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Abstract

Long context continuous pretraining enables Transformer-based large language
models (LLMs) to comprehend input sequences within a larger context window
than pretraining stage. Common modifications to positional encoding involve in-
terpolation methods, such as PI, NTK-aware, ABF, YaRN, and LongRoPE. While
these positional encodings have proven effective, they nonetheless exhibit certain
oversights. In this study, we demonstrate that these positional encodings can be ex-
pressed within a unified functional framework. Building on this insight, we propose
a guiding principle for optimal positional encoding interpolation, leading to the
introduction of a novel positional encoding scheme, S3PE, designed to approximate
this theoretical optimal solution. We conducted length extrapolation experiments
across models of varying scales, comprehensively comparing existing mainstream
positional encoding approaches. The results indicate that S3PE consistently out-
performs current mainstream positional encodings across all configurations. Our
research illustrates that S3PE provides a more robust solution for long-context
modeling, demonstrating superior performance in length extrapolation scenarios.

1 Introduction

The Transformer model has become a foundational component of large language models (LLMs)
and dominates the field of natural language processing. Well-known open-source models, such
as the LLaMA series [1, 2, 3], are based on the Transformer architecture and are widely adopted
due to their outstanding performance across a variety of tasks. Despite the tremendous success
of Transformers, their quadratic computational complexity poses challenges when handling long
sequences, as directly training with extended contexts is both costly and resource-intensive. To
mitigate these issues, a common approach is to pre-train on shorter sequences (e.g., 4k tokens) to
develop robust language modeling capabilities within a 4k context window. Subsequently, the model
is continuously pre-trained on longer sequences (e.g., 32k tokens) to expand the context window to
32k. This method, known as length extrapolation, is feasible because the number of training tokens
required for continuous pre-training is significantly lower than that in the initial pre-training phase.
In simple terms, less continuous pre-training allows the model to generalize from a short context
window to a long context window.

Positional encoding interpolation plays a crucial role in implementing length extrapolation. Since the
introduction of Rotatory Positional Encoding (RoPE) [4], it has been widely adopted by many large
models due to its excellent performance across various tasks. Typical pre-training setups often set the
base frequency of RoPE to 10,000 and train on sequences of 4k tokens. However, when the input
length exceeds the original context window, out-of-distribution (OOD) issues may arise, necessitating
adjustments to the positional encoding. To address this limitation, various RoPE variants have been
proposed, including PI [5], ABF [6], NTK [7], and YaRN [8]. Despite the differing implementations
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of these variants, they share a common goal: to introduce mechanisms for extