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ABSTRACT

Bi-level optimization has achieved considerable success in contemporary machine
learning applications, especially for given proper hyperparameters. However,
due to the two-level optimization structure, commonly, researchers focus on two
types of bi-level optimization methods: approximate implicit differentiation (AID)-
based and iterative differentiation (ITD)-based approaches. ITD-based methods
can be readily transformed into single-level optimization problems, facilitating
the study of their generalization capabilities. In contrast, AID-based methods
cannot be easily transformed similarly but must stay in the two-level structure,
leaving their generalization properties enigmatic. In this paper, although the
outer-level function is nonconvex, we ascertain the uniform stability of AID-based
methods, which achieves similar results to a single-level nonconvex problem. We
conduct a convergence analysis for a carefully chosen step size to maintain stability.
Combining the convergence and stability results, we give the generalization ability
of AID-based bi-level optimization methods. Furthermore, we carry out an ablation
study of the parameters and assess the performance of these methods on real-world
tasks. Our experimental results corroborate the theoretical findings, demonstrating
the effectiveness and potential applications of these methods.

1 INTRODUCTION

As machine learning continues to evolve rapidly, the complexity of tasks assigned to machines has
increased significantly. Thus, formulating machine learning tasks as simple minimization problems is
not enough for complex tasks. This scenario is particularly evident in the scenarios of meta-learning
and transfer learning tasks. To effectively tackle these intricate tasks, researchers have turned to the
formulation of problems as bi-level formulas. Conceptually, this can be represented as follows:

min
x∈Rdx ,y∗(x)∈Rdy

 1

n

n∑
i=1

f(x, y∗(x), ξi), s.t. y∗(x) ∈ arg min
y∈Rdy

1

q

q∑
j=1

g(x, y, ζj)

 , (1)

where dx and dy are the dimensions of variables x and y, respectively. ξi represents samples from
Dv ∈ Zn

v , while ζj are samples from Dt ∈ Zq
t , where Zv and Zt are the sample space of the

upper-level problem and the lower-lever problem, respectively. Functions f and g are nonconvex yet
smooth, with f applying to both x and y, while g is strongly convex and smooth for y.

Consider the example of hyper-parameter tuning. In this context, x is treated as the hyper-parameters,
while y represents the model parameters. The optimal model parameters under the training set Dt can
be expressed as y∗(x) when a hyperparameter x is given. The performance of these parameters is then
evaluated on the validation set Dv . Yet, in practice, gathering validation data can be costly, leading to
the crucial question of the solution’s generalizability from the validation set to real scenarios.

The solutions to such bi-level optimization problems in the machine learning community have
conventionally relied on two popular methods: Approximate Implicit Differentiation (AID)-based
methods and Iterative Differentiation (ITD)-based methods. While ITD-based methods are intuitive
and easy to implement, they are memory-intensive due to their dependency on the optimization
trajectory of y. AID-based methods, on the other hand, are more memory-efficient.

Recently, Bao et al. (2021) have proposed a uniform stability framework that quantifies the maximum
difference between the performance on the validation set and test set for bi-level formulas, which
belongs to ITD-based methods. For ITD-based methods, the trajectory of y can be easily written as a
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function of current iterates x making it easy to be analyzed as a single-level optimization method.
However, for AID-based methods, a similar analysis is complex due to the dependence of the current
iterates x and y on previous ones, making generalization a challenge.

In this paper, we focus on studying the uniform stability framework for AID-based methods. We
present a stability analysis for non-convex optimization with various learning rate configurations. A
noteworthy finding is that when the learning rate is set to O(1/t), we can attain results analogous
to those in single-loop nonconvex optimization. Furthermore, we present convergence results for
AID-based methods and highlight the trade-off between optimization error and generalization gaps.

In summary, our main contributions are as follows:

• We have developed a novel analysis framework aimed at examining multi-level variables
within the stability of bi-level optimization. This framework provides a structured methodol-
ogy to examine the behavior of these multi-level variables.

• Our study reveals the uniform stability of AID-based methods under a set of mild conditions.
Notably, the stability bounds we’ve determined are analogous to those found in nonconvex
single-level optimization and ITD-based bi-level methods. This finding is significant as it
supports the reliability of AID-based methods.

• By integrating convergence analysis into our research, we’ve been able to unveil the general-
ization gap results for certain optimization errors. These findings enhance our understanding
of the trade-offs between approximation and optimization in the learning algorithms. Fur-
thermore, they provide practical guidance on how to manage and minimize these gaps,
thereby improving the efficiency and effectiveness of bi-level optimization methods.

2 RELATED WORK

Bilevel Optimization. Franceschi et al. (2017; 2018) use bilevel optimization to solve the hy-
perparameter problem. Besides, Finn et al. (2017) and Rajeswaran et al. (2019) leverage bilevel
optimization to solve the few-shot meta-learning problem. Besides the above research areas, re-
searchers also apply bi-level to solve neural architecture search problems. Liu et al. (2018), Jenni and
Favaro (2018), and Dong et al. (2020) all demonstrate the effectiveness of bilevel optimization for
this task. Additionally, bilevel optimization can be used to solve min-max problems, which arise in
adversarial training. Li et al. (2018) and Pfau and Vinyals (2016) use bilevel optimization to improve
the robustness of neural networks. Moreover, researchers explore the use of bilevel optimization for
reinforcement learning. Pfau and Vinyals (2016) and Wang et al. (2020) use bilevel optimization to
improve the efficiency and effectiveness of reinforcement learning algorithms. In addition, Ghadimi
and Wang (2018), Hong et al. (2020), Dagréou et al. (2022), Tarzanagh et al. (2022) and Chen et al.
(2022) show the convergence of various types of bi-level optimization methods under stochastic,
finite-sum, higher-order smoothness, federated learning, and decentralized settings, respectively.

Stability and Generalization Analysis. Bousquet and Elisseeff (2002) propose that by changing one
data point in the training set, one can show the generalization bound of a learning algorithm. They
define the different performances of an algorithm when changing the training set as stability. Later
on, people extend the definition in various settings, Elisseeff et al. (2005) and Hardt et al. (2016)
extend the algorithm from deterministic algorithms to stochastic algorithms. Hardt et al. (2016) gives
an expected upper bound instead of a uniform upper bound. Chen et al. (2018) derive minimax lower
bounds for single-level minimization tasks. Ozdaglar et al. (2022) and Xiao et al. (2022) consider the
generalization metric of minimax setting, and Bao et al. (2021) extend the stability to bi-level settings.
Different from the previous works, as far as we know, we are the first work that gives stability analysis
for AID-based bi-level optimization methods.

3 PRELIMINARY

In this section, we explore two distinct types of algorithms: the AID-based algorithm (referenced as
Algorithm 1) and the ITD-based algorithm (referenced as Algorithm 2). Further, we will give the
decomposition of generalization error for bi-level problems.

3.1 BI-LEVEL OPTIMIZATION ALGORITHMS

Before delving into the detailed operation of the AID-based methods, it is crucial to compre-
hend the underlying proposition that governs its update rules. Let us define a function Φ(x) =
1
n

∑n
i=1 f(x, y

∗(x), ξi). This function has the gradient property as stated below:
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Algorithm 1 AID Bi-level Optimization Algorithm
1: Initilize x0, y0,m0, choose stepsizes {ηxt}Tt=1, {ηyt}Tt=1, {ηmt}Tt=1, ηz and z0.
2: for t = 1, · · · , T do
3: Initial z0t = z0, sample ζ

(1)
t , · · · , ζ(K)

t , ξ
(1)
t ;

4: for k = 1, · · · ,K do
5: zkt = zk−1

t − ηz(∇2
yyg(xt−1, yt−1, ζ

(k)
t )zk−1

t −∇yf(xt−1, yt−1, ξ
(1)
t ));

6: end for
7: Sample ζ

(K+1)
t , ζ

(K+2)
t ;

8: yt = yt−1 − ηyt(∇yg(xt−1, yt−1, ζ
(K+1)
t ));

9: mt = (1− ηmt)mt−1 + ηmt(∇xf(xt−1, yt−1, ξ
(1)
t )−∇2

xyg(xt−1, yt−1, ζ
(K+2)
t )zKt )

10: xt = xt−1 − ηxtmt

11: end for
12: Output xT , yT ;

Algorithm 2 ITD Bi-level Optimization Algorithm
1: Initilize x0, choose stepsizes {ηxt}Tt=1, {ηyk}

K
k=1, y0.

2: for t = 1, · · · , T do
3: Initial y0

t = y0;
4: for k = 1, · · · ,K do
5: Sample ζ

(k)
t ;

6: yk
t = yk−1

t − ηyk (∇yg(xt−1, y
k−1
t , ζ

(k)
t ));

7: end for
8: Sample ξ

(1)
t

9: gt = ∇xf(xt−1, y
K
t , ξ

(1)
t )− ∂yK

t
∂xt−1

∇yf(xt−1, y
K
t , ξ

(1)
t )

10: xt = xt−1 − ηxtgt
11: end for
12: Output xT , y

K
T ;

Proposition 1 (Lemma 2.1 in Ghadimi and Wang (2018)). The gradient of the function Φ(x) can be
given as

∇Φ(x) =
1

n

n∑
i=1

∇xf(x, y
∗(x), ξi)

−

(
1

q

q∑
j=1

∇2
xyg(x, y

∗(x), ζj)

)(
1

q

q∑
j=1

∇2
yyg(x, y

∗(x), ζj)

)−1(
1

n

n∑
i=1

∇yf(x, y
∗(x), ξi)

)
.

This proposition is derived from the Implicit Function Theorem, a foundational concept in calculus.
Consequently, we name the algorithm based on this proposition as the Approximate Implicit Differ-
entiation (AID)-based method. The operation of this algorithm involves a sequence of updates, which
are performed as follows:

Initially, we approximate y∗(xt−1) with yt−1, and we use zKt to approximate
( 1q
∑q

j=1 ∇2
yyg(x, y

∗(x), ζj))
−1( 1n

∑n
i=1 ∇yf(x, y

∗(x), ξi)) . This approximation is formu-
lated as a minimization problem with a quadratic objective function. We solve this quadratic function
using Stochastic Gradient Descent (SGD) and then perform another round of SGD on y and SGD
with momentum on x. The AID algorithm is shown as the Algorithm 1.

