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ABSTRACT

Practical and ethical constraints often require the use of observational data for
causal inference, particularly in medicine and social sciences. Yet, observational
datasets are prone to confounding, potentially compromising the validity of causal
conclusions. While it is possible to correct for biases if the underlying causal
graph is known, this is rarely a feasible ask in practical scenarios. A common
strategy is to adjust for all available covariates, yet this approach can yield bi-
ased treatment effect estimates, especially when post-treatment or unobserved
variables are present. We propose RAMEN, an algorithm that produces unbi-
ased treatment effect estimates by leveraging the heterogeneity of multiple data
sources without the need to know or learn the underlying causal graph. Notably,
RAMEN achieves doubly robust identification: it can identify the treatment effect
whenever the causal parents of the treatment or those of the outcome are observed,
and the node whose parents are observed satisfies an invariance assumption. Em-
pirical evaluations across synthetic, semi-synthetic, and real-world datasets show
that our approach significantly outperforms existing methods1.

1 INTRODUCTION

Treatment effects are key quantities of interest in applied domains such as medicine and social sci-
ences, as they determine the impact of interventions like novel treatments or policies on outcomes
of interest. To achieve this goal, researchers often rely on randomized trials since randomizing the
treatment assignment guarantees unbiased treatment effect estimates under mild assumptions. How-
ever, methods relying on randomized data face several issues, such as small sample sizes, sample
populations that do not reflect those seen in the real world, and ethical or financial constraints. As a
result, there is growing interest in using observational data to estimate treatment effects.

A fundamental challenge in using observational data is the selection of a valid adjustment set, i.e.
a set of covariates that can be used to identify and estimate the treatment effect. Although cri-
teria for identifying valid adjustment sets are well-established, they rely on the knowledge of the
underlying causal graph. When the graph is not known, practitioners often adjust for all available
covariates (Austin, 2011). Yet, this approach runs the risk of including bad controls—covariates that
open backdoor paths between the treatment (T ) and the outcome (Y ), thereby introducing bias into
the treatment effect estimate. For instance, consider the causal graphs illustrated in Figure 1, where
{X1, X2} are the observed covariates. In Figure 1a, both X1 and X2 are parents of T , and adjusting
for {X1, X2} blocks all backdoor paths between T and Y , making it a valid adjustment set. In
contrast, in Figure 1b, X1 is a child of T , and conditioning on it opens a backdoor path between T
and Y , introducing bias in the effect estimate. In the latter case, X1 is referred to as a bad control.

Bad controls pose a significant challenge when the causal ordering of the observed covariates is
not clear (King, 2010; Montgomery et al., 2018). A prominent example for a bad control is the
birth-weight paradox (Wilcox, 2001) from which it was concluded that when estimating the effect
of maternal smoking (T ) on infant mortality (Y ), the birth weight would be a bad control like X1 in
Figure 1b, as it is a child node of T and likely leads to collider bias. Further, Acharya et al. (2016)

1See our GitHub repository: https://github.com/jaabmar/RAMEN/
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Figure 1: Two causal graphs illustrating when the set of all covariates is or is not a valid adjustment
set: (a) {X1, X2} blocks all backdoor paths between T and Y , making it a valid adjustment set;
(b) X1 opens a backdoor path between T and Y , introducing bias in the treatment effect estimate if
adjusted for. Unobserved variables are dashed and colored in white, bad controls are colored in red,
and good controls—covariates that can be included in the adjustment set—are colored in green.

found that up to two-thirds of empirical studies in political science that make causal claims inad-
vertently include bad controls in their analysis, leading to biased treatment effect estimates. Several
works have tried to tackle the problem of bad controls using expert-driven structural knowledge, e.g.
by leveraging anchor variables (Cheng et al., 2022a; Shah et al., 2022), but such domain expertise
is often unavailable in practice. Shi et al. (2021) propose an alternative approach that leverages ac-
cess to multiple heterogeneous data sources—e.g. observational studies from different countries—to
identify and estimate the treatment effect in the presence of bad controls. However, their approach
can fail to identify the treatment effect when some variables in the causal graph are unobserved and
their distribution shifts across environments, e.g. for the causal graph illustrated in Figure 1b.

In this work, we propose Robust ATE identification from Multiple ENvironments (RAMEN ), an
algorithm that identifies and estimates the average treatment effect in the presence of bad controls
without the need to know or learn the complete causal graph. Notably, RAMEN leverages the hetero-
geneity of multiple data sources to achieve doubly robust identification: it can identify the average
treatment effect whenever the causal parents of the treatment or those of the outcome are fully ob-
served, and the node whose parents are observed satisfies an invariance assumption. In particular,
our methodology relaxes the full observability requirements of Shi et al. (2021), requiring only
partial observability of the causal graph. Our key contributions are outlined below.

• We propose the first algorithm, to our knowledge, that leverages multiple heterogeneous
data sources to identify and estimate the average treatment effect in the presence of both
bad controls and unobserved variables. Our algorithm is based on a novel double robustness
property that offers two strategies to identify the treatment effect: either observe the causal
parents of the treatment or those of the outcome.

• We demonstrate that our algorithms significantly outperform existing approaches for treat-
ment effect estimation in the presence of bad controls on synthetic, semi-synthetic and
real-world datasets. We further evaluate our method on a real-world example, showing that
our results align with established epidemiological knowledge.

2 RELATED WORK

Various criteria and methods have been proposed for covariate selection, often in the form of neces-
sary and sufficient conditions for a given causal graph, such as the backdoor criterion and its vari-
ations (Pearl, 1995; Shpitser et al., 2010; Vander Weele & Shpitser, 2011; Maathuis & Colombo,
2015; Perković et al., 2018). However, since the causal graph is rarely known in real-world appli-
cations, the most common heuristic approach assumes that all observed covariates are pre-treatment
and includes all of them (Austin, 2011, p. 414). Yet, including all covariates has several drawbacks:
certain pre-treatment covariates can introduce M-bias (Entner et al., 2013; Gultchin et al., 2020;
Cheng et al., 2022b; Shah et al., 2022), and even when bias is not an issue, selecting a smaller subset
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of covariates leads to more efficient estimates (Hahn, 2004; White & Lu, 2011; De Luna et al., 2011;
Rotnitzky & Smucler, 2020; Witte et al., 2020; Henckel et al., 2022; Guo et al., 2023).

The problems described above are orthogonal to our focus in this paper, which is on scenarios
where bad controls are present and the underlying causal graph is unknown (see Appendix B for
a complete literature review). In this context, previous works have achieved partial identification,
albeit with significant computational costs (Hyttinen et al., 2015; Malinsky & Spirtes, 2017). More
recently, several works have proposed methods for point identificatios using expert-driven structural
knowledge. Cheng et al. (2022a) rely on a known anchor variable, Shah et al. (2022) assume that
a direct parent of the treatment variable is known, and Shah et al. (2024) assume all children of the
treatment variable are observed and known. However, a significant limitation of these approaches is
their dependence on structural knowledge of the causal graph, which is often unavailable in practice.
In contrast, our methodology achieves point identification by leveraging multiple heterogeneous data
sources, effectively circumventing the need for partial knowledge of the underlying causal graph.

Finally, our notion of double robustness differs significantly from classical results in estimation
(Robins et al., 1994; Vansteelandt et al., 2008; Chernozhukov et al., 2018) and identification
(Arkhangelsky & Imbens, 2022), which focus on robustness to model misspecification. A more
similar concept is robust identification in instrumental variable settings (Kang et al., 2016; Hartwig
et al., 2017; Guo et al., 2018; Kuang et al., 2020; Hartford et al., 2021), which allows for a fraction
of instruments to be invalid. In contrast, our method guarantees identification that is robust to un-
observed variables when either (i) the observed covariates include all parents of T and T satisfies
invariance assumptions, or (ii) the same holds for Y – hence yielding double robustness.

3 PROBLEM SETTING

For a fixed directed acyclic graph (DAG) G, we denote the complete set of its nodes by Z̃ and the
observed nodes by Z. We denote the index set of parents, ancestors, and descendants for any node
Z̃i by Pa(Z̃i), An(Z̃i), and De(Z̃i), respectively. Additionally, for an index set S, Z̃S denotes the
subvector of Z̃ corresponding to the indices in S. We assume the data is collected under different
conditions, represented by environments e ∈ E , with |E| = ne. For each environment e ∈ E , we
have access to a dataset De = {(Xi, Ti, Yi)}ni=1 which contains n i.i.d. tuples sampled from the
marginal induced by the joint distribution Pe over (X,U, T, Y ). Here, X ∈ Rd are the observed
covariates, U ∈ Rk are the unobserved covariates, T ∈ {0, 1} is a treatment assignment variable and
Y ∈ R is the outcome. We denote by P = 1

|E|
∑

e∈E Pe the distribution of the pooled environments.

For each environment e ∈ E , the distribution Pe is induced by a structural causal model (SCM),
defined as a tuple Me = (G, {fi}pi=1,Pe

ϵ) on p = d + k + 2 variables (Z̃1, . . . , Z̃p), where the
observed covariates are X = Z̃[d], the unobserved covariates are U = Z̃d+[k], the treatment variable
is T = Z̃p−1, and the outcome variable is Y = Z̃p, with p /∈ An(T ). The SCM defines the
probability distribution Pe by setting for each j ∈ [p]

Z̃j ← fj(Z̃Pa(Z̃j)
, ϵj), j = 1, . . . , p, (1)

where fj : Rp×R→ R is a measurable function and ϵ ∈ Rp is an exogenous noise vector following
the joint distribution Pe

ϵ over p independent variables.

Further, along the lines of the existing methods in the literature (Shi et al., 2021; Wang et al., 2023),
we require the absence of observed mediators between T and Y in the structural causal model.
Assumption 3.1 (Absence of Mediators). We assume that no observed mediators exist between T
and Y , i.e. it holds that

De(T ) ∩An(Y ) ∩ [d] = ∅.

We remark that Assumption 3.1 is falsifiable using statistical tests to determine whether a covari-
ate is a mediator between T and Y ; see, e.g. Baron & Kenny (1986); Preacher & Hayes (2004).
Furthermore, even when this assumption is violated, the causal quantity identified by our method
corresponds to the natural direct effect (Pearl, 2022), which remains a quantity of interest in fields
such as epidemiology (Tchetgen & VanderWeele, 2014) and the social sciences (Imai et al., 2011).
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3.1 TREATMENT EFFECT IDENTIFICATION

Our goal is to identify the treatment effects for different environments in the presence of unob-
served and post-treatment variables. More specifically, we are interested in the average treatment
effects (ATEs) for all environments e ∈ E , defined as

θe = EPe

[
Y do(T=1) − Y do(T=0)

]
.

A common approach for identifying the ATE is to find a valid adjustment set (Shpitser et al., 2010),
that is, a subset S ⊆ [d] of the observed covariates that satisfies both the classic outcome and
treatment identification formulae, i.e. for all environments e ∈ E and t ∈ {0, 1} it holds that

EPe

[
Y do(T=t)

]
= EPe [EPe [Y | XS , T = t]] = EPe

[
Y I{T = t}

Pe(T = t | XS)

]
. (2)

Several criteria have been proposed in the literature to find valid adjustment sets, with the backdoor
criterion being the most prominent—see Peters et al. (2017, Sec. 6.6) for a detailed discussion.
However, these criteria crucially rely on knowledge of the underlying causal graph. Therefore,
it is commonly assumed among practitioners that the set [d] of all observed covariates is a valid
adjustment set. This is a reasonable assumption only in settings where all the observed covariates
are pre-treatment and there are no unobserved covariates.

In contrast, our work focuses on settings where both post-treatment and unobserved covariates are
present. To identify the ATE in such settings, we introduce a key assumption. While each environ-
ment may have a different joint distribution Pe over (X,U, Y, T ), we assume that at least one of T
or Y is an invariant node with its parents fully observed and the conditional mean of the node given
its parents is invariant across environments.
Assumption 3.2 (Invariant node). We assume that one of the following holds for all e ∈ E:

(a) All parents Pa(T ) of T are observed and EPe

[
T | ZPa(T )

]
= EP

[
T | ZPa(T )

]
, Pe − a.s.

(b) All parents Pa(Y ) of Y are observed and EPe

[
Y | ZPa(Y )

]
= EP

[
Y | ZPa(Y )

]
, Pe − a.s.

We denote the node for which the above holds as the invariant node Vinv ∈ {T, Y }.

It is worth emphasizing that each of the above assumptions can provide identification of the ATE
on its own. Here, we combine these two identification assumptions to obtain doubly robust iden-
tification: we only require that either (a) or (b) in Assumption 3.2 holds. This is similar in spirit
to the double machine learning literature (Robins & Rotnitzky, 1995; Chernozhukov et al., 2018),
where only one of two assumptions about model specification needs to hold to obtain consistent
ATE estimates. However, the key difference is that our assumption offers robustness against poten-
tial unobserved variables in the underlying causal graph, whereas classic double robustness offers
robustness against misspecification of the outcome and treatment functions.

Further, the invariance assumptions (a) and (b) are closely related to the conditions in the invariance-
based domain generalization literature, such as Peters et al. (2016); Rojas-Carulla et al. (2018); Gu
et al. (2024). While these settings are included in Assumption 3.2 (as we discuss in Appendix A.1),
our setting does not require full independence of the noise variable2, unlike Peters et al. (2016), nor is
it limited to the additive noise case, as in Gu et al. (2024), which does not hold in the case of binary
treatment variables. Finally, we comment on the observability part of Assumption 3.2: assuming
Pa(Vinv) are observed is strictly weaker than causal sufficiency, which would require the full causal
graph to be observed. Notably, our framework allows for scenarios where Assumption 3.2 (a) is
satisfied with T as the invariant node, whereas the setting proposed in Shi et al. (2021) is more
restrictive, since it requires Y to always be the invariant node.

4 METHODOLOGY

In this section, we introduce RAMEN, our method to identify the ATE by leveraging the heterogene-
ity in the observed data. First, we present a doubly robust population-level estimator and discuss

2Although we require independence of exogenous noise variables for the full graph, here, we refer to the
graph limited to the observed nodes, where the noise variables ϵj can be dependent on ZPa(Zj).
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under which conditions it equals to the ATE. Then, we show how to compute this estimator tractably
by minimizing a novel invariance loss and propose two algorithms to do so: a combinatorial search
over subsets and a more scalable differentiable approach for high-dimensional covariate settings.

4.1 POPULATION-LEVEL ESTIMATOR

In what follows, we denote by IT = [d] and IY = [d + 1] the index sets corresponding to the
observed variables Z = (X,T ). For any node V ∈ {T, Y } and any observed subset S ⊆ IV , we
define the conditional means over the pooled and individual environments

mS(Z;V ) := EP [V | ZS ] and me
S(Z;V ) := EPe [V | ZS ] .

1. Identify an invariant set We begin by observing that, by Assumption 3.2, there exists an
invariant node Vinv ∈ {T, Y } and a subset of covariates S (given by, e.g, Pa(Vinv)), for which the
following conditional moment constraint holds for all environments e ∈ E :

∃S ⊆ IVinv : me
S(Z;Vinv) = mS(Z;Vinv), Pe − a.s. (3)

The set S is not necessarily unique: besides the (observed) parents of Vinv for instance, the invari-
ance could also hold for certain supersets of Pa(Vinv). By observing that the conditional moment
constraint above is equivalent to the following infinite set of unconditional moment constraints

EPe [(Vinv −mS(Z;Vinv))h(ZS)] = 0, for all measurable h,

any set S that satisfies the invariance constraint Equation (3) is also contained in

argmin
S⊆IVinv

max
e∈E


 sup

h∈L0(R|S|)
EPe [(Vinv −mS(Z;Vinv))h(ZS)]




2

:= argmin
S⊆IVinv

JS(Z;Vinv), (4)

where L0(Rd) denotes the space of measurable functions over Rd. However, since the invariant
node Vinv is not known beforehand, we search for a set of observed nodes that satisfy the invariance
with respect to either T or Y , that is, we want to find

S ∈ min
V ∈{T,Y }

argmin
S⊆IV

JS(Z;V ). (5)

Further, we can leverage the structural knowledge that T is always an ancestor of Y to simplify the
optimization problem. Specifically, we know that T must be part of the invariant set when V = Y .
Therefore, we can condition the expectation in Equation (4) on T = 0 and T = 1 separately and
take the maximum of the resulting losses. This gives us a slightly different loss function for Y :

JS(Z;Y ) := max
t∈{0,1}

max
e∈E


 sup

h∈L0(R|S|)
EPe

[(
Y − EP[Y | ZS , T = t]

)
h(ZS) | T = t

]



2

. (6)

2. Estimate the ATE For a minimizer S , we then define the corresponding population-level
RAMEN, estimator for all environments e ∈ E as

θe(S ) := EPe

[
µ̄1(XS )−µ̄0(XS )+

(Y −µ̄1(XS ))T

π̄(XS )
−
(Y −µ̄0(XS ))(1−T )

1−π̄(XS )

]
,

where we define the pooled conditional outcome and treatment functions as

µ̄t(XS ) := EP[Y | XS , T = t] and π̄(XS ) := EP[T | XS ].

