
LAVA: Lifetime-Aware VM Allocation with Learned Distributions and Adaptation to Mispredictions

The following appendices explore our lifetime model, algo-
rithmic configurations, metrics, include a proof of correct-
ness, provide additional details on simulations, and present
ablation studies.

A MODEL FEATURES

Our model utilizes a set of features specific to our cloud
environment. Table 3 shows the list of features and a brief
description of each.

Some of the categorical features, e.g., Metadata ID, VM
Category, and VM Shape, take on a large range of different
values. We reduce this number by collapsing any category
with less than 10 examples in the training set to a catch-all
“Other” category. This categorization avoids overfitting and
makes the number of different categories manageable.

We analyzed the importance of different features of our
model (Figure 11), using our decision forest library’s split

score, which is an indication of how much a given feature in-
fluences the model’s decision. We found that the admission
policy plays a major role, which identifies certain special
VMs that are admitted without a quota check. We also found
that the host pool and the shape of the VM play an important
role in prediction.

B MODEL BASELINES

We compare a range of different model types and libraries
to identify the ideal model for our use case. We considered
both survival models and regular regression models, with
model structures varying across linear, tree-based and neu-
ral network-based. Among the libraries that we experiment
with, Sksurv (Pölsterl, 2020) is a standard Python library for
survival analysis supporting the standard linear Cox model
(Cox, 2018); Lifelines (Davidson-Pilon, 2019) is a similar
Python survival library allowing us to compare with a strati-
fied Kaplan-Meier survival model (Kaplan & Meier, 1958);
Xgboost (Chen & Guestrin, 2016) provides implementation
of a non-linear Cox model using tree ensembles; we em-
ploy Keras (Chollet et al., 2015) and Yggdrasil Decision
Forests (Guillame-Bert et al., 2023) for a standard regular
neural network regression and a tree-based ensemble re-
gression, respectively. We also experimented with different
hyperparameters.

Table 4 compares models and shows that the gradient-
boosted decision trees (GBDT) models perform best, achiev-
ing 99% precision at 70% recall when used to classify VMs
between short and long-lived according to a 7 day threshold.
We thus use these models in this paper and in production.

We experimented with regression models treating lifetimes
both as linear and Log10. We found the latter to work
better, since lifetimes span many orders of magnitude, which

Figure 11. Impact of different features of our model on the predic-
tion accuracy, based on the split score of each feature.

Figure 12. Histogram of the error of our GBDT model within the
Log10 domain, for the first 10 million unique predictions of run-
ning NILAS with a trace.

causes difficulties for regression models. We thus use Log10
for all lifetimes in our final model, including VM uptime.

For our production model deployments, we found that the
accuracy of the model increases if we cap VM lifetimes at
168 hours (7 days). In production, all VMs with a lifetime
longer than 7 days are capped. We found that capping
avoids the case that a small number of very long-lived VMs
“distract” the model.

For our final Yggdrasil GBDT model (Guillame-Bert et al.,
2023), we use all the defaults, except for the following
hyperparameters:

• Number of Trees = 2000

• Maximum Number of Nodes = 32

• Growing Strategy = Best First Global

C MODEL PREDICTION ACCURACY

To better understand the performance of our model, we
added instrumentation to our simulation runs that log every
invocation of the model and the associated prediction. Since
our traces contain the ground truth, we can then compare
the prediction to the actual lifetime of the VM.

LAVA: Lifetime-Aware VM Allocation with Learned Distributions and Adaptation to Mispredictions

Table 3. Description of model features.

Feature Type and Cardinality Description
Zone Categorical (High) The geographical zone the VM is running in.
VM Shape Categorical (High) The resource dimensions associated with the VM.
VM Category Categorical (High) A tag indicating an internal VM categorization.
Metadata ID Categorical (High) An internal ID to group certain related VMs together.
Has SSD Boolean (Low) Does the VM have SSDs associated with it?
Provisioning Model Boolean (Low) Is the VM a spot instance or on-demand?
Priority Categorical (High) Some VMs can be pre-empted and have lower priority.
Admission Policy Boolean (High) Whether to admit without a quota check (used in special cases).
Uptime Float (High) The uptime of the VM so far, in hours (log).

Table 4. Comparison of different lifetime models.

