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A PSEUDOCODE OF ALGORITHM 1

In this section, we present the pseudocode of FQE with CNN function approximation, which we
have introduced in Section 3.

Algorithm 1 Neural Fitted Q-Evaluation (Neural-FQE)
Input: Initial distribution ⇠, target policy ⇡, horizon H , effective sample size K, function class
F .
Init: bQ⇡

H+1 := 0
for h = H,H � 1, · · · , 1 do

Sample Dh = {(sh,k, ah,k, s0h,k, rh,k)}
K

k=1.

Update bQ⇡

h
 bT ⇡

h

⇣
bQ⇡

h+1

⌘
by (6).

end for

Output: bv⇡ :=
R
X
bQ⇡

1 (s, a)⇠(s)⇡(a | s) ds da.

B PROOF OF THEOREM 1

In this section, we provide a proof for the upper bound on the estimation error in Theorem 1. Recall
that Assumption 2 does not require Bellman completeness with respect to F ; thus, the estimation
error can be decomposed into a sum of statistical error and approximation error. A tradeoff exists
about the network size: while a larger network reduces the approximation error, it leads to higher
variance in the statistical error. Consequently, we choose the network size and architecture appro-
priately to balance the two types of error, which in turn minimizes the final estimation error.

Proof of Theorem 1. The goal is to bound

E |bv⇡ � v⇡| = E
����
Z

X

⇣
Q⇡

1 �
bQ⇡

1

⌘
(s, a) dq⇡1 (s, a)

����  E
Z

X

���Q⇡

1 �
bQ⇡

1

��� (s, a) dq⇡1 (s, a)
�
.

To get an expression for that, we first expand it recursively. To illustrate the recursive relation, we
examine the quantity at step h:

E
Z

X

���Q⇡

h
� bQ⇡

h

��� (s, a) dq⇡h(s, a)
�

= E
Z

X

���T ⇡

h
Q⇡

h+1 �
bT ⇡

h

⇣
bQ⇡

h+1

⌘��� (s, a) dq⇡h(s, a)
�

 E
Z

X

���T ⇡

h
Q⇡

h+1 � T
⇡

h
bQ⇡

h+1

��� (s, a) dq⇡h(s, a)
�
+ E

Z

X

���T ⇡

h
bQ⇡

h+1 �
bT ⇡

h

⇣
bQ⇡

h+1

⌘��� (s, a) dq⇡h(s, a)
�

= E
Z

X

���Q⇡

h+1 �
bQ⇡

h+1

��� (s, a) dq⇡h+1(s, a)

�

+ E

E
Z

X

���T ⇡

h
bQ⇡

h+1 �
bT ⇡

h

⇣
bQ⇡

h+1

⌘��� (s, a) dq⇡h(s, a) | Dh+1, · · · ,DH

��

(a)
 E

Z

X

���Q⇡

h+1 �
bQ⇡

h+1

��� (s, a) dq⇡h+1(s, a)

�

+ E
"
E
"sZ

X

⇣
T ⇡

h
bQ⇡

h+1 �
bT ⇡

h

⇣
bQ⇡

h+1

⌘⌘2
(s, a) dq⇡0

h
(s, a)

q
�2
Q(q

⇡

h
, q⇡0

h
) + 1 | Dh+1, · · · ,DH

##

(b)
 E

Z

X

���Q⇡

h+1 �
bQ⇡

h+1

��� (s, a) dq⇡h+1(s, a)

�

+

s

E

E
Z

X

⇣
T ⇡

h
bQ⇡

h+1 �
bT ⇡

h

⇣
bQ⇡

h+1

⌘⌘2
(s, a) dq⇡0

h
(s, a) | Dh+1, · · · ,DH

��q
�2
Q(q

⇡

h
, q⇡0

h
) + 1
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(c)


Z

X

���Q⇡

h+1 �
bQ⇡

h+1

��� (s, a) dq⇡h+1(s, a) +

q
C 0(5H2)K� 2↵

2↵+d log5 K
q
�2
Q(q

⇡

h
, q⇡0

h
) + 1



Z

X

���Q⇡

h+1 �
bQ⇡

h+1

��� (s, a) dq⇡h+1(s, a) + CHK� ↵
2↵+d log5/2 K

q
�2
Q(q

⇡

h
, q⇡0

h
) + 1,

where C denotes a (varying) constant depending on D
3↵

2↵+d , d, ↵, d

↵p�d
, p, q, c0, B, ! and the

surface area of X .

In (a), note T
⇡

h
bQ⇡

h+1 2 B
↵

p,q
(X ) by Assumption 2 and �bT ⇡

h

⇣
bQ⇡

h+1

⌘
2 F by our algorithm, so

T
⇡

h
bQ⇡

h+1 �
bT ⇡

h

⇣
bQ⇡

h+1

⌘
2 Q. Then we obtain this inequality by invoking the following lemma.

Lemma 1. Given a function class Q that contains functions mapping from X to R and two proba-
bility distributions q1 and q2 supported on X , for any g 2 Q,

Ex⇠q1 [g(x)] 
q

Ex⇠q2 [g
2(x)](1 + �2

Q(q1, q2)).

Proof of Lemma 1.

Ex⇠q1 [g(x)] =

s

Ex⇠q2 [g
2(x)]

Ex⇠q1 [g(x)]
2

Ex⇠q2 [g
2(x)]



s

Ex⇠q2 [g
2(x)] sup

f2Q

Ex⇠q1 [f(x)]
2

Ex⇠q2 [f
2(x)]

=
q
Ex⇠q2 [g

2(x)](1 + �2
Q(q1, q2)),

where the last step is by the definition of �2
Q(q1, q2) := sup

f2Q
Eq1 [f ]

2

Eq2 [f
2] � 1.

In (b), we use Jensen’s inequality and the fact that square root is concave.

To obtain (c), we invoke Lemma 10, which provides an upper bound on the error of nonparametric
regression at each step of the FQE algorithm.

Specifically, we will invoke Lemma 10 when conditioning on Dh+1, · · · ,DH , i.e. the data from
time step h + 1 to time step H . Note that after conditioning, T ⇡

h
bQ⇡

h+1 becomes measurable and
deterministic with respect to Dh+1, · · · ,DH . Also, Dh+1, · · · ,DH are independent from Dh, which
we use in the regression at step h.

To justify our use of this theorem, we need to cast our problem into a regression problem described
in the theorem. Since {(sh,k, ah,k)}Kk=1 are i.i.d. from q⇡0

h
, we can view them as the samples xi’s in

the lemma. We can view T
⇡

h
bQ⇡

h+1, which is measurable under our conditioning, as f0 in the lemma.
Furthermore, we let

⇣h,k := rh,k +

Z

A
bQ⇡

h+1(s
0
h,k

, a)⇡(a | s0
h,k

) da� T
⇡

h
bQ⇡

h+1(sh,k, ah,k).

In order to invoke Lemma 10 under the conditioning on Dh+1, · · · ,DH , we need to verify whether
three conditions are satisfied (conditioning on Dh+1, · · · ,DH ):

1. Sample {(sh,k, ah,k)}Kk=1 are i.i.d;

2. Sample {(sh,k, ah,k)}Kk=1 and noise {⇣h,k}Kk=1 are uncorrelated;

3. Noise {⇣h,k}Kk=1 are independent, zero-mean, subgaussian random variables.

In our setting, {(sh,k, ah,k)}Kk=1 are i.i.d. from q⇡0
h

. Due to the time-inhomogeneous setting, they
are independent from Dh+1, · · · ,DH , so {(sh,k, ah,k)}Kk=1 are still i.i.d. under our conditioning.
Thus, Condition 1 is clearly satisfied.
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We may observe that under our conditioning, the transition from (sh,k, ah,k) to s0
h,k

is the only
source of randomness in ⇣h,k, besides (sh,k, ah,k) itself. The distribution of (sh,k, ah,k, s0h,k) is actu-
ally the product distribution between Ph(·|sh,k, ah,k) and q⇡0

h
, so a function of s0

h,k
, generated from

the transition distribution Ph(·|sh,k, ah,k), is uncorrelated with (sh,k, ah,k). Thus, (sh,k, ah,k)’s are
uncorrelated with ⇣h,k’s under our conditioning, and Condition 2 is satisfied.

Condition 3 can also be easily verified. Under our conditioning, the randomness in ⇣h,k only comes
from (sh,k, ah,k, s0h,k, rh,k), which are independent from (sh,k0 , ah,k0 , s0

h,k0 , rh,k0) for any k0 6= k,
so ⇣h,k’s are independent from each other. As for the mean of ⇣h,k,

E [⇣h,k | Dh+1, · · · ,DH ]

= E

rh,k +

Z

A
bQ⇡

h+1(s
0
h,k

, a)⇡(a | s0
h,k

) da� rh(sh,k, ah,k)� P
⇡

h
bQ⇡

h+1(sh,k, ah,k) | Dh+1, · · · ,DH

�

= E

rh,k � rh(sh,k, ah,k) +

Z

A
bQ⇡

h+1(s
0
h,k

, a)⇡(a | s0
h,k

) da

� Es0⇠Ph(·|sh,k,ah,k)

Z

A
bQ⇡

h+1(s
0, a)⇡(a | s0) da | sh,k, ah,k,Dh+1, · · · ,DH

�
| Dh+1, · · · ,DH

�

= 0 + 0 = 0.

On the other hand,
��� bQ⇡

h+1

���
1
 H almost surely, because it is a function in our CNN class F .

Thus, ⇣h,k is a bounded random variable with ⇣h,k 2 [�2H, 2H] almost surely, so its variance is
bounded by 4H2. Its boundedness also implies it is a subgaussian random variable. Thus, Condition
3 is also satisfied.

Hence, Lemma 10 proves, for step h in our algorithm,

E
Z

X

⇣
T

⇡

h
bQ⇡

h+1 �
bT ⇡

h

⇣
bQ⇡

h+1

⌘⌘2
(s, a) dq⇡0

h
(s, a) | Dh+1, · · · ,DH

�

 C 0(H2 + 4H2)K� 2↵
2↵+d log5 K,

where C 0 depends on D
6↵

2↵+d , d, ↵, 2d
↵p�d

, p, q, c0, B, ! and the surface area of X .

Note that this upper bound holds for any bQ⇡

h+1 or Dh+1, · · · ,DH . The sole purpose of our condi-
tioning is that we could view bQ⇡

h+1 as a measurable or deterministic function under the conditioning
and then apply Lemma 10. Therefore,

E

E
Z

X

⇣
T

⇡

h
bQ⇡

h+1 �
bT ⇡

h

⇣
bQ⇡

h+1

⌘⌘2
(s, a) dq⇡0

h
(s, a) | Dh+1, · · · ,DH

��

 C 0(H2 + 4H2)K� 2↵
2↵+d log5 K.

Finally, we carry out the recursion from time step 1 to time step H , and the final result is

E |v⇡ � bv⇡|  CH2K� ↵
2↵+d log5/2 K

 
1

H

HX

h=1

q
�2
Q(q

⇡

h
, q⇡0

h
) + 1

!
.

C PROOF OF THEOREM 2

Let us define a class of single-block CNNs in the form of

f(x) = W · ConvW,B(x)

as

F
SCNN(L, J, I, ⌧1, ⌧2) =

�
f | f(x) in the form of (3) with L layers. The number of filters per block
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is bounded by L; filter size is bounded by I; the number of channels

is bounded by J ; max
m,l

kW
(l)
m
k1 _ kB

(l)
m
k1  ⌧1, kWk1  ⌧2

 
.

(11)

We will refer to CNNs in this form as “single-block CNNs” and use them as building blocks of our
final CNN approximation for the ground truth Besov function.

C.1 PROOF OVERVIEW OF THEOREM 2

Theorem 2 serves as a building block for Theorem 1, which establishes the relation between network
architecture and approximation error. It is proven in the following steps:

STEP 1: DECOMPOSE f AS SUM OF LOCALLY SUPPORTED FUNCTIONS OVER MANIFOLD

Since manifold X is assumed compact (Assumption 1), we can cover it with a finite set of D-
dimensional open Euclidean balls {B�(ci)}

CX
i=1, where ci denotes the center of the i-th ball and � is

its radius. We choose � < !/2, and define Ui = B�(ci) \ X . Note that each Ui is diffeomorphic
to an open subset of Rd (Lemma 5.4 in Niyogi et al. [40]); moreover, {Ui}

CX
i=1 forms an open cover

for X . There exists a carefully designed open cover with cardinality CX  d
A(X )
�d Tde, where A(X )

denotes the surface area of X and Td denotes the thickness of Ui’s, i.e. the average number of Ui’s
that contain a given point on X . Td is O(d log d) (Conway et al. [5]).

Moreover, for each Ui, we can define a linear transformation

�i(x) = aiV
>
i
(x� ci) + bi,

where ai 2 R is the scaling factor and bi 2 Rd is the translation vector, both of which are chosen to
ensure �(Ui) ⇢ [0, 1]d, and the columns of Vi 2 RD⇥d form an orthonormal basis for the tangent
space Tci(X ). Overall, the atlas {(�i, Ui)}

CX
i=1 transforms each local neighborhood on the manifold

to a d-dimensional cube.

Thus, we can decompose f0 using this atlas as

f0 =
CXX

i=1

fi with fi = f⇢i, (12)

because there exists such a C1 partition of unity {⇢i}
CX
i=1 with supp(�i) ⇢ Ui (Proposition 1 in Liu

et al. [32]). Since each fi is only supported on Ui, we can further write

f0 =
CXX

i=1

�
fi � �

�1
i

�
� �i ⇥ 1Ui with fi = f⇢i, (13)

where 1Ui is the indicator for membership in Ui.

Lastly, we extend fi � �
�1
i

to entire [0, 1]d with 0, which is a function in B
↵

p,q
([0, 1]d) with

B
↵

p,q
([0, 1]d) Besov norm at most Cc0 (Lemma 4 in Liu et al. [32]), where C is a constant de-

pending on ↵, p, q and d. This extended function is to be approximated with cardinal B-splines in
the next step.

STEP 2: APPROXIMATE EACH LOCAL FUNCTION WITH CARDINAL B-SPLINES

With most things connected with the intrinsic dimension d in the last step, we proceed an approxi-
mation of f0 on the low-dimensional manifold. With ↵ � d/p + 1 assumed in Assumption 2, we
can invoke a classic result of using cardinal B-splines to approximate Besov functions (Lemma 5),
by setting r = +1 and m = d↵e + 1 in the lemma. It states that there exists a weighted sum of
cardinal B-splines efi in the form

efi ⌘
NX

j=1

efi,j ⇡ fi � �
�1
i

with efi,j = c(i)
k,jeg

d

k,j,m (14)
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such that ��� efi � fi � �
�1
i

���
L1
 Cc0N

�↵/d. (15)

In (14), c(i)
k,j 2 R is coefficient and egd

k,j,m : [0, 1]d ! R denotes a cardinal B-spline with index
k,m 2 N+, j 2 Rd. k is a scaling factor, j is a shifting vector, m is the degree of the B-spline.

By (13) and (14), we now have a sum of cardinal B-splines

ef ⌘
CXX

i=1

efi � �i ⇥ 1Ui =
CXX

i=1

NX

j=1

efi,j � �i ⇥ 1Ui . (16)

which can approximate our target Besov function f0 with error��� ef � f0
���
L1
 CCX c0N

�↵/d. (17)

STEP 3: APPROXIMATE EACH CARDINAL B-SPLINE WITH A COMPOSITION OF CNNS

Each summand in (16) is a composition of functions, each of which we can implement with a CNN.
Specifically, we do so with a special class of CNNs defined in (11), which we refer to as ”single-
block CNNs”.

The multiplication operation ⇥ can be approximated by a single-block CNN b⇥ with at most ⌘ error
in the L1 sense (Proposition 1). b⇥ needs O(log 1

⌘
) layers and 6 channels. All weight parameters

are bounded by (c20 _ 1).

We consider each efi � �i together, which we can approximate with a sum of N CNNs bfSCNN
i,j

� b�i
up to � error, namely, ������

NX

j=1

bfSCNN
i,j

� efi � ��1
i

������
L1

 �.

In particular, we can use a single-block CNN bfSCNN
i,j

to approximate the B-spline efi,j up to �/N
error. Moreover, since �i is linear, it can be expressed with a single-layer perceptron b�i. The
architecture and size of bfSCNN

i,j
and b�i are characterized in Proposition 2 as functions of �.

1Ui is an indicator for membership in Ui, so we need 1Ui(x) = 1 if d2
i
(x) = kx� cik

2
2  �2

and 1Ui(x) = 0 otherwise. By this definition, we can write 1Ui as a composition of a univariate
indicator 1[0,�2] and the distance function d2

i
:

1Ui(x) = 1[0,�2] � d
2
i
(x) for x 2 X . (18)

Given ✓ 2 (0, 1) and � � 8DB2✓, it turns out that 1[0,�2] and d2
i

can be approximated with two
single-block CNNs b1� and bd2

i
respectively (Proposition 3) such that���bd2i � d2

i

���
L1
 4B2D✓ (19)

and

b1� �
bd2
i
(x) =

8
<

:

1, if x 2 Ui, d2i (x)  �
2
��,

0, if x /2 Ui,
some value between 0 and 1, otherwise.

(20)

The architecture and size of b1� and bd2
i

are characterized in Proposition 3 as functions of ✓ and �.

The above three approximations rely on the classic result of using CNN to approximate cardinal
B-splines (Lemma 10 in Liu et al. [32]; Lemma 1 in Suzuki [45]). Putting the above together, we
can develop a composition of single-block CNNs

f̄i,j ⌘ b⇥
⇣
bfSCNN
i,j

� b�i, b1� �
bd2
i

⌘
(21)

as an approximation for efi,j � �i ⇥ 1Ui . The overall approximation error of f̄i,j can be written
as a sum of the three types of approximation error above. Details are provided in Appendix C.2.
Moreover, by Lemma 6, there exists a single-block CNN bfi,j that can express f̄i,j .
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STEP 4: EXPRESS THE SUM OF CNN COMPOSITIONS WITH A CNN

Finally, we can assemble everything into bf

bf ⌘
CXX

i=1

NX

j=1

bfi,j , (22)

which serves as an approximation for f0. By choosing the appropriate network size in Lemma 2,
which the tradeoff between the approximation error of bfi,j and its size, we can ensure that

��� bf � f0
���
L1
 N�↵/d. (23)

By Lemma 7, for fM, eJ > 0, we can write this sum of N · CX single-block CNNs as a sum of fM
single-block CNNs with the same architecture, whose channel number upper bound J depends on
eJ . This allows Theorem 2 to be more flexible with network architecture. By Lemma 4, this sum
of fM CNNs can be further expressed as one CNN in the CNN class (5). Finally, N will be chosen
appropriately as a function of network architecture parameters, and the approximation theory of
CNN is proven.

When Theorem 2 is applied in our problem setting, we will take the target function f above to be
T

⇡

h
bQ⇡

h+1 at each time step h, which is the ground truth of the regression at each step of Algorithm
1. More details about the proof of Theorem 2 are in Appendix C.2.

C.2 PROOF OF THEOREM 2

In the following, we provide the proof details for Theorem 2, which quantifies the tradeoff between
a CNN in the class of 11 and its approximation error for Besov functions on a low-dimensional
manifold. We start from the decomposition of the approximation error of bf , which is based on the
decomposition of the approximation error of f̄i,j in (21), and will proceed to the end of this proof.
Lemma 2. Let ⌘ be the approximation error of the multiplication operator b⇥(·, ·) as defined in Step

3 of Appendix C.1 and Proposition 1, � be defined as in Step 3 of Appendix C.1 and Proposition 2,

� and ✓ be defined as in Step 3 of Appendix C.1 and Proposition 3. Assume N is chosen according

to Proposition 2. For any i = 1, ..., CX , we have

��� bf � f0
���
L1

P

CX
i=1(Ai,1 +Ai,2 +Ai,3) with

Ai,1 =
NX

j=1

���b⇥( bfSCNN
i,j

� b�i, b1� �
bd2
i
)� bfSCNN

i,j
� b�i ⇥ (b1� �

bd2
i
)
���
L1
 C 00��d/↵⌘,

Ai,2 =

������

0

@
NX

j=1

⇣
bfSCNN
i,j

� b�i
⌘
1

A⇥ (b1� �
bd2
i
)� fi ⇥ (b1� �

bd2
i
)

������
L1

 �,

Ai,3 = kfi ⇥ (b1� �
bd2
i
)� fi ⇥ 1UikL1 

c(⇡ + 1)

�(1� �/!)
�

for some constant C 00
depending on d,↵, p, q and some constant c. Furthermore, for any " 2 (0, 1),

setting

� =
N�↵/d

3CX
, ⌘ =

1

C 00
N�1�↵/d

(3CX )d/↵
,� =

�(1� �/!)N�↵/d

3c(⇡ + 1)CX
, ✓ =

�

16B2D
(24)

gives rise to ��� bf � f0
���
L1
 N�↵

d .

The choice in (24) satisfies the condition � > 8B2D✓ in Proposition 3.

Proof of Lemma 2. As in Proposition 1, Ai,1 measures the error from b⇥:

Ai,1 =
NX

j=1

���b⇥( bfSCNN
i,j

� b�i, b1� �
bd2
i
)� bfSCNN

i,j
� b�i ⇥ (b1� �

bd2
i
)
���
L1
 N⌘  C 00��d/↵⌘,
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for some constant C 00 depending on d,↵, p, q. The last inequality is due to the choice of N in
Proposition 2.

Ai,2 measures the error from CNN approximation of Besov functions. As in Proposition 2, Ai,2  �.

Ai,3 measures the error from CNN approximation of the chart determination function. The bound
of Ai,3 can be derived using the proof of Lemma 4.5 in Chen et al. [4], since fi � �

�1
i

is a Lipschitz
function and its domain is in [0, 1]d.

In order to attain the error desired in Lemma 2, we need each network in f̄i,j with appropriate size.
The network size of the components in f̄i,j can be analyzed as follows:

• b1i: The chart determination network b1i = bd2
i
� b1� is the composition of bd2

i
and b1�.

By Proposition 3, bd2
i

is a single-block CNN with O(log 1
✓
) = O(↵

d
logN + D + logD)

layers and width 6D; b1� is a single-block CNN with O(log(�2/�)) = O(↵
d
logN) layers

and width 2. In both subnetworks, all parameters are of O(1). By Lemma 6, the chart
determination network b1i is a single-block CNN with O(↵

d
logN + D + logD) layers,

width 6D + 2 and all weight parameters are of O(1).

• b⇥: By Proposition 1, the multiplication network is a single-block CNN with O(log 1
⌘
) =

O((1 + ↵

d
) logN) layers and O(1) width. All weight parameters are bounded by (c20 _ 1).

• b�i: The projection �i is a linear one, so it can be expressed with a single-layer perceptron.
By Lemma 8 in Liu et al. [32], this single-layer perceptron can be expressed with a single-
block CNN with 2 +D layers and width d. All parameters are of O(1).

• bfSCNN
i,j

: by Proposition 2, each bfSCNN
i,j

is a single-block CNN with O(log 1
�
) =

O(↵
d
logN) layers and d24d(↵ + 1)(↵ + 3) + 8de channels. All weight parameters are

in the order of O
⇣
��(log 2)( 2d

↵p�d+c1d
�1)

⌘
= O

⇣
N (log 2)↵

d ( 2d
↵p�d+c1d

�1)
⌘

.

Next, we want to show f̄i,j , a composition of the aforementioned single-block CNNs, can be simply
expressed as a single-block CNN.

By Lemma 6, there exists a single-block CNN gi,j with O(logN + D) layers and d24d(↵ +

1)(↵ + 3) + 9de width realizing bfSCNN
i,j

� b�i. All weight parameters in gi,j are in the order of

O
⇣
N (log 2)↵

d ( 2d
↵p�d+c1d

�1)
⌘

. Moreover, recall that the chart determination network b1i is a single-
block CNN with O(logN + D + logD) layers and width 6D + 2, whose weight parameters are
of O(1). By Lemma 14 in Liu et al. [32], one can construct a convolutional block, denoted by ḡi,j ,
such that

ḡi,j(x) =


(gi,j(x))+ (gi,j(x))� (b1i(x))+ (b1i(x))�

? ? ? ?