Contrarily, the ITD-based methods adopt a different approach. These methods approximate the
gradient of x using the chain rules. Here, y∗(x) is approximated by performing several gradient
iterations. Therefore, in each iteration, we first update y through several iterations of SGD from
an initial point, followed by calculating the gradient of x based on the chain rules. The ITD-based
algorithm is shown as the Algorithm 2.

When observing Algorithm 2, the term yKt can be expressed as a function of xt−1, simplifying things
significantly. This delightful peculiarity allows us to transform the analysis of ITD-based algorithms
into the analysis of a simpler, single-level optimization problem. The only price we pay is a slight
modification to the Lipschitz and smoothness constant.
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In contrast, the landscape of Algorithm 1 is a little more intricate. The term yt can not be written
directly in terms of xt−1. Instead, it insists on drawing influence from the previous iteration of x.
Likewise, xt doesn’t simply depend on yt−1, it keeps a record of all previous iterations, adding to
the complexity. Moreover, the stability analysis of AID-based methods involves two other variable
sequences zkt and mt. Both of them increase the difficulty of stability analysis.

3.2 GENERALIZATION DECOMPOSITION

In most cases involving bi-level optimization, there are two datasets: one in the upper-level problem
and the other in the lower-level problem. The upper-level dataset is similar to the test data but has
only a few data samples, and it’s mainly used for validation. The lower-level dataset is usually a
training dataset, and it may not have the same data distribution as the test data, but it contains a
large number of samples. Because of the similarity and the number of samples of the upper-level
dataset, our main focus is on achieving good generalization in the upper-level problem. Similar to
the approach in Hardt et al. (2016), we define A(Dt, Dv) as the output of a bi-level optimization
algorithm. For all training sets Dt, we can break down the generalization error as follows:
Ez,A,Dvf(A(Dt, Dv), z)− Ezf(x

∗, y∗, z)

≤ Ez,A,Dvf(A(Dt, Dv), z)− EA,Dv

[
1

n

n∑
i=1

f(A(Dt, Dv), ξi)

]
︸ ︷︷ ︸

(I)

+ EA,Dv

[
1

n

n∑
i=1

f(A(Dt, Dv), ξi)

]
− EDv

[
1

n

n∑
i=1

f(x̄, ȳ, ξi)

]
︸ ︷︷ ︸

(II)

+ EDv

[
1

n

n∑
i=1

f(x̄, ȳ, ξi)

]
− EDv

[
1

n

n∑
i=1

f(x∗, y∗, ξi)

]
︸ ︷︷ ︸

(III)

+EDv

[
1

n

n∑
i=1

f(x∗, y∗, ξi)

]
− Ezf(x

∗, y∗, z)︸ ︷︷ ︸
(IV )

where x̄, ȳ ∈ argminx,y∗(x)

{
1
n

∑n
i=1 f(x, y

∗(x), ξi), s.t. y
∗(x) ∈ argminy

1
q

∑q
j=1 g(x, y, ζj)

}
,

x∗, y∗ ∈ argminx,y∗(x)

{
Ezf(x, y

∗(x), z), s.t. y∗(x) ∈ argminy
1
q

∑q
j=1 g(x, y, ζj)

}
, ξi’s are

the samples in the dataset Dt, and ζj’s are the samples in the dataset Dv .
Proposition 2 (Theorem 2.2 in Hardt et al. (2016)). When for all Dv and D′

v which differ from 1
sample and for all Dt, supz f(A(Dt, Dv), z)− f(A(Dt, D

′
v), z) ≤ ϵ, we can obtain

Ez,A,Dv
f(A(Dt, Dv), z)− EA,Dz

[
1

n

n∑
i=1

f(A(Dt, Dv), ξi)

]
≤ ϵ.

Thus, with Proposition 2, we can bound term (I) by bounding supz f(A(Dt, Dv), z) −
f(A(Dt, D

′
v), z), as we’ll explain in Section 4.2. Term (II) is an optimization error, and we’ll

control it in Section 4.3. Term (III) is less than or equal to 0 because of the optimality condition.
Term (IV) is 0 when each sample in Dv comes from the same distribution as z independently.

4 THEORETICAL ANALYSIS

In this section, we will give the theoretical results of Algorithm 1. Our investigation encompasses
the stability and convergence characteristics of this algorithm and further explores the implications
of various stepsize selections. We aim to ascertain the stability of Algorithm 1 when it attains an
ϵ-accuracy solution (i.e. E∥∇Φ(x)∥2 ≤ ϵ, for some random vairable x).

4.1 BASIC ASSUMPTIONS AND DEFINITIONS

Our analysis begins with an examination of the stability of Algorithm 1. To facilitate this, we first
establish the required assumptions for stability analysis.
Assumption 1. Function f(·, ·, ξ) is lower bounded by f for all ξ. f(·, ·, ξ) is L0-Lipschitz wih
L1-Lipschitz gradients for all ξ, i.e.

|f(x1, y, ξ)− f(x2, y, ξ)| ≤ L0∥x1 − x2∥, |f(x, y1, ξ)− f(x, y2, ξ)| ≤ L0∥y1 − y2∥,
∥∇xf(x1, y, ξ)−∇xf(x2, y, ξ)∥≤L1∥x1−x2∥, ∥∇xf(x, y1, ξ)−∇xf(x, y2, ξ)∥≤L1∥y1−y2∥,
∥∇yf(x1, y, ξ)−∇yf(x2, y, ξ)∥≤L1∥x1−x2∥, ∥∇yf(x, y1, ξ)−∇yf(x, y2, ξ)∥≤L1∥y1−y2∥.
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Assumption 2. For all x and ζ , g(x, ·, ζ) is a µ-strongly convex function with L1-Lipschitz gradients:

∥∇yg(x, y1, ζ)−∇yg(x, y2, ζ)∥ ≤ L1∥y1−y2∥, ∥∇yg(x1, y, ζ)−∇yg(x2, y, ζ)∥ ≤ L1∥x1−x2∥.

Further, for all ζ, g(·, ·, ζ) is twice-differentiable with L2 -Lipschitz second-order derivative i.e.,

∥∇2
xyg(x1, y, ζ)−∇2

xyg(x2, y, ζ)∥ ≤ L2∥x1 − x2∥, ∥∇2
xyg(x, y1, ζ)−∇2

xyg(x, y2, ζ)∥ ≤ L2∥y1 − y2∥,
∥∇2

yyg(x1, y, ζ)−∇2
yyg(x2, y, ζ)∥ ≤ L2∥x1 − x2∥, ∥∇2

yyg(x, y1, ζ)−∇2
yyg(x, y2, ζ)∥ ≤ L2∥y1 − y2∥

These assumptions are in line with the standard requirements in the analysis of bi-level optimiza-
tion (Ghadimi and Wang, 2018) and stability (Bao et al., 2021).

Subsequently, we define stability and elaborate its relationship with other forms of stability definitions.

Definition 1. A bi-level algorithm A is β-stable iff for all Dv, Dv′ ∈ Zn
v such that Dv, Dv′ differ at

most one sample, we have

∀Dt ∈ Zq
t ,EA[∥A(Dt, Dv)−A(Dt, Dv′)∥] ≤ β.

To compare with Bao et al. (2021), we first provide the stability definition in Bao et al. (2021).

Definition 2 (Uniformly stability in Bao et al. (2021)). A bi-level algorithm A is β-uniformly stable
in expectation if the following inequality holds with β ≥ 0:∣∣∣EA,Dv∼Pn

Dv
,D′

v∼Pn
Dv

[f(A(Dt, Dv), z)− f(A(Dt, D
′
v), z)]

∣∣∣ ≤ β, ∀Dt ∈ Zq
t , z ∈ Zv.

The following proposition illustrates the relationship between our stability definition and the stability
definition in Bao et al. (2021). They are only differentiated by a constant.

Proposition 3. If algorithm A is β-stable, then it is L0β-uniformly stable in expectation, where L0

is Lipschitz constant for function f.

Remark 1. Consider the following simple hyperparameter optimization task where we employ ridge
regression for the training phase. Let x denote the regularization coefficient, At the training input set,
Av the validation input set, bt the training labels, bv the validation labels, and y represent the model
parameters. Thus, the bilevel optimization problem can be formulated as:

min
x,y∗(x)

{
1

2
∥Avy

∗(x)− bv∥2, s.t. y∗(x) = argmin
y

1

2
∥Aty − bt∥2 +

x

2
∥y∥2.

}
.

The optimal solution for y under a given x, denoted as y∗(x), can be expressed as y∗(x) = (AT
t At +

xI)−1AT
t bt. By substituting this solution into the upper-level optimization problem, we obtain:

min
x

1

2
∥Av(A

T
t At + xI)−1AT

t bt − bv∥2.

This function is nonconvex with respect to x. Therefore, absent any additional terms in the upper-level
optimization problem, the bilevel optimization problem is likely to have a nonconvex objective with
respect to x. As such, we make no assumptions about convexity in relation to x. Importantly, we
refrain from introducing additional terms to the upper-level problem as it could lead to the inclusion
of new hyperparameters that need to be further tunned.

4.2 STABILITY OF ALGORITHM 1

In this part, we present our stability findings for the AID-based bilevel optimization algorithm 1.

Theorem 1. Suppose assumptions 1 and 2 hold, Algorithm 1 is ϵstab-stable, where

ϵstab =

T∑
t=1

ΠT
k=t+1(1 + ηxkηmkCm + ηmkCm + ηykL1)(1 + ηxt)ηmtCc/n,

Cm =
2(n− 1)L1

n
+ 2L2Dz +

L1

µ
(
(n− 1)L1

n
+DzL2)

Dz = (1− µηz)
K∥z0∥+

L0

µ
,Cc = 2L0 +

2L1L0

µ
.
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Corollary 1. Suppose assumption 1, 2 hold and that f(x, y, ξ) ∈ [0, 1], by selecting ηxt
= ηmt

=
α/t, ηyt

= β/t, Algorithm 1 is ϵstab-stable, where

ϵstab = O
(
T q/n) ,

q = 2Cmα+L1β
2Cmα+L1β+1 < 1, Cm = 2(n−1)L1

n + 2L2Dz + L1

µ ( (n−1)L1

n + DzL2) and Dz = (1 −
µηz)

K∥z0∥+ L0

µ .