Model Type Library C-index Precision Recall F1 Score
Linear Cox survival Sksurv 0.52 0.97 0.64 0.77
Stratified KM survival Lifelines 0.73 0.38 0.38 0.38
Tree-based Cox survival Xgboost 0.78 N/A N/A N/A
Neural Network regression Keras 0.73 0.99 0.58 0.73
Gradient-Boosted Decision Trees (GBDT) regression Yggdrasil 0.84 0.99 0.70 0.8

We ran with NILAS against one of our traces and recorded
the first 10M predictions. Figure 12 shows the error distri-
bution, both with and without including repredictions of the
same VM. Note that both the x and y axis are log scale (i.e.,
a much larger fraction of the errors are within a factor of
10 – or 1 in the Log10 domain – than it might appear from
the graph). Given a prediction ŷ and ground truth y, both in
seconds, we calculate the error as follows:

Error = | log10(ŷ)� log10(y)|

One surprising result of this experiment was that the error
distribution is not Gaussian or bimodal. Instead, we see a
distribution with multiple peaks. We also observe that the
distribution that includes repredictions skews significantly
more to the left (i.e., lower error) than the distribution with-
out, which confirms that repredictions improve accuracy.

D COMPARING BIN PACKING METRICS

Throughout the paper, we use empty host percentage as the
main metric to capture bin packing quality. Empty host per-
centage is the fraction of hosts in a pool that are fully empty.
The reason for this choice is that empty hosts most directly
map to efficiency gains. Improving the empty host percent-
age by one percentage point (pp) corresponds to 1% of the
pool’s capacity that is now available to put in lower power
mode, divest, or power down completely. Alternatively, this
1% is available to schedule large VMs that otherwise could
not have been scheduled due to fragmentation. Finally, as
we state in Section 4.4, there is always a small fraction of
hosts that are required for maintenance and other purposes,
and empty hosts make those processes faster.

Since other papers use equivalent but slightly different met-
rics to measure bin packing quality, we want to briefly high-
light how these metrics compare:

Empty-to-Free Ratio: This alternative metric measures
empty hosts. It is defined as the fraction of free CPU re-
sources that are in completely empty hosts, containing no
VMs (i.e., the number of CPU cores on empty hosts divided
by the total number of free CPU cores). This metric has
the advantage that it is independent of the utilization of the
pool and thus helps normalize changes across pools. On the
other hand, the magnitude of the resulting changes is less
meaningful and we do not report them in the paper. When
comparing different algorithms on the same trace, empty-to-
free ratio and empty hosts behave the same, since utilization
and pool size are identical between all runs.

Packing Density: Packing density is used by Barbalho et
al. (Barbalho et al., 2023). It is defined as the number
of allocated cores on non-empty hosts divided by the total
number of cores on non-empty hosts.

In our setup, the three metrics are correlated as shown in Fig-
ure 13, since all hosts within a pool have the same number
of CPUs and the composition of the pool does not change
throughout the experiment. As such, improving one results
in a corresponding improvement of the others.

E ANALYTICAL PROOF

We prove the theorem introduced in Section 4.1 that shows
an algorithm that repredicts VM lifetimes fundamentally
outperforms an algorithm that does not.

LAVA: Lifetime-Aware VM Allocation with Learned Distributions and Adaptation to Mispredictions

Figure 13. Comparison of different metrics from simulations done
on one pool, showing relative improvements from LA-Binary.

To capture the benefit of correcting mispredictions, we con-
sider a simplified model in which there are only two job
lifetimes, which we call short (S) and long (L). We also
use S and L to denote the lifetimes themselves. When a
job j arrives, it has a predicted lifetime and a real lifetime.
We know the predicted lifetime and we only learn the real
lifetime by running the job. An algorithm assigns it to a host
using some combination of a packing score and the lifetime
prediction. For simplicity, we consider a best fit criteria
combined with predicted lifetimes. Assuming that S << L
and the jobs arrive at a rate of � � 1/S, the algorithm will
place a job on a host with other jobs with the same predicted
lifetime, thereby keeping a small number of hosts partially
filled at any time. Although job sizes and the number of
jobs per machine is variable, for simplicity, assume each of
m hosts can hold at most k jobs.