In what follows, we show that under a condition on data heterogeneity, detailed in Assumption 4.1,
our population-level estimator θe(S ) is equivalent for all S that satisfy Equation (5), and it is
equal to the true treatment effect. In Section 4.3, we then discuss how we can construct a good
finite-sample ATE estimate in a computationally efficient way.
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4.2 DOUBLY ROBUST IDENTIFICATION GUARANTEES

Without further assumptions, finding the minimizer of Equation (5) is not sufficient for identifying
the ATE: for instance, if there is no variability between distributions Pe, our objective could be
trivially minimized by any observed subset S. Only when there is sufficient heterogeneity in the
observed environments will θe(S ) be equivalent to the ATE. We formalize this condition below.
Assumption 4.1 (Identification condition). For all V ∈ {T, Y } and S ⊆ IV , it holds that:

∀e ∈ E : me
S(Z;V ) = mS(Z;V ), Pe−a.s. =⇒ P

(
mS(Z;V ) ̸= mPa(V )(Z;V )

)
= 0.

Assumption 4.1 can be understood as ensuring that the environments present sufficient heterogene-
ity. This heterogeneity is crucial because it guarantees that conditioning on any set S with invariant
outcome or treatment functions across environments is equivalent to conditioning on the parents of
the invariant node. Although our environment heterogeneity assumption is relatively strict, it is a
common requirement in the invariance literature (cf. Peters et al. (2016); Arjovsky et al. (2019)).
For example, in the simultaneous noise intervention setting described in Peters et al. (2016, Section
4.2.3), Assumption 4.1 can be satisfied with as few as two environments, while in the case of single-
node interventions it requires O(p) environments, where p is the number of observed variables.

We now present our formal identification result for the ATE.
Theorem 1 (Doubly robust identification). Let S be any minimizer of the invariance loss in Equa-
tion (5). Then, under Assumptions 3.1,3.2, 4.1, if positivity holds, that is

∀e ∈ E : Pe(T = t | XS = x) > 0, ∀t ∈ {0, 1} and ∀x ∈ supp (Pe
X) ,

we can identify the average treatment effect θe = θe(S ), for all environments e ∈ E .

We remark that the positivity assumption is standard and widely used for identifying treatment
effects in observational studies (Hernán & Robins, 2010, Sec. 3.2). Theorem 1 states that any
solution to our invariance loss is a valid adjustment set in the sense that it is sufficient to identify the
average treatment effect in all the environments.

4.3 AN EFFICIENT FINITE-SAMPLE ESTIMATOR

The population-level estimator presented above involves two significant computational challenges.
First, the invariance loss involves a supremum over an infinite-dimensional space of measurable
functions, making it intractable to compute directly. Second, it requires searching over all possible
subsets of covariates, which is computationally infeasible for high-dimensional settings. To address
these issues, we introduce a practical estimator based on a kernelized invariance loss and a differen-
tiable relaxation of the subset selection problem.

Kernelized invariance loss A major problem of the loss function in Equation (4) is that it is
computationally infeasible to search over the entire space of measurable functions. However, we
can simplify the problem by restricting h to be in a reproducing kernel Hilbert space (RKHS). As
long as the reproducing kernel of the RKHS is universal (e.g. Gaussian kernel), the two formulations
are equivalent (Gretton et al., 2012). More formally, for any subset S ⊆ IV and environment e ∈ E :


 sup

h∈L0(R|S|)
EPe


(V −mS(Z;V ))︸ ︷︷ ︸

:=δS(Z,V )

h(ZS)







2

=

(
sup

∥h∥H≤1

EPe [δS(Z, V )h(ZS)]

)2

= ∥EPe [δS(Z, V )k(·, ZS)]∥2H
= EPe [δS(Z, V )k (ZS , Z

′
S) δS(Z

′, V ′)] ,

where k is a uniformly bounded reproducing kernel corresponding to a universal RKHS H (Stein-
wart, 2001, Definition 4), and (V ′, Z ′) is an independent copy of (V,Z) following the same distri-
bution. Hence, we can rewrite our invariance loss in closed form:

JS(Z;V ) = max
e∈E

EPe [δS(Z, V )k (ZS , Z
′
S) δS(Z

′, V ′)] . (7)
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A long line of work has proposed methods to estimate invariant predictors, especially when the
optimal predictor is linear. These methods broadly fall into two categories: hypothesis test-based
methods (Peters et al., 2016; Heinze-Deml et al., 2018; Pfister et al., 2019) and optimization-based
methods (Arjovsky et al., 2019; Ghassami et al., 2017; Rothenhäusler et al., 2019; 2021; Pfister et al.,
2021; Yin et al., 2024; Shen et al., 2023; Gu et al., 2024; Wang et al., 2024). Our approach falls
in the latter category, with a fundamental distinction. While all these works utilize the invariance
principle to improve prediction in unseen environments and generalize to new settings, we aim to
identify a treatment effect within the observed environments. This is reflected in our loss function,
as it does not measure the quality of the predictor (e.g. using a least squares loss). Nonetheless,
our invariance loss could also be of interest in the domain generalization literature as it retains the
benefits of the invariance loss in Gu et al. (2024) while significantly simplifying their optimization
procedure.

A fully differentiable loss When searching over all possible subsets of covariates is compu-
tationally infeasible, we propose a continuous relaxation of the optimization problem in Equa-
tion (5) that can be efficiently solved using gradient descent. Specifically, we select the nodes as
Zw := B(w) ⊙ Z, where Z = (X,T ) and the j-th component of B(w) ∈ {0, 1}d+1 is sampled
independently from a Bernoulli distribution with probability sigmoid(wj). We parametrize the con-
ditional mean using a neural network fθ and we aim to solve the following optimization problem:

w ∈ argmin
w∈Rd+1

min
θ∈Rd+1,V ∈{T,Y }

max
e∈E

EPe,B(w) [(V − fθ(Zw))k (Zw, Z
′
w) (V

′ − fθ(Z
′
w))] ,

Since the weights are discrete, direct differentiation is not possible. To overcome this, we use a
Gumbel approximation (Jang et al., 2017; Maddison et al., 2017; Gu et al., 2024), where the j-th
component of B(w) is approximated as:

Bj(w) ≈ sigmoid

(
wj +G1,j −G2,j

τ

)
, as τ → 0+,

with G1,j and G2,j being Gumbel(0, 1) random variables. This approximation makes B(w) dif-
ferentiable (where it was previously discontinuous in wj), allowing us to optimize using gradient
descent while gradually annealing the hyperparameter τ . Finally, we construct the subset of covari-
ates Sinsta− by including Zi only if the weights are positive, that is Sinsta− = {i : wi > 0}. We
refer the reader to Appendix A.3 for the complete implementation details of our algorithms.

5 EXPERIMENTS

In this section, we evaluate our method through experiments on synthetic, semi-synthetic, and real-
world datasets. We first present experiments on several known DAGs, where the invariances are
known and satisfy our assumptions. In line with our theory, RAMEN correctly identifies the ATE,
resulting in a low estimation error, whereas other methods tend to fail. We also test RAMEN on a
more challenging benchmark by uniformly sampling DAGs using the Erdős–Rényi model—a stan-
dard approach for testing causal methods across a wide variety of graph topologies (Huang et al.,
2020). Finally, we validate our estimator beyond purely synthetic data: first in a semi-synthetic set-
ting with real-world covariates and then in a real-world setting where we compare the conclusions
from RAMEN with established epidemiological findings.

In our experiments, we focus on the statistical task of estimating the average treatment effect (ATE)
θe for each environment e ∈ E . To evaluate the performance of an estimator θ̂e, we compute the
mean absolute error (MAE) averaged across environments: 1

|E|
∑

e∈E |θe − θ̂e|. We evaluate two

implementations of RAMEN: (i) θ̂ = θ̂(S ), based on combinatorial subset search (Section 4.3),
and (ii) θ̂insta− = θ̂(Sinsta− ), based on the Gumbel trick (Section 4.3); see Appendix A.3 for the
complete implementation details of our algorithms. We compare RAMEN against three baselines:
θ̂irm, the IRM approach for treatment effect estimation proposed by Shi et al. (2021); θ̂all, which
adjusts for all available covariates; and θ̂null, which does not adjust for any covariates.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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and numbers of available environments, our method significantly outperforms existing baselines.
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from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.

10

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
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with the only exception being the treatment variable T , which is generated by additionally applying
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experiments on a number of Fanny controlled/known DAGs, where the biases and invariances are
known and satisfy our assumptions. In all of these, our theory predicts that our method is expected
to identify the ATE, leading to a small MAE, whereas other methods tend to fail. We also test
RICEon a more challenging synthetic benchmark by uniformly sampling directed acyclic graphs
using the Erdős–Rényi model. Fanny yixin mentioned others have done it before and its a typical
way to evaluate? - cite Finally, we validate our estimator beyond the purely synthetic setting: in
a semi-synthetic setting with real-world covariates and a synthetic non-linear ground truth and a
real-world experiment where we compare the effect estimates Fanny conclusions obtained through
RICEwith established epidemiological findings.

Evaluation metric and baselines We focus on the statistical task of estimating the average treat-
ment effect (ATE) ✓e, for each observed environment e 2 E . To evaluate the performance of an
estimator ✓̂ Fanny superscript e or not, currently inconsistent , we compute the mean absolute er-
ror (MAE) averaged across environments: 1

|E|
P

e2E |✓e � ✓̂e|. Fanny We compare the two imple-

mentable versions of our estimator described in Section bla – names with three baselines: ✓̂irm, the
IRM approach for treatment effect estimation proposed by Shi et al. (2021); ✓̂all, which adjusts for
all available covariates; and ✓̂null, which does not adjust for any covariates.

5.1 AN ILLUSTRATIVE EXAMPLE OF COLLIDER BIAS

Fanny examples plural? also be more precise - We start with data generated from distributions
with simple underlying DAGs as illustrated in Figure bla that satisfy our assumption bla. Fanny

maybe here say that in the appendix we also discuss the case when no invariance holds - could be
footnote For each of the three different invariance scenarios, we ”consider” three variants: where Z
is either a descendant of Y , a collider between T and Y , or independent noise. - Fanny for each
case, treatment effects are fixed, coefficients are sampled (50 different) For the description of the
data-generating process please refer to ... - expectations on baselines / hypotheses: from theory
thetanull basically should never work cause there’s (parent) confounder between T and Y, Fanny

maybe say for when Z is noise thetaall etc. should work, but collider and descendant it should be bad
while IRM could theoretically work - Experimental results: Indeed we confirm these things ... with
theta-irm better than theta-all but a bit worse than expected (but aligning with their findings as well)

a simple example where adjusting for all the available covariates can introduce collider bias in the
treatment effect estimate. In Figure 2 (Row 2), we illustrate the graphical models and refer the reader
to Appendix D.1 for a description of the data generating process. In particular, our model allows for
invariance violations, either in T or Y , induced by mean and variance shifts using the unobserved
variable U . Further, observe that for each choice of invariance, the post-treatment variable Z can
either be a descendant of Y , a collider between T and Y , or independent noise.

Experimental results In Figure 2 (Row 1), we present the empirical mean absolute error (MAE)
for all methods under three different scenarios: “collider”, “descendant”, and “noise”. Our methods,
✓̂ and ✓̂fast� , consistently achieve lower MAE compared to the baselines in all scenarios, indi-
cating that the differentiable relaxation of our method does not significantly compromise statistical
performance. Furthermore, when the invariance with respect to Y is violated Fanny or rather: 1)
expectedly, for T-invariance? its worse than for Y-invariance or T,Y-invariance. 2) (maybe?) they
don’t do two-stage but do direct estimation of , the performance of ✓̂irm deteriorates markedly—even
in scenarios where the post-treatment variable is independent noise, it performs worse than simply
adjusting for all available covariates. In contrast, our approach remains robust even when one of
the invariances is compromised. Finally, we observe that relying on T -invariance leads to increased
error Fanny across methods? because the adjustment set we recover, the parents of the treatment,
is not statistically efficient (see Henckel et al. (2022, Corollary 3.4)).
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Xc

YT

Xp

U

(a) T,Y-invariance

Xc

YT

Xp

U

(b) Y-invariance

Xc

YT

Xp

U

(c) T-invariance

Figure 2: (Row 1) For all the plots: n = 2500, d = 5, |E| = 5. We plot the mean absolute error
averaged across environments when: (a) both invariances are preserved; (b) the invariance w.r.t Y
is preserved; (c) the invariance w.r.t T is preserved. We report mean and standard error over 20
runs. (Row 2) Graphical models that capture our data generating process: (a) U does not break any
invariance; (b) U breaks the invariance between Xp and T ; (c) U breaks the invariance between Xp

and Y . Dashed nodes are unobserved, and dashed lines denote optional edges.

only when Xc is a collider or a descendant; ✓̂irm should be biased only in the T-invariance case; ✓̂
and ✓̂insta� should never be biased in these settings.

In Figure 2 (Row 1), we present the empirical MAE for all methods, and we confirm the predic-
tions from theory. Our methods, ✓̂ and ✓̂insta� , consistently achieve lower MAE compared to the
baselines in all scenarios, indicating that the differentiable relaxation of our method does not signif-
icantly compromise statistical performance. Expectedly, for T-invariance, the performance of ✓̂irm

deteriorates markedly—even in scenarios where the post-treatment variable is independent noise, it
performs worse than simply adjusting for all available covariates. In contrast, our approach remains
robust even when one of the invariances is compromised. Finally, we observe that relying on T-
invariance leads to increased error across methods since the adjustment set we recover, the parents
of the treatment, is not statistically efficient, see e.g. Henckel et al. (2022, Corollary 3.4).

5.2 SYNTHETIC EXPERIMENT WITH RANDOM HIGH DIMENSIONAL DAGS

Figure 3: We plot the mean absolute er-
ror averaged across environments when
the T-invariance is preserved. We sam-
ple n = 2000 points for each environ-
ment; we report mean and standard er-
ror over 100 runs.

We randomly draw a graph from the Erdös-Rényi ran-
dom graph model with a total number of nodes d = 20.
We do rejection sampling to exclude graphs that either
contain mediators—as they violate Assumption 3.2—or
do not contain at least a confounder. We then sample
data from the resulting DAG via a linear structural causal
model, with the only exception being the treatment vari-
able T , which is generated by additionally applying a sig-
moid function and then sampling from a Bernoulli distri-
bution. We further post-process the graph, adding a post-
treatment variable Xc = Y + T and making unobserved
either the parents of T or Y (except common parents), de-
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
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with the only exception being the treatment variable T , which is generated by additionally applying
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ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
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Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
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as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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Figure 2: (Row 1) For all the plots: n = 2500, d = 5, |E| = 5. We plot the mean absolute error
averaged across environments when: (a) both invariances are preserved; (b) the invariance w.r.t Y
is preserved; (c) the invariance w.r.t T is preserved. We report mean and standard error over 20
runs. (Row 2) Graphical models that capture our data generating process: (a) U does not break any
invariance; (b) U breaks the invariance between Xp and T ; (c) U breaks the invariance between Xp

and Y . Dashed nodes are unobserved, and dashed lines denote optional edges.

only when Xc is a collider or a descendant; ✓̂irm should be biased only in the T-invariance case; ✓̂
and ✓̂insta� should never be biased in these settings.

In Figure 2 (Row 1), we present the empirical MAE for all methods, and we confirm the predic-
tions from theory. Our methods, ✓̂ and ✓̂insta� , consistently achieve lower MAE compared to the
baselines in all scenarios, indicating that the differentiable relaxation of our method does not signif-
icantly compromise statistical performance. Expectedly, for T-invariance, the performance of ✓̂irm

deteriorates markedly—even in scenarios where the post-treatment variable is independent noise, it
performs worse than simply adjusting for all available covariates. In contrast, our approach remains
robust even when one of the invariances is compromised. Finally, we observe that relying on T-
invariance leads to increased error across methods since the adjustment set we recover, the parents
of the treatment, is not statistically efficient, see e.g. Henckel et al. (2022, Corollary 3.4).

5.2 SYNTHETIC EXPERIMENT WITH RANDOM HIGH DIMENSIONAL DAGS

Figure 3: We plot the mean absolute er-
ror averaged across environments when
the T-invariance is preserved. We sam-
ple n = 2000 points for each environ-
ment; we report mean and standard er-
ror over 100 runs.