Remark 2. The results in Bao et al. (2021), show ITD-based methods achieve O
(
Tκ

n

)
, for some

κ < 1. Moreover, Hardt et al. (2016) show the uniform stability in nonconvex single-level optimization
with the order of O

(
Tk

n

)
where k is a constant less than 1. We achieve the same order of sample

size and similar order on the number of iterations.

4.3 CONVERGENCE ANALYSIS

To give an analysis of convergence, we further give the following assumption.
Assumption 3. For all x, y, there exists D0, D1 such that the following inequality holds:

1

q

q∑
j=1

∥∥∥∥∥∥∇yg(x, y, ξj)−

1

q

q∑
j=1

∇yg(x, y, ξj)

∥∥∥∥∥∥
2

≤ D1

∥∥∥∥∥∥1q
q∑

j=1

∇yg(x, y, ξj)

∥∥∥∥∥∥
2

+D0

This assumption is a generalized assumption of bounded variance in stochastic gradient descent.
When D1 = 1, D0 can be viewed as the variance of the stochastic gradient. When D0 = 0, and
D1 > 1, it is called strong growth condition, which shows the ability of a large-scale model that can
represent each data well.

Given specific conditions of ηmt
,ηxt

and ηyt
, we present the following convergence results.

Theorem 2. Suppose the Assumptions 1, 2 and 3 hold, and the following conditions are satisfied:

ηxt

ηyt

≤ µ

4L1(L1 +D2L2)
, ηxt

≤ 1

2LΦ
, ηz ≤ 1

L1
(2)

and ηmt ,
ηmt

ηxt
and ηmt

ηyt
are non-increasing, where LΦ =

(µ+L1)(L1µ
2+L0L2µ+L2

1µ+L2L0)
µ3 . Define

Φ(x) = 1
n

∑n
i=1 f(x, y

∗(x), ξi), where y∗(x) = argminy
1
q

∑q
j=1 g(x, y, ζj). Then, when K =

Θ(log T ), it holds that

min
t∈{1,··· ,T}

E∥∇Φ(xt)∥2 = O

(
1 +

∑T
k=1 ηyk

ηmk
+ η2mk∑T

k=1 ηmk

)
.

Remark 3. When we set ηxt
= Θ(1/

√
T ), ηmt

= Θ(1/
√
T ) and ηyt

= Θ(1/
√
T ), we achieve a

convergence rate of O(1/
√
T ), which aligns with the bound of the SGD momentum algorithm in

single-level optimization problems. Thus, the convergence upper bound seems plausible.

4.4 TRADE-OFF IN GENERALIZATION ABILITY

After determining the convergence of Algorithm 1 and its stability, we can derive the following
corollary using the learning rate typically employed in non-convex stability analysis.
Corollary 2. When we choose ηxt

= Θ(1/t), ηmt
= Θ(1/t), and ηyt

= Θ(1/t), by satisfying the
conditions in Theorem 2, it holds that when mint∈{1,··· ,T} E∥∇Φ(xt)∥2 ≤ ϵ, log ϵstab = O(1/ϵ).
Remark 4. Although we can get a good stability bound when using the learning rate with the order
1/t, it suffers from its convergence rate, which is O(1/ log T ). Thus, with the learning rate in the
order of 1/t, we can only get stability at an exponential rate to achieve some ϵ-accuaracy solution.

In practice, a constant learning rate is often used for T iterations, leading to the following corollary.
Corollary 3. When we choose ηxt

= ηx, ηmt
= ηm, ηyt

= ηy for some postive constant ηx, ηm and
ηy . Then it holds that when mint∈{1,··· ,T} E∥∇Φ(xt)∥2 ≤ ϵ, the upper bound of log ϵstab is at least
in the order of 1/ϵ.
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Remark 5. Although with some constant stepsize related to T , the convergence rate could be much
faster than O(1/ log T ), the stability will explode up quickly, which leads the increase of stability at
an exponential rate.
Remark 6. From the above two corollaries, in practice, a diminishing learning rate is often preferable
due to its stronger theoretical generalization ability.

4.5 PROOF SKETCH

In this subsection, we illustrate the proof sketches for our main theorems and corollaries. Furthermore,
several useful lemmas are also introduced.
4.5.1 PROOF SKETCH FOR THEOREM 1

To prove Theorem 1, we first define some notations and give several lemmas.
Notation 1. We use xt, yt, z

k
t and mt to represent the iterates in Algorithm 1 with dataset Dv and

Dt. We use x̃t, ỹt, z̃
k
t and m̃t to represent the iterates in Algorithm 1 with dataset D′

v and Dt.

Then, we bound ∥xt− x̃t∥, ∥yt− ỹt∥, ∥mt−m̃t∥ and ∥zt− z̃t∥ by the difference of previous iteration
(i.e. ∥xt−1 − x̃t−1∥, ∥yt−1 − ỹt−1∥, ∥mt−1 − m̃t−1∥) as the following 4 lemmas.
Lemma 1. With the update rules defined in Algorithm 1, it holds that

E∥zKt − z̃Kt ∥ ≤ E
[
1

µ

(
(n− 1)L1

n
+DzL2

)
(∥xt−1 − x̃t−1∥+ ∥yt−1 − ỹt−1∥)

]
+

2L0

nµ
.

Lemma 2. With the update rules defined in Algorithm 1, it holds that

E∥yt − ỹt∥ ≤ ηyt
L1E∥xt−1 − x̃t−1∥+ (1− µηyt

/2)E∥yt−1 − ỹt−1∥.

Lemma 3. With the update rules defined in Algorithm 1, it holds that

E∥mt − m̃t∥

≤ E [(1− ηmt)∥mt−1 − m̃t−1∥+ ηmtCm(∥xt−1 − x̃t−1∥+ ∥yt−1 − ỹt−1∥)] + ηmt

(
2L0 + 2L1L0

n

)
,

where Cm = 2(n−1)L1

n + 2L2Dz +
L1

µ

(
(n−1)L1

n +DzL2

)
.

Lemma 4. With the update rules defined in Algorithm 1, it holds that

E∥xt − x̃t∥ ≤ E [(1 + ηxtηmtCm)∥xt−1 − x̃t−1∥+ ηxtηmtCm∥yt−1 − ỹt−1∥]

+ E [ηxt(1− ηmt)∥mt−1 − m̃t−1∥] + ηxtηmt

(
2L0 + 2L1L0

n

)
,

where Cm = 2(n−1)L1

n + 2L2Dz +
L1

µ

(
(n−1)L1

n +DzL2

)
.

The last step was to combine the above 4 lemmas, by induction and some calculation, then we can
obtain the result in Theorem 1.
4.5.2 PROOF SKETCH FOR THEOREM 2

In fact, Chen et al. (2022) recently have given the convergence results for AID-based bilevel optimiza-
tion with constant learning rate ηx, ηm, and ηy . Theorem 2 can be regarded as an extended version of
that in Chen et al. (2022) with time-evolving learning rates. To show the proofs, we first give the
descent lemma for x and y with the general time-evolving learning rates.
Lemma 5. With the update rules of yt it holds that

E∥yt − y∗(xt)∥2 ≤ (1− µηyt
/2)E∥yt−1 − y∗(xt−1)∥2 +

(2 + µηyt
)L2

1η
2
xt

µηyt

E∥mt∥2 + 2η2yt
D0

Lemma 6. With the update rules of xt and mt, it holds that

E
[
ηmt

ηxt

Φ(xt) +
1− ηmt

2
∥mt∥2 −

ηmt

ηxt

Φ(xt−1)−
1− ηmt

2
∥mt−1∥2

]
≤ ηmt(L1 +DzL2)

2E∥yt−1 − y∗(xt−1)∥2 + ηmtL
2
1(1− ηxµ)

2K

(
Dz +

L0

µ

)2

− ηmt

4
E∥mt∥2.
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Then, combining two descent lemmas, we can show that lim inft→∞ E∥mt∥2 = 0. The last step is to
establish the relation between mt and ∇Φ(xt), which is given by the following lemma.
Lemma 7. With the update rules of mt, it holds that

T∑
t=1

ηmt+1E∥mt −∇Φ(xt)∥2 ≤ E∥∇Φ(x0)∥2 +
T∑

t=1

2ηmtE∥E∆t −∇Φ(xt−1)∥2

+ 2η2
xt
/ηmtL

2
1∥mt∥2 + η2

mt
E∥∆t − E∆t∥2.

where ∆t = ∇xf(xt−1, yt−1, ξ
(1)
t )−∇2

xyg(xt−1, yt−1, ζ
(K+2)
t )zKt .

As the variance can be shown bounded, the error for gradient estimation can be small when K is large.
we can give the convergence of Algorithm 1 under the conditions in Theorem 2.

5 EXPERIMENTS

In this section, we conduct two kinds of experiments to verify our theoretical findings.

5.1 TOY EXAMPLE

To illustrate the practical application of our theoretical framework, we tackle a simplified case of
transfer learning, where the source domain differs from the target domain by an unknown linear
transformation X. The problem is formulated as follows:

min
X

1

n

n∑
i=1

∥A2(i)y
∗(X)− b2(i)∥2 + ρ1∥XTX − I∥2

s.t. y∗(X) ∈ argmin
1

q

q∑
j=1

∥A1(j)Xy − b1(j)∥2 + ρ2∥y∥2,

Here, A2(i) and A1(j) represent the i-th row and j-th row of matrices A2 and A1, respectively.
A1 ∈ R2000×10, A2 ∈ Rn×10 are randomly generated from a Gaussian distribution with mean 0 and
variance 0.05. Employing a ground truth unitary matrix X̂10×10 and a vector ŷ ∈ R10, we generate
b1 = A1X̂ŷ+n1, b2 = A2ŷ+n2, where n1, n2 are independent Gaussian noise with variance 0.1. We
test for n in the set {500, 1000}. For constant learning rates, we select it from {0.01, 0.005, 0.001},
while for diminishing learning rates, we select a constant from {1000, 2000} and the learning rate
from {1, 2, 5, 10}, and set the learning rate as initial_learning_rate/(iteration+ constant). We
fix K = 10 and ηz = 0.01 for all experiments.