�
. (25)

Here ḡi,j has d24d(↵+ 1)(↵+ 3) + 9de+ 6D + 2 channels.

Since the input of b⇥ is

gi,j
b1i

�
, by Lemma 15 in Liu et al. [32], there exists a CNN g̊i,j which takes

(25) as the input and outputs b⇥(gi,j , b1i).

Note that ḡi,j only contains convolutional layers. The composition g̊i,j � ḡi,j , denoted by bgSCNN
i,j

, is
a CNN and for any x 2 X , bgSCNN

i,j
(x) = f̄i,j(x). We have bgSCNN

i,j
2 F

SCNN(L, J, I, ⌧, ⌧) with

L = O (logN +D + logD) , J = d48d(↵+ 1)(↵+ 3) + 18de+ 12D +O(1),

⌧ = O
⇣
N (log 2) d

↵ ( 2d
↵p�d+c1d

�1)
⌘
, (26)

and I can be any integer in [2, D].

Therefore, we have shown that bgSCNN
i,j

is a single-block CNN that expresses f̄i,j , as we desired.
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Furthermore, recall that bf can be written as a sum of CXN such SCNNs. By Lemma 7, for any
fM, eJ satisfying fM eJ = O(N), there exists a CNN architecture F

SCNN(L, J, I, ⌧, ⌧) that gives rise
to a set of single-block CNNs {bgi}

fM
i=1 2 F

SCNN(L, J, I, ⌧, ⌧) with

bf =

fMX

i=1

bgi (27)

and

L = O (logN +D + logD) , J = O(D eJ), ⌧ = O
⇣
N (log 2) d

↵ ( 2d
↵p�d+c1d

�1)
⌘
. (28)

By Lemma 3 below, we slightly adjust the CNN architecture by re-balancing the weight parameter
boundary of the convolutional blocks and that of the final fully connected layer. In particular, we
rescale all parameters in convolutional layers of bgi to be no larger than 1. While this procedure does
not change the approximation power of the CNN, it can make the CNN have a smaller covering
number, which is conducive to a smaller variance.
Lemma 3 (Lemma 16 in Liu et al. [32]). Let � � 1. For any g 2 F

SCNN(L, J, I, ⌧1, ⌧2), there

exists f 2 F
SCNN(L, J, I, ��1⌧, �L⌧) such that g(x) = f(x).

In this case, we set � = c0N (log 2) d
↵ ( 2d

↵p�d+c1d
�1)(8ID)fM 1

L , where c0 is a constant such that ⌧ 
c0N (log 2) d

↵ ( 2d
↵p�d+c1d

�1). With this �, we have bfi 2 F
SCNN(L, J, I, ⌧1, ⌧2) with

L = O(logN +D + logD), J = O(D), ⌧1 = (8ID)�1fM� 1
L = O(1),

log ⌧2 = O
⇣
log fM + log2 N +D logN

⌘
.

Finally, we prove that it suffices to use one CNN to realize the sum of single-block CNNs in (27).
Lemma 4. Let F

SCNN(L, J, I, ⌧1, ⌧2) be any CNN architecture from RD
to R. Assume the weight

matrix in the fully connected layer of F
SCNN(L, J, I, ⌧1, ⌧2) has nonzero entries only in the first

row. For any positive integer M , there exists a ConvNet architecture F(M,L, J, I, ⌧1, ⌧2(1_ ⌧
�1
1 ))

such that for any { bfi(x)}Mi=1 ⇢ F
SCNN(L, J, I, ⌧1, ⌧2), there exists bf 2 F(M,L, 4+J, I, ⌧1, ⌧2(1_

⌧�1
1 )) with

bf(x) =
MX

m=1

bfm(x).

Consequently, by Lemma 4, there exists a ConvNet that can express our sum of fM single-block
CNNs with architecture F(M,L, J, I, ⌧1, ⌧2) with

L = O(logN +D + logD), J = O(D eJ), ⌧1 = (8ID)�1fM� 1
L = O(1),

log ⌧2 = O
⇣
log fM + log2 N +D logN

⌘
, M = O(fM). (29)

and eJ, fM satisfying

fM eJ = O(N), (30)

which is a requirement inherited from Lemma 7. This CNN is our final approximation for f0.

Applying this relation N = O(fM eJ) to (29) gives
��� bf � f0

���
L1
 (fM eJ)�↵

d (31)

and the network size

L = O
⇣
log(fM eJ) +D + logD

⌘
, J = O(D eJ), ⌧1 = (8ID)�1fM� 1

L = O(1),

log ⌧2 = O
⇣
log2 fM eJ +D log fM eJ

⌘
, M = O(fM).
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C.3 PROOF OF LEMMA 4

Denote the architecture of bfm with

bfm(x) = Wm · ConvWm,Bm(x),

where Wm =
n
W

(l)
m

oL

l=1
,Bm =

n
B(l)

m

oL

l=1
. Furthermore, denote the weight matrix and bias in

the fully connected layer of bf with cW,bb and the set of filters and biases in the m-th block of bf with
cWm and bBm, respectively. The padding layer bP in bf pads the input x from RD to RD⇥4 with zeros.
Each column denotes a channel.

Let us first show that for each m, there exists some ConvcWm, bBm
: RD⇥4

! RD⇥4 such that for any
Z 2 RD⇥4 with the form

Z = [(x)+ (x)� ? ?] , (32)

where (x)+ means applying (· _ 0) to every entry of x and (x)� means applying �(· ^ 0) to every
entry of x, so all entries in Z are non-negative. We have

ConvcWm, bBm
(Z) =

2

664

⌧1
⌧2
(fm(x) _ 0) �

⌧1
⌧2
(fm(x) ^ 0)

0 0 ? ?
...

...
? ?

3

775+ Z (33)

where ?’s denotes entries that do not affect this result and may take any different value.

For any m, the first layer of fm takes input in RD. Thus, the filters in W
(1)
m are in RD. Again, we

pad these filters with zeros to get filters in RD⇥4 and construct cW(1)
m such that

(cW(1)
m

)1,:,: = [e1 0 0 0] ,

(cW(1)
m

)2,:,: = [0 e1 0 0] ,

(cW(1)
m

)3,:,: = [0 0 e1 0] ,

(cW(1)
m

)4,:,: = [0 0 0 e1] ,

(cW(1)
m

)4+j,:,: =
h
(W(1)

m )j,:,: (�W(1)
m )j,:,: 0 0

i
,

where we use the fact that W(1)
m ⇤ (x)+�W

(1)
m ⇤ (x)� = W

(1)
m ⇤x. The first four output channels at

the end of this first layer is a copy of Z. For the filters in later layers of bfm and all biases, we simply
set

(cW(l)
m

)1,:,: = [e1 0 0 0 · · · 0] for l = 2, . . . , L,

(cW(l)
m

)2,:,: = [0 e1 0 0 · · · 0] for l = 2, . . . , L,

(cW(l)
m

)3,:,: = [0 0 e1 0 · · · 0] for l = 2, . . . , L� 1,

(cW(l)
m

)4,:,: = [0 0 0 e1 · · · 0] for l = 2, . . . , L� 1,

(cW(l)
m

)4+j,:,: =
h
0 0 0 0 (W(l)

m )j,:,:

i
for l = 2, . . . , L� 1,

( bB(l)
m
)j,:,: =

h
0 0 0 0 (B(l)

m )j,:,:

i
for l = 1, . . . , L� 1.

In ConvcWm, bBm
, an additional convolutional layer is constructed to realize the fully connected layer

in cfm. By our assumption, only the first row of Wm is nonzero. Furthermore, we set bB(L)
m = 0 and

cWL

m
as size-one filters with three output channels in the form of

(cW(L)
m

)3,:,: =
⇥
0 0 e1 0 ⌧1

⌧2
(Wm)1,:

⇤
,

(cW(L)
m

)4,:,: =
⇥
0 0 0 e1 �

⌧1
⌧2
(Wm)1,:

⇤
.
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Under such choices, (33) is proved and all parameters in cWm, bBm are bounded by ⌧1.