We randomly draw a graph from the Erdös-Rényi ran-
dom graph model with a total number of nodes d = 20.
We do rejection sampling to exclude graphs that either
contain mediators—as they violate Assumption 3.2—or
do not contain at least a confounder. We then sample
data from the resulting DAG via a linear structural causal
model, with the only exception being the treatment vari-
able T , which is generated by additionally applying a sig-
moid function and then sampling from a Bernoulli distri-
bution. We further post-process the graph, adding a post-
treatment variable Xc = Y + T and making unobserved
either the parents of T or Y (except common parents), de-

8

Figure 2: (Top row) Graphical models illustrating three scenarios in which the unobserved con-
founder U may break different invariances between T , Y , and the observed covariates X . In each
graph, dashed arrows denote optional edges, dashed nodes indicate unobserved variables, green and
red nodes indicate good and bad controls, respectively. Panel (a) shows the case where U does not
break any invariance. Panel (b) shows the case where U breaks the invariance between Xp and T .
Panel (c) shows the case where U breaks the invariance between Xp and Y . (Bottom row) Mean
absolute errors (MAE) of four estimators are shown across 5 environments (n = 2500, d = 5 ob-
served covariates), with error bars representing standard errors over 20 runs.

5.1 SYNTHETIC EXPERIMENTS WITH KNOWN DAGS

We start with data generated from distributions with simple underlying DAGs that satisfy our invari-
ance assumptions, as illustrated in Figure 2 (Row 2). Most importantly, we consider three distinct
scenarios3: (a) Y and T-invariances, i.e. both (a) and (b) in Assumption 3.2 hold; (b) Y-invariance,
i.e. only Assumption 3.2 (b) holds; (c) T-invariance, i.e. only Assumption 3.2 (a) holds. For each
of the three different invariance scenarios, we further consider three variants: where Xc is either a
descendant of Y , a collider between T and Y , or independent noise. We describe the complete data-
generating process in Appendix D.1. In the infinite sample limit, θ̂null should generally be biased
since there is a confounder between T and Y ; θ̂all should be biased only when Xc is a collider or a
descendant; θ̂irm should be biased in the T-invariance case; θ̂ and θ̂insta− should never be biased.

In Figure 2 (Row 1), we present the empirical MAE for all methods on finite-sample experiments
that confirm the predictions from theory. First of all, both of our methods, θ̂ and θ̂insta− , con-
sistently achieve lower MAE compared to the baselines in all scenarios. In particular, we observe
that the differentiable relaxation of our method does not significantly compromise statistical perfor-
mance. Further, for T-invariance, the performance of θ̂irm deteriorates markedly as expected —e.g.
in scenarios where the post-treatment variable is a descendant of Y , it performs worse than simply
adjusting for all available covariates. In contrast, our approach remains robust even when one of
the invariances is compromised. Finally, we observe that relying on T-invariance increases the error
across methods, possibly because the adjustment set we recover, the parents of the treatment, leads
to a statistically less efficient estimator, see e.g. Henckel et al. (2022, Corollary 3.4).

3In Appendix C.2, we also present experiments for cases when none of the invariances hold.
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5.2 SYNTHETIC EXPERIMENT WITH RANDOM HIGH DIMENSIONAL DAGS

We randomly draw a graph from the Erdös-Rényi random graph model with a total number of
nodes p = 20. We do rejection sampling to exclude graphs that either contain mediators—as
they violate Assumption 3.1—or do not contain at least a confounder. We then assign Y and
T to nodes such that the invariance assumption is satisfied for at least one of them4, and sam-
ple all variables from the resulting DAG via a linear structural causal model except for the treat-
ment variable T . We sample T from a Bernoulli distribution with parameter equal to the sig-
moid function applied to the function f in the structural equation of T as in Equation (1). We
further post-process the graph by adding a node Xc = Y + T to make sure that there is at
least one post-treatment covariate. We assign the parents of T or Y (except common parents)
to be the set of unobserved covariates U , depending on the invariance we want to preserve.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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experiments on a number of Fanny controlled/known DAGs, where the biases and invariances are
known and satisfy our assumptions. In all of these, our theory predicts that our method is expected
to identify the ATE, leading to a small MAE, whereas other methods tend to fail. We also test
RICEon a more challenging synthetic benchmark by uniformly sampling directed acyclic graphs
using the Erdős–Rényi model. Fanny yixin mentioned others have done it before and its a typical
way to evaluate? - cite Finally, we validate our estimator beyond the purely synthetic setting: in
a semi-synthetic setting with real-world covariates and a synthetic non-linear ground truth and a
real-world experiment where we compare the effect estimates Fanny conclusions obtained through
RICEwith established epidemiological findings.

Evaluation metric and baselines We focus on the statistical task of estimating the average treat-
ment effect (ATE) ✓e, for each observed environment e 2 E . To evaluate the performance of an
estimator ✓̂ Fanny superscript e or not, currently inconsistent , we compute the mean absolute er-
ror (MAE) averaged across environments: 1

|E|
P

e2E |✓e � ✓̂e|. Fanny We compare the two imple-

mentable versions of our estimator described in Section bla – names with three baselines: ✓̂irm, the
IRM approach for treatment effect estimation proposed by Shi et al. (2021); ✓̂all, which adjusts for
all available covariates; and ✓̂null, which does not adjust for any covariates.

5.1 AN ILLUSTRATIVE EXAMPLE OF COLLIDER BIAS

Fanny examples plural? also be more precise - We start with data generated from distributions
with simple underlying DAGs as illustrated in Figure bla that satisfy our assumption bla. Fanny

maybe here say that in the appendix we also discuss the case when no invariance holds - could be
footnote For each of the three different invariance scenarios, we ”consider” three variants: where Z
is either a descendant of Y , a collider between T and Y , or independent noise. - Fanny for each
case, treatment effects are fixed, coefficients are sampled (50 different) For the description of the
data-generating process please refer to ... - expectations on baselines / hypotheses: from theory
thetanull basically should never work cause there’s (parent) confounder between T and Y, Fanny

maybe say for when Z is noise thetaall etc. should work, but collider and descendant it should be bad
while IRM could theoretically work - Experimental results: Indeed we confirm these things ... with
theta-irm better than theta-all but a bit worse than expected (but aligning with their findings as well)

a simple example where adjusting for all the available covariates can introduce collider bias in the
treatment effect estimate. In Figure 2 (Row 2), we illustrate the graphical models and refer the reader
to Appendix D.1 for a description of the data generating process. In particular, our model allows for
invariance violations, either in T or Y , induced by mean and variance shifts using the unobserved
variable U . Further, observe that for each choice of invariance, the post-treatment variable Z can
either be a descendant of Y , a collider between T and Y , or independent noise.

Experimental results In Figure 2 (Row 1), we present the empirical mean absolute error (MAE)
for all methods under three different scenarios: “collider”, “descendant”, and “noise”. Our methods,
✓̂ and ✓̂fast� , consistently achieve lower MAE compared to the baselines in all scenarios, indi-
cating that the differentiable relaxation of our method does not significantly compromise statistical
performance. Furthermore, when the invariance with respect to Y is violated Fanny or rather: 1)
expectedly, for T-invariance? its worse than for Y-invariance or T,Y-invariance. 2) (maybe?) they
don’t do two-stage but do direct estimation of , the performance of ✓̂irm deteriorates markedly—even
in scenarios where the post-treatment variable is independent noise, it performs worse than simply
adjusting for all available covariates. In contrast, our approach remains robust even when one of
the invariances is compromised. Finally, we observe that relying on T -invariance leads to increased
error Fanny across methods? because the adjustment set we recover, the parents of the treatment,
is not statistically efficient (see Henckel et al. (2022, Corollary 3.4)).
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Figure 2: (Row 1) For all the plots: n = 2500, d = 5, |E| = 5. We plot the mean absolute error
averaged across environments when: (a) both invariances are preserved; (b) the invariance w.r.t Y
is preserved; (c) the invariance w.r.t T is preserved. We report mean and standard error over 20
runs. (Row 2) Graphical models that capture our data generating process: (a) U does not break any
invariance; (b) U breaks the invariance between Xp and T ; (c) U breaks the invariance between Xp

and Y . Dashed nodes are unobserved, and dashed lines denote optional edges.

only when Xc is a collider or a descendant; ✓̂irm should be biased only in the T-invariance case; ✓̂
and ✓̂insta� should never be biased in these settings.

In Figure 2 (Row 1), we present the empirical MAE for all methods, and we confirm the predic-
tions from theory. Our methods, ✓̂ and ✓̂insta� , consistently achieve lower MAE compared to the
baselines in all scenarios, indicating that the differentiable relaxation of our method does not signif-
icantly compromise statistical performance. Expectedly, for T-invariance, the performance of ✓̂irm

deteriorates markedly—even in scenarios where the post-treatment variable is independent noise, it
performs worse than simply adjusting for all available covariates. In contrast, our approach remains
robust even when one of the invariances is compromised. Finally, we observe that relying on T-
invariance leads to increased error across methods since the adjustment set we recover, the parents
of the treatment, is not statistically efficient, see e.g. Henckel et al. (2022, Corollary 3.4).

5.2 SYNTHETIC EXPERIMENT WITH RANDOM HIGH DIMENSIONAL DAGS

Figure 3: We plot the mean absolute er-
ror averaged across environments when
the T-invariance is preserved. We sam-
ple n = 2000 points for each environ-
ment; we report mean and standard er-
ror over 100 runs.

We randomly draw a graph from the Erdös-Rényi ran-
dom graph model with a total number of nodes d = 20.
We do rejection sampling to exclude graphs that either
contain mediators—as they violate Assumption 3.2—or
do not contain at least a confounder. We then sample
data from the resulting DAG via a linear structural causal
model, with the only exception being the treatment vari-
able T , which is generated by additionally applying a sig-
moid function and then sampling from a Bernoulli distri-
bution. We further post-process the graph, adding a post-
treatment variable Xc = Y + T and making unobserved
either the parents of T or Y (except common parents), de-
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .
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ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.
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We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
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with the only exception being the treatment variable T , which is generated by additionally applying
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(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
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Figure 2: (Row 1) For all the plots: n = 2500, d = 5, |E| = 5. We plot the mean absolute error
averaged across environments when: (a) both invariances are preserved; (b) the invariance w.r.t Y
is preserved; (c) the invariance w.r.t T is preserved. We report mean and standard error over 20
runs. (Row 2) Graphical models that capture our data generating process: (a) U does not break any
invariance; (b) U breaks the invariance between Xp and T ; (c) U breaks the invariance between Xp

and Y . Dashed nodes are unobserved, and dashed lines denote optional edges.

only when Xc is a collider or a descendant; ✓̂irm should be biased only in the T-invariance case; ✓̂
and ✓̂insta� should never be biased in these settings.

In Figure 2 (Row 1), we present the empirical MAE for all methods, and we confirm the predic-
tions from theory. Our methods, ✓̂ and ✓̂insta� , consistently achieve lower MAE compared to the
baselines in all scenarios, indicating that the differentiable relaxation of our method does not signif-
icantly compromise statistical performance. Expectedly, for T-invariance, the performance of ✓̂irm

deteriorates markedly—even in scenarios where the post-treatment variable is independent noise, it
performs worse than simply adjusting for all available covariates. In contrast, our approach remains
robust even when one of the invariances is compromised. Finally, we observe that relying on T-
invariance leads to increased error across methods since the adjustment set we recover, the parents
of the treatment, is not statistically efficient, see e.g. Henckel et al. (2022, Corollary 3.4).

5.2 SYNTHETIC EXPERIMENT WITH RANDOM HIGH DIMENSIONAL DAGS

Figure 3: We plot the mean absolute er-
ror averaged across environments when
the T-invariance is preserved. We sam-
ple n = 2000 points for each environ-
ment; we report mean and standard er-
ror over 100 runs.

We randomly draw a graph from the Erdös-Rényi ran-
dom graph model with a total number of nodes d = 20.
We do rejection sampling to exclude graphs that either
contain mediators—as they violate Assumption 3.2—or
do not contain at least a confounder. We then sample
data from the resulting DAG via a linear structural causal
model, with the only exception being the treatment vari-
able T , which is generated by additionally applying a sig-
moid function and then sampling from a Bernoulli distri-
bution. We further post-process the graph, adding a post-
treatment variable Xc = Y + T and making unobserved
either the parents of T or Y (except common parents), de-
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Figure 3: We plot the mean absolute er-
ror averaged across environments when the
T -invariance is preserved. We sample n =
2000 points for each environment; we report
mean and standard error over 100 runs.

In each environment, we apply a random uniform mean
and variance shift to all the nodes in the graph except
for T and Y while preserving Assumption 4.1; see Ap-
pendix D.1 for further details on the data generation. This
process leads to distributions that are guaranteed to satisfy
all our assumptions in Theorem 1.

In our experiments we sample 100 DAGs and for each
DAG vary the number of environments while keeping
the sample size fixed. In Figure 3, we plot the empiri-
cal MAE of θ̂insta− (θ̂ is computationally infeasible)
and the baseline estimators averaged across the DAGs as
a function of the number of environments. Notably, we
observe that across all settings and numbers of available
environments, θ̂insta− significantly outperforms all the
other baselines. Expectedly, θ̂irm fails to surpass all triv-
ial baselines, even with many environments, as it lacks
the robustness to unobserved parents of Y .
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.
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Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.
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dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
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experiments on a number of Fanny controlled/known DAGs, where the biases and invariances are
known and satisfy our assumptions. In all of these, our theory predicts that our method is expected
to identify the ATE, leading to a small MAE, whereas other methods tend to fail. We also test
RICEon a more challenging synthetic benchmark by uniformly sampling directed acyclic graphs
using the Erdős–Rényi model. Fanny yixin mentioned others have done it before and its a typical
way to evaluate? - cite Finally, we validate our estimator beyond the purely synthetic setting: in
a semi-synthetic setting with real-world covariates and a synthetic non-linear ground truth and a
real-world experiment where we compare the effect estimates Fanny conclusions obtained through
RICEwith established epidemiological findings.

Evaluation metric and baselines We focus on the statistical task of estimating the average treat-
ment effect (ATE) ✓e, for each observed environment e 2 E . To evaluate the performance of an
estimator ✓̂ Fanny superscript e or not, currently inconsistent , we compute the mean absolute er-
ror (MAE) averaged across environments: 1

|E|
P

e2E |✓e � ✓̂e|. Fanny We compare the two imple-

mentable versions of our estimator described in Section bla – names with three baselines: ✓̂irm, the
IRM approach for treatment effect estimation proposed by Shi et al. (2021); ✓̂all, which adjusts for
all available covariates; and ✓̂null, which does not adjust for any covariates.

5.1 AN ILLUSTRATIVE EXAMPLE OF COLLIDER BIAS

Fanny examples plural? also be more precise - We start with data generated from distributions
with simple underlying DAGs as illustrated in Figure bla that satisfy our assumption bla. Fanny

maybe here say that in the appendix we also discuss the case when no invariance holds - could be
footnote For each of the three different invariance scenarios, we ”consider” three variants: where Z
is either a descendant of Y , a collider between T and Y , or independent noise. - Fanny for each
case, treatment effects are fixed, coefficients are sampled (50 different) For the description of the
data-generating process please refer to ... - expectations on baselines / hypotheses: from theory
thetanull basically should never work cause there’s (parent) confounder between T and Y, Fanny

maybe say for when Z is noise thetaall etc. should work, but collider and descendant it should be bad
while IRM could theoretically work - Experimental results: Indeed we confirm these things ... with
theta-irm better than theta-all but a bit worse than expected (but aligning with their findings as well)

a simple example where adjusting for all the available covariates can introduce collider bias in the
treatment effect estimate. In Figure 2 (Row 2), we illustrate the graphical models and refer the reader
to Appendix D.1 for a description of the data generating process. In particular, our model allows for
invariance violations, either in T or Y , induced by mean and variance shifts using the unobserved
variable U . Further, observe that for each choice of invariance, the post-treatment variable Z can
either be a descendant of Y , a collider between T and Y , or independent noise.

Experimental results In Figure 2 (Row 1), we present the empirical mean absolute error (MAE)
for all methods under three different scenarios: “collider”, “descendant”, and “noise”. Our methods,
✓̂ and ✓̂fast� , consistently achieve lower MAE compared to the baselines in all scenarios, indi-
cating that the differentiable relaxation of our method does not significantly compromise statistical
performance. Furthermore, when the invariance with respect to Y is violated Fanny or rather: 1)
expectedly, for T-invariance? its worse than for Y-invariance or T,Y-invariance. 2) (maybe?) they
don’t do two-stage but do direct estimation of , the performance of ✓̂irm deteriorates markedly—even
in scenarios where the post-treatment variable is independent noise, it performs worse than simply
adjusting for all available covariates. In contrast, our approach remains robust even when one of
the invariances is compromised. Finally, we observe that relying on T -invariance leads to increased
error Fanny across methods? because the adjustment set we recover, the parents of the treatment,
is not statistically efficient (see Henckel et al. (2022, Corollary 3.4)).
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Figure 2: (Row 1) For all the plots: n = 2500, d = 5, |E| = 5. We plot the mean absolute error
averaged across environments when: (a) both invariances are preserved; (b) the invariance w.r.t Y
is preserved; (c) the invariance w.r.t T is preserved. We report mean and standard error over 20
runs. (Row 2) Graphical models that capture our data generating process: (a) U does not break any
invariance; (b) U breaks the invariance between Xp and T ; (c) U breaks the invariance between Xp

and Y . Dashed nodes are unobserved, and dashed lines denote optional edges.

only when Xc is a collider or a descendant; ✓̂irm should be biased only in the T-invariance case; ✓̂
and ✓̂insta� should never be biased in these settings.