To evaluate the results, we employ the function value of the upper-level objective as the optimization
error, and the difference between the output X and ground truth X̂ as the generalization error. Each
experiment is run for five times, with the averaged results shown in Figure 1.

Figure 1: Results for Toy Example. The left figure shows the results when learning rates are constant,
the middle figure shows the results when we use diminishing learning rates, and the right figure
compares the results for constant learning rates and diminishing learning rates.
Upon examining the results, it becomes apparent that even when the function value of the upper-level
objective approaches zero, a noticeable discrepancy exists between the output X and the ground truth
X̂ . However, encouragingly, as we increase the number of points (n) in the validation set, this gap
begins to shrink. This is a finding that is in line with the predictions made in Theorem 1. A closer
comparison between the algorithm employing a constant learning rate and the one with a diminishing
learning rate reveals another significant observation. The diminishing learning rate approach yields

8
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smaller gaps, thus enhancing generalization performance. This experimental outcome substantiates
the assertions made in Corollary 2 and Corollary 3, demonstrating that the generalization ability for
diminishing learning rates outperforms the generalization ability for constant rates when aiming to
achieve a certain optimization accuracy.

5.2 DATA SELECTION ON MNIST

We apply Algorithm 1 on MNIST (Deng, 2012), a resource composed of 60,000 digit recognition
samples at a resolution of 28× 28. The task is to identify and select valuable data within the dataset.

We structure our experiment as follows. We designate n data samples from the training dataset to serve
as a validation dataset. Concurrently, we randomly select 5,000 samples from the remaining training
set to establish a new training set, with half of these samples randomly labeled. For classification, we
employ LeNet5 (LeCun et al., 1998) model as the backbone. Our experiment is based on a bi-level
optimization problem, defined as follows:

min
x,y∗(x)

1

n

n∑
i=1

L(f(y∗(x), ξi,input), ξi,label)

s.t.y∗(x) ∈ argmin
y

1

q

q∑
j=1

xjL(f(y, ζj,input), ζj,label), 0 ≤ xj ≤ 1

Here, f represents the LeNet5 model, L denotes the cross-entropy loss, ξi is a sample from the
validation set, and ζj is a sample from the new training set. We put our algorithm to the test under
both diminishing and constant learning rates, using varying validation sizes of n ∈ {100, 200}.
Learning rates for the constant learning rate are selected from the set {0.1, 0.05, 0.001}, while
for the diminishing learning rate, the constants are chosen from {200, 300, 400} and learn-
ing rates from {5, 10, 20, 30, 40}, where the learning rate of each component is calculated by
initial_learning_rates/(iterations+ constant). All experiments maintain K = 2 and ηz = 0.1.
Each experiment is run for five times, with averaged results shown in Figure 2.

As can be observed from the figure, even with a 100% accuracy rate on the validation set, a noticeable
gap persists between test accuracy and validation accuracy. As we incrementally increase the number
of samples in the validation set, we notice an encouraging trend: the accuracy of the test set improves
for both constant and diminishing learning rates. This finding aligns with our predictions in Theorem 1.
Moreover, the implementation of a diminishing learning rate yields a higher test accuracy, indicating
a smaller generalization gap. This observation aligns with our theoretical findings as outlined in
Corollary 2 and Corollary 3, thus validating our theoretical assertions with empirical evidence.

Figure 2: Results for Data selection on MNIST. The first figure shows the result with constant learning
rates. The second figure shows the results with diminishing learning rates. The third figure and fourth
figure compare the results between constant learning rates and diminishing learning rates with 100
samples in the validation set and 200 samples in the validation set, respectively.

6 CONCLUSION

In this paper, we have ventured into the realm of stability analysis, specifically focusing on an AID-
based bi-level algorithm. Our findings have produced results of comparable order to those derived
from ITD-based methods and single-level non-convex SGD techniques. Our exploration extended
to convergence analysis under specific conditions for stepsize selection. An intriguing interplay
between convergence analysis and stability was revealed, painting a compelling theoretical picture
that favors diminishing stepsize over its constant counterpart. The empirical evidence corroborates
our theoretical deductions, providing tangible validation for our assertions. However, there is still
a mystery for the proper choice of stepsize, and for the weaker conditions of the upper-level and
lower-level objective function, we will leave for future work.
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A PROOF OF THEOREM 1

Notation 2. We use xt, yt, z
k
t and mt to represent the iterates in Algorithm 1 with dataset Dv and

Dt. We use x̃t, ỹt, z̃
k
t and m̃t to represent the iterates in Algorithm 1 with dataset D′

v and Dt.

Lemma 8. With the assumption 1 and 2, by selecting ηz ≤ 1/L1, it holds that
∥∥zkt ∥∥ ≤ Dz for all k,

where Dz = ∥z0∥+ L0

µ .

Proof. Let b = ∇yf
(
xt−1, yt−1, ξ

(1)
t

)
.

With Assumption 1 and 2, it holds that

µI ⪯ A ⪯ L1I, and , ∥b∥ ≤ L0.

According to Algorithm 1, it holds that

zkt = zk−1
t −ηz

(
∇2

yyg
(
xt−1, yt−1, ζ

(k)
t

)
zk−1
t − b

)
=
(
I − ηz∇2

yyg
(
xt−1, yt−1, ζ

(k)
t

))
zk−1
t +ηzb.

Thus, it holds that ∥∥zkt ∥∥ ≤
∥∥∥I − ηz∇2

yyg
(
xt−1, yt−1, ζ

(k)
t

)∥∥∥∥∥zk−1
t

∥∥+ L0ηz

≤ (1− µηz)
∥∥zk−1

t

∥∥+ L0ηz

≤ · · · ≤ (1− µηz)
k ∥z0∥+

k−1∑
t=0

(1− µηz)
t
L0ηz

≤ (1− µηz)
k ∥z0∥+

L0

µ

≤ ∥z0∥+
L0

µ
.

Hence, we obtain the desired results.

Lemma 9. With the update rules defined in Algorithm 1, it holds that

E∥zKt − z̃Kt ∥ ≤ E
[
1

µ

(
(n− 1)L1

n
+DzL2

)
(∥xt−1 − x̃t−1∥+ ∥yt−1 − ỹt−1∥)

]
+

2L0

nµ
.

Proof. According to Algorithm 1, it holds that

E
∥∥zkt − z̃kt

∥∥
= E

∥∥∥zk−1
t − ηz

(
∇2

yyg
(
xt−1, yt−1, ζ

(k)
t

)
zk−1
t −∇yf

(
xt−1, yt−1, ξ

(1)
t

))
−z̃k−1

t + ηz

(
∇2

yy∇g
(
x̃t−1, ỹt−1, ζ

(k)
t

)
z̃k−1
t −∇yf

(
x̃t−1, ỹt−1, ξ̃

(1)
t

))∥∥∥
≤ E

[∥∥∥(I − ηz∇2
yyg

(
xt−1, yt−1, ζ

(k)
t

))
zk−1
t −

(
I − ηz∇2

yyg
(
x̃t−1, ỹt−1, ζ

(k)
t

))
z̃k−1
t

∥∥∥
+ ηz

∥∥∥∇yf
(
xt−1, yt−1, ξ

(1)
t

)
−∇yf

(
x̃t−1, ỹt−1, ξ̃

(1)
t

)∥∥∥]
≤ E

[
ηz
∥∥zk−1

t

∥∥∥∥∥∇2
yyg

(
xt−1, yt−1, ζ

(k)
t

)
−∇2

yyg
(
x̃t−1, ỹt−1, ζ

(k)
t

)∥∥∥
+
∥∥∥I − ηz∇2

yyg
(
x̃t−1, ỹt−1, ζ

(1)
t

)∥∥∥∥∥zk−1
t − z̃k−1

t

∥∥+ ηz

∥∥∥∇yf
(
xt−1, yt−1, ξ

(1)
t

)
−∇yf

(
x̃t−1, ỹt−1, ξ̃

(1)
t

)∥∥∥]
According to Lemma 8, we have ∥zk−1

t ∥ ≤ Dz .

According to Assumption 1 and 2, we have the following inequalities:∥∥∥∇2
yyg

(
xt−1, yt−1, ζ

(1)
t

)
−∇2

yyg
(
x̃t−1, ỹt−1, ζ

(1)
t

)∥∥∥ ≤ L2 (∥xt − x̃t∥+ ∥yt − ỹt∥)∥∥∥I − ηz∇2
yyg

(
x̃t−1, ỹt−1, ζ

(1)
t

)∥∥∥ ≤ (1− µηz)
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For
∥∥∥∇yf

(
xt−1, yt−1, ξ

(1)
t

)
−∇yf

(
x̃t−1, ỹt−1, ξ̃

(1)
t

)∥∥∥, when ξ̃
(1)
t ̸= ξ

(1)
t , which happens with

probability 1
n , it holds that

∥∥∥∇yf
(
xt−1, yt−1, ξ

(1)
t

)
−∇yf

(
x̃t−1, ỹt−1, ξ̃

(1)
t

)∥∥∥ ≤ 2L0.

When ξ̃
(1)
t ̸= ξ

(1)
t , which happens with probability 1 − 1

n , it holds that∥∥∥∇yf
(
xt−1, yt−1, ξ

(1)
t

)
−∇yf

(
x̃t−1, ỹt−1, ξ̃

(1)
t

)∥∥∥ ≤ L1 (∥xt−1 − x̃t−1∥+ ∥yt − ỹt−1∥).

