | | DCI | RMIG | RMSE | | DCI | RMIG | RMSE | |
O BertNILM - - 528142541 - - 75784776 - - 6650 4 6.69
= Os2s - - 47.99 +24.45 - - 63.64 +20.56 - - 67.93+1557
2 O Autoformer - - 61.52 + 7.66 - - 5223 +11.25 - - 48.45 +£9.31
£ O Informer - - 4859 41089 - - 592941136 - - 634541052
= TimesNet - - 63.57+10.61 - - 67.02+£9.10 - - 69.93+9.89
@ O C-DSVAE 7283 £ 11.71 108 +£0.45 4050 £6.45 | 71.76 £9.74 1.08 £0.44  51.67 £7.88 | 72.64 £ 1089 1.23+0.51  55.26 £ 7.80
SlowVAE 8231£11.96 1.08+047 43464793 | 81.65+10.75 1.08+£046 5481+593 | 84094693 1274049 53.65+748
CoST 79.86 £ 1086 1.16 £023  50.14 £6.77 | 79.16 = 1049  1.15+£0.22 5591 +572 | 80.164+9.68 1254020 58.76+5.51
SlowVAE+HDF 88.69 £ 1.11  1.114£0.24 6587 £8.13 | 8599+ 134 0.97+£021 6994 +729 | 89.47+058 1.14£024 7221+747
C-DSVAE + HDF 76.94+6.38 089+037 33.61+580 | 75.66+653 084033 37924588 | 7445+578 089040 42.58+6.49
® SparseVAE 7135+ 848 0.67+025 2646+568 | 72.67+854 0.68+027 31.07+534 | 73.98+823 0.74+£029 32.56+5.16
® TimeCSL 7544+£693 059+0.17 25534669 | 74504629 0.61+£019 2923+657 | 76664570 074+0.16 33.76+6.73
O BertNILM - - 60.83+5.80 - - 72634225 - - 71024255
O 828 - - 5373+£584 - - 6557+£535 - - 69.21 £4.06
£ O Autoformer - - 5460 +1.70 - - 5048 +£2.82 - - 50394226
% O Informer - - 4592+3.03 - - 5377+286 - - 6108 £251
g TimesNet - - 5468 +3.68 - - 5528+3.02 - - 59244341
@ O C-DSVAE 7483+£572 1124023 47044314 | 73424240 110£021 53.02+349 | 75294334 1214014 5481 +3.46
SlowVAE 80.92+£273 1.10£0.20  44.58 +£3.11 7995 £2.64 1.09+£0.18 51.92+£258 | 81.45+157 121£0.14  50.69 +2.99
CoST 7118 £3.83 1.04+006 4710166 | 71.01+386 105+005 5358+139 | 70564350 1144004 5529+ 1.22
Slow VAE+HDF 81.13+£0.17 085+0.08 60.50+3.01 | 80.21£0.19 079+0.07 6272+277 | 81.68+0.10 0894005 64.03+2.99
C-DSVAE + HDF 7477 £1.56 078 +£0.05 3562+£252 | 7439+151 075+£0.05 3840+183 | 7488+098 0.79+£0.07 39.95+1.62
® SparseVAE 69.84 £4.10 0.62+0.06 27284259 | 69.95+4.15 0.60+005 29.61+1.67 | 72524377 0.65+007 3035+ 1.45
® TimeCSL 7172 +£323 0464004 2502+£277 | 7121 +£258 0.51£0.03 2591 +£262 | 72.68+233 0.61£0.02 2882+283

10 10

Figure 11: Recovered latent spaces for 4 runs of TDRL on REDD dataset with 5 latents (n = 5,d =
16) {FR, DW, WM, HTR, LT}.
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Figure 12: Recovered latent spaces for 4 runs of SlowVAE on REDD dataset with 5 latents (n =
5,d = 16) {FR, DW, WM, HTR, LT}.
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Figure 13: Recovered latent spaces for 4 runs of iVAE on REDD dataset with 5 latents (n = 5,d =
16) {FR, DW, WM, HTR, LT}.
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B.9.2 EXPERIMENT ON SYNTHETIC DATASETS

Table 6: Average performance, considering factors {FR, LT, HTR} with 5 seed on synthetics datasets
. Lower values are better for all metrics. ({

(1 & 2). Metrics reported are: DCI, RMIG and RMSE

lower is better, 1 higher is worse Top-1, Top-2 ).

Sc.  Methods | o =00 =03 o=038
Metrics = | DCI | RMIG | RMSE | | DCI | RMIG | RMSE | | DCI | RMIG | RMSE | |
O BertNILM - 36.86 + 1.68 45.84 + 1.00 46.29 £ 0.76
- O S28 - - 3546+2.04 45.36 +2.47 - - 4576 +2.26
= O Autoformer - - 3245 £0.56 33.02+1.49 - - 3468 £1.13
2 O Informer - - 3292+ 1.67 35.03 £ 1.71 - - 3847+ 154
E TimesNet - - 3212+ 1.99 - - 33384183 - - 3584+ 1.61
@n CoST 4468 £1.57 0.61 £0.02 31.14+0093 | 48.01 = 1.57 0.64£0.09 34.81+0.71 | 4698 £1.13 0.65+0.01 38.14 +0.57
SlowVAE 5096 £0.71 0.61 £0.09 2826+ 1.54 | 53.04 +1.26 0.61 £0.09 32.15+0.78 | 52.14 £0.58 0.70+0.08 35.74 + 1.03
SlowVAE+HDF 52.17+£0.07 042+0.02 3735+1.49 | 53.00+0.12 046 +0.05 38.86+1.26 | 5253 £0.03 047 +0.01 4022+ 1.06
® TDRL 4234+1.02 0.28+0.04 18.64+1.41 |49.75+0.87 031+0.01 17.18+1.36 | 5043 £0.69 0.38+0.08 2091+ 1.07
O D3VAE 4130 +£197 0264005 27.64+1.40 | 41.55+091 033+0.26 30.11 £1.10 | 4347 £1.31 044 +0.03 32.77 £0.51
) C-DSVAE 4735+2.14 059+0.05 31.78+1.61 | 47.79+099 0.62+026 3455+ 1.18 | 50.02+1.42 0.71+£0.03 37.57+0.53
C-DSVAE + HDF 4431 +£193 0.56+0.05 29.68+ 1.51 | 45.01 £0.92 0.59 £0.25 3242+ 1.04 | 46.68 +£1.33 0.66+0.03 35.12 + 0.50
® SparseVAE 40.15+0.86 0.25+0.09 13.72+1.30 | 43.98 +0.81 028 +£0.21 14.81 £1.20 | 4453 +£0.58 0.31 £0.07 18.89 +1.30
® TimeCSL 39.024+0.87 023 +0.07 12.03+1.26 | 4251 +0.74 027+0.15 1272+ 1.16 | 4291 +£0.59 0.31+0.05 14.76 +0.92
Avg. \ 4562 +127 0.52+0.07 31.02+1.26 \ 48.02+0.85 0.58+0.12 34.08 +1.04 \ 4892 £ 1.18 0.64+0.06 35.67 +091 \
O BertNILM - 40.06 +2.41 44.14 £ 1.22 45.04 +0.99
Q@ O S28 - - 3848 +287 45.07 +£2.71 - - 46224226
= O Autoformer - - 33.56+0.79 34.13 £2.07 - - 3751+ 181
2 O Informer - - 36.02+2.37 37.61 + 1.98 - - 38.81+236
'i TimesNet - - 36.69 +2.08 - - 39.08 +£2.71 - - 42554235
@ CoST 50.87 £ 1.13 058 +£0.06 28.93+1.81 | 53.10+£1.23 0.61£0.14 3072+ 1.31 | 52.63£1.19 067 £0.14 33.15+ 1.12
SlowVAE 48.11+£1.06 045+0.05 31.73+2.19 | 50.15+1.35 047 +0.06 34.12+1.57 | 5097 £0.78 0.554+0.02 3527 + 1.06
SlowVAE + HDF 51.09 +£1.64 0.34+0.04 3285+240 | 51.97+1.07 039+0.05 3572+2.17 | 51.85+1.58 043+0.06 37.38+2.51
® TDRL 45.12+£2.15 039+0.05 22.87+1.36 | 50.61 £1.53 044 +0.03 2398+141 | 51.18£0.90 0.49+0.08 27.13+2.30
O D3VAE 4377+131 036+0.06 2843+ 1.61 | 46.17+0.86 0.39+0.04 30.14+1.35 | 48.02+123 044+0.06 3246+ 1.10
) C-DSVAE 49.68 £2.12 0.55+0.07 31.03+2.15 | 4992+ 1.05 058 +0.08 33.60+1.77 | 51.51£1.76 0.61 £0.03 3538 +1.42
C-DSVAE + HDF 4738+ 1.19 0.53+0.05 30.76+2.13 | 4885+ 1.62 0.56 +£0.03 32.894+2.04 | 49.98 +£1.34 0.60+0.05 3425+ 122
® SparseVAE 46.56 £2.49 044 +0.08 19.88+2.06 | 5049 +1.07 047 +£0.06 21424253 | 5083 +1.73 0.53+0.05 23.59 +2.17
® TimeCSL 4345+1.12 033+0.02 1632+2.16 | 4733 +£1.29 035+0.04 17.224+2.01 | 48.09+£0.81 0.39+0.06 18.95+2.08
Avg. \ 47.02+1.56 0.45+0.06 28.04+ 1.84 \ 5043 +£1.19 048 +0.09 3032+ 1.56 \ 50.95+1.26 0.54 +£0.07 32.83 4+ 1.57 \