In Figure 2 (Row 1), we present the empirical MAE for all methods, and we confirm the predic-
tions from theory. Our methods, ✓̂ and ✓̂insta� , consistently achieve lower MAE compared to the
baselines in all scenarios, indicating that the differentiable relaxation of our method does not signif-
icantly compromise statistical performance. Expectedly, for T-invariance, the performance of ✓̂irm

deteriorates markedly—even in scenarios where the post-treatment variable is independent noise, it
performs worse than simply adjusting for all available covariates. In contrast, our approach remains
robust even when one of the invariances is compromised. Finally, we observe that relying on T-
invariance leads to increased error across methods since the adjustment set we recover, the parents
of the treatment, is not statistically efficient, see e.g. Henckel et al. (2022, Corollary 3.4).

5.2 SYNTHETIC EXPERIMENT WITH RANDOM HIGH DIMENSIONAL DAGS

Figure 3: We plot the mean absolute er-
ror averaged across environments when
the T-invariance is preserved. We sam-
ple n = 2000 points for each environ-
ment; we report mean and standard er-
ror over 100 runs.

We randomly draw a graph from the Erdös-Rényi ran-
dom graph model with a total number of nodes d = 20.
We do rejection sampling to exclude graphs that either
contain mediators—as they violate Assumption 3.2—or
do not contain at least a confounder. We then sample
data from the resulting DAG via a linear structural causal
model, with the only exception being the treatment vari-
able T , which is generated by additionally applying a sig-
moid function and then sampling from a Bernoulli distri-
bution. We further post-process the graph, adding a post-
treatment variable Xc = Y + T and making unobserved
either the parents of T or Y (except common parents), de-
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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Figure 2: (Row 1) For all the plots: n = 2500, d = 5, |E| = 5. We plot the mean absolute error
averaged across environments when: (a) both invariances are preserved; (b) the invariance w.r.t Y
is preserved; (c) the invariance w.r.t T is preserved. We report mean and standard error over 20
runs. (Row 2) Graphical models that capture our data generating process: (a) U does not break any
invariance; (b) U breaks the invariance between Xp and T ; (c) U breaks the invariance between Xp

and Y . Dashed nodes are unobserved, and dashed lines denote optional edges.

only when Xc is a collider or a descendant; ✓̂irm should be biased only in the T-invariance case; ✓̂
and ✓̂insta� should never be biased in these settings.

In Figure 2 (Row 1), we present the empirical MAE for all methods, and we confirm the predic-
tions from theory. Our methods, ✓̂ and ✓̂insta� , consistently achieve lower MAE compared to the
baselines in all scenarios, indicating that the differentiable relaxation of our method does not signif-
icantly compromise statistical performance. Expectedly, for T-invariance, the performance of ✓̂irm

deteriorates markedly—even in scenarios where the post-treatment variable is independent noise, it
performs worse than simply adjusting for all available covariates. In contrast, our approach remains
robust even when one of the invariances is compromised. Finally, we observe that relying on T-
invariance leads to increased error across methods since the adjustment set we recover, the parents
of the treatment, is not statistically efficient, see e.g. Henckel et al. (2022, Corollary 3.4).

5.2 SYNTHETIC EXPERIMENT WITH RANDOM HIGH DIMENSIONAL DAGS

Figure 3: We plot the mean absolute er-
ror averaged across environments when
the T-invariance is preserved. We sam-
ple n = 2000 points for each environ-
ment; we report mean and standard er-
ror over 100 runs.

We randomly draw a graph from the Erdös-Rényi ran-
dom graph model with a total number of nodes d = 20.
We do rejection sampling to exclude graphs that either
contain mediators—as they violate Assumption 3.2—or
do not contain at least a confounder. We then sample
data from the resulting DAG via a linear structural causal
model, with the only exception being the treatment vari-
able T , which is generated by additionally applying a sig-
moid function and then sampling from a Bernoulli distri-
bution. We further post-process the graph, adding a post-
treatment variable Xc = Y + T and making unobserved
either the parents of T or Y (except common parents), de-
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Figure 4: Mean absolute error averaged
across environments for the IHDP dataset
when different invariances are preserved (T,
Y, or both). We consider five environments
with n = 748 points each; mean and stan-
dard error are reported over 20 runs.

The IHDP dataset contains covariates from n = 748 low-
birth-weight, premature infants enrolled in a home visita-
tion program designed to improve their cognitive scores
(Hill, 2011). Instead of using the commonly adopted syn-
thetic functions from Dorie (2016), we simulate a more
challenging non-linear version of the outcome and treat-
ment mechanisms inspired by Kang & Schafer (2007).
Specifically, we retain the 6 continuous covariates (out of
25 total covariates) from the original dataset and simu-
late the outcome Y and treatment assignment T by ran-
domly sampling complex functional forms, such as ex-
ponentials and polynomials. In addition, we introduce a
2-dimensional synthetic collider, Xc, as a linear function
of T and Y . We generate environments using Gaussian
mean shifts in both pre-and post-treatment features, as
well as in either Y or T or neither of them, and set the
number of environments to |E| = 5. Finally, at inference
time we do not observe one of the parents of the node
among Y, T that is not invariant. See Appendix D.2 for
the complete experimental details.

4In the main text we present the results for the settings where the parents Y , excluding the parents of T , are
unobserved. Please refer to Appendix C.3 for additional experiments where other invariances hold
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Figure 4 depicts the MAE of all the methods when different invariance assumptions hold. Similar to
the synthetic experiments in Sections 5.1 and 5.2, θ̂irm exhibits higher MAE when Y is not invariant
across environments, and θ̂all, adjusting for all features, generally results in poor performance. Inter-
estingly, θ̂null performs competitively since the confounders have a limited impact on the outcome
and treatment assignment in this dataset. Additional experiments where the post-treatment feature is
either a descendant of the outcome, independent noise, or where neither T nor Y remains invariant
are provided in Appendix C.2. Moreover, we present experiments including mediators between the
treatment and the outcome in Appendix C.1.

5.4 REAL-WORLD EXPERIMENT: EFFECT OF MATERNAL SMOKING ON BIRTH WEIGHT

Table 1: ATE estimates for the Cattaneo2 dataset
using different baselines. We report the mean and
standard deviation over 100 initializations of the
random seeds in the algorithms.

Method ATE (mean ± std)

θ̂null −275.25± 10−5

θ̂all −157.55± 10−5

θ̂irm −182.65± 48.32

θ̂insta− −214.60± 25.20

In our real-world experiment, we evaluate our
method on the observational dataset from Cattaneo
(2010) that studies the effect of maternal smoking
(treatment T ) during pregnancy on birth weight (out-
come Y ) using the data from n = 4642 patients. We
split the original dataset into |E| = 4 environments
defined by the trimester of birth. We then use 20
other variables from the original dataset as observed
covariates X . Given the nature of the treatment,
we expect that some features are post-treatment, i.e.
measured after the mother started smoking, as noted
in Wilcox (2001). We provide complete experimen-
tal details in Appendix D.3.

Table 1 presents the results of the differentiable version of our method, alongside various baselines.
While the ground truth ATE is unknown, the effect estimated by adjusting for the set selected by
θ̂insta− aligns with existing epidemiological literature: both observational and interventional stud-
ies (Meyer & Comstock, 1972; Sexton & Hebel, 1984) as well as statistical analyses (Almond et al.,
2005; Cattaneo, 2010) estimate a decrease in birth weight that ranges from 200 to 250 grams for
infants born to smoking mothers compared to non-smoking mothers. In contrast, θ̂null overestimates
the ATE, whereas both θ̂all and θ̂irm underestimate it.

6 DISCUSSION AND FUTURE WORK

In this work, we proposed Robust ATE identification from Multiple ENvironments (RAMEN), a
method that leverages multiple environments to identify the ATE in the presence of post-treatment
and unobserved variables. To the best of our knowledge, we present the first ATE identification
guarantees in this highly relevant, but previously unexplored setting. Further, we introduce a new
version of double robustness that concerns unobserved variables rather than model misspecification.

Nevertheless, our method faces several limitations. First, similar to other kernel-based methods,
our approach suffers from the curse of dimensionality and the computational complexity associated
with computing kernel matrix. Additionally, the requirement for sufficient heterogeneity across
environments may be too stringent in some practical cases. Finally, the combinatorial subset is
computationally demanding, and the Gumbel trick remains a heuristic solution. Addressing any of
these shortcomings would constitute interesting avenues for future work.
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James Priest, and Christopher Ré. Ivy: Instrumental variable synthesis for causal inference.
International Conference on Artificial Intelligence and Statistics, 2020.

Marloes Maathuis and Diego Colombo. A generalized back-door criterion. The Annals of Statistics,
43(3):1060–1088, 2015.
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Emilija Perković, Markus Kalisch, and Marloes Maathuis. Interpreting and using CPDAGs with
background knowledge. Uncertainty in Artificial Intelligence, 2017.
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APPENDICES

The following appendices provide deferred proofs, experiment details, and ablation studies.
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A METHODOLOGY

A.1 DISCUSSION OF ASSUMPTION 3.2

X1 U1

Y

X2U2

T

Figure 5: Although neither full
set of parents is observed, one
can still find a valid adjustment
set {X1, X2} (in green).

First, we observe here that Assumption 3.2 is not a minimal “ob-
servability” condition on the parents of Y and T : in some cases,
it might still be possible to find a valid adjustment set via the ob-
served parents of either T or Y (or both), although no full set of
parents was observed (see e.g. Figure 5). However, in such cases,
the valid adjustment set or the corresponding regression function
cannot be recovered via invariance methods, since neither T nor Y
are invariant across environments. Thus, in a way, Assumption 3.2
is a minimal assumption on the DAG if one wants to recover the
ATE via invariance of conditional expectations.

Further, we remark that our assumption is neither stronger nor
weaker than the commonly used ignorability assumption with re-
spect to X (Robins & Greenland, 1992). For example, if parents
of both T and Y are unobserved, Assumption 3.2 will not hold,
but ignorability could still apply if no common parent of T and Y
is unobserved. Conversely, in graphs with M-bias structures and
colliders, the ignorability assumption will not hold.

Below, we give some examples of settings in which Assumption 3.2
holds, including scenarios in the existing invariance literature (Pe-
ters et al., 2016; Gu et al., 2024):

Fully observed DAG In Peters et al. (2016), we are given multi-environment data {Pe : e ∈
E}, where each distribution Pe is induced by an SCM Me = (G, {fe

i }pi=1,Pe
ϵ), all variables

(X1, ..., Xd, Y ) are observed, and for all Pe ∈ E it is satisfied that
Y e = g(Xe

Pa(Y ), ϵ
e), ϵe ∼ Fϵ and ϵe ⊥⊥ Xe

Pa(Y ).

In particular, the independence condition implies equality of conditional distributions Pe(Y |Xe
Pa(Y ))

across environments and thus Assumption 3.2(b).

General DAG with additive noise In Gu et al. (2024), the target variable follows the following
data generating process for all e ∈ E :

Y e = g(Xe
S⋆) + ϵe; E[ϵe|Xe

S⋆ ] = 0,

where S⋆ is the ”true important variable set”. This setting is, in a way, more general than Peters
et al. (2016), since the noise variable is not required to be independent of the parent variables—
instead, the only condition is on the first conditional moment of ϵe. Due to the additivity of the
noise, Assumption 3.2(b) follows immediately.

General DAG with multiplicative noise We can define a similar setting for multiplicative noise,
setting for all e ∈ E :

Y e = g(Xe
S⋆)ϵe; E[ϵe|Xe

S⋆ ] = c,

where S⋆ is, again, the true parent/important variable set, and c is independent of the environment.
We observe that Assumption 3.2(b) follows since it holds that

Ee[Y |XS⋆ ] = Ee[g(XS⋆)ϵ|XS⋆ ] = g(XS⋆)Ee[ϵ|XS⋆ ] = cg(XS⋆).

General DAG with polynomial noise From the above two examples, it becomes clear that for
any Y = g(XS⋆)pk(ϵ), where p is a polynomial of degree k, we have that Assumption 3.2(b) holds
if for all e ∈ E it holds that

Ee[ϵk
′ | XS⋆ ] = cl, for all k′ ≤ k.

where S⋆ is the important variable/parent set. This condition is strictly weaker than the indepen-
dence condition since k is finite.
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A.2 PROOF OF THEOREM 1

First, we establish that the loss function in Equation (4) attains a value of zero at any minimizer S .
By Assumption 3.2, there exists an invariant node V ∈ {T, Y } whose parents are observed. Since
it holds that JPa(V )(Z;V ) = 0 and Pa(V ) ⊆ IV , we conclude that there exists a subset S ⊆ IV
such that min{JS(Z;T ), JS(Z;Y )} = 0. Additionally, since the loss function is non-negative, any
global minimizer of Equation (4) must have a corresponding loss value of zero.

Recall that the RAMEN estimator is given by

θe(S ) := EPe

[
µ̄1(XS ) +

(Y − µ̄1(XS ))T

π̄(XS )

]

T1

−EPe

[
µ̄0(XS ) +

(Y − µ̄0(XS ))(1− T )

1− π̄(XS )

]

T2

.

where we have slightly rearranged the order of the terms. In the following, we only consider the
treated term T1 and prove that T1 = EPe

[
Y do(T=1)

]
. Analogous reasoning for the control term T2

shows that T2 = EPe

[
Y do(T=0)

]
and thus proves the claim.

We now consider two cases, depending on whether the minimum is attained for the node Y or T .

Case 1: JS (Z;T ) = 0. Since we assume that the kernel belongs to a universal RKHS (Steinwart,
2001, Def. 4), it follows from Gretton et al. (2012, Theorem 5) that for all e ∈ E

me
S (Z;T ) = EPe [T | XS ] = π̄

(
XS

)
, Pe − a.s. (8)

Then, by Assumption 4.1, it holds that

π̄(XS ) = π̄(ZPa(T )), P− a.s.

Further, since the measure P dominates Pe, it holds that

π̄(XS ) = π̄(ZPa(T )), Pe − a.s. (9)

Using the tower property, we compute

EPe

[(
1− T

π̄(XS )

)
µ̄1(XS )

]
= EPe

[
µ̄1(XS )

]
− EPe

[
EPe

[
T

π̄(XS )
| XS

]
µ̄1(XS )

]

= EPe

[
µ̄1(XS )

]
− EPe

[
µ̄1(XS )

]
= 0.

Hence,

T1 = EPe

[
TY

π̄(XS )

]
= EPe

[
TY

π̄(ZPa(T ))

]
,

where the second equality follows by (9).

Now, under the positivity assumption and Assumption 3.2, since the parents of T satisfy the back-
door criteria, we can identify the treatment effect, that is, it holds that

EPe

[
TY

π̄(ZPa(T ))

]
= EPe

[
Y do(T=1)

]
.

Thus, we conclude that

EPe

[
Y do(T=1)

]
= EPe

[
TY

π̄(XS )
+

(
1− T

π̄(XS )

)
µ̄1(XS )

]
.

The analogous argument can be used to show T2 = EPe

[
Y do(T=0)

]
. Combining the terms yields

θe(S ) = EPe

[
Y do(T=1)

]
− EPe

[
Y do(T=0)

]
.
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Case 2: JS (Z;Y ) = 0. We recall that this term of the loss function is defined as

JS(Z;Y ) := max
t∈{0,1}

max
e∈E


 sup

h∈L0(R|S|)
EPe

[(
Y − EP[Y | ZS , T = t]

)
h(ZS) | T = t

]



2

.

Thus, again, by the universal property of the kernel k and Gretton et al. (2012, Theorem 5), it follows

∀e ∈ E : EPe [Y | T = t,XS ] = µ̄t

(
XS

)
, Pe − a.s., ∀t ∈ {0, 1}. (10)

Further, by Assumption 4.1, we have

µ̄t(XS ) = µ̄t(ZPa(Y )), P− a.s.

This also implies Pe−a.s. equality of the conditional means for all e ∈ E by domination of measure.
We now observe that

EPe

[
µ̄1(XS )

]
= EPe

[
µ̄1(ZPa(Y ))

]
= EPe

[
Y do(T=1)

]
,

since ZPa(Y ) is a valid adjustment set. Then, we simplify the second treatment term in our estimand
using the tower property the invariance of the conditional expectation:

EPe

[
(Y − µ̄1(XS ))T

π̄(XS )

]
= EPe

[
1

π̄(XS )
EPe

[
(Y − µ̄1(XS )) | XS , T = 1

]
Pe(T = 1 | XS )

]
.

The RHS is equal to zero since EPe

[
Y | XS , T = 1

]
= µ̄1(XS ) ,Pe − a.s., as the invariance

from Equation (10) holds.