Thus, combining the above inequalities, it holds that

E
∥∥zkt − z̃kt

∥∥
≤ E

[
ηz
∥∥zk−1

t

∥∥ ∥∥∥∇2
yyg

(
xt−1, yt−1, ζ

(1)
t

)
−∇2

yyg
(
x̃t−1, ỹt−1, ζ

(1)
t

)∥∥∥
+
∥∥∥I − ηz∇2

yyg
(
x̃t−1, ỹt−1, ζ

(1)
t

)∥∥∥∥∥zk−1
t − z̃k−1

t

∥∥+ ηz

∥∥∥∇yf
(
xt−1, yt−1, ξ

(1)
t

)
−∇yf

(
x̃t−1, ỹt−1, ξ̃

(1)
t

)∥∥∥]
≤ E

[
ηzDzL2 (∥xt−1 − x̃t−1∥+ ∥yt−1 − ỹt−1∥) ∥+ (1− ηzµ)

∥∥zk−1
t + z̃k−1

t

∥∥
+
2ηzL0

n
+

(
1− 1

n

)
ηzL1 (∥xt−1 − x̃t−1∥+ ∥yt−1 − ỹt−1∥)

]
= E

[
ηz

(
(n− 1)L1

n
+DzL2

)
(∥xt−1 − x̃t−1∥+ ∥yt−1 − ỹt−1∥) + (1− ηzµ)

∥∥zk−1
t − z̃k−1

t

∥∥]+ 2ηzL0

n

≤ · · · ≤
k∑

t=0

(1− ηzµ)
t

[
E
[
ηz

(
(n− 1)L1

n
+DzL2

)
(∥xt−1 − x̃t−1∥+ ∥yt−1 − ỹt−1∥)

]
+

2ηzL0

n

]
≤ E

[
1

µ

(
(n− 1)L1

n
+DzL2

)
(∥xt−1 − x̃t−1∥+ ∥yt−1 − ỹt−1∥)

]
+

2L0

nµ
.

Hence, we get the desired result.

Lemma 10. With the update rules defined in Algorithm 1, it holds that

E∥yt − ỹt∥ ≤ ηyt
L1∥xt−1 − x̃t−1∥+ (1− µηyt

/2) ∥yt−1 − ỹt−1∥

Proof. With the update rules, it holds that

E∥yt − ỹt∥

=E
∥∥∥yt−1 − ηyt

∇yg
(
xt−1, yt−1, ζ

(K+1)
t

)
− ỹt−1 + ηyt

∇yg
(
x̃t−1, ỹt−1, ζ

(K+1)
t

)∥∥∥
≤ E

[∥∥∥yt−1 − ηyt
∇yg

(
xt−1, yt−1, ζ

(K+1)
t

)
− ỹt−1 + ηyt

∇yg
(
xt−1, ỹt−1, ζ

(K+1)
t

)∥∥∥
+ηyt

∥∥∥∇yg
(
xt−1, ỹt−1, ζ

(K+1)
t

)
−∇yg

(
x̃t−1, ỹt−1, ζ

(K+1)
t

)∥∥∥]
With the strongly convexity of function g (x, ·, ζ), it holds that

⟨∇yg (x, y1, ζ)−∇yg (x, y2, ζ) , y1 − y2⟩ ≥ µ∥y1 − y2∥2.

Thus, it holds that∥∥∥yt−1 − ηyt
∇yg

(
xt−1, yt−1, ζ

(K+1)
t

)
− ỹt−1 + ηyt

∇yg
(
xt−1, ỹt−1, ζ

(K+1)
t

)∥∥∥2
= ∥yt−1 − ỹt−1∥2 − 2ηyt

⟨yt−1 − ỹt−1,∇yg
(
xt−1, yt−1, ζ

(K+1)
t

)
,−∇yg

(
xt−1, ỹt−1, ζ

(2)
t

)
⟩

+ η2yt
∥∇yg

(
xt−1, yt−1, ζ

(2)
t

)
−∇yg

(
xt−1, ỹt−1, ζ

(2)
t

)
∥2

≤ ∥yt−1 − ỹt−1∥2 − 2µηyt
∥yt−1 − ỹt−1∥2 + L2η2yt

∥yt−1 − ỹt−1∥2.

By selecting ηy such that µηyt
≥ L2η2yt

, we can obtain∥∥∥yt−1 − ηyt
∇yg

(
xt−1, yt−1, ζ

(K+1)
t

)
− ỹt−1 + ηyt

∇yg
(
xt−1, ỹt−1, ζ

(K+1)
t

)∥∥∥2 ≤ (1− µηy) ∥yt−1−ỹt−1∥2
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With
√
1− x ≤ 1− x/2 when x ∈ [0, 1], it holds that∥∥∥yt−1 − ηyt∇yg

(
xt−1, yt−1, ζ

(K+1)
t

)
− ỹt−1 + ηyt∇yg

(
xt−1, ỹt−1, ζ

(K+1)
t

)∥∥∥ ≤ (1− µηy/2) ∥yt−1−ỹt−1∥

On the other hand, with Assumption 2, it holds that∥∥∥∇yg
(
xt−1, ỹt−1, ζ

(K+1)
t

)
−∇yg

(
x̃t−1, ỹt−1, ζ

(K+1)
t

)∥∥∥ ≤ L1∥xt−1 − x̃t−1∥

Thus, by combining the above inequalities, we can obtain that

E∥yt − ỹt∥ ≤ ηyt
L1∥xt−1 − x̃t−1∥+ (1− µηyt

/2) ∥yt−1 − ỹt−1∥.

Lemma 11. With the update rules defined in Algorithm 1, it holds that

E∥mt−m̃t∥ ≤ E [(1− ηmt
) ∥mt−1 − m̃t−1∥+ ηmCm (∥xt−1 − x̃t−1∥+ ∥yt−1 + ỹt−1∥)]+ηmt

(
2L0

n
+

2L1L0

nµ

)
,

where Cm = 2(n−1)L1

n + 2L2Dz +
L1

µ

(
(n−1)L1

n +DzL2

)
.

Proof. With the update rules, it holds that

E∥mt − m̃t∥

= E∥ (1− ηmt)mt−1 + ηmt

(
∇xf

(
xt−1, yt−1, ξ

(1)
t

)
−∇2

xyg
(
xt−1, yt−1, ζ

(K+2)
t

)
zKt

)
− (1− ηmt) m̃t−1 − ηmt

(
∇xf

(
x̃t−1, ỹt−1, ξ̃

(1)
t

)
−∇2

xyg
(
x̃t−1, yt−1, ζ

(K+2)
t

)
z̃Kt

)
∥

≤ E
[
(1− ηmt) ∥mt−1 − m̃t−1∥+ ηmt∥∇xf

(
xt−1, yt−1, ξ

(1)
t

)
−∇xf

(
x̃t−1, ỹt−1, ξ̃

(1)
t

)
∥

+ηmt∥∇2
xyg

(
xt−1, yt−1, ζ

(K+2)
t

)
zKt −∇2

xyg
(
x̃t−1, ỹt−1, ζ

(K+2)
t

)
z̃Kt ∥

]
On the one hand, when ξ̃

(1)
t ̸= ξ

(1)
t , it holds that∥∥∥∇xf

(
xt−1, yt−1, ξ

(1)
t

)
−∇xf

(
x̃t−1, ỹt−1, ξ̃

(1)
t

)∥∥∥ ≤ 2L0. When ξ̃
(1)
t = ξ

(1)
t , it holds that∥∥∥∇xf

(
xt−1, yt−1, ξ

(1)
t

)
−∇xf

(
x̃t−1, ỹt−1, ξ̃

(1)
t

)∥∥∥ ≤ 2L1 (∥xt−1 − x̃t−1∥+ ∥yt−1 − ỹt−1∥).

Meanwhile, ξ̃(1)t ̸= ξ
(1)
t with probability 1/n, while ξ̃

(1)
t = ξ

(1)
t with probability 1− 1/n.

Thus, E∥∇xf
(
xt−1, yt−1, ξ

(1)
t

)
− ∇xf

(
x̃t−1, ỹt−1, ξ̃

(1)
t

)
∥ ≤ 2L0

n +

2
(
1− 1

n

)
L1E [∥xt−1 − x̃t−1∥+ ∥yt−1 − ỹt−1∥].

On the other hand, it holds that

E∥∇2
xyg

(
xt−1, yt−1, ζ

(K+2)
t

)
zKt −∇2

xyg
(
x̃t−1, ỹt−1, ζ

(K+2)
t

)
z̃Kt ∥

≤ E
[
∥∇2

xyg
(
xt−1, yt−1, ζ

(K+1)
t

)
−∇2

xyg
(
x̃t−1, ỹt−1, ζ

(K+1)
t

)
∥∥zKt ∥+ ∥zKt − z̃Kt ∥∥∇2

xyg
(
x̃t−1, ỹt−1, ζ

(K+2)
t

)
∥
]

≤ E
[
2L2Dz (∥xt−1 − x̃t−1∥ − ∥yt−1 − ỹt−1∥) +

L1

µ

(
(n− 1)L

n
+DzL2

)
(∥xt−1 − x̃t−1∥+ ∥yt−1 − ỹt−1∥)

+
2L1L0

nµ

]
≤ E

[(
2L2Dz +

L1

µ

(
(n− 1)L1

n
+DzL2

))
(∥xt−1 − x̃t−1∥+ ∥yt−1 − ỹt−1∥) +

2L1L0

nµ

]
,

where the second inequality is based on Lemma 9.

14
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Therefore, by combining the above inequalities, it holds that

E∥mt − m̃t∥ ≤ E
[
(1− ηmt

) ∥mt−1 − m̃t−1∥+ 2ηmt

(
1− 1

n

)
L1 (∥xt−1 − x̃t−1∥+ ∥yt−1 − ỹt−1∥) +

2ηmt
L0

n

+ηmt

(
2L2Dz +

L1

µ

(
(n− 1)L1

n
+DzL2

))
(∥xt−1 − x̃t−1∥+ ∥yt−1 − ỹt−1∥) +

2L1L0ηmt

nµ

]
By defining Cm = 2(n−1)L1

n + 2L2Dz +
L1

µ

(
(n−1)L1

n +DzL2

)
, we get the desired result.

Lemma 12. With the update rules defined in Algorithm 1, it holds that
E∥xt − x̃t∥
≤ E [(1 + ηxt

ηmt
Cm) ∥xt−1 − x̃t−1∥+ ηxt

ηmt
Cm∥yt−1 − ỹt−1∥+ ηxt

(1− ηmt
) ∥mt−1 − m̃t−1∥]

+ ηxtηmt

(
2L0

n
+

2L1L0

nµ

)
,

where Cm = 2(n−1)L1

n + 2L2Dz +
L1

µ

(
(n−1)L1

n +DzL2

)
Proof. With the update rules defined in Algorithm 1, it holds that
E∥xt − x̃t∥ = E∥xt−1 − ηxtmt − x̃t−1 + ηxtm̃t∥
≤ E [∥xt−1 − x̃t−1∥] + ηxt

∥mt − m̃t∥
≤ E [(1 + ηxt

ηmt
Cm) ∥xt−1 − x̃t−1∥+ ηxt

ηmt
Cm∥yt−1 − ỹt−1∥+ ηxt

(1− ηmt
) ∥mt−1 − m̃t−1∥]

+ ηxtηmt

(
2L0

n
+

2L1L0

µn

)
.

where the last inequality is based on Lemma 11.