If the predicted lifetimes are correct, this algorithm will tend
to partition the jobs based on lifetime, which is basically an
optimal algorithm under any reasonable set of conditions.
Predictions are not perfect, but we can learn over time. We
assume an error rate of ✏, i.e., an ✏ fraction of the jobs’
original lifetimes are not correct. Given two job lifetimes,
once a job has run for S units of time, we learn whether it
is short or long. If the algorithm then reschedules the job,
we have transformed it to a perfect predictor, so we will
not allow reassignment, and study the impact of having this
additional knowledge.

Observe that the errors are asymmetric. If we predict that
a job is long when it is short then we can recover quickly
by assigning other short jobs to that machine. On the other
hand, if we predict that a job is short when it is long, we
now have a long job on this machine that otherwise presum-
ably had short jobs. This case is exactly where continuous
learning helps us. We classify a host as L if it has any jobs
whose processing time is known to be L and S otherwise.
Our algorithm will put new predicted L jobs on L hosts and
new predicted S jobs on S hosts.

Now consider the effects of learning (i.e., repredictions)
versus not learning. We want to compute, in an interval of

time of length x, the probability that an S host has both L
and S jobs. The probability that one job is mispredicted is ✏,
and in an interval of length x, we will have, in expectation,
⇢�x L jobs, where ⇢ is the fraction of jobs that are L jobs.
Thus the probability that there is at least one error is at least

1� (1� ✏)(⇢�x) . (1)

Thus, if x  1/(✏⇢�), and let let V be the event that there
is an error in an interval of length X , we have

Pr[V] � 1� (1� ✏)(⇢�x)

� 1� (1� ✏)⇢�/(✏⇢�)

= 1� (1� ✏)1/✏

� 1� 1/e ,

where the last inequality uses the bound (1� 1/z)z � 1/e,
with z = 1/✏.

Next, consider the case where we can learn the true values
of jobs’ lifetimes after they have been running for S units
of time. We will show that we can now tolerate more errors,
because if we learn that a host has both L and S jobs on
it, we just reclassify it as a L host and continue. As the S
jobs exit, we put more L jobs on the now correctly classified
L host. The misclassification error does make the host
unavailable for future S jobs but we still have all the other
machines on which to put S jobs. We only have a problem,
when we have many too many L machines and therefore,
no room for the S jobs. In order to get to this position, we
we will need to have cm such misclassified jobs, which will
remove a constant fraction of the capacity and impact the
ability to schedule S jobs.

We now show that even in an interval that is ⌦(m) longer
than in the previous cases, we will not have enough errors
to make S jobs unscheduleable. Consider an interval whose
length is cmx/2, which is ⇥(m) longer than the interval in
the no learning case. The expected number of misclassifica-
tions in such an interval is now ✏⇢�cmx/2 = cm/2. But, as
mentioned above, we can now tolerate cm errors. Applying
standard Chernoff bounds, we see that the probability that
we get cm errors (twice the expectation of cm/2) is small.

The above discussion for our simplified model can be con-
densed into the following statement:

Theorem 1. Suppose that job lifetimes are either Short or

Long, and that jobs are selected independently, to arrive at

a constant rate, to be scheduled on one of m hosts, each of

constant capacity. If the initial error in lifetime prediction is

a positive constant, then the number of hosts required in the

best fit scheduling algorithm without learning will exceed

the same best fit algorithm with learning by ⌦(m).

LAVA: Lifetime-Aware VM Allocation with Learned Distributions and Adaptation to Mispredictions

Figure 14. Validation of our simulator (y axis in %).

F SIMULATOR DETAILS & VALIDATION

We provide additional details about our time series-based
simulator that we use for evaluating NILAS and LAVA.

Simulator Warm-Up: One challenge in simulating our
workloads is reconstructing the exact state of the scheduler
at the start of our trace, since not all system state was con-
sistently saved. We therefore warm up our simulation by
collecting all VMs that are live at the start of our trace, re-
play their start events in order, and then let the simulation
run for another 2 simulated days to reach steady state. Warm
up addresses left censorship of the trace and ensures that we
run our simulations based on a snapshot that is representa-
tive of production behavior before lifetime-based scheduling
is enabled. As we will discuss in Appendix G.2, this state is
representative of a production setup where lifetime-based
scheduling is enabled while the system is running. However,
this methodology can reduce the impact of lifetime aware
scheduling, since it takes a long time for all VMs that were
placed without lifetime-based scheduling to exit.

Computing Stranding: While we directly measure the im-
pact of our approach on empty hosts in simulation, stranding
is computed via a separate pipeline (Section 2.3). We thus in-
tegrate our production stranding computation pipeline with
our simulator, to compute stranding at a given point in time.

Validation: We validate our simulator by comparing its be-
havior to production numbers during the same time interval.
We found it to be highly accurate during our validation stud-
ies (Figure 14). For example, the CPU utilization across
the cluster was on average within 1.59% of the ground truth
(with a standard deviation of 0.23%). We also found that the
fragmentation numbers from our production experiments
(Section 6.2) closely matched the simulated numbers, fur-
ther supporting the validity of the simulator.

Note that the fixed offset in Figure 14 does not imply that
we can easily close this gap. The offset largely stems from
dynamically invested/divested capacity that can result in
small fluctuations of the pool size. The offset is not always
constant and can be positive or negative.

Figure 15. Performance at different levels of prediction accuracy.

Figure 16. NILAS using oracular lifetime ran at ideal setting (cold
start and highest priority) achieves near-optimal performance. NI-
LAS also consistently outperforms the version of NILAS that
does not use repredication or uptime. The reported numbers are
averaged across running traces from 24 C2 pools in simulation.

G ADDITIONAL EVALUATION RESULTS

We now present additional data to further support our results
in Section 6 and provide more details.

G.1 Accuracy-Performance Trade-off

We plot the trade-off curve between model accuracy and
performance (Figure 15). We start from our oracular pre-
dictions and randomly categorize each VM into one of two
buckets – correctly predicted or incorrectly predicted. The
probability of these two cases is governed by the accuracy
on the x axis. Then, we apply a different Gaussian error
distribution to the label (� = 0.001 for correctly predicted
VMs and � = 3 for incorrectly predicted VMs, in the Log10
domain). To be more representative of the actual model’s
behavior, we also cap lifetimes to [0, 14 days].

We see that our improvements persist with different accuracy
values, and that LAVA is better than NILAS at tolerating
high rates of mispredictions, as expected.

G.2 Ablations & Theoretical Limit

We next conduct a focused study of NILAS to understand
how far it is from the theoretical limit, and what factors
contribute to the remaining gap.

LAVA: Lifetime-Aware VM Allocation with Learned Distributions and Adaptation to Mispredictions

Figure 17. Effect of caching predictions, across 22 pools (in simu-
lation). Note that repredictions are still performed when a VM is
added or removed from a host, irrespective of the refresh interval.

Since all server host hardware is the same within each pool
we tested, we can compute the optimal percentage of empty
hosts based on the total fraction of un-reserved resources
(the lower of two resource dimensions: CPU and memory)
aggregated across all hosts in that pool. This optimal value
sets an absolute upper bound on the total number of hosts
that can be made empty under a given pool size and load.

We then test NILAS under an ideal simulation setting to find
out the best performance it can attain. In this ideal setting,
NILAS uses oracular lifetime and is put as the highest-
ranked scoring function without the simulator’s warm-up
phase (Appendix F). Skipping warm-up amplifies the impact
of NILAS since it allows NILAS to schedule VMs onto an
empty cluster leveraging lifetime information throughout
the whole trace, without the residual impact of VMs that
were already scheduled without lifetime-awareness during
the warm-up phase.

Figure 16 shows that ideal runs of NILAS get very close to
the optimal result – the greedy approach taken by the NI-
LAS algorithm is nearly optimal. However this ideal setting
is unlikely to be reproduced in our production setting, where
gradual roll-out (mimicked by the warm-up phase in simu-
lation) is necessary and there are more critical scheduling
criteria that rank above NILAS. These factors combined con-
tribute to the lower performance achieved by NILAS with
oracular lifetime but a non-ideal setting. Mispredictions
from the model further bring down the amount of savings
by NILAS. Additionally, we observe that not using repre-
dictions cause more mistakes, which leads to significantly
reduced performance and demonstrates the importance of
our reprediction-based approach.