With an analogous argument for the control term it follows that

EPe

[
(Y − µ̄0(XS ))(1− T )

1− π̄(XS )

]
= 0,

and thus, the RAMEN estimator is equivalent to the ATE:

θe(S ) = EPe

[
Y do(T=1)

]
− EPe

[
Y do(T=0)

]
.

A.3 IMPLEMENTATION DETAILS

In this section, we describe all the implementation details for our methodology.

Estimation of the loss function We have several choices when it comes to estimating our loss
function, as there is a trade-off between statistical and computational efficiency. For instance, one
can choose the linear time estimator proposed in Gretton et al. (2012, Section 6) or the efficient
estimator proposed in Kim & Ramdas (2024) that runs in quadratic time. In this paper, we estimate

H2
e(S) := EPe

[
δS(Z;V )k

(
ZS , Z̃

os
S

)
δS(Ṽ , Z̃os)

]

using the cross U-statistic from Kim & Ramdas (2024), defined as

Ĥ2
e(S) :=

2

n

n/2∑

i=1

hS(Zi, Vi),

with hS(Zi, Vi) :=
2

n

n∑

j=n/2+1

δS(Zi, Vi)k(Zi,S , Zj,S)δS(Zj , Vj).

Moreover, we would like the two loss functions, i.e., JY and JT , to be on the same scale to avoid
any finite sample issues. Therefore, we standardize the cross U-statistic by dividing the empirical
variance σ̂

(
Ĥ2

e(S)
)

, i.e. the finite sample estimate of the variance term

σ2
(
Ĥ2

e(S)
)
:= EPe

[
(hS(Z)− EPe [hS(Z)])

2
]
.
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Choice of kernel An important issue in practice is the selection of the kernel parameters. We used
a Gaussian kernel in all of our experiments. We set the bandwidth of the kernel σ to be the median
distance between points X in the pooled sample—this remains a heuristic similar to those described
in Takeuchi et al. (2006), and the optimum kernel choice is an ongoing area of research.

A.3.1 ALGORITHM 1: COMBINATORIAL SEARCH OVER SUBSETS

We now describe the concrete implementation of our first algorithm.

Since we know that T is a parent of Y , we can simplify our loss function to incorporate this knowl-
edge. Let us define the quantity δy,t(XS , Y ) := Y −µ̄t(XS), where µ̄t(XS) := EP[Y | XS , T = t].
We can rewrite the Y-invariance loss function as follows

min
S⊆[d]

max
e∈E,t∈{0,1}

EPe [δy,t(Y,XS)k (XS , X
′
S) δy,t(Y

′, X ′
S) | T = t] .

Similarly, we define π̄(XS) := EP[T | XS ] and minimize the T-invariance loss function

min
S⊆[d]

max
e∈E

EPe [δt(T,XS)k (XS , X
′
S) δt(T

′, X ′
S)] .

where δt(XS , T ) := T − π̄(XS).

We explain how to compute the adjustment set explicitly in Algorithm 1, assuming oracle access to
the nuisance functions. In practice, nuisance functions can be estimated using the pooled data from
all environments.

A.3.2 ALGORITHM 2: GUMBEL TRICK

To deal with the computational infeasibility of searching over all possible subsets of covariates,
we propose a continuous relaxation of the optimization problem that can be efficiently solved using
gradient descent. The method involves using Gumbel sampling to create differentiable binary masks
for covariate selection, which allows optimization via gradient descent. We present the continuous
relaxation in Algorithm 2 for obtaining the invariance loss with respect to the node T ; the algorithm
can be extended analogously to minimize the invariance loss for Y1 and Y0. In this algorithm, we
replace the max operator over the environments with an average to obtain a smoother loss function.
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Algorithm 1 Combinatorial search over subsets (θ̂ )

1: Input: Data {(Xe, Ye, Te)}ne
i=1, Nuisance functions: π̄, µ̄0, µ̄1

2: for each subset S ⊆ [d] do
3: for each environment e ∈ E do
4: Compute T-invariance loss using dataset De:

ĴS(D
e;T )← 4

n2

n/2∑

i=1

n∑

j=n/2+1

(Ti − π̄(Xi))k(Xi,S , Xj,S)(Tj − π̄(Xj))

ĴS(D
e;T )← ĴS(D

e;T )

V̂ar
(
ĴS(De;T )

)

5: Compute Y-invariance loss using dataset De restricted to samples with T = 1:

ĴS(D
e;Y1)←

4

n2

n/2∑

i=1

n∑

j=n/2+1

(Yi − µ̄1(Xi))k(Xi,S , Xj,S)(Yj − µ̄1(Xj))

ĴS(D
e;Y1)←

ĴS(D
e;Y1)

V̂ar
(
ĴS(De;Y1)

)

6: Compute Y-invariance loss using dataset De restricted to samples with T = 0:

ĴS(D
e;Y0)←

4

n2

n/2∑

i=1

n∑

j=n/2+1

(Yi − µ̄0(Xi))k(Xi,S , Xj,S)(Yj − µ̄0(Xj))

ĴS(D
e;Y0)←

ĴS(D
e;Y0)

V̂ar
(
ĴS(De;Y0)

)

7: end for
8: Compute the worst environment losses:

ĴS(T )← max
e∈E

JS(D
e;T ), ĴS(Y1)← max

e∈E
JS(D

e;Y1), ĴS(Y0)← max
e∈E

JS(D
e;Y0)

9: end for
10: Return: S ← argminS min

(
ĴS(T ),max(ĴS(Y1), ĴS(Y0))

)
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Algorithm 2 Gumbel trick for subset selection (θ̂insta− )

1: Input: Data {(Xe, Ye, Te)}e∈E , temperatures τinit, τfinal, interval k, rate α < 1, learning rates
ηgate, ηnn, epochs nepochs

2: Initialize gate weights wπ, wy and neural networks θπ, θy1
, θy0

; Set τ ← τinit
3: for epoch = 1 to nepochs do
4: if epoch mod k = 0 then
5: Update temperature: τ ← max(τfinal, τ · α)
6: end if
7: for each environment e ∈ E do
8: Compute masks:

Bπ
j = sigmoid((wπ,j +G1,j −G2,j)/τ) with G1,j , G2,j ∼ Gumbel(0, 1)

By
j = sigmoid((wy,j +G1,j −G2,j)/τ) with G1,j , G2,j ∼ Gumbel(0, 1)

9: Compute invariance losses:

Ĵwπ
(De;T )← 4

n2

n/2∑

i=1

n∑

j=n/2+1

(Ti − fθπ (Xi,Bπ ))k(Xi,Bπ , Xj,Bπ )(Tj − fθπ (Xj,Bπ ))

Ĵwπ (D
e;T )← Ĵwπ

(De;T )

V̂ar
(
Ĵwπ

(De;T )
)

Ĵwy (D
e;Y1)←

4

n2

n/2∑

i=1

n∑

j=n/2+1

(Yi − fθy1 (Xi,By ))k(Xi,By , Xj,By )(Yj − fθy1 (Xj,By )) (using De with T = 1)

Ĵwy
(De;Y1)←

Ĵwy (D
e;Y1)

V̂ar
(
Ĵwy

(De;Y1)
)

Ĵwy
(De;Y0)←

4

n2

n/2∑

i=1

n∑

j=n/2+1

(Yi − fθy0 (Xi,By ))k(Xi,By , Xj,By )(Yj − fθy0 (Xj,By )) (using De with T = 0)

Ĵwy (D
e;Y0)←

Ĵwy
(De;Y0)

V̂ar
(
Ĵwy (D

e;Y0)
)

10: end for
11: Compute losses:

Ĵwπ
← 1

|E|
∑

e

Ĵwπ
(De;T ), Ĵwy

← 1

2|E|
∑

e

Ĵwy
(De;Y1) + Ĵwy

(De;Y0)

12: Update parameters:

wπ ← wπ − ηgate∇wπ Ĵwπ , θπ ← θπ − ηnn∇θπ Ĵwπ

wy ← wy − ηgate∇wy
Ĵwy

, θy1
← θy1

− ηnn∇θy1
Ĵwy

, θy0
← θy0

− ηnn∇θy0
Ĵwy

13: end for
14: Determine subsets: ST ← {i : wπ,i > 0}, SY ← {i : wy,i > 0}
15: Calculate exact losses (as defined in Algorithm 1) for each subset S ∈ {ST , SY }:

JS(T )←
1

|E|
∑

e

ĴS(D
e;T ), JS(Y1)←

1

|E|
∑

e

ĴS(D
e;Y1), JS(Y0)←

1

|E|
∑

e

ĴS(D
e;Y0)

16: Return: Sinsta− ← argminS∈{ST ,SY } min(JS(T ),max(JS(Y1), JS(Y0)))
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B EXTENDED RELATED WORK

We discuss here the different challenges associated with the problem of identifying and estimating
treatment effects. Our focus is to highlight differences and similarities with our methodology—we
leave out the orthogonal problem of statistical efficiency for the sake of clarity, and we refer the
reader to Guo et al. (2022); Cheng et al. (2024) for a complete survey of methods.

Covariate selection with pre-treatment covariates Several works have relaxed the causal suffi-
ciency assumption, allowing for unobserved variables—as long as they are not confounders—while
constraining all observed covariates to be pre-treatment. In this setting, the main challenge is M-
bias (Sjölander, 2009), which makes adjusting for the full set of covariates not a viable solution. For
instance, EHS (Entner et al., 2013) was one of the first methods to obtain partial identification of
treatment effects in this setting, however, at the cost of computational inefficiency. Gultchin et al.
(2020) propose a more efficient relaxation for EHS to circumvent the computational inefficiency.
Further, several more recent works leverage anchor variables to obtain point identification in a com-
putationally efficient way (Cheng et al., 2020; 2022b; Shah et al., 2022). In contrast, our setting is
different since we do not assume that all observed covariates are pre-treatment.

Covariate selection under causal sufficiency When all the variables in the causal graph are
observed, the only challenge towards identifiability is the presence of post-treatment covariates
that can introduce collider bias. Several methods have been proposed to tackle this setting—e.g.
IDA (Maathuis et al., 2009) and its variants (Perković et al., 2017; Fang & He, 2020) aim to learn
a complete graph from data and then infer a valid adjustment set from it to achieve identifiability.
However, they suffer from computational inefficiency since they must first learn the entire causal
graph, and they only achieve partial identification. More recently, Shi et al. (2021) consider the
setting where multiple environments are available and apply invariant risk minimization (IRM) (Ar-
jovsky et al., 2019) for treatment effect estimation. However, it is widely known that IRM re-
quires many environments—linear in the number of covariates—to generalize well even in the linear
regime (Rosenfeld et al., 2021). Finally, Wang et al. (2023) recently proposed a reinforcement learn-
ing approach to identify the treatmente effect. In contrast, our approach achieves point identification
while being computationally efficient and not requiring causal sufficiency.

Identifiability in linear Gaussian SCMs In linear Gaussian structural causal models (SCMs), the
structure of the causal graph imposes algebraic relationships among the entries in the covariance
matrix of the associated distribution. Many researchers have exploited these relationships to de-
rive graphical criteria for the identifiability of causal effects, even when some confounders remain
unobserved. Specifically, several graphical criteria have been identified for deciding whether, in a
given causal graph, a specific causal effect can be identified from the covariance matrix for almost
all linear Gaussian SCMs compatible with the graph (Drton et al., 2011; Foygel et al., 2012; Weihs
et al., 2018; Barber et al., 2022). In contrast, our approach does not assume linearity or Gaussianity,
and instead, we leverage access to multiple heterogeneous data sources for identification.

Combining data from multiple environments Given the challenges associated with estimating
treatment effects using non-randomized data, several works propose detecting bias in the treatment
effect estimated from observational data by leveraging randomized trials (Yang et al., 2023; Morucci
et al., 2023; Hussain et al., 2022; 2023; Demirel et al., 2024; De Bartolomeis et al., 2024b;a), or mul-
tiple observational studies (Karlsson & Krijthe, 2023; Mameche et al., 2024; Karlsson & Krijthe,
2025). In contrast, we leverage the heterogeneity across multiple data sources to identify and esti-
mate treatment effects in settings without unobserved confounders.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .
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corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
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and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
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premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
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Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
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lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.
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scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
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experiments on a number of Fanny controlled/known DAGs, where the biases and invariances are
known and satisfy our assumptions. In all of these, our theory predicts that our method is expected
to identify the ATE, leading to a small MAE, whereas other methods tend to fail. We also test
RICEon a more challenging synthetic benchmark by uniformly sampling directed acyclic graphs
using the Erdős–Rényi model. Fanny yixin mentioned others have done it before and its a typical
way to evaluate? - cite Finally, we validate our estimator beyond the purely synthetic setting: in
a semi-synthetic setting with real-world covariates and a synthetic non-linear ground truth and a
real-world experiment where we compare the effect estimates Fanny conclusions obtained through
RICEwith established epidemiological findings.

Evaluation metric and baselines We focus on the statistical task of estimating the average treat-
ment effect (ATE) ✓e, for each observed environment e 2 E . To evaluate the performance of an
estimator ✓̂ Fanny superscript e or not, currently inconsistent , we compute the mean absolute er-
ror (MAE) averaged across environments: 1

|E|
P

e2E |✓e � ✓̂e|. Fanny We compare the two imple-

mentable versions of our estimator described in Section bla – names with three baselines: ✓̂irm, the
IRM approach for treatment effect estimation proposed by Shi et al. (2021); ✓̂all, which adjusts for
all available covariates; and ✓̂null, which does not adjust for any covariates.

5.1 AN ILLUSTRATIVE EXAMPLE OF COLLIDER BIAS

Fanny examples plural? also be more precise - We start with data generated from distributions
with simple underlying DAGs as illustrated in Figure bla that satisfy our assumption bla. Fanny

maybe here say that in the appendix we also discuss the case when no invariance holds - could be
footnote For each of the three different invariance scenarios, we ”consider” three variants: where Z
is either a descendant of Y , a collider between T and Y , or independent noise. - Fanny for each
case, treatment effects are fixed, coefficients are sampled (50 different) For the description of the
data-generating process please refer to ... - expectations on baselines / hypotheses: from theory
thetanull basically should never work cause there’s (parent) confounder between T and Y, Fanny

maybe say for when Z is noise thetaall etc. should work, but collider and descendant it should be bad
while IRM could theoretically work - Experimental results: Indeed we confirm these things ... with
theta-irm better than theta-all but a bit worse than expected (but aligning with their findings as well)

a simple example where adjusting for all the available covariates can introduce collider bias in the
treatment effect estimate. In Figure 2 (Row 2), we illustrate the graphical models and refer the reader
to Appendix D.1 for a description of the data generating process. In particular, our model allows for
invariance violations, either in T or Y , induced by mean and variance shifts using the unobserved
variable U . Further, observe that for each choice of invariance, the post-treatment variable Z can
either be a descendant of Y , a collider between T and Y , or independent noise.

Experimental results In Figure 2 (Row 1), we present the empirical mean absolute error (MAE)
for all methods under three different scenarios: “collider”, “descendant”, and “noise”. Our methods,
✓̂ and ✓̂fast� , consistently achieve lower MAE compared to the baselines in all scenarios, indi-
cating that the differentiable relaxation of our method does not significantly compromise statistical
performance. Furthermore, when the invariance with respect to Y is violated Fanny or rather: 1)
expectedly, for T-invariance? its worse than for Y-invariance or T,Y-invariance. 2) (maybe?) they
don’t do two-stage but do direct estimation of , the performance of ✓̂irm deteriorates markedly—even
in scenarios where the post-treatment variable is independent noise, it performs worse than simply
adjusting for all available covariates. In contrast, our approach remains robust even when one of
the invariances is compromised. Finally, we observe that relying on T -invariance leads to increased
error Fanny across methods? because the adjustment set we recover, the parents of the treatment,
is not statistically efficient (see Henckel et al. (2022, Corollary 3.4)).
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Xc

YT

Xp

U

(a) T,Y-invariance

Xc

YT

Xp

U

(b) Y-invariance

Xc

YT

Xp

U

(c) T-invariance

Figure 2: (Row 1) For all the plots: n = 2500, d = 5, |E| = 5. We plot the mean absolute error
averaged across environments when: (a) both invariances are preserved; (b) the invariance w.r.t Y
is preserved; (c) the invariance w.r.t T is preserved. We report mean and standard error over 20
runs. (Row 2) Graphical models that capture our data generating process: (a) U does not break any
invariance; (b) U breaks the invariance between Xp and T ; (c) U breaks the invariance between Xp

and Y . Dashed nodes are unobserved, and dashed lines denote optional edges.

only when Xc is a collider or a descendant; ✓̂irm should be biased only in the T-invariance case; ✓̂
and ✓̂insta� should never be biased in these settings.

In Figure 2 (Row 1), we present the empirical MAE for all methods, and we confirm the predic-
tions from theory. Our methods, ✓̂ and ✓̂insta� , consistently achieve lower MAE compared to the
baselines in all scenarios, indicating that the differentiable relaxation of our method does not signif-
icantly compromise statistical performance. Expectedly, for T-invariance, the performance of ✓̂irm

deteriorates markedly—even in scenarios where the post-treatment variable is independent noise, it
performs worse than simply adjusting for all available covariates. In contrast, our approach remains
robust even when one of the invariances is compromised. Finally, we observe that relying on T-
invariance leads to increased error across methods since the adjustment set we recover, the parents
of the treatment, is not statistically efficient, see e.g. Henckel et al. (2022, Corollary 3.4).

5.2 SYNTHETIC EXPERIMENT WITH RANDOM HIGH DIMENSIONAL DAGS

Figure 3: We plot the mean absolute er-
ror averaged across environments when
the T-invariance is preserved. We sam-
ple n = 2000 points for each environ-
ment; we report mean and standard er-
ror over 100 runs.

We randomly draw a graph from the Erdös-Rényi ran-
dom graph model with a total number of nodes d = 20.
We do rejection sampling to exclude graphs that either
contain mediators—as they violate Assumption 3.2—or
do not contain at least a confounder. We then sample
data from the resulting DAG via a linear structural causal
model, with the only exception being the treatment vari-
able T , which is generated by additionally applying a sig-
moid function and then sampling from a Bernoulli distri-
bution. We further post-process the graph, adding a post-
treatment variable Xc = Y + T and making unobserved
either the parents of T or Y (except common parents), de-
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.
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The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.
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findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
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in this dataset. Additional experiments where the post-
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.
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premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.
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findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
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ments including mediators between the treatment and the
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10

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Xc

YT

Xp

U

(a) T,Y-invariance

Xc

YT

Xp

U

(b) Y-invariance

Xc

YT

Xp

U

(c) T-invariance

Figure 2: (Row 1) For all the plots: n = 2500, d = 5, |E| = 5. We plot the mean absolute error
averaged across environments when: (a) both invariances are preserved; (b) the invariance w.r.t Y
is preserved; (c) the invariance w.r.t T is preserved. We report mean and standard error over 20
runs. (Row 2) Graphical models that capture our data generating process: (a) U does not break any
invariance; (b) U breaks the invariance between Xp and T ; (c) U breaks the invariance between Xp

and Y . Dashed nodes are unobserved, and dashed lines denote optional edges.

only when Xc is a collider or a descendant; ✓̂irm should be biased only in the T-invariance case; ✓̂
and ✓̂insta� should never be biased in these settings.

In Figure 2 (Row 1), we present the empirical MAE for all methods, and we confirm the predic-
tions from theory. Our methods, ✓̂ and ✓̂insta� , consistently achieve lower MAE compared to the
baselines in all scenarios, indicating that the differentiable relaxation of our method does not signif-
icantly compromise statistical performance. Expectedly, for T-invariance, the performance of ✓̂irm

deteriorates markedly—even in scenarios where the post-treatment variable is independent noise, it
performs worse than simply adjusting for all available covariates. In contrast, our approach remains
robust even when one of the invariances is compromised. Finally, we observe that relying on T-
invariance leads to increased error across methods since the adjustment set we recover, the parents
of the treatment, is not statistically efficient, see e.g. Henckel et al. (2022, Corollary 3.4).

5.2 SYNTHETIC EXPERIMENT WITH RANDOM HIGH DIMENSIONAL DAGS

Figure 3: We plot the mean absolute er-
ror averaged across environments when
the T-invariance is preserved. We sam-
ple n = 2000 points for each environ-
ment; we report mean and standard er-
ror over 100 runs.

We randomly draw a graph from the Erdös-Rényi ran-
dom graph model with a total number of nodes d = 20.
We do rejection sampling to exclude graphs that either
contain mediators—as they violate Assumption 3.2—or
do not contain at least a confounder. We then sample
data from the resulting DAG via a linear structural causal
model, with the only exception being the treatment vari-
able T , which is generated by additionally applying a sig-
moid function and then sampling from a Bernoulli distri-
bution. We further post-process the graph, adding a post-
treatment variable Xc = Y + T and making unobserved
either the parents of T or Y (except common parents), de-
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Figure 6: Mean absolute error averaged across environments for the IHDP dataset with a descendant
of the outcome Y when different invariances are preserved (T or Y ). We consider the setting with
(a) a mediator between T and Y and (b) without a mediator. We consider five environments with
n = 748 points each; mean and standard error are reported over 20 runs.

C ADDITIONAL EXPERIMENTS

C.1 ROBUSTNESS TO MEDIATORS

We study here the robustness of our method to violations of Assumption 3.1. More concretely, we
show how the inclusion of a mediator between T and Y affects the ATE estimate for our method and
the baselines in several settings. We consider the semi-synthetic experiment setup from Section 5.3,
using a 2-dimensional descendant of Y as the post-treatment variable. In Figure 6, we present results
for two settings: when the treatment or the outcome is invariant across environments (complete
experimental details in Appendix D.2). All baselines show slightly worse performance when a
mediator is included. When T is invariant, our method remains competitive and outperforms the
baselines, as the parents of T still form a valid adjustment set despite the mediator. However, both
θ̂ and θ̂insta− experience a significant drop in performance in the Y -invariance setup, i.e. when
T -invariance is violated. This is expected, as in this scenario, we recover the parents of Y , which
unfortunately also includes the mediator. A closer inspection of the selected subsets reveals that they
usually include the mediator, thus failing to estimate the full effect of T on Y . Instead, our method
recovers the natural direct effect of T on Y (Pearl, 2022).

C.2 ROBUSTNESS TO LACK OF INVARIANCE
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.
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Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.
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premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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experiments on a number of Fanny controlled/known DAGs, where the biases and invariances are
known and satisfy our assumptions. In all of these, our theory predicts that our method is expected
to identify the ATE, leading to a small MAE, whereas other methods tend to fail. We also test
RICEon a more challenging synthetic benchmark by uniformly sampling directed acyclic graphs
using the Erdős–Rényi model. Fanny yixin mentioned others have done it before and its a typical
way to evaluate? - cite Finally, we validate our estimator beyond the purely synthetic setting: in
a semi-synthetic setting with real-world covariates and a synthetic non-linear ground truth and a
real-world experiment where we compare the effect estimates Fanny conclusions obtained through
RICEwith established epidemiological findings.

Evaluation metric and baselines We focus on the statistical task of estimating the average treat-
ment effect (ATE) ✓e, for each observed environment e 2 E . To evaluate the performance of an
estimator ✓̂ Fanny superscript e or not, currently inconsistent , we compute the mean absolute er-
ror (MAE) averaged across environments: 1

|E|
P

e2E |✓e � ✓̂e|. Fanny We compare the two imple-

mentable versions of our estimator described in Section bla – names with three baselines: ✓̂irm, the
IRM approach for treatment effect estimation proposed by Shi et al. (2021); ✓̂all, which adjusts for
all available covariates; and ✓̂null, which does not adjust for any covariates.

5.1 AN ILLUSTRATIVE EXAMPLE OF COLLIDER BIAS

Fanny examples plural? also be more precise - We start with data generated from distributions
with simple underlying DAGs as illustrated in Figure bla that satisfy our assumption bla. Fanny

maybe here say that in the appendix we also discuss the case when no invariance holds - could be
footnote For each of the three different invariance scenarios, we ”consider” three variants: where Z
is either a descendant of Y , a collider between T and Y , or independent noise. - Fanny for each
case, treatment effects are fixed, coefficients are sampled (50 different) For the description of the
data-generating process please refer to ... - expectations on baselines / hypotheses: from theory
thetanull basically should never work cause there’s (parent) confounder between T and Y, Fanny

maybe say for when Z is noise thetaall etc. should work, but collider and descendant it should be bad
while IRM could theoretically work - Experimental results: Indeed we confirm these things ... with
theta-irm better than theta-all but a bit worse than expected (but aligning with their findings as well)

a simple example where adjusting for all the available covariates can introduce collider bias in the
treatment effect estimate. In Figure 2 (Row 2), we illustrate the graphical models and refer the reader
to Appendix D.1 for a description of the data generating process. In particular, our model allows for
invariance violations, either in T or Y , induced by mean and variance shifts using the unobserved
variable U . Further, observe that for each choice of invariance, the post-treatment variable Z can
either be a descendant of Y , a collider between T and Y , or independent noise.

Experimental results In Figure 2 (Row 1), we present the empirical mean absolute error (MAE)
for all methods under three different scenarios: “collider”, “descendant”, and “noise”. Our methods,
✓̂ and ✓̂fast� , consistently achieve lower MAE compared to the baselines in all scenarios, indi-
cating that the differentiable relaxation of our method does not significantly compromise statistical
performance. Furthermore, when the invariance with respect to Y is violated Fanny or rather: 1)
expectedly, for T-invariance? its worse than for Y-invariance or T,Y-invariance. 2) (maybe?) they
don’t do two-stage but do direct estimation of , the performance of ✓̂irm deteriorates markedly—even
in scenarios where the post-treatment variable is independent noise, it performs worse than simply
adjusting for all available covariates. In contrast, our approach remains robust even when one of
the invariances is compromised. Finally, we observe that relying on T -invariance leads to increased
error Fanny across methods? because the adjustment set we recover, the parents of the treatment,
is not statistically efficient (see Henckel et al. (2022, Corollary 3.4)).
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(a) T,Y-invariance
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(b) Y-invariance
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Figure 2: (Row 1) For all the plots: n = 2500, d = 5, |E| = 5. We plot the mean absolute error
averaged across environments when: (a) both invariances are preserved; (b) the invariance w.r.t Y
is preserved; (c) the invariance w.r.t T is preserved. We report mean and standard error over 20
runs. (Row 2) Graphical models that capture our data generating process: (a) U does not break any
invariance; (b) U breaks the invariance between Xp and T ; (c) U breaks the invariance between Xp

and Y . Dashed nodes are unobserved, and dashed lines denote optional edges.

only when Xc is a collider or a descendant; ✓̂irm should be biased only in the T-invariance case; ✓̂
and ✓̂insta� should never be biased in these settings.

In Figure 2 (Row 1), we present the empirical MAE for all methods, and we confirm the predic-
tions from theory. Our methods, ✓̂ and ✓̂insta� , consistently achieve lower MAE compared to the
baselines in all scenarios, indicating that the differentiable relaxation of our method does not signif-
icantly compromise statistical performance. Expectedly, for T-invariance, the performance of ✓̂irm

deteriorates markedly—even in scenarios where the post-treatment variable is independent noise, it
performs worse than simply adjusting for all available covariates. In contrast, our approach remains
robust even when one of the invariances is compromised. Finally, we observe that relying on T-
invariance leads to increased error across methods since the adjustment set we recover, the parents
of the treatment, is not statistically efficient, see e.g. Henckel et al. (2022, Corollary 3.4).

5.2 SYNTHETIC EXPERIMENT WITH RANDOM HIGH DIMENSIONAL DAGS

Figure 3: We plot the mean absolute er-
ror averaged across environments when
the T-invariance is preserved. We sam-
ple n = 2000 points for each environ-
ment; we report mean and standard er-
ror over 100 runs.

We randomly draw a graph from the Erdös-Rényi ran-
dom graph model with a total number of nodes d = 20.
We do rejection sampling to exclude graphs that either
contain mediators—as they violate Assumption 3.2—or
do not contain at least a confounder. We then sample
data from the resulting DAG via a linear structural causal
model, with the only exception being the treatment vari-
able T , which is generated by additionally applying a sig-
moid function and then sampling from a Bernoulli distri-
bution. We further post-process the graph, adding a post-
treatment variable Xc = Y + T and making unobserved
either the parents of T or Y (except common parents), de-
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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Figure 2: (Row 1) For all the plots: n = 2500, d = 5, |E| = 5. We plot the mean absolute error
averaged across environments when: (a) both invariances are preserved; (b) the invariance w.r.t Y
is preserved; (c) the invariance w.r.t T is preserved. We report mean and standard error over 20
runs. (Row 2) Graphical models that capture our data generating process: (a) U does not break any
invariance; (b) U breaks the invariance between Xp and T ; (c) U breaks the invariance between Xp

and Y . Dashed nodes are unobserved, and dashed lines denote optional edges.

only when Xc is a collider or a descendant; ✓̂irm should be biased only in the T-invariance case; ✓̂
and ✓̂insta� should never be biased in these settings.

In Figure 2 (Row 1), we present the empirical MAE for all methods, and we confirm the predic-
tions from theory. Our methods, ✓̂ and ✓̂insta� , consistently achieve lower MAE compared to the
baselines in all scenarios, indicating that the differentiable relaxation of our method does not signif-
icantly compromise statistical performance. Expectedly, for T-invariance, the performance of ✓̂irm

deteriorates markedly—even in scenarios where the post-treatment variable is independent noise, it
performs worse than simply adjusting for all available covariates. In contrast, our approach remains
robust even when one of the invariances is compromised. Finally, we observe that relying on T-
invariance leads to increased error across methods since the adjustment set we recover, the parents
of the treatment, is not statistically efficient, see e.g. Henckel et al. (2022, Corollary 3.4).

5.2 SYNTHETIC EXPERIMENT WITH RANDOM HIGH DIMENSIONAL DAGS

Figure 3: We plot the mean absolute er-
ror averaged across environments when
the T-invariance is preserved. We sam-
ple n = 2000 points for each environ-
ment; we report mean and standard er-
ror over 100 runs.

We randomly draw a graph from the Erdös-Rényi ran-
dom graph model with a total number of nodes d = 20.
We do rejection sampling to exclude graphs that either
contain mediators—as they violate Assumption 3.2—or
do not contain at least a confounder. We then sample
data from the resulting DAG via a linear structural causal
model, with the only exception being the treatment vari-
able T , which is generated by additionally applying a sig-
moid function and then sampling from a Bernoulli distri-
bution. We further post-process the graph, adding a post-
treatment variable Xc = Y + T and making unobserved
either the parents of T or Y (except common parents), de-
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Figure 7: Mean absolute error averaged
across environments for the IHDP dataset
when no invariance is preserved. We con-
sider five environments with n = 748 points
each; mean and standard error are reported
over 20 runs.

Next, we examine the robustness of our method to vio-
lations of the invariance in Assumption 3.2. Specifically,
we consider again the semi-synthetic experiments of Sec-
tion 5.3 in the scenario where neither T - nor Y -invariance
holds and there are post-treatment variables (i.e. not the
independent noise setting). We provide the results in Fig-
ure 7. The performance of our method significantly wors-
ens in this setting, with performance close to the θ̂null
baseline, as it often recovers the empty set when no in-
variant node is present. Nonetheless, our method still out-
performs θ̂irm in all the settings considered.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
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or Y depending on which invariance we want to preserve. To generate multiple environments, we
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ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.
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Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
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experiments on a number of Fanny controlled/known DAGs, where the biases and invariances are
known and satisfy our assumptions. In all of these, our theory predicts that our method is expected
to identify the ATE, leading to a small MAE, whereas other methods tend to fail. We also test
RICEon a more challenging synthetic benchmark by uniformly sampling directed acyclic graphs
using the Erdős–Rényi model. Fanny yixin mentioned others have done it before and its a typical
way to evaluate? - cite Finally, we validate our estimator beyond the purely synthetic setting: in
a semi-synthetic setting with real-world covariates and a synthetic non-linear ground truth and a
real-world experiment where we compare the effect estimates Fanny conclusions obtained through
RICEwith established epidemiological findings.

Evaluation metric and baselines We focus on the statistical task of estimating the average treat-
ment effect (ATE) ✓e, for each observed environment e 2 E . To evaluate the performance of an
estimator ✓̂ Fanny superscript e or not, currently inconsistent , we compute the mean absolute er-
ror (MAE) averaged across environments: 1

|E|
P

e2E |✓e � ✓̂e|. Fanny We compare the two imple-

mentable versions of our estimator described in Section bla – names with three baselines: ✓̂irm, the
IRM approach for treatment effect estimation proposed by Shi et al. (2021); ✓̂all, which adjusts for
all available covariates; and ✓̂null, which does not adjust for any covariates.

5.1 AN ILLUSTRATIVE EXAMPLE OF COLLIDER BIAS

Fanny examples plural? also be more precise - We start with data generated from distributions
with simple underlying DAGs as illustrated in Figure bla that satisfy our assumption bla. Fanny

maybe here say that in the appendix we also discuss the case when no invariance holds - could be
footnote For each of the three different invariance scenarios, we ”consider” three variants: where Z
is either a descendant of Y , a collider between T and Y , or independent noise. - Fanny for each
case, treatment effects are fixed, coefficients are sampled (50 different) For the description of the
data-generating process please refer to ... - expectations on baselines / hypotheses: from theory
thetanull basically should never work cause there’s (parent) confounder between T and Y, Fanny

maybe say for when Z is noise thetaall etc. should work, but collider and descendant it should be bad
while IRM could theoretically work - Experimental results: Indeed we confirm these things ... with
theta-irm better than theta-all but a bit worse than expected (but aligning with their findings as well)

a simple example where adjusting for all the available covariates can introduce collider bias in the
treatment effect estimate. In Figure 2 (Row 2), we illustrate the graphical models and refer the reader
to Appendix D.1 for a description of the data generating process. In particular, our model allows for
invariance violations, either in T or Y , induced by mean and variance shifts using the unobserved
variable U . Further, observe that for each choice of invariance, the post-treatment variable Z can
either be a descendant of Y , a collider between T and Y , or independent noise.