Proof of Theorem 1. Based on Lemma 10,11 and 12, it holds that
E [∥xt − x̃t∥+ ∥yt − ỹt∥+ ∥mt − m̃t∥]
≤ E [(1 + ηxtηmtCm + ηmtCm + ηytL1) ∥xt−1 − x̃t−1∥

+ (1− µηy/2 + ηmt
Cm + ηxt

ηmt
Cm) ∥yt−1 − ỹt−1∥

+(1 + ηxt
) (1− ηmt

) ∥mt−1 − m̃t−1∥] + (1 + ηxt
) ηmt

(
2L0

n
+

2L1L0

nµ

)
≤ E [(1 + ηxt

ηmt
Cm + ηmt

Cm + ηyt
L1) (∥xt−1 − x̃t−1∥+ ∥yt−1 − ỹt−1∥+ ∥mt−1 + m̃t−1∥)]

+ (1 + ηxt) ηmt

(
2L0

n
+

2L1L0

nµ

)
Thus, by induction, we get the desired result.

Proof of Corollary 1. According to Theorem 1, when ηxt
= ηmt

= α/t and ηyt
= β/t, it holds that

E [∥xt − x̃t∥+ ∥yt − ỹt∥+ ∥mt − m̃t∥]

≤ (1 + (2Cmα+ L1β) /t)E [∥xt−1 − x̃t−1∥+ ∥yt−1 − ỹt−1∥+ ∥mt−1 − m̃t−1∥] + (1 + ηxt
) ηmt

(
2L0

n
+

2L1L0

nµ

)
≤ exp ((2Cmα+ L1β) /t)E [∥xt−1 − x̃t−1∥+ ∥yt−1 − ỹt−1∥+ ∥mt−1 − m̃t−1∥] +

4L0

nt
+

4L1L0

ntµ

Thus, it holds that
E [∥xT − x̃T ∥+ ∥yT − ỹT ∥+ ∥mT − m̃T ∥

| ∥xt0 − x̃t0∥+ ∥yt0 − ỹt0∥+ ∥mt0 − m̃t0∥ = 0]

≤
T∑

t=t0+1

exp

(
(2Cmα+ L1β) log

(
T

t

))(
4L0

nt
+

4L1L0

ntµ

)

≤
(

4L0

n (2Cmα+ L1β)
+

4L1L0

nµ (2Cmα+ L1β)

)(
T

t0

)2Cmα+L1β

15
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When f (x, y, ξ) ∈ [0, 1], it holds that

|f (xT , yT ; ξ)−f (x̃T , ỹT , ξ) | ≤
t0
n
+L0E [∥xT − x̃T ∥+ ∥yT − ỹT ∥ | ∥xt0 − x̃t0∥+ ∥yt0 − ỹt0∥ = 0]

Combining the above inequalities, it holds that

|f (xT , yT ; ξ)− f (x̃T , ỹT , ξ) | ≤
t0
n

+
4L0

n (2Cmα+ L1β)
+

4L1L0

nµ (2Cmα+ L1β)

(
T

t0

)2Cmα+L1β

Thus, by choosing t0 =
(

4L0

2Cmα+L1β
+ 4L1L0

2µCmα+µL1β

) 1
2Cmα+L1β+1

T
2Cmα+L1β

2Cmα+L1β+1 , it holds that

|f (xT , yT ; ξ)− f (x̃T , ỹT , ξ) | ≤
1

n

(
1 +

(
4L0

2Cmα+ L1β
+

4L1L0

2Cmµα+ L1µβ

) 1
2Cmα+L1β+1

)
T

2Cmα+L1β
2Cmα+L1β+1

= O
(
T q

n

)
where q = 2Cmα+L1β

2Cmα+L1β+1 < 1

B PROOF OF THEOREM 2

Define Φ (x) = 1
n

∑n
i=1 f (x, y∗ (x) , ξi)

Lemma 13. Based on definition of Φ, it holds that

∇Φ(x) =
1

n

n∑
i=1

∇xf (x, y∗ (x) , ξi)

− 1

nq

(
q∑

j=1

∇2
xyg (x, y

∗ (x) , ζj)

)(
1

q

q∑
j=1

∇2
yyg (x, y

∗ (x) , ζj)

)−1( n∑
i=1

∇yf (x, y∗ (x) , ξi)

)

Proof. By the chain rule, it holds that

Φ (x) =
1

n

n∑
i=1

∇xf (x, y∗ (x) , ξi)−
∂y∗ (x)

∂x

1

n

n∑
i=1

∇yf (x, y∗ (x) , ξi) .

With the optimality condition of y∗ (x), it holds that

1

m

q∑
j=1

∇yg (x, y
∗ (x) , ζj) = 0.

Taking the gradient of x on both sides of the equation, it holds that

1

q

q∑
j=1

∇2
xyg (x, y

∗ (x) , ζj) +
∂y∗ (x)

∂x

1

q

q∑
j=1

∇2
yyg (x, y

∗ (x) , ζj) = 0.

Thus, it holds that

∂y∗ (x)

∂x
= −

1

q

q∑
j=1

∇2
xyg (x, y

∗ (x) , ζj)

1

q

q∑
j=1

∇2
yyg (x, y

∗ (x) , ζj)

−1

Thus, we give the desired result.

Lemma 14. By the definition of y∗ (x),it holds that ∥y∗ (x1) − y∗ (x2) ∥ ≤ Ly∥x1 − x2∥, where
Ly = L1

µ

16
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Proof. It holds that∥∥∥∥∂y∗ (x)∂x

∥∥∥∥
2

=

∥∥∥∥∥∥∥−
1

q

q∑
j=1

∇2
xyg (x, y

∗ (x) , ζj)

1

q

q∑
j=1

∇2
yyg (x, y

∗ (x) , ζj)

−1
∥∥∥∥∥∥∥

≤

∥∥∥∥∥∥∥
1

q

q∑
j=1

∇2
xyg (x, y

∗ (x) , ζj) ∥∥

1

q

q∑
j=1

∇2
yyg (x, y

∗ (x) , ζj)

−1
∥∥∥∥∥∥∥

≤ L1

µ

Thus, by the fundamental theorem of calculus, we can obtain that

∥y∗ (x1)− y∗ (x2) ∥ ≤ ∥∂y
∗ (z)

∂z
∥2∥x1 − x2∥ ≤ L1

µ
∥x1 − x2∥

where z lies in the segment [x1, x2].

Lemma 15. The gradients of Φ are Lipschitz with Lipschitz constant LΦ =
(1+Ly)(L1µ

2+L0L2µ+L2
1µ+L2L0)

µ2

Proof. According to lemma 13, it holds that
∥∇Φ(x1)−∇Φ(x2) ∥

= ∥∇x
1

n

n∑
i=1

f (x1, y
∗ (x1) , ξi)

− 1

nq

(
q∑

j=1

∇2
xyg (x1, y

∗ (x1) , ζj)

)(
1

q

q∑
j=1

∇2
yyg (x1, y

∗ (x1) , ζj)

)−1(
∇y

n∑
i=1

f (x1, y
∗ (x1) , ξi)

)

−∇x
1

n

n∑
i=1

f (x2, y
∗ (x2) , ξi)

+
1

nq

(
q∑

j=1

∇2
xyg (x2, y

∗ (x2) , ζj)

)(
1

q

q∑
j=1

∇2
yyg (x2, y

∗ (x2) , ζj)

)−1( n∑
i=1

∇yf (x2, y
∗ (x2) , ξi)

)
∥

≤ 1

n

n∑
i=1

∥∇xf (x1, y
∗ (x1) , ξi)−∇xf (x2, y

∗ (x2) , ξi) ∥

+
1

q

q∑
j=1

∥∇2
xyg (x1, y

∗ (x1) , ζj)−∇2
xyg (x2, y

∗ (x2) , ζj) ∥∥

(
1

q

q∑
j=1

∇2
yyg (x1, y

∗ (x1) , ζj)

)−1

∥∥ 1
n
∇y

n∑
i=1

∇yf (x1, y
∗ (x1) , ξi) ∥

+ ∥1
q

q∑
j=1

∇2
xyg (x2, y

∗ (x2) , ζj) ∥∥

(
1

q

q∑
j=1

∇2
yyg (x1, y

∗ (x1) , ζj)

)−1

−

(
1

q

q∑
j=1

∇2
yyg (x2, y

∗ (x2) , ζj)

)−1

∥

∥ 1
n

n∑
i=1

∇yf (x1, y
∗ (x1) , ξi) ∥

+
1

n

n∑
i=1

∥1
q

q∑
j=1

∇2
xyg (x2, y

∗ (x2) , ζj) ∥∥

(
1

q

q∑
j=1

∇2
yyg (x2, y

∗ (x2) , ζj)

)−1

∥∥∇yf (x1, y
∗ (x1) , ξi)−∇yf (x2, y

∗ (x2) , ξi) ∥

≤ L1 (∥x1 − x2∥+ ∥y∗ (x1)− y∗ (x2) ∥) +
L2L0

µ
(∥x1 − x2∥+ ∥y∗ (x1)− y∗ (x2) ∥)

+
L2L0

µ2
(∥x1 − x2∥+ ∥y∗ (x1)− y∗ (x2) ∥) +

L2
1

µ
(∥x1 − x2∥+ ∥y∗ (x1)− y∗ (x2) ∥)

≤
(1 + Ly)

(
L1µ

2 + L0L2µ+ L2
1µ+ L2L0

)
µ2

∥x1 − x2∥

17
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where the third inequality is because ∥A−1 −B−1∥ ≤ ∥A−1∥∥A−B∥∥B−1∥.

Hence, we obtain the desired result.