G.3 Ablation: Caching Predictions

As stated in Section 5, we found that repredicting every VM
on each considered host becomes a bottleneck in some very
large pools. We therefore introduced a caching approach.
Here, we provide an ablation study to show that caching
predictions and repredicting them at a coarser granularity
does not adversely affect the performance of NILAS. Fig-

ure 17 shows these results: We compare simulations of our
approach with caching against the baseline without cached
predictions. We show two different caching intervals: 1min
and 15min. We note that this interval only affects hosts
that see no VM changes for extended periods of time; as
mentioned in Section 5, when a VM is added to or removed
from a host, the predictions on this machine are updated
irrespective of the refresh interval. On average, we see a
small improvement – we hypothesize that this could be due
to caching addressing the “dip” in Figure 9.

H LARS ALGORITHM DETAILS

This section provides additional details about defragmenta-
tion and improving it with Lifetime Aware ReScheduling
(LARS).

Algorithm 1 LARS Algorithm
Input: A set of candidate hosts C for eviction
for each candidate c 2 C do

vsorted = Sort the existing VMs Vc on c, based on their
predicted remaining lifetime, in descending order

Send all VMs for eviction approval
if not all VMs are approved for eviction then

continue
else

Stop scheduling new VMs on c
for v 2 vsorted do

Allocate new VM of the same shape as v
Live migrate v to this new VM
Once finished, remove v from c

Defragmentation is triggered when the number of empty
hosts in a particular pool drops below a particular threshold.
The defragmenter picks a set of candidate hosts C based on
factors such as their current occupancy. It then evacuates
the VMs on each host, live migrating (Ruprecht et al., 2018)
them by copying them to another host. The scheduler selects
the target host, using the same algorithm it uses for new
VMs, but with the current VM state (e.g., lifetime prediction,
resources, etc.).

We show the pseudo-code for this operation below. Once
evacuation of a particular host begins, the defragmenter first
confirms with a higher-level system that live migration of
these VMs is consistent with system-level objectives. Once
approved, the Borg stops scheduling new VMs on this host.
(In the absence of live migration, this host would become
empty as a function of the VMs’ exit times). On each host,
live migration chooses VMs to reschedule one at a time.
Live migration occurs on multiple hosts concurrently, up to
a configurable limit.

The first step of live migration is to choose a target host.

LAVA: Lifetime-Aware VM Allocation with Learned Distributions and Adaptation to Mispredictions

Live migration uses the same scheduling algorithm as Borg
uses when initial scheduling a VM (e.g., NILAS, LAVA, or
the original waste-minimization scheduler). Since the VMs
have already been running for a period of time, live migra-
tion with NILAS and LAVA may already lead to improved
placement because they take repredicted VM lifetimes into
account. Once Borg allocates memory for the migrating
VM on the new host, it migrates the original VM, and once
migration has completed, the old instance is deleted. Once
Borg migrates all the VMs, the host is empty and can be
updated (in the case of system maintenance), put in low
power mode, or divested/powered down.

The modification that LARS makes to this algorithm is
that it performs the VM live migrations in the order of the
predicted remaining lifetime. This optimization gives short-
lived time to naturally exit while other VMs migrate. Each
such VM saves one live migration.

I NILAS & LAVA ALGORITHM DETAILS

We provide pseudo-code for the NILAS and LAVA algo-
rithm, to further formalize and clarify its behavior.

Algorithm 2 NILAS Scheduling Algorithm
Input: A new VM v
Output: Schedule v to a host
Find host h such that v does not exceed the largest exit time

of VMs on h
if No such h exists then

Schedule v on host h (with capacity to accommodate v)
such that largest exit time of VMs on h is changed by
least amount upon scheduling v on h

if No such h exists then
Indicate v fails to be scheduled

Algorithm 3 LAVA Scheduling Algorithm
Input: A new VM v
Output: Schedule v to a host or give scheduling failure
if there exists a recycling host h where h.LC > v.LC and

v can fit on h then
Let C be the set of recycling hosts h0 where h0.LC is

closest to v.LC
else if there exists a matching host h where h.LC = v.LC

and v can fit on h then
Let C be the set of matching hosts

else if there exists a non-empty host h where v can fit on h
then

Let C be the set of non-empty hosts
else if there exists an empty host h where v can fit on h then

Let C be the set of empty hosts
else

Indicate that v fails to be scheduled return
Schedule v to the host h⇤ 2 C selected by NILAS