Table 7: Average performance, considering factors {FR, DW, WM, HTR, LT} with 5 seed on synthetics
Lower values are better for all metrics. (J

datasets. Metrics reported are DCI, RMIG and RMSE.

lower is better, 1 higher is worse Top-1, Top-2 ).

Sc.  Methods | o =00 o=03 o=08
Metrics = | DCI | RMIG | RMSE | | DCI| RMIG | RMSE | | DCI | RMIG | RMSE | |
O BertNILM 56.4 +£2.58 - - 70.2 £ 145 70.92 £ 1.15
< O 828 543 £3.12 - - 69.5 £3.56 69.95 £ 3.26
2 Autoformer 49.7 £ 0.81 - - 50.5£2.15 - - 52954+ 1.63
_E O Informer 50.3 +£2.41 - - 535+1.98 - - 5895+ 1.89
£ O FEDformer 50.3 £2.12 - - 5254245 - - 59.01 +£1.76
2 TimesNet - - 49244287 - - 51.10+2.64 - - 54914231
O C-DSVAE 72.42 £3.10 0.96 £ .15 48.6 £2.32 73.12 £ 143 095 £ .15 529 £231 | 7429 £2.04 1.08 £.09 5299 +£1091
SlowVAE 78.0 = 1.09 0.94 £ .13 4324223 78.0 £ 1.09 0.94 £ .13 492+ 1.13 | 79.74 £ 0.84 1.07+.11 49.65+ 143
CoST 68.4 +2.41 097+.03 47.7+1.35 68.4 + 241 097+.03 532+1.02 | 69.95+ 1.63 1.00 +£.02 5345+ 0.82
SlowVAE+HDF 79.8 £.10 0.64 +£.05 572+2.15 79.8 +.10 0.64+.05 613+182| 80.37+.05 0.72+.03 61.64 +£1.52
C-DSVAE + HDF 73.1£1.01 0.69 + .02 344 +1.89 73.1£1.01 0.69 £+ .02 38.1£1.34 | 7425 £0.59 0.73 £.05 3848+ 1.04
® SparseVAE 67.2+£2.01 0.52 £.02 243 +1.81 67.2£2.01 0.52 £.02 274+£1.13 | 71.79 £ 1.27 0.58 £.04 27.77+0.83
® TimeCSL 63.5+1.35 0.38 +.02 19.6 £ 1.95 693+ 12 0.44 + .02 20.3+£1.79 | 70.12 £ 0.91 0.51 +£.01 23.63+1.49
O BertNILM 61.42 +3.47 - - 67.61 £1.95 - - 69.06 +1.43
T O 828 59.08 £4.15 - - 68.60+3.91 70.68 £ 3.25
= Autoformer 49.87 £0.92 - - 51.53+148 51.88 £1.34
% Informer 5423 £1.78 - - 5770+ 1.78 - - 6251+ 1.55
£ O FEDformer 52.84 + 1.69 - - 5583 +1.82 - - 61.92+1.57
2 TimesNet - - 51.37+241 - - 55354223 - - 5847+221
O C-DSVAE 7297 £3.44 1.04 £0.16 47.17+2.11 73.60 + 1.82 0.98 £0.14 52.16 £1.89 | 73.96 + 2.46 111 £0.12 5373+ 1.79
SlowVAE 77.41 £ 1.67 094 £0.15 46.61 £191 77.80 £ 1.63 0.95+0.14 4982+ 1.71 | 79.47 £1.26 1.04 £0.13 50.88 &+ 1.58
CoST 70.75 £ 2.01 096+0.09 4892+1.62 | 7087+2.04 096+0.09 5273+134|71.93+1.84 098+0.09 5446+ 1.19
SlowVAE+HDF 79.97+£0.14  0.724+0.05 56.96+2.34 | 79.77+0.14 072+ 0.05 59.75+221 | 80.22+0.07 0.75+0.03 60.77 +2.22
C-DSVAE + HDF 73.85+085 0.69+0.05 3419+147 | 7371+085 0.69+0.05 37.53+121 | 7434+0.56 0.71 £0.04 39.35+ 1.06
® TDRL 70.86 £0.816 0.57 £0.041 3280 £ 1.41 | 70.75 £0.816 0.57+£0.041 36.04 £1.16 | 71.94 £0.54 0.58 +0.033 37.83 £ 1.02
® SparseVAE 70.13 £ 1.44 0.61 £0.04 2546 £1.10 70.13 £ 1.44 0.61 £0.04 2899 £1.22 | 71.44 £1.30 0.63 £0.05 29.47 £1.10
® TimeCSL 66.14 +£1.66 0.40+0.04 19.81 +1.29 | 69.00 £ 1.41 044+0.04 2046+145 | 7041 +1.22 048+0.03 2208+ 1.36