Lemma 16. Denote ∆t = ∇xf
(
xt−1, yt−1, ξ

(1)
t

)
−∇2

xyg
(
xt−1, yt−1, ζ

(K+2)
t

)
zKt , then it holds

that

E∥E∆t−∇Φ (xt−1) ∥2 ≤ 2 (L1 +DzL2)
2 ∥yt−1−y∗ (xt−1) ∥2+2L2

1 (1− ηzµ)
2K

(
Dz +

L0

µ

)2

Proof. By the update rules, it holds that

zKt =
(
I − ηz∇2

yyg
(
xt−1, yt−1, ζ

(1)
t

))
zK−1
t + ηy∇yf

(
xt−1, yt−1, ξ

(1)
t

)
= · · ·

=

K∑
k=1

ηzΠ
K
t=k+1

(
I − ηz∇2

yyg
(
xt−1, yt−1, ζ

(t)
t

))
∇yf

(
xt−1, yt−1, ζ

(1)
t

)
+ΠK

k=1

(
I − ηz∇yyg

(
xt−1, yt−1, ζ

(k)
t

))
z0

Thus, it holds that

EzKt

= E

ηz K−1∑
k=0

I − ηz

1

q

q∑
j=1

∇2
yyg (xt−1, yt−1, ζj)

k(
1

n

n∑
i=1

∇yf (xt−1, yt−1, ξi)

)

+

I − ηz

1

q

q∑
j=1

∇2
yyg (xt−1, yt−1, ζj)

K

z0


Hence, we can obtain that

∥E∆t −∇Φ (xt−1) ∥

≤ 1

n

n∑
i=1

∥∇xf (xt−1, yt−1, ξi)−∇xf (xt−1, y
∗ (xt−1) , ξi) ∥

+
1

q
∥

q∑
j=1

∇2
xyg (xt−1, yt−1, ζj)−∇2

xyg (xt−1, y
∗ (xt−1) , ζj) ∥∥EzKt ∥

+ ∥1
q

q∑
j=1

∇2
xyg (xt−1, y

∗ (xt−1) , ζj) ∥∥∥∥∥∥∥∥EzKt −

1

q

q∑
j=1

∇2
yyg (xt−1, y

∗ (xt−1) , ζj)

−1(
1

n

n∑
i=1

f (xt−1, y
∗ (xt−1) , ξi)

)∥∥∥∥∥∥∥
≤ L1∥yt−1 − y∗ (xt−1) ∥+DzL2∥yt−1 − y∗ (xt−1) ∥

+ L1

∥∥∥∥∥∥∥EzKt −

1

q

q∑
j=1

∇2
yyg (xt−1, y

∗ (xt−1) , ζj)

−1(
1

n

n∑
i=1

∇yf (xt−1, y
∗ (xt−1) , ξi)

)∥∥∥∥∥∥∥
18
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Meanwhile, it holds that∥∥∥∥∥∥∥EzKt −

1

q

q∑
j=1

∇2
yyg (xt−1, y

∗ (xt−1) , ζj)

−1(
1

n

n∑
i=1

f (xt−1, y
∗ (xt−1) , ξi)

)∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥E
ηz K∑

k=0

I − ηz

1

q

q∑
j=1

∇2
yyg (xt−1, yt−1, ζj)

k(
1

n

n∑
i=1

∇yf (xt−1, yt−1, ξi)

)
−

1

q

q∑
j=1

∇2
yyg (xt−1, y

∗ (xt−1) , ζj)

−1(
1

n

n∑
i=1

∇yf (xt−1, y
∗ (xt−1) , ξi)

)∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥
I − ηz

1

q

q∑
j=1

∇2
yyg (xt−1, yt−1, ζj)

K

z0

∥∥∥∥∥∥∥
≤ (1− ηzµ)

K
Dz +

L0 (1− ηzµ)
K

µ

Thus, it holds that

∥E∆t −∇Φ (xt−1) ∥2 ≤ 2 (L1 +DzL2)
2 ∥yt−1 − y∗ (xt−1) ∥2 + 2L2

1 (1− ηzµ)
2K

(
Dz +

L0

µ

)2

Lemma 17. Denote ∆t = ∇xf
(
xt−1, yt−1, ξ

(1)
t

)
−∇2

xyg
(
xt−1, yt−1, ζ

(K+2)
t

)
zKt , then it holds

that

E∥∆t − E∆t∥2 ≤ L2
0 + 2L2

1

(
KL2

1D
2
z + 2Kη2zL

2
1L

2
0 +

2KL2
0

µ2

)
+ 2D2

zL
2
1

Proof. With the definition of ∆t, and the calculation of E∆t, it holds that

E∥∆t − E∆t∥2

= E
∥∥∥∇xf

(
xt−1, yt−1, ξ

(1)
t

)
−∇2

xyg
(
xt−1, yt−1, ζ

(K+2)
t

)
zKt

−

 1

n

n∑
i=1

∇xf (xt−1, yt−1, ξi)−

I − ηz

1

q

q∑
j=1

∇2
yyg (xt−1, yt−1, ζj)

K

z0

−ηz

K−1∑
k=0

I − ηz

1

q

q∑
j=1

∇2
yyg (xt−1, yt−1, ζj)

k(
1

n

n∑
i=1

∇yf (xt−1, yt−1, ξi)

)
∥∥∥∥∥∥∥
2

= E∥∇xf
(
xt−1, yt−1, ξ

(1)
t

)
− 1

n

n∑
i=1

∇xf (xt−1, yt−1, ξi) ∥2

+ E

∥∥∥∥∥∥∥∇2
xyg

(
xt−1, yt−1, ζ

(K+2)
t

)
zKt −

I − ηz

1

q

q∑
j=1

∇2
yyg (xt−1, yt−1, ζj)

K

z0

−ηz

K−1∑
k=0

I − ηz

1

q

q∑
j=1

∇2
yyg (xt−1, yt−1, ζj)

k(
1

n

n∑
i=1

∇yf (xt−1, yt−1, ξi)

)∥∥∥∥∥∥∥
2

≤ L2
0 + 2L2

1E∥zKt − EzKt ∥2 + 2D2
zL

2
1
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Meanwhile, it holds that

E∥zKt − EzKt ∥2

= E∥
K∑

k=1

ηzΠ
K
t=k+1

(
I − ηz∇2

yyg
(
xt−1, yt−1, ζ

(t)
t

))
∇yf

(
xt−1, yt−1, ξ

(1)
t

)
+ΠK

k=1

(
I − ηz∇g

(
xt−1, yt−1, ζ

(k)
t

))
z0

−

ηz K−1∑
k=0

(
I − ηz

(
1

q

q∑
j=1

∇2
yyg (xt−1, yt−1, ζj)

))k(
1

n

n∑
i=1

∇yf (xt−1, yt−1, ξi)

)

+

(
I − ηz

(
1

q

q∑
j=1

∇2
yyg (xt−1, yt−1, ζj)

))K

z0

 ∥2

≤ K

K−1∑
k=0

∥∥∥∥∥∥ηz
(I − ηz

(
1

q

q∑
j=1

∇2
yyg (xt−1, yt−1, ζj)

))k

−ΠK
t=K−k+1

(
I − ηz∇2

yyg
(
xt−1, yt−1, ζ

(t)
t

))
(

1

n

n∑
i=1

∇yf (xt−1, yt−1, ξi)

)∥∥∥∥∥
2

+K

∥∥∥∥∥∥
ΠK

k=1

(
I − ηz∇g

(
xt−1, yt−1, ζ

(k)
t

))
−

(
I − ηz

(
1

q

q∑
j=1

∇2
yyg (xt−1, yt−1, ζj)

))K
 z0

∥∥∥∥∥∥
2

≤ KL2
1D

2
z + 2Kη2

zL
2
1L

2
0 +

2KL2
0

µ2

Thus, plugging the bounded of E∥zKt − EzKt ∥2 into the above inequality, we obtain the desired
result

Lemma 18. According to the update rules, it holds that

∥mt∥2 ≤ 2L2
0 + 2L2

1D
2
z

∥∆t∥2 ≤ 2L2
0 + 2L2

1D
2
z

Proof. By the definition of ∆t, it holds that

∥∆t∥2 = ∥∇xf
(
xt−1, yt−1, ξ

(1)
t

)
−∇2

xyg
(
xt−1, yt−1, ζ

(K+2)
)
zKt ∥2 ≤ 2L2

0 + 2L2
1D

2
z

By the definition of mt, it holds that

∥mt∥ ≤ (1− ηmt
) ∥mt−1∥+ ηmt

∥∆t∥ ≤ L0 + L1Dz

Thus, it holds that

∥mt∥2 ≤ 2L2
0 + 2L2

1D
2
z .

Lemma 19. With the update rules of mt, it holds that

T∑
t=1

ηmt+1
E∥mt −∇Φ (xt) ∥2

≤ E∥∇Φ (x0) ∥2 +
T∑

t=1

2ηmtE∥E∆t −∇Φ (xt−1) ∥2 + 2η2xt
/ηmtL

2
1∥mt∥2 + η2mt

E∥∆t − E∆t∥2.
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Proof. With the update rules of mt, it holds that

E∥mt −∇Φ (xt) ∥2

= E∥ (1− ηmt
)mt−1 + ηmt

∆t −∇Φ (xt−1) +∇Φ (xt−1)−∇Φ (xt) ∥2

= E∥ (1− ηmt
)mt−1 + ηmt

E∆t −∇Φ (xt−1) +∇Φ (xt−1)−∇Φ (xt) ∥2 + η2mt
E∥∆t − E∆t∥2

= (1− ηmt
)E∥mt−1 −∇Φ (xt−1) ∥2 + ηmt

∥E∆t −∇Φ (xt−1) + 1/ηmt
(∇Φ (xt−1)−∇Φ (xt)) ∥2

+ η2mt
E∥∆t − E∆t∥2

≤ (1− ηmt
)E∥mt−1 −∇Φ (xt−1) ∥2 + 2ηmt

∥E∆t −∇Φ (xt−1) ∥2 + 2η2xt
/ηmt

L2
1∥mt∥2

+ η2mt
E∥∆t − E∆t∥2

By summing the above inequality up, it holds that

T∑
t=1

ηmt+1
E∥mt −∇Φ (xt) ∥2

≤ E∥∇Φ (x0) ∥2 +
T∑

t=1

2ηmtE∥E∆t −∇Φ (xt−1) ∥2 + 2η2xt
/ηmtL

2
1∥mt∥2 + η2mt

E∥∆t − E∆t∥2.