Experimental results In Figure 2 (Row 1), we present the empirical mean absolute error (MAE)
for all methods under three different scenarios: “collider”, “descendant”, and “noise”. Our methods,
✓̂ and ✓̂fast� , consistently achieve lower MAE compared to the baselines in all scenarios, indi-
cating that the differentiable relaxation of our method does not significantly compromise statistical
performance. Furthermore, when the invariance with respect to Y is violated Fanny or rather: 1)
expectedly, for T-invariance? its worse than for Y-invariance or T,Y-invariance. 2) (maybe?) they
don’t do two-stage but do direct estimation of , the performance of ✓̂irm deteriorates markedly—even
in scenarios where the post-treatment variable is independent noise, it performs worse than simply
adjusting for all available covariates. In contrast, our approach remains robust even when one of
the invariances is compromised. Finally, we observe that relying on T -invariance leads to increased
error Fanny across methods? because the adjustment set we recover, the parents of the treatment,
is not statistically efficient (see Henckel et al. (2022, Corollary 3.4)).
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(a) T,Y-invariance
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(b) Y-invariance
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Figure 2: (Row 1) For all the plots: n = 2500, d = 5, |E| = 5. We plot the mean absolute error
averaged across environments when: (a) both invariances are preserved; (b) the invariance w.r.t Y
is preserved; (c) the invariance w.r.t T is preserved. We report mean and standard error over 20
runs. (Row 2) Graphical models that capture our data generating process: (a) U does not break any
invariance; (b) U breaks the invariance between Xp and T ; (c) U breaks the invariance between Xp

and Y . Dashed nodes are unobserved, and dashed lines denote optional edges.

only when Xc is a collider or a descendant; ✓̂irm should be biased only in the T-invariance case; ✓̂
and ✓̂insta� should never be biased in these settings.

In Figure 2 (Row 1), we present the empirical MAE for all methods, and we confirm the predic-
tions from theory. Our methods, ✓̂ and ✓̂insta� , consistently achieve lower MAE compared to the
baselines in all scenarios, indicating that the differentiable relaxation of our method does not signif-
icantly compromise statistical performance. Expectedly, for T-invariance, the performance of ✓̂irm

deteriorates markedly—even in scenarios where the post-treatment variable is independent noise, it
performs worse than simply adjusting for all available covariates. In contrast, our approach remains
robust even when one of the invariances is compromised. Finally, we observe that relying on T-
invariance leads to increased error across methods since the adjustment set we recover, the parents
of the treatment, is not statistically efficient, see e.g. Henckel et al. (2022, Corollary 3.4).

5.2 SYNTHETIC EXPERIMENT WITH RANDOM HIGH DIMENSIONAL DAGS

Figure 3: We plot the mean absolute er-
ror averaged across environments when
the T-invariance is preserved. We sam-
ple n = 2000 points for each environ-
ment; we report mean and standard er-
ror over 100 runs.

We randomly draw a graph from the Erdös-Rényi ran-
dom graph model with a total number of nodes d = 20.
We do rejection sampling to exclude graphs that either
contain mediators—as they violate Assumption 3.2—or
do not contain at least a confounder. We then sample
data from the resulting DAG via a linear structural causal
model, with the only exception being the treatment vari-
able T , which is generated by additionally applying a sig-
moid function and then sampling from a Bernoulli distri-
bution. We further post-process the graph, adding a post-
treatment variable Xc = Y + T and making unobserved
either the parents of T or Y (except common parents), de-
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.
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premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.
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tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.
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premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.
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findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
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Figure 2: (Row 1) For all the plots: n = 2500, d = 5, |E| = 5. We plot the mean absolute error
averaged across environments when: (a) both invariances are preserved; (b) the invariance w.r.t Y
is preserved; (c) the invariance w.r.t T is preserved. We report mean and standard error over 20
runs. (Row 2) Graphical models that capture our data generating process: (a) U does not break any
invariance; (b) U breaks the invariance between Xp and T ; (c) U breaks the invariance between Xp

and Y . Dashed nodes are unobserved, and dashed lines denote optional edges.

only when Xc is a collider or a descendant; ✓̂irm should be biased only in the T-invariance case; ✓̂
and ✓̂insta� should never be biased in these settings.

In Figure 2 (Row 1), we present the empirical MAE for all methods, and we confirm the predic-
tions from theory. Our methods, ✓̂ and ✓̂insta� , consistently achieve lower MAE compared to the
baselines in all scenarios, indicating that the differentiable relaxation of our method does not signif-
icantly compromise statistical performance. Expectedly, for T-invariance, the performance of ✓̂irm

deteriorates markedly—even in scenarios where the post-treatment variable is independent noise, it
performs worse than simply adjusting for all available covariates. In contrast, our approach remains
robust even when one of the invariances is compromised. Finally, we observe that relying on T-
invariance leads to increased error across methods since the adjustment set we recover, the parents
of the treatment, is not statistically efficient, see e.g. Henckel et al. (2022, Corollary 3.4).

5.2 SYNTHETIC EXPERIMENT WITH RANDOM HIGH DIMENSIONAL DAGS

Figure 3: We plot the mean absolute er-
ror averaged across environments when
the T-invariance is preserved. We sam-
ple n = 2000 points for each environ-
ment; we report mean and standard er-
ror over 100 runs.

We randomly draw a graph from the Erdös-Rényi ran-
dom graph model with a total number of nodes d = 20.
We do rejection sampling to exclude graphs that either
contain mediators—as they violate Assumption 3.2—or
do not contain at least a confounder. We then sample
data from the resulting DAG via a linear structural causal
model, with the only exception being the treatment vari-
able T , which is generated by additionally applying a sig-
moid function and then sampling from a Bernoulli distri-
bution. We further post-process the graph, adding a post-
treatment variable Xc = Y + T and making unobserved
either the parents of T or Y (except common parents), de-
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Figure 8: (Row 1) We plot the mean absolute error averaged across environments when: (a) no
unobserved variables and both invariance w.r.t T and Y are preserved; (b) the parents of T are
unobserved but the invariance w.r.t. Y is preserved; (c) the parents of Y are unobserved but the
invariance w.r.t T is preserved. For all plots, we sample n = 2000 points for each environment; we
report mean and standard error over 100 runs. (Row 2) Complete experimental results for the semi-
synthetic setup described in Section 5.3 using the IHDP dataset. The plots show the mean absolute
error averaged across environments for: (a) both T - and Y -invariance, (b) Y -invariance only, (c)
T -invariance only.We consider five environments with n = 748 points each; mean and standard
error are reported over 20 runs.

C.3 ADDITIONAL RANDOM GRAPHS EXPERIMENTS

In Figure 8 (Row 1), we report the MAE averaged across environments for all the invariance set-
tings. First, we observe that across all settings and numbers of available environments, our method
significantly outperforms existing baselines. Most notably, θ̂insta− achieves relatively small errors
even with a limited number of environments. In contrast, θ̂irm requires a much larger number of
environments to outperform the trivial baselines θ̂null and θ̂all. Further, when the parents of Y are
unobserved, θ̂irm fails to surpass all trivial baselines, even with many environments—this outcome
is expected, as the Y -invariance is broken in this case and θ̂irm lacks the double robustness.

C.4 ADDITIONAL SEMI-SYNTHETIC EXPERIMENTS

We present the complete experimental results using the IHDP dataset (see Section 5.3) in Fig-
ure 8 (Row 2). Specifically, we evaluate our proposed method and the baselines under three con-
ditions, where the two-dimensional variable Xc acts as a collider (as described in the main text),
descendant, or independent noise. For T -, Y -, and T, Y - invariance, the results align with those
obtained in previous sections for linear synthetic experiments. Both θ̂ and its differentiable ap-
proximation, θ̂insta− , outperform the baselines in most settings. The sole exception is when the
post-treatment variables are independent noise, where θ̂all achieves the best performance. In the
case of T -invariance, both our method and θ̂irm exhibit slightly worse performance. θ̂irm gener-
ally underperforms, showing the highest error even under the independent noise setting. The θ̂null
baseline demonstrates competitive performance overall, likely due to the relatively low influence of
confounders in this setup.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
findings, ✓̂irm exhibits higher MAE when Y is not in-
variant across environments, and adjusting for all features
(✓̂all) generally results in poor performance. Interestingly,
✓̂null performs competitively since the confounders have a
limited impact on the outcome and treatment assignment
in this dataset. Additional experiments where the post-
treatment feature is either a descendant of the outcome,
independent noise, or where neither T nor Y remains in-
variant are provided in Appendix C.2, along with experi-
ments including mediators between the treatment and the
outcome in Appendix C.1.
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experiments on a number of Fanny controlled/known DAGs, where the biases and invariances are
known and satisfy our assumptions. In all of these, our theory predicts that our method is expected
to identify the ATE, leading to a small MAE, whereas other methods tend to fail. We also test
RICEon a more challenging synthetic benchmark by uniformly sampling directed acyclic graphs
using the Erdős–Rényi model. Fanny yixin mentioned others have done it before and its a typical
way to evaluate? - cite Finally, we validate our estimator beyond the purely synthetic setting: in
a semi-synthetic setting with real-world covariates and a synthetic non-linear ground truth and a
real-world experiment where we compare the effect estimates Fanny conclusions obtained through
RICEwith established epidemiological findings.

Evaluation metric and baselines We focus on the statistical task of estimating the average treat-
ment effect (ATE) ✓e, for each observed environment e 2 E . To evaluate the performance of an
estimator ✓̂ Fanny superscript e or not, currently inconsistent , we compute the mean absolute er-
ror (MAE) averaged across environments: 1

|E|
P

e2E |✓e � ✓̂e|. Fanny We compare the two imple-

mentable versions of our estimator described in Section bla – names with three baselines: ✓̂irm, the
IRM approach for treatment effect estimation proposed by Shi et al. (2021); ✓̂all, which adjusts for
all available covariates; and ✓̂null, which does not adjust for any covariates.

5.1 AN ILLUSTRATIVE EXAMPLE OF COLLIDER BIAS

Fanny examples plural? also be more precise - We start with data generated from distributions
with simple underlying DAGs as illustrated in Figure bla that satisfy our assumption bla. Fanny

maybe here say that in the appendix we also discuss the case when no invariance holds - could be
footnote For each of the three different invariance scenarios, we ”consider” three variants: where Z
is either a descendant of Y , a collider between T and Y , or independent noise. - Fanny for each
case, treatment effects are fixed, coefficients are sampled (50 different) For the description of the
data-generating process please refer to ... - expectations on baselines / hypotheses: from theory
thetanull basically should never work cause there’s (parent) confounder between T and Y, Fanny

maybe say for when Z is noise thetaall etc. should work, but collider and descendant it should be bad
while IRM could theoretically work - Experimental results: Indeed we confirm these things ... with
theta-irm better than theta-all but a bit worse than expected (but aligning with their findings as well)

a simple example where adjusting for all the available covariates can introduce collider bias in the
treatment effect estimate. In Figure 2 (Row 2), we illustrate the graphical models and refer the reader
to Appendix D.1 for a description of the data generating process. In particular, our model allows for
invariance violations, either in T or Y , induced by mean and variance shifts using the unobserved
variable U . Further, observe that for each choice of invariance, the post-treatment variable Z can
either be a descendant of Y , a collider between T and Y , or independent noise.

Experimental results In Figure 2 (Row 1), we present the empirical mean absolute error (MAE)
for all methods under three different scenarios: “collider”, “descendant”, and “noise”. Our methods,
✓̂ and ✓̂fast� , consistently achieve lower MAE compared to the baselines in all scenarios, indi-
cating that the differentiable relaxation of our method does not significantly compromise statistical
performance. Furthermore, when the invariance with respect to Y is violated Fanny or rather: 1)
expectedly, for T-invariance? its worse than for Y-invariance or T,Y-invariance. 2) (maybe?) they
don’t do two-stage but do direct estimation of , the performance of ✓̂irm deteriorates markedly—even
in scenarios where the post-treatment variable is independent noise, it performs worse than simply
adjusting for all available covariates. In contrast, our approach remains robust even when one of
the invariances is compromised. Finally, we observe that relying on T -invariance leads to increased
error Fanny across methods? because the adjustment set we recover, the parents of the treatment,
is not statistically efficient (see Henckel et al. (2022, Corollary 3.4)).

8

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Xc

YT

Xp

U

(a) T,Y-invariance
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(b) Y-invariance
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Figure 2: (Row 1) For all the plots: n = 2500, d = 5, |E| = 5. We plot the mean absolute error
averaged across environments when: (a) both invariances are preserved; (b) the invariance w.r.t Y
is preserved; (c) the invariance w.r.t T is preserved. We report mean and standard error over 20
runs. (Row 2) Graphical models that capture our data generating process: (a) U does not break any
invariance; (b) U breaks the invariance between Xp and T ; (c) U breaks the invariance between Xp

and Y . Dashed nodes are unobserved, and dashed lines denote optional edges.

only when Xc is a collider or a descendant; ✓̂irm should be biased only in the T-invariance case; ✓̂
and ✓̂insta� should never be biased in these settings.

In Figure 2 (Row 1), we present the empirical MAE for all methods, and we confirm the predic-
tions from theory. Our methods, ✓̂ and ✓̂insta� , consistently achieve lower MAE compared to the
baselines in all scenarios, indicating that the differentiable relaxation of our method does not signif-
icantly compromise statistical performance. Expectedly, for T-invariance, the performance of ✓̂irm

deteriorates markedly—even in scenarios where the post-treatment variable is independent noise, it
performs worse than simply adjusting for all available covariates. In contrast, our approach remains
robust even when one of the invariances is compromised. Finally, we observe that relying on T-
invariance leads to increased error across methods since the adjustment set we recover, the parents
of the treatment, is not statistically efficient, see e.g. Henckel et al. (2022, Corollary 3.4).

5.2 SYNTHETIC EXPERIMENT WITH RANDOM HIGH DIMENSIONAL DAGS

Figure 3: We plot the mean absolute er-
ror averaged across environments when
the T-invariance is preserved. We sam-
ple n = 2000 points for each environ-
ment; we report mean and standard er-
ror over 100 runs.

We randomly draw a graph from the Erdös-Rényi ran-
dom graph model with a total number of nodes d = 20.
We do rejection sampling to exclude graphs that either
contain mediators—as they violate Assumption 3.2—or
do not contain at least a confounder. We then sample
data from the resulting DAG via a linear structural causal
model, with the only exception being the treatment vari-
able T , which is generated by additionally applying a sig-
moid function and then sampling from a Bernoulli distri-
bution. We further post-process the graph, adding a post-
treatment variable Xc = Y + T and making unobserved
either the parents of T or Y (except common parents), de-

8Methods
0

0.1
0.2
0.3
0.4
0.5
0.6

Methods

M
AE

Methods
0

0.1
0.2
0.3
0.4
0.5
0.6

Methods

M
AE

Methods
0

0.1
0.2
0.3
0.4
0.5
0.6

Methods

M
AE

collider descendant noise
0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

alllll alllll
alllll alllll
allll

M
AE

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.

Figure 4: Mean absolute error aver-
aged across environments for the IHDP
dataset when different invariances are
preserved (T, Y, or both). We consider
five environments with n = 748 points
each; mean and standard error are re-
ported over 20 runs.

Experimental results Figure 4 presents the results.
The increased complexity of the non-linear setup leads
to reduced performance across all methods compared to
the linear experiments. Despite this, ✓̂ and ✓̂fast� con-
tinue to outperform the baselines. Consistent with prior
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contain mediators—as they violate Assumption 3.2—or do not contain at least a confounder. We
then sample data from the resulting DAG via a linear structural causal model with Gaussian weights,
with the only exception being the treatment variable T , which is generated by additionally applying
a sigmoid function and then sampling from a Bernoulli distribution. We further post-process the
graph, adding a post-treatment variable Z = Y + T and removing at random some parents of T
or Y depending on which invariance we want to preserve. To generate multiple environments, we
apply a random uniform mean and variance shift to all the nodes in the graph except for T and Y .

Experimental results We now present results for three distinct settings: (a) no unobserved vari-
ables are present, preserving both invariances; (b) the parents of T are unobserved, breaking the
corresponding invariance; (c) the parents of Y are unobserved, breaking the corresponding invari-
ance. For each setting, we sample 100 different DAGs and vary the number of available environ-
ments while keeping the sample size fixed. In Figure 3, we plot the empirical mean absolute error
(MAE) averaged across environments for settings (a)–(c). First, we observe that across all settings
and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
We generate environments using Gaussian mean shifts in both pre-and post-treatment features,
as well as in either Y or T , and set the number of environments to |E| = 5. Finally, to
make the setting more challenging, we also hide one parent from either Y or T—specifically,
from the one that is not invariant. We provide additional experimental details in Appendix D.2.
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and numbers of available environments, our method significantly outperforms existing baselines.
Most notably, ✓̂fast� achieves relatively small errors even with a limited number of environments.
In contrast, ✓̂irm requires a much larger number of environments to outperform the trivial baselines
✓̂null and ✓̂all. Further, when the parents of Y are unobserved, ✓̂irm fails to surpass all trivial base-
lines, even with many environments—this outcome is expected, as the Y -invariance is broken in this
case and ✓̂irm lacks the double robustness.