By composing all convolutional blocks, we have

(ConvcWM , bBM
) � · · · � (ConvcW1,

bB1
) � P (x) =

2

6664

⌧1
⌧2

P
M

m=1(
bfm _ 0) �

⌧1
⌧2

P
M

m=1(
bfm ^ 0)

(x)+ (x)� ? ?
...

...
? ?

3

7775
.

Lastly, the fully connect layer can be set as

fW =


0 0 ⌧2

⌧1
�

⌧2
⌧1

0 0 0 0

�
, eb = 0.

Note that the weights in the fully connected layer are bounded by ⌧2(1 _ ⌧�1
1 ).

The above construction gives

bf(x) =
MX

m=1

( bfm(x) _ 0) +
MX

m=1

( bfm(x) ^ 0) =
MX

m=1

bfm(x).

C.4 SUPPORTING LEMMAE FOR THEOREM 2

Before stating Lemma 5, we provide a brief definition of cardinal B-splines.
Definition 5 (Cardinal B-spline). Let  (x) = 1[0,1](x) be the indicator function for membership in

[0, 1]. The cardinal B-spline of order m is defined by taking m+ 1-times convolution of  :

 m(x) = ( ⇤  ⇤ · · · ⇤  | {z }
m+1 times

)(x)

where f ⇤ g(x) ⌘
R
f(x� t)g(t)dt.

Note that  m is a piecewise polynomial with degree m and support [0,m+ 1]. It can be expressed
as [34]

 m(x) =
1

m!

m+1X

j=0

(�1)j
✓
m+ 1

j

◆
(x� j)m+ .

For any k, j 2 N, let egk,j,m(x) =  m(2kx � j), which is the rescaled and shifted cardinal B-
spline with resolution 2�k and support 2�k[j, j + (m + 1)]. For k = (k1, . . . , kd) 2 Nd and j =

(j1, . . . , jd) 2 Nd, we define the d dimensional cardinal B-spline as egdk,j,m(x) =
Q

d

i=1  m(2kixi�

ji). When k1 = . . . = kd = k 2 N, we denote egd
k,j,m(x) =

Q
d

i=1  m(2kxi � ji).

C.4.1 APPROXIMATING BESOV FUNCTIONS WITH CARDINAL B-SPLINES

For any m 2 N, let J(k) = {�m,�m+ 1, . . . , 2k � 1, 2k}d and the quasi-norm of the coefficient
{ck,j} for k 2 N, j 2 J(k) be

k{ck,j}kb↵p,q =

0

B@
X

k2N

2

642k(↵�d/p)

0

@
X

j2J(k)

|ck,j|
p

1

A
1/p

3

75

q1

CA

1/q

. (34)

We can state the following lemma, from DeVore & Popov [8], Dung [12], which provides an upper
bound on the error of using cardinal B-splines to approximate functions in B

↵

p,q
([0, 1]d).

Lemma 5 (Lemma 2 in Suzuki [45]; DeVore & Popov [8], Dung [12]). Assume that 0 < p, q, r 
1 and 0 < ↵ <1 satisfying ↵ > d(1/p� 1/r)+. Let m 2 N be the order of the cardinal B-spline
basis such that 0 < ↵ < min(m,m�1+1/p). For any f 2 B

↵

p,q
([0, 1]d), there exists fN satisfying

kf � fNkLr([0,1]d)  CN�↵/d
kfkB↵

p,q([0,1]
d)
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for some constant C with N � 1. f is in the form of

fN (x) =
HX

k=0

X

j2J(k)

ck,jegdk,j,m(x) +
H

⇤X

k=K+1

nkX

i=1

ck,jiegdk,ji,m(x), (35)

where {ji}nk
i=1 ⇢ J(k), H = dc1 log(N)/de, H⇤ = d⌫�1 log(�N)e+H+1, nk = d�N2�⌫(k�H)

e

for k = H + 1, . . . , H⇤, u = d(1/p� 1/r)+ and ⌫ = (↵� u)/(2u). The real numbers c1 > 0 and
� > 0 are two absolute constants chosen to satisfy

P
H

k=1(2
k + m)d +

P
H

⇤

k=H+1 nk  N , which
are to N . Moreover, we can choose the coefficients {ck,j} such that

k{ck,j}kb↵p,q  C1kfkB↵
p,q([0,1]

d)

for some constant C1.

C.4.2 APPROXIMATING CARDINAL B-SPLINES AND OTHERS WITH SINGLE-BLOCK CNNS

The following Proposition 1 quantifies the tradeoff between the size of a single-block CNN and its
approximation error for the multiplication operator.
Proposition 1. Let ⇥ be defined as in (13). For any ⌘ 2 (0, 1), there exists a single-block CNN

b⇥(·, ·) such that

��a⇥ b� b⇥(a, b)
��
L1  ⌘,

where a, b are functions uniformly bounded by c0.

b⇥ is a single-block CNN approximation of⇥ and is in F
SCNN(L, J, I, ⌧, ⌧) with L = O(log 1/⌘)+

D layers, J = 24 channels and any 2  I  D. All parameters are bounded by ⌧ = (c20 _ 1).
Furthermore, the weight matrix in the fully connected layer of b⇥ has nonzero entries only in the first

row.

Proof of Proposition 1. First, let us define a particular class of feed-forward ReLU networks of the
form

f(x) = WL · ReLU(WL�1 · · ·ReLU(W1x+ b1) · · ·+ bL�1) + bL, (36)
as

F(L, J, ⌧) = {f | f(x) in the form (36) with L layers and width at most J ,
kWik1,1  ⌧, kbik1  ⌧ for i = 1, · · · , L}. (37)

By Proposition 3 in Yarotsky, there exists a feed-forward ReLU network that can approximate the
multiplication operation between values with magnitude bounded by c0, with ⌘ error. Such feed-
forward network has O(log 1/⌘) layers, whose width is all bounded by 6, and all its parameters are
bounded by c20. Therefore, such a feed-forward network is sufficient to approximate ⇥ with ⌘ error
in L1-norm, because the arguments of ⇥ are uniformly bounded c0 by Assumption 2.

Furthermore, by Lemma 8 in Liu et al. [32], we can express the aforementioned feed-forward net-
work with a single-block CNN in F

SCNN(L, J, I, ⌧, ⌧), where L, J, I, ⌧ are as specified in the state-
ment of the proposition.

Proposition 2 quantifies the tradeoff between the size of a single-block CNN and its approximation
error for the cardinal B-spline fi � �

�1
i

.

Proposition 2 (Proposition 3 in Liu et al. [32]). Let fi��
�1
i

be defined as in (13). For any � 2 (0, 1),

set N = C1��d/↵
. For any 2  I  d, there exists a set of single-block CNNs

n
bfSCNN

oN

j=1
such

that

������

NX

j=1

bfSCNN
i,j

� fi � �
�1
i

������
L1

 �,
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where C1 is a constant depending on ↵, p, q and d.

bfSCNN
i,j

is a single-block CNN approximation of efi,j (defined in (14)) in F
SCNN(L, J, I, ⌧, ⌧) with

L = O (log(1/�)) , J = d24d(↵+ 1)(↵+ 3) + 8de, ⌧ = O
⇣
��(log 2)( 2d

↵p�d+c1d
�1)

⌘
.

The constant hidden in O(·) depends on d,↵, 2d
↵p�d

, p, q, c0.

Proposition 3 quantifies the tradeoff between the size of the sub-networks for the chart determination
network and its approximation error for the chart determination indicators and the distance function
d2
i
.

Proposition 3 (Lemma 9 in Liu et al. [32]). Let d2
i

and 1[0,�2] be defined as in (18). For any

✓ 2 (0, 1) and � � 8B2D✓, there exists a single-block CNN bd2
i

approximating d2
i

such that

kbd2
i
� d2

i
kL1  4B2D✓,

and a CNN b1� approximating 1[0,�2] with

b1�(x) =

8
<

:

1, if a  (1� 2�k)(�2
� 4B2D✓),

0, if a � �2
� 4B2D✓,

2k((�2
� 4B2D✓)�1a� 1), otherwise.

for x 2 X . The single-block CNN for bd2
i

has O(log(1/✓)) layers, 6D channels and all weights

parameters are bounded by 4B2
. The single-block CNN for e1� has

⌃
log(�2/�)

⌥
layers, 2 channels.