Lemma 20. With the update rules of yt it holds that

E∥yt − y∗ (xt) ∥2 ≤ (1− µηyt/2)E∥yt−1 − y∗ (xt−1) ∥2 +
(2 + µηyt

)L2
1η

2
xt

µηyt

E∥mt∥2 + 2η2yt
D0

Proof. With the update rules of yt, it holds that

E∥yt − y∗ (xt) ∥2

≤ (1 + β)E∥yt − y∗ (xt−1) ∥2 + (1 + 1/β)E∥y∗ (xt−1)− y∗ (xt) ∥2

= (1 + β)E∥yt−1 − ηyt
∇yg

(
xt−1, yt−1, ζ

(K+1)
)
− y∗ (xt−1) ∥2 + (1 + 1/β)E∥y∗ (xt−1)− y∗ (xt) ∥2

≤ (1 + β)E

∥yt−1 − y∗ (xt−1) ∥2 − 2ηyt⟨yt−1 − y∗ (xt−1) ,
1

q

q∑
j=1

∇yg (xt−1, yt−1, ζj)⟩

+η2yt
∥1
q

q∑
j=1

∇yg (xt−1, yt−1, ζj) ∥2 + η2yt
∥1
q

q∑
j=1

∇yg (xt−1, yt−1, ζj)−∇yg
(
xt−1, yt−1, ζ

(K+1)
t

)
∥2


+ (1 + 1/β)L2
yη

2
xt
∥mt∥2

≤ (1 + β)E

∥yt−1 − y∗ (xt−1) ∥2 − 2ηyt
⟨yt−1 − y∗ (xt−1) ,

1

q

q∑
j=1

∇yg (xt−1, yt−1, ζj)⟩

+η2yt
(1 +D1) ∥

1

q

q∑
j=1

∇yg (xt−1, yt−1, ζj) ∥2 + η2yt
D0


+ (1 + 1/β)L2

yη
2
xt
∥mt∥2

≤ (1 + β) (1− µηyt) ∥yt−1 − y∗ (xt−1) ∥2 + (1 + 1/β)L2
yη

2
xt
∥mt−1∥2 + (1 + β) η2yt

D0.

By selecting β =
µηyt

2 , it holds that

E∥yt−y∗ (xt) ∥2 ≤ E
[
(1− µηyt

/2) ∥yt−1 − y∗ (xt−1) ∥2 +
(2 + µηyt)L

2
1η

2
xt

µηyt

∥mt∥2
]
+2η2yt

D0.
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Lemma 21. With the update rules of xt and mt, it holds that

E
[
ηmt

ηxt

Φ(xt) +
1− ηmt

2
∥mt∥2 −

ηmt

ηxt

Φ(xt−1)−
1− ηmt

2
∥mt−1∥2

]
≤ ηmt (L1 +DzL2)

2 E∥yt−1 − y∗ (xt−1) ∥2 + ηmtL
2
1 (1− ηzµ)

2K

(
Dz +

L0

µ

)2

− ηmt

4
E∥mt∥2

Proof. With the gradient Lipschitz of Φ (x), it holds that

EΦ (xt)− Φ (xt−1) ≤ E
[
−ηxt

⟨∇Φ (xt−1) ,mt⟩+
η2xt

LΦ

2
∥mt∥2

]
On the other hand, by the definition of mt, it holds that

(1− ηm)E∥mt∥2 − (1− ηm)E∥mt−1∥2 ≤ ηmt
⟨∆t,mt⟩ − ηmt

∥mt∥2

Thus, combining the above two inequalities, it holds that

E
[
ηmt

ηxt

Φ (xt) +
1− ηmt

2
∥mt∥2 −

ηmt

ηxt

Φ (xt−1)−
1− ηmt

2
∥mt−1∥2

]
≤ E

[
−ηmt

⟨∇Φ (xt−1) ,mt⟩+
ηmt

ηxt
LΦ

2
∥mt∥+ ηmt

⟨∆t,mt⟩ − ηmt
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]
≤ Eηmt⟨E∆t −∇Φ (xt−1) ,mt⟩ −

(
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ηmtηxtLΦ

2

)
E∥mt∥2

≤ ηmt

2
E∥E∆t −∇Φ (xt−1) ∥2 −

ηmt
− ηmt

ηxt
LΦ

2
∥mt∥2

When ηxt
≤ 1

2LΦ
, it holds that

E
[
ηmt

ηxt

Φ (xt) +
1− ηmt

2
∥mt∥2 −

ηmt

ηxt

Φ (xt−1)−
1− ηmt

2
∥mt−1∥2

]
≤ ηmt

2
E∥E∆t −∇Φ (xt−1) ∥2 −

ηmt

4
∥mt∥2

≤ ηmt
(L1 +DzL2)

2 E∥yt−1 − y∗ (xt−1) ∥2 + ηmt
L2
1 (1− ηzµ)

2K

(
Dz +

L0

µ

)2

− ηmt

4
E∥mt∥2

Proof of Theorem 2. By the update rules of xt, mt and yt, it holds that

E

[
ηmt

ηxt

Φ (xt) +
1− ηmt

2
∥mt∥2 +

4ηmt
(L1 +DzL2)

2
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2
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2
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]

≤ ηmt
(L1 +DzL2)

2 E
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2
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+
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2
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µ
.
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When ηxt

ηyt
≤ µ

8L1(L1+D2L2)
, it holds that

E

[
ηmt

ηxt
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1− ηmt

2
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2
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2
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µ
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− ηmt

8
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2
D0

µ
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Thus, by summing the inequality up it holds that
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ηmt
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2
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2
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)
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]
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[
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Φ (xT ) +
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2
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4ηmT
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2

µηyT

∥yT − y∗ (xT ) ∥2
]
−

T∑
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ηmt

16
E∥mt∥2

−
T∑

t=1

ηmt
(L1 +DzLz)

2 E∥yt−1 − y∗ (xt−1) ∥2 + ηmt
L2
1 (1− ηzµ)

2K

(
Dz +

L0

µ

)

+
8ηmt

ηyt
(L1 +DzL2)

2
D0

µ
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When ηmt
is non-increasing, ηmt

ηxt
is non-increasing and ηmt

ηyt
is non-increasing, it holds that

T∑
t=1

ηmt

16
E∥mt∥2

≤ ηm1

ηxt

(Φ (x0)− Φ) +
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2
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µ
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+
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2
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µ
.
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On the other hand, it holds that
T∑

t=1

Eηmt+1∥∇Φ (xt) ∥2 ≤ 2

T∑
t=1

Eηmt+1∥mt∥2 + ηmt+1∥mt −∇Φ (xt) ∥2

≤ 2
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ηyt
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2
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ηmt (L1 +DzLz)
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2
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≤ 32ηm1
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+
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(
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2
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)

Thus, when K is large (1− ηz)
2K will small, and it holds that

min
t∈{1,··· ,T}

E∥∇Φ (xt) ∥2 = O

(
1 +

∑T
t=1 ηmt

ηyt
+ ηmt

2∑T
t=1 ηmt

)

C PROOF OF COROLLARY 2

Proof of Corollary 2. According to Theorem 2, when taking ηxt = Θ(1/t), ηyt = Θ(1/t)
and ηmt

= Θ(1/t), we get mint∈{1,··· ,T} E∥∇Φ(xt)∥2 = O(1/ log T ). Thus, to achieve
mint∈{1,··· ,T} E∥∇Φ(xt)∥2 ≤ ϵ, we get T = Ω(e1/ϵ).

Meanwhile, according to Corollary 1, ϵstab = O(T q/n).

We have log ϵstab = O(1/ϵ).
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D PROOF OF COROLLARY 3

Proof of Corollary 3. We directly formulate the optimization problem as follows:

min
ηm,T

{
(1 + αηm)

T
, s.t.

β

Tηm
+ γηm ≤ ϵ

}
,

For fixed T , we can solve the optimal η∗m =
ϵT−

√
ϵ2T 2−4γβT

2γT when T ≥ 4γβ
ϵ .

Then the problem becomes

min
ηm,T


(
1 + α

ϵT −
√
ϵ2T 2 − 4γβT

2γT

)T

, s.t. T ≥ 4γβ

ϵ

 ,

By taking the derivative, the function value is decreasing while T increases. Thus, the optimal value
is

lim
T→∞

(
1 + α

ϵT −
√
ϵ2T 2 − 4γβT

2γT

)T

= e
α
ϵγ

Thus, we obtain that the optimal value is in order of eO(1/ϵ).

E ADDITIONAL EXPERIMENTS

E.1 ABLATION STUDY ON LARGE K

Figure 3: Results for Toy Example. The left figure shows the results when N = 500, and the right
figure shows the results when N = 1000.

Figure 4: Results for MNIST classification. The left figure shows the results when n = 100, and the
right figure shows the results when n = 200.

E.1.1 RESULTS FOR SECTION 5.1

For the toy example, we increase K from 10 to 20, and the results are shown in Figure 3. It is
shown in the figure that, increasing K can help achieve smaller error, while the diminishing step size
achieves a better performance no matter if K is large or small.
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E.1.2 RESULTS FOR SECTION 5.2

For the MNIST example, we increase K from 2 to 5. The results are shown in Figure 4. Similar to
the results in the toy example, increasing K can help achieve smaller errors, while the diminishing
step size achieves a better performance no matter if K is large or small.

E.2 ADDITIONAL EXPERIMENTS ON CIFAR10

With the same setting in Section 5.2, we change the dataset from MNIST to CIFAR10 (Krizhevsky
et al., 2009) and change the number of samples in the training set from 5000 to 20000. The results are
shown in Figure 5. Because of the representation ability of Lenet-5, the results of constant stepsize
and the diminishing stepsize are quite similar. However, at the end of 5000 iterations of training, the
diminishing stepsize achieves a little higher accuracy for both n = 100 case and n = 200 case.

Figure 5: Results for CIFAR10 classification. The left figure shows the results when n = 100, and
the right figure shows the results when n = 200.
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