B.9.3 COMPARISONS BETWEEN TIMECSL AND BASELINES ON KITTI DATASET

We evaluate TimeCSL on time-sequential data using preprocessed frames from the KITTI and
MOTSChallenge datasets. The original KITTI image resolutions are 1080 x 1920 or 480 x 640 for
MOTSChallenge, and between 370-374 pixels tall by 1224-1242 pixels wide for KITTI MOTS. The
video frame rates vary from 14 to 30 fps, as described in (Milan, 2016). To preprocess the data, we
apply nearest-neighbor down-sampling to reduce each frame’s height to 64 pixels while maintaining
the aspect ratio for the width. Using a horizontal sliding window, we extract six equally spaced
windows of size 64 x 64 (with overlap) from each sequence in both datasets. This preprocessing
produces a sequence of shape 64 x 64 x T, where T represents the number of time steps in the
sequence. Our approach assumes reasonable invariance to horizontal translation and scale within
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the dataset. Scale invariance is supported by the fact that the data was collected from a car-mounted
camera, leading to varying distances to pedestrians. To validate translation invariance, we conducted
an ablation study on the number of horizontal sliding windows. Using only two horizontally spaced
windows, instead of six, resulted in no significant changes in key statistics, such as kurtosis (remaining
within =10% of the original value for Az transitions). This experiment results Fig. 14 demonstrates
the robustness of TimeCSL to time-sequential data, showcasing its potential for applications beyond

its original domain.

TimeCSL SparseVAE TDLR
MCC weak=0.933 1 MCC weak=0.788 1o MCC weak=0.831

~- 036 -020 052

Iu
0

Figure 14: Validation on KITTI dataset. Left. MCC correlation matrix of the top 3 latents
corresponding to y-position (1), x-position (2) and scale (3). Right. Images produced by varying the
TimeCSL latent unit that corresponds to the corresponding row in the MCC matrix.
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