All weight parameters are bounded by max(2, |�2
� 4B2D✓|).

As a result, for any x 2 X , b1� �
bd2
i
(x) gives an approximation of 1Ui satisfying

b1� �
bd2
i
(x) =

8
<

:

1, if x 2 Ui and d2
i
(x)  �2

��;
0, if x /2 Ui;
between 0 and 1, otherwise.

C.4.3 LEMMAE ABOUT SUMMATION AND COMPOSITION OF CNN

Lemma 6 states that the composition of two single-block CNNs can be expressed as one single-block
CNN with augmented architecture.
Lemma 6. Let F

SCNN
1 (L1, J1, I1, ⌧1, ⌧1) be a CNN architecture from RD

! R and

F
SCNN
2 (L2, J2, I2, ⌧2, ⌧2) be a CNN architecture from R ! R. Assume the weight matrix in the

fully connected layer of F
SCNN
1 (L1, J1, I1, ⌧1, ⌧1) and F

SCNN
2 (L2, J2, I2, ⌧2, ⌧2) has nonzero en-

tries only in the first row. Then there exists a CNN architecture F
SCNN(L, J, I, ⌧, ⌧) from RD

! R
with

L = L1 + L2, J = max(J1, J2), I = max(I1, I2), ⌧ = max(⌧1, ⌧2)

such that for any f1 2 F
SCNN(L1, J1, I1, ⌧1, ⌧1) and f2 2 F

SCNN(L2, J2, I2, ⌧2, ⌧2), there exists

f 2 F
SCNN(L, J, I, ⌧, ⌧) such that f(x) = f2 � f1(x). Furthermore, the weight matrix in the fully

connected layer of F
SCNN(L, J, I, ⌧, ⌧) has nonzero entries only in the first row.

Lemma 7 states that the sum of n0 single-block CNNs with the same architecture can be expressed
as the sum of n1 single-block CNNs with modified width.
Lemma 7 (Lemma 7 in Liu et al. [33]). Let {fi}

n0
i=1 be a set of single-block CNNs with architecture

F
SCNN(L0, J0, I0, ⌧0, ⌧0). For any integers 1  n  n0 and eJ satisfying n eJ = O(n0J0) and

eJ � J0, there exists an architecture F
SCNN(L, J, I, ⌧, ⌧) that gives a set of single-block CNNs

{gi}ni=1 such that

nX

i=1

gi(x) =
n0X

i=1

fi(x).

Such an architecture has

L = O(L0), J = O( eJ), I = I0, ⌧ = ⌧0.

Furthermore, the fully connected layer of f has nonzero elements only in the first row.
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D PROOF OF CONVNET CLASS COVERING NUMBER

In this section, we prove a bound on the covering number of the convolutional neural network class
used in Algorithm 1.
Lemma 8. Given � > 0, the �-covering number of the neural network class F(M,L, J, I, ⌧1, ⌧2, V )
satisfies

N (�,F(M,L, J, I, ⌧1, ⌧2, V ), k·k1) 
�
2(⌧1 _ ⌧2)⇤1�

�1
�⇤2 , (38)

where

⇤1 = (M + 3)JD(1 _ ⌧2)(1 _ ⌧1)e⇢e⇢+, ⇤2 = ML(J2I + J) + JD + 1

with e⇢ = ⇢M , e⇢+ = 1 +ML⇢+, ⇢ = (JI⌧1)L and ⇢+ = (1 _ JI⌧1)L.

With a network architecture as stated in Theorem 2, we have

logN (�,F(M,L, J, I, ⌧1, ⌧2, V ) = O

✓
fM eJ2D3 log5(fM eJ) log 1

�

◆
,

where O(·) hides constant depending on d, ↵, 2d
↵p�d

, p, q, c0, B, ! and the surface area of X .

D.1 SUPPORTING LEMMAE AND PROOFS

Proposition 4 below provides an upper bound on the L1-norm of a series of convolutional neural
network blocks in terms of its architecture parameters, e.g. number of layers, number of channels,
etc.

Let J (i)
m be the number of channels in i-th layer of the m-th block, and let I(i)m be the filter size of

i-th layer in the m-th block. Q[i,j] is defined as

Q[i,j](x) =
�
ConvWj ,Bj

�
� · · · � (ConvWi,Bi) (x).

Proposition 4. For m = 1, 2, · · · ,M and x 2 [�1, 1]D, we have

��Q[1,m](x)
��
1  (1 _ ⌧1)

0

@
mY

j=1

LjY

i=1

J (i�1)
j

I(i)
j
⌧1

1

A
 
1 +

mX

k=1

Lk

LkY

i=1

(1 _ J (i�1)
k

I(i)
k
⌧1)

!
.

Proof.
��Q[1,m](x)

��
1

=
��ConvWm,Bm(Q[1,m�1](x))

��
1



LmY

i=1

J (i�1)
m

I(i)
m
⌧1
��Q[1,m�1](x)

��
1 + ⌧1Lm

LmY

i=1

(1 _ J (i�1)
m

I(i)
m
⌧1)

 kP (x)k1

mY

j=1

LjY

i=1

J (i�1)
j

I(i)
j
⌧1 + ⌧1

mX

k=1

Lk

LkY

i=1

(1 _ J (i�1)
k

I(i)
k
⌧1)

mY

l=j+1

LlY

i=1

J (i�1)
l

I(i)
l
⌧1

 kxk1

mY

j=1

LjY

i=1

J (i�1)
j

I(i)
j
⌧1 + ⌧1

mX

k=1

Lk

LkY

i=1

(1 _ J (i�1)
k

I(i)
k
⌧1)

mY

l=j+1

LlY

i=1

J (i�1)
l

I(i)
l
⌧1

 (1 _ ⌧1)

0

@
mY

j=1

LjY

i=1

J (i�1)
j

I(i)
j
⌧1

1

A
 
1 +

mX

k=1

Lk

LkY

i=1

(1 _ J (i�1)
k

I(i)
k
⌧1)

!
,

where the first two inequalities are obtained by applying Proposition 9 from Oono & Suzuki [41]
recursively.

Lemma 9 quantifies the sensitivity of a CNN with respect to small changes in its weight parameters.
This will be used to create a discrete covering for the CNN class.
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Lemma 9. For f, f 0
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where (a) is obtained through the following reasoning.

The first term in (a) can be bounded as
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where the first inequality uses Proposition 8 from Oono & Suzuki [41] and the last inequality is
obtained by invoking Proposition 4.

For the second term in (a), it is true that for any m = 1, · · · ,M , we have
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where (b) is by Proposition 7 from Oono & Suzuki [41], (c) is by Proposition 2 and 4 from Oono &
Suzuki [41], (d) is by Proposition 2 and 5 from Oono & Suzuki [41], and (e) is obtained by invoking
Proposition 4.

D.2 PROOF OF LEMMA 8

Proof of Lemma 8. We grid the range of each parameter into subsets with width ⇤�1
1 �, so there are at

most 2(⌧1 _ ⌧2)⇤1��1 different subsets for each parameter. In total, there are
�
2(⌧1 _ ⌧2)⇤1��1

�⇤2

bins in the grid. For any f, f 0
2 F(M,L, J, I, ⌧1, ⌧2, V ) within the same grid, by Lemma 9, we

have kf � f 0
k1  �. We can construct the ✏-covering with cardinality

�
2(⌧1 _ ⌧2)⇤1��1

�⇤2 by
selecting one neural network from each bin in the grid.

Taking log and plugging in the network architecture parameters in Lemma 2, we have
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where the inequality is due to ⇤2 = O(fMDD2 eJ2 log(fM eJ)). By plugging in the choice of ⌧1,
⇢ = (1/2)LM�1

M�1, so e⇢ = (1 +M�1)M  e. Moreover, e⇢+ = 1 +ML.