5.3 SEMI-SYNTHETIC EXPERIMENTS: THE IHDP DATASET

The IHDP dataset The IHDP dataset contains covariates from n = 748 low-birth-weight,
premature infants enrolled in a home visitation program designed to improve their cognitive
scores (Hill, 2011). Instead of using the commonly adopted synthetic functions from Dorie
(2016), we simulate a more challenging non-linear version of the dataset inspired by Kang &
Schafer (2007), better reflecting real-world scenarios. Specifically, we retain the 6 continuous
features from the original dataset and simulate the outcome Y and treatment assignment T by
randomly sampling complex functional forms, such as exponentials and polynomials. In ad-
dition, we introduce a 2-dimensional synthetic collider, Z, as a linear function of T and Y .
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Figure 2: (Row 1) For all the plots: n = 2500, d = 5, |E| = 5. We plot the mean absolute error
averaged across environments when: (a) both invariances are preserved; (b) the invariance w.r.t Y
is preserved; (c) the invariance w.r.t T is preserved. We report mean and standard error over 20
runs. (Row 2) Graphical models that capture our data generating process: (a) U does not break any
invariance; (b) U breaks the invariance between Xp and T ; (c) U breaks the invariance between Xp

and Y . Dashed nodes are unobserved, and dashed lines denote optional edges.

only when Xc is a collider or a descendant; ✓̂irm should be biased only in the T-invariance case; ✓̂
and ✓̂insta� should never be biased in these settings.

In Figure 2 (Row 1), we present the empirical MAE for all methods, and we confirm the predic-
tions from theory. Our methods, ✓̂ and ✓̂insta� , consistently achieve lower MAE compared to the
baselines in all scenarios, indicating that the differentiable relaxation of our method does not signif-
icantly compromise statistical performance. Expectedly, for T-invariance, the performance of ✓̂irm

deteriorates markedly—even in scenarios where the post-treatment variable is independent noise, it
performs worse than simply adjusting for all available covariates. In contrast, our approach remains
robust even when one of the invariances is compromised. Finally, we observe that relying on T-
invariance leads to increased error across methods since the adjustment set we recover, the parents
of the treatment, is not statistically efficient, see e.g. Henckel et al. (2022, Corollary 3.4).

5.2 SYNTHETIC EXPERIMENT WITH RANDOM HIGH DIMENSIONAL DAGS

Figure 3: We plot the mean absolute er-
ror averaged across environments when
the T-invariance is preserved. We sam-
ple n = 2000 points for each environ-
ment; we report mean and standard er-
ror over 100 runs.

We randomly draw a graph from the Erdös-Rényi ran-
dom graph model with a total number of nodes d = 20.
We do rejection sampling to exclude graphs that either
contain mediators—as they violate Assumption 3.2—or
do not contain at least a confounder. We then sample
data from the resulting DAG via a linear structural causal
model, with the only exception being the treatment vari-
able T , which is generated by additionally applying a sig-
moid function and then sampling from a Bernoulli distri-
bution. We further post-process the graph, adding a post-
treatment variable Xc = Y + T and making unobserved
either the parents of T or Y (except common parents), de-
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Figure 9: (Row 1) For all the plots: n = 250, d = 3, |E| = 5. We plot the mean absolute error
averaged across environments when: (a) both invariances are preserved; (b) the invariance w.r.t Y is
preserved; (c) the invariance w.r.t T is preserved. We report mean and standard error over 20 runs.
(Row 2) For all the plots: n = 2500, d = 3, |E| = 5, and only the invariant w.r.t Y is preserved.
We plot the mean absolute error averaged across environments for different levels of heterogeneity
in the data (higher ϵ corresponds to more heterogeneous data).

C.5 ROBUSTNESS TO SMALL SAMPLE SIZE

In Figure 9 (a–c), we report the MAE averaged across environments for the three graphical models
introduced in Figure 2 (Row 2). We can observe that our method remains competitive even in the
small sample size regime: our method consistently outperforms all baselines when a collider or
descendant is present. However, its performance declines in the edge case where the post-treatment
variable is independent noise.

C.6 ROBUSTNESS TO VIOLATIONS OF ASSUMPTION 4.1

We evaluate here the robustness of our method against violations of our identification condition (i.e.
Assumption 4.1). To do so, we slightly modify the synthetic experiments presented in Figure 2:
We introduce a parameter ϵ2 to control environment heterogeneity. If ϵ2 = 0, X has the same
distribution across environments. Therefore, there is no heterogeneity across environments, and
Assumption 4.1 is violated. On the other hand, if ϵ2 > 0 , the mean and variance of X will shift
across environments, with larger shifts as the parameter ϵ2 increases. Therefore, the heterogeneity
across environments increases with ϵ2, and Assumption 4.1 is more likely to be satisfied.

Example C.1 (Post-treatment variables). Let E be the collection of environment indices. For each
environment e ∈ E , we first sample U ∼ N (0, ϵ2Id+1). Then, the data is given by

Xp,i ∼ N (Ui, 0.5 + U2
i ), for i = 1, . . . , d− 1;

T ∼ Ber
(
σ
(
β⊤
t Xp + ϵt

))
, with βt ∼ N (0, Id−1) and ϵt ∼ N (Ud, 0.5 + U2

d );

Y = T + β⊤
y Xp + ϵy, with βy ∼ N (0, Id−1) and ϵy ∼ N (0, 1);

Xc = a · T + b · Y + ϵc, with ϵc ∼ N (Ud+1, 0.5 + U2
d+1).
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In Figure 9 (d–f), we plot the MAE for different levels of heterogeneity in the data. We can observe
that both θ̂ and θ̂irm suffer significantly when there is no heterogeneity (ϵ = 0.0). Nevertheless,
our method θ̂ consistently outperforms θ̂irm, even under strong violations of the identification con-
dition. Moreover, θ̂ remains competitive against all baselines when Assumption 4.1 is only weakly
satisfied (ϵ = 0.3).
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D EXPERIMENTAL DETAILS

Given an adjustment set, we estimate the ATE for each environment e ∈ E as follows

θ̂eS =
1

n

∑

(Xi,Ti,Yi)∈De

µ̂e
S(Xi, 1)− µ̂e

S(Xi, 0) +
(Yi − µ̂e

S(Xi, 1))Ti

π̂e
S(Xi)

− (Yi − µ̂e
S(Xi, 0))(1− Ti)

1− π̂e
S(Xi)

,

where µ̂e
S(x, t) = ÊPe [Y | T = t,XS = x] and πe

S(x) = ÊPe [T | XS = x].

For θ̂irm, since the algorithm only learns the outcome function, we estimate the ATE as

θ̂irm =
1

n

∑

(Xi,Ti,Yi)∈De

µ̂e
S(Xi, 1)− µ̂e

S(Xi, 0).

D.1 SYNTHETIC EXPERIMENTS

We now describe the data generating process for our synthetic experiments in Section 5.1.

Example D.1 (Post-treatment variables). Let E be the collection of environment indices. For each
environment e ∈ E , we first sample U ∼ N (0, Id+1). For a, b ∈ {0, 1}, we then observe the
following variables:

Xp,i ∼ N (Ui, U
2
i ), for i = 1, . . . , d− 1;

T ∼ Ber
(
σ
(
β⊤
t Xp + ϵt

))
, with βt ∼ N (0, Id−1) and ϵt ∼

{N (0, 1) if T is invariant
N (Ud, U

2
d ) else

;

Y = T + β⊤
y Xp + ϵy, with βy ∼ N (0, Id−1) and ϵy ∼

{N (0, 1) if Y is invariant
N (Ud, U

2
d ) else

;

Xc = a · T + b · Y + ϵc, with ϵc ∼ N (Ud+1, U
2
d+1).

Further, observe that for each choice of invariance, the post-treatment variable Xc can either be a
descendant of Y (a = 0 and b = 1), a collider between T and Y (a = 1 and b = 1), or independent
noise (a = 0, b = 0). Finally, under this data-generating process, the average treatment effect is
constant across the environments, and it is given by θe = 1, for all e ∈ E .

Random graph data generating process (Section 5.2) We randomly draw a graph from the
Erdös-Rényi random graph model with a density equal to 0.5 and consider graphs with a total num-
ber of observed nodes p = 20. We do rejection sampling to exclude graphs that either contain
mediators (as they violate Assumption 3.1) or do not contain at least a confounder. We then sample
data from the resulting DAG via a linear structural causal model with Gaussian weights using the
causaldag python library, with the only exception being the treatment variable T , which is gen-
erated by additionally applying a sigmoid function and then sampling from a Bernoulli distribution.
We further post-process the graph, adding a post-treatment variable Xc = Y + T and removing at
random some parents of T or Y depending on which invariance we want to preserve. Therefore, we
consider a challenging scenario with both a collider and unobserved variables. To sample data from
multiple environments e ∈ E , within each environment e, we apply a random uniform mean and
variance shift to all the nodes in the graph, except for T and Y .

Implementation details We implement our method, θ̂insta− , by performing a hyperparameter
search over the following parameters at each iteration: learning rate in the range [0.001, 0.01, 0.1],
initial temperature values of [0.5, 0.8, 1.0], and annealing rates of [0.9, 0.95, 0.99]. The optimal
combination of these hyperparameters is selected based on minimizing both T-invariance and Y-
invariance loss. The outcome functions for θ̂all, θ̂ , θ̂insta− and θ̂irm are estimated using a linear
regression model. Logistic regression is used for propensity score estimation.
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D.2 INFANT HEALTH AND DEVELOPMENT PROGRAM (IHDP) DATASET

The Infant Health and Development Program (IHDP) dataset is a randomized controlled trial fo-
cusing on low-birth-weight, premature infants. For our analysis, we keep six continuous covariates
from Dorie (2016), representing the child’s birth weight, head circumference at birth, number of
weeks pre-term, birth order, neonatal health index, and mother’s age at birth.

Instead of adopting the treatment and outcome functions from Dorie (2016), we simulate a more
challenging scenario inspired by Kang & Schafer (2007). In this setting, each covariate assigned
to the treatment (T ) or outcome (Y ) undergoes a transformation using a predefined set of com-
plex functions similar to those encountered in real-world applications. We introduce the following
relationships:

• Confounders: Three of the six covariates are randomly selected to act as confounders,
affecting both T and Y .

• Other pre-treatment covariates: The remaining covariates are assigned to affect either T or
Y , but not both.

• Post-treatment covariates: We include a two-dimensional post-treatment covariate, denoted
as Z, whose generation is detailed below.

• Environmental variation: To introduce variation across environments, we (i) randomly
make a parent of either T or Y unobserved (the same one across environments) and (ii)
introduce environment-specific shifts, as detailed below. We apply both to the same node
(T or Y ) so that the other remains invariant.

• We set ATE = 2 for all environments.

Modeling of T and Y For each covariate Xi affecting T , we apply a randomly chosen transfor-
mation g

(i)
T (x) from the following set:

g
(i)
T (x) ∈

{
0.5 log(|x|+ 1),

(x
2

)2
, x+ 0.2, exp

(x
2

)}
.

We then compute the logits for the treatment assignment as:

Tlogits =
∑

i

β
(i)
T g

(i)
T (Xi),

where β(i)
T are coefficients sampled independently from a uniform distribution β

(i)
T ∼ U(−0.5, 0.5).

The binary treatment T is obtained by applying a sigmoid function to Tlogits and sampling from a
Bernoulli distribution:

P (T = 1) = σ(Tlogits), T ∼ Bernoulli(P (T = 1)),

where σ(x) = 1
1+e−x is the sigmoid function.

Similarly, for each covariate Xj affecting Y , we apply a randomly chosen transformation g
(j)
Y (x)

from the set:

g
(j)
Y (x) ∈

{
2 log(|x|),

(x
2

)2
, x+ 1, exp

(x
2

)}

The outcome Y is then computed as:

Y =
∑

j

β
(j)
Y g

(j)
Y (Xj),

with coefficients β(j)
Y sampled from β

(j)
Y ∼ U(−2, 2).
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Incorporating environment-specific shifts To introduce environment-specific variability, we de-
fine a hidden variable U that modifies the pre-treatment and post-treatment covariates, outcome,
and treatment assignment across different environments. The environments are indexed by u =
0, 1, 2, 3, 4. For each environment, we introduce shifts dependent on u.

We first sample coefficients:

βinv ∼ U(0.5, 1.0), βX ∼ U(0.5, 1.0).

For each environment u, the shifts are generated as:

∆inv = u · βinv + ϵinv, ∆X = u · βX + ϵX , ∆post = u · βX + ϵpost,

where all ϵinv, ϵX , ϵpost are independently sampled from N (0, 1).

Then, for each environment, the covariates are modified:

X = X0 +∆X ,

where X0 represents the original covariate values.

Either Y or T is also shifted, depending on the invariance we aim to preserve:

If invariance in T : Y = Y 0 +∆inv, else if invariance in Y : Tlogits = T 0
logits +∆inv,

while we add N (0, 1) to the invariant node.

Generation of post-treatment variables Xc For each environment, we generate a two-
dimensional post-treatment variable Xc as follows:

• Collider:
Xc = Y + T + ϵpost, ϵpost ∼ N (∆post, I2).

• Descendant:
Xc = Y + ϵpost, ϵpost ∼ N (∆post, I2).

• Independent Noise:
Xc = ϵpost, ϵpost ∼ N (∆post, I2).

Inclusion of mediators In some settings, we introduce an additional mediator variable influenced
by T :

Mediator = βmed · T + ϵmed, βmed ∼ U(−1.0, 1.0), ϵmed ∼ N (0, 1).

The outcome Y is then adjusted:
Y = Y + Mediator.

Summary of data generation process For each environment:

1. Modify covariates: X = X0 +∆X .

2. Compute treatment: Tlogits =
∑

i β
(i)
T , g

(i)
T (Xi) T ∼ Bernoulli(σ(Tlogits)).

3. Compute outcome: Y =
∑

j β
(j)
Y , g

(j)
Y (Xj).

4. Apply environmental shift to Y or T and hide a parent of Y or T (we hide the same parent
for all environments).

5. Include the ATE = 2.0 in the outcome Y

6. If applicable, generate mediator and adjust Y .

7. Generate post-treatment variables Z.
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Implementation details We implement our method, θ̂insta− , by performing a hyperparameter
search over the following parameters at each iteration: learning rate in the range [0.001, 0.01, 0.1],
initial temperature values of [0.5, 0.8, 1.0], and annealing rates of [0.9, 0.95, 0.99]. The optimal
combination of these hyperparameters is selected based on the minimization of both T-invariance
and Y-invariance loss. The outcome and treatment assignment functions for both θ̂all and θ̂insta−
are estimated using XGBoost. For these models, we set the number of estimators to 1,000, the
learning rate to 0.01, and the maximum tree depth to 6. For the non-linear IRM baseline, we employ
the TARNet architecture (Shalit et al., 2017), which consists of a shared representation with a single
hidden layer of 200 neurons, followed by two hypothesis-specific hidden layers, each with 100
neurons. Logistic regression is used for propensity score estimation.

D.3 CATTANEO2

The Cattaneo2 dataset (Cattaneo, 2010) studies the effect of maternal smoking on newborn birth
weight. We consider 21 covariates, including maternal and paternal age and education, marital
status, maternal foreign status, Hispanic origin, alcohol consumption, receipt of prenatal care and
the number of prenatal visits, whether the mother had previous children who died, an indicator for
low birth weight, months since last birth by the mother, birth month, indicator for whether the baby
is first-born, and other variables for which full details are unavailable. The treatment is a binary
indicator of smoking status, with 864 mothers in the treatment group and 3,778 in the control group.
The outcome is a continuous variable representing birth weight, which we normalize to the interval
[0, 1]. We exclude the month of birth from the observed features and instead use it to define the
environments, creating four environments corresponding to the four quarters of the year.

Implementation details We implement our method, θ̂insta− , using the following hyperparame-
ters: the number of epochs is set to 700, patience to 100, learning rate to 0.1, initial temperature
to 1.0, and annealing rate to 0.9. This configuration was chosen because it provided robust and fa-
vorable results across experiments, specifically in minimizing T- and Y-invariance losses. All other
hyperparameters are kept from previous experiments. The outcome and treatment assignment func-
tions for both θ̂all and θ̂insta− are estimated using XGBoost, with the number of estimators set to
1,000, learning rate to 0.01, and maximum depth to 6. For the non-linear IRM implementation, we
use the TARNet architecture, as in the IHDP experiments.
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