E STATISTICAL RESULT OF CNN-BESOV APPROXIMATION (LEMMA 10)

In this section, we derive the statistical estimation error for using a CNN empirical MSE minimizer
to estimate a Besov ground truth function over an i.i.d. dataset. We need to choose the appropriate
CNN architecture and size in order to balance the approximation error from Theorem 2 and variance.
Thsi statistical estimation error can be decomposed into the error of using CNN to approximate
Besov function (Theorem 2), terms that grow with the covering number of our CNN class, and the
error of using the discrete covering to approximate our CNN class.

In Theorem 1, we expand the estimation error bv⇡ � v⇡ over time steps and upper-bound the amount
of estimation error in each time step with Lemma 10. Details of Theorem 1 are in Appendix B.
Lemma 10. Let X be a d-dimensional compact Riemannian manifold that satisfies Assumption 1.

We are given a function f0 2 B
↵

p,q
(X ), where s, p, q satisfies Assumption 2. We are also given

samples Sn = {(xi, yi)}ni=1, where xi are i.i.d. sampled from a distribution Px on X and yi =
f0(xi) + ⇣i. ⇣i’s are i.i.d. sub-Gaussian random noise with variance �2

, uncorrelated with xi’s. If

we compute an estimator

bfn = argmin
f2F
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n
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i=1

(f(xi)� yi)
2 ,

with the neural network class F = F(M,L, J, I, ⌧1, ⌧2, V ) such that

L = O(log n+D + logD), J = O(D), ⌧1 = O(1), log ⌧2 = O(log2 n+D log n),

M = O(n
d

2↵+d ), V = kf0k1 , (39)

with any integer I 2 [2, D] and fM, eJ > 0 satisfying fM eJ = O(n
d

2↵+2d ), then we have
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2↵+d log5 n, (40)
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where VF = kf0k1 and the expectation is taken over the training sample Sn, and c is a constant

depending on D
6↵

2↵+2d , d, ↵,
2d

↵p�d
, p, q, c0, B, ! and the surface area of X . O(·) hides constant

depending on d, ↵,
2d

↵p�d
, p, q, c0, B, ! and the surface area of X .

First, note that the nonparametric regression error can be decomposed into two terms:

E
Z

X

⇣
bfn(x)� f0(x)

⌘2
dDx(x)

�
= 2E

"
1

n

nX

i=1

( bfn(xi)� f0(xi))
2

#

| {z }
T1

+ E
Z

X

⇣
bfn(x)� f0(x)

⌘2
dDx(x)

�
� 2E

"
1

n

nX

i=1

( bfn(xi)� f0(xi))
2

#

| {z }
T2

,

where T1 reflects the squared bias of using neural networks to approximate ground truth f0, which
is related to Theorem 2, and T2 is the variance term.

E.1 SUPPORTING LEMMAE

Lemma 11 (Lemma 5 in Chen et al. [4]). Fix the neural network class F(M,L, J, I, ⌧1, ⌧2, V ). For
any constant � 2 (0, 2V ), we have

T1  4 inf
f2F(M,L,J,I,⌧1,⌧2,V )

Z

X
(f(x)� f0(x))
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n
+ 8)��,

where N (�,F(M,L, J, I, ⌧1, ⌧2, V ), k·k1) denotes the �-covering number of
F(M,L, J, I, ⌧1, ⌧2, V ) with respect to the `1 norm, i.e., there exists a discretization of
F(M,L, J, I, ⌧1, ⌧2, V ) into N (�,F(M,L, J, I, ⌧1, ⌧2, V ), k·k1) distinct elements, such that for
any f 2 F , there is f̄ in the discretization satisfying

��f̄ � f
��
1  ✏.

Lemma 12 (Lemma 6 in Chen et al. [4]). For any constant � 2 (0, 2R), T2 satisfies
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E.2 PROOF OF LEMMA 10

Proof of Lemma 10. Recall that the bias and variance decomposition of
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Applying the upper bounds of T1 and T2 in Lemmas 11 and 12 respectively, we can derive
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+ 48�2 logN (�,F(M,L, J, I, ⌧1, ⌧2, V ), k·k1) + 2
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logN (�,F(M,L, J, I, ⌧1, ⌧2, V ), k·k1) + 2

n
��

+
104V 2

F
3n

logN (�/4V,F(M,L, J, I, ⌧1, ⌧2, V ), k·k1)

+

✓
4 +

1

2VF
+ 8�

◆
�.

We need there to exist a network in F(M,L, J, I, ⌧1, ⌧2, V ) which can yield a function f satisfying
kf � f0k1  ✏ for ✏ 2 (0, 1). ✏ will be chosen later to balance the bias-variance tradeoff. In order
to achieve such ✏-error, we set fM eJ = ✏�d/↵, so we now have our network architecture as specified
in Theorem 2 in terms of ✏. Then, we can use the parameters in this architecture to invoke the upper
bound of the covering number in Lemma 8:

logN (�,F(M,L, J, I, ⌧1, ⌧2, V ), k·k1) = O
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where O(·) hides constant depending on logD, d, ↵, 2d
↵p�d

, p, q, c0, B, ! and the surface area of X .

Plugging it in, we have
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. (41)

Finally we choose ✏ to satisfy ✏2 = 1
n
D3✏�

d
↵ , which gives ✏ = D

3↵
2↵+dn� ↵

2↵+d . It suffices to pick
� = 1

n
. Substituting both ✏ and � into (41), we deduce the desired estimation error bound
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where constant c depends on D
6↵

2↵+d , d, ↵, 2d
↵p�d

, p, q, c0, B, ! and the surface area of X .

F A RESULT FOR FEED-FORWARD RELU NEURAL NETWORK

F.1 FEED-FORWARD RELU NEURAL NETWORK

We consider multi-layer ReLU (Rectified Linear Unit) neural networks [19]. ReLU activation is
popular in computer vision, natural language processing, etc. because the vanishing gradient issue
is less severe with it, which is nonetheless common with its counterparts like sigmoid or hyperbolic
tangent activation [19, 21]. An L-layer ReLU neural network can be expressed as

f(x) = WL · ReLU(WL�1 · · ·ReLU(W1x+ b1) · · ·+ bL�1) + bL, (42)
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in which W1, · · · ,WL and b1, · · · , bL are weight matrices and vectors and ReLU(·) is the entrywise
rectified linear unit, i.e. ReLU(a) = max{0, a}. The width of a neural network is defined as the
number of neurons in its widest layer. For notational simplicity, we define a class of neural networks

F(L, p, I, ⌧, V ) = {f | f(x) in the form (42) with L layers and width at most p,

kfk1  V,
LX

i=1

kWik0 + kbik0  I, kWik1,1  ⌧, kbik1  ⌧ for i = 1, · · · , L}.

(43)

F.2 THEOREM 3 AND ITS PROOF

From this point, we denote the function class F(L, p, I, ⌧, V ), whose parameters L, p, I, ⌧, V are
chosen according to Theorem 3, with the shorthand F . In this section, this F is used in Algorithm
1, instead of the CNN class in (11).
Theorem 3. Suppose Assumption 1 and 2 hold. By choosing

L = O (logK) , p = O
�
K

d
2↵+d

�
, I = O

�
K

d
2↵+d logK

�
,

⌧ = max{B,H,
p

d,!2
}, V = H

(44)

in Algorithm 1, in which O(·) hides factors depending on ↵, d and logD, we have
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in which the expectation is taken over the data, and C is a constant depending on logD, ↵, B, d, !,
the surface area of X and c0. The distributional mismatch is captured by

 =
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in which Q is the Minkowski sum between the ReLU function class and the Besov function class,
i.e., Q = {f + g | f 2 B

↵

p,q
(X ), g 2 F}.

Proof of Theorem 3. The goal is to bound
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To get an expression for that, we first expand it recursively. To illustrate the recursive relation, we
examine the quantity at step h:
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where C denotes a (varying) constant depending on logD, ↵, B, d, !, the surface area of X and c0.

In (a), note T
⇡

h
bQ⇡

h+1 2 B
↵

p,q
(X ) by Assumption 2 and �bT ⇡

h

⇣
bQ⇡

h+1

⌘
2 F by our algorithm, so

T
⇡

h
bQ⇡

h+1 �
bT ⇡

h

⇣
bQ⇡

h+1

⌘
2 Q. Then we obtain this inequality by invoking the following lemma.

In (b), we use Jensen’s inequality and the fact that square root is concave.

To obtain (c), we invoke the following lemma, which provides an upper bound on the regression
error.

Specifically, we will use Lemma 13 when conditioning on Dh+1, · · · ,DH , i.e. the data from time
step h + 1 to time step H . Note that after conditioning, T ⇡

h
bQ⇡

h+1 becomes measurable and deter-
ministic with respect to Dh+1, · · · ,DH . Also, Dh+1, · · · ,DH are independent from Dh, which we
use in the regression at step h.

To justify our use of Lemma 13, we need to cast our problem into a regression problem described
in the lemma. Since {(sh,k, ah,k)}Kk=1 are i.i.d. from q⇡0

h
, we can view them as the samples xi’s in

the lemma. We can view T
⇡

h
bQ⇡

h+1, which is measurable under our conditioning, as f0 in the lemma.
Furthermore, we let

⇣h,k := rh,k +

Z

A
bQ⇡

h+1(s
0
h,k

, a)⇡(a | s0
h,k

) da� T
⇡

h
bQ⇡

h+1(sh,k, ah,k).

In order to invoke Lemma 13 under the conditioning on Dh+1, · · · ,DH , we need to verify whether
three conditions are satisfied (conditioning on Dh+1, · · · ,DH ):

1. Sample {(sh,k, ah,k)}Kk=1 are i.i.d;

2. Sample {(sh,k, ah,k)}Kk=1 and noise {⇣h,k}Kk=1 are uncorrelated;

3. Noise {⇣h,k}Kk=1 are independent, zero-mean, subgaussian random variables.

In our setting, {(sh,k, ah,k)}Kk=1 are i.i.d. from q⇡0
h

. Due to the time-inhomogeneous setting, they
are independent from Dh+1, · · · ,DH , so {(sh,k, ah,k)}Kk=1 are still i.i.d. under our conditioning.
Thus, Condition 1 is clearly satisfied.

We may observe that under our conditioning, the transition from (sh,k, ah,k) to s0
h,k

is the only
source of randomness in ⇣h,k, besides (sh,k, ah,k) itself. The distribution of (sh,k, ah,k, s0h,k) is actu-
ally the product distribution between Ph(·|sh,k, ah,k) and q⇡0

h
, so a function of s0

h,k
, generated from

the transition distribution Ph(·|sh,k, ah,k), is uncorrelated with (sh,k, ah,k). Thus, (sh,k, ah,k)’s are
uncorrelated with ⇣h,k’s under our conditioning, and Condition 2 is satisfied.

Condition 3 can also be easily verified. Under our conditioning, the randomness in ⇣h,k only comes
from (sh,k, ah,k, s0h,k, rh,k), which are independent from (sh,k0 , ah,k0 , s0

h,k0 , rh,k0) for any k0 6= k,
so ⇣h,k’s are independent from each other. As for the mean of ⇣h,k,
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= E

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= E
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�
| Dh+1, · · · ,DH

�

= 0 + 0 = 0.

On the other hand,
��� bQ⇡

h+1

���
1
 H almost surely, because it is a function in our ReLU network class

F . Thus, ⇣h,k is a bounded random variable with ⇣h,k 2 [�2H, 2H] almost surely, so its variance is
bounded by 4H2. Its boundedness also implies it is a subgaussian random variable. Thus, Condition
3 is also satisfied.

Hence, Lemma 13 proves, for step h in our algorithm,
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Note that this upper bound holds for any bQ⇡

h+1 or Dh+1, · · · ,DH . The sole purpose of our condi-
tioning is that we could view bQ⇡

h+1 as a measurable or deterministic function under the conditioning
and then apply Lemma 13. Therefore,
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Finally, we carry out the recursion from time step 1 to time step H , and the final result is

E |v⇡ � bv⇡|  CH2
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F.3 LEMMA 13 AND ITS PROOF

Lemma 13. Let X be a d-dimensional compact Riemannian manifold isometrically embedded in

RD
with reach !. There exists a constant B > 0 such that for any x 2 X , |xj |  B for all

j = 1, · · · , D. We are given a function f0 2 B
↵

p,q
(X ) and samples Sn = {(xi, yi)}ni=1, where xi

are i.i.d. sampled from a distribution Px on X and yi = f0(xi) + ⇣i. ⇣i’s are i.i.d. sub-Gaussian

random noise with variance �2
, uncorrelated with xi’s. If we compute an estimator

bfn = argmin
f2F

1

n

nX

i=1

(f(xi)� yi)
2 ,

with the neural network class F = F(L, p, I, ⌧, V ) such that

L = O (log n) , p = O
⇣
n

d
2↵+d

⌘
, I = O

⇣
n

d
2↵+d log n

⌘
,

⌧ = max{B, VF ,
p

d,!2
}, V = VF , (46)

then we have
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where VF = kf0k1 and the expectation is taken over the training sample Sn, and c is a constant

depending on logD, ↵, B, d, !, the surface area of X and c0.
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Proof of Lemma 13. Recall that the bias and variance decomposition of
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Applying the upper bounds of T1 and T2 in Lemmas 11 and 12 respectively, we can derive
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We need there to exist a network in F(L, p, I, ⌧, V ) which can yield a function f satisfying
kf � f0k1  ✏ for ✏ 2 (0, 1). ✏ will be chosen later to balance the bias-variance tradeoff. By
Lemma 2 of Nguyen-Tang et al. [38], in order to achieve such ✏-error, we need
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✓
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, p = O
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}, V = VF ,

where O(·) hides factors of logD, ↵, d and the surface area of X , so we now have our network
architecture as specified in Theorem 2 in terms of ✏. Then, we can use the architecture parameters
in (13) to invoke the upper bound of the covering number in Lemma 7 of Chen et al. [4]:
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where c00 is a constant depending on logB, ! and log log n.

Plugging it in, we have
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+ ��
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Finally we choose ✏ to satisfy ✏2 = 1
n
✏�

d
↵ , which gives ✏ = n� ↵

2↵+d . It suffices to pick � = 1
n

.
Substituting both ✏ and � into (48), we deduce the desired estimation error bound
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where constant c depends on logD, d, ↵, 2d
↵p�d

, p, q, c0, B, ! and the surface area of X .

G SUPPLEMENT FOR EXPERIMENTS

G.1 EXPERIMENT DETAILS

We use the CartPole environment from OpenAI gym. We consider it as a time-inhomogeneous
finite-horizon MDP by setting a time limit of 100 steps. We turn the terminal states in the original
CartPole into absorbing states, so if a trajectory terminates before 100 steps, the agent would keep
receiving zero reward in its terminal state until the end. The target policy is a policy trained for 200
iterations using REINFORCE, in which each iteration samples for 100 trajectories with truncation
after 150 time steps. The target policy value v⇡ is estimated to be 65.2117, which we obtain by
Monte Carlo rollout from the initial state distribution.

For a given behavior policy, to obtain dataset Dh at time step h, we sample for K independent
episodes under the behavior policy and only take the (s, a, s0, r) tuple from the h-th transition in
each episode. This is an excessive way to guarantee the independence among these K samples;
in practice, we could directly sample from a sampling distribution. We sample for Dh for each
h = 1, · · · , 100.

We use the render() function in OpenAI gym for the visual display of CartPole. We downsample
images to the desired resolution via cubic interpolation. A high-resolution image (see Figure 3) is
represented as a 3⇥ 40⇥ 150 RGB array; a low-resolution image (see Figure 4) is represented as a
3⇥ 20⇥ 75 RGB array.

Figure 3: CartPole in high resolution. Figure 4: CartPole in low resolution.

For the function approximator in FQE, we use a neural network that comprises 3 convolutional layers
each with output channel size 16, 32 and 32 and a final linear layer. These layers are interleaved with
ReLU activation and batch norm layers for weight normalization. For high resolution input, we use
kernel size 5 and stride 2; for low resolution input, we use kernel size 3 and stride 1. For experiments
with high resolution, in each step of FQE, we solve the regression by training the network via
stochastic gradient descent with batch size 256 for 20 epochs. In high-resolution experiments, we
use 0.01 learning rate; in low-resolution experiments, we use 0.001 learning rate. We compute the
average and standard deviation of FQE’s result over 5 random seeds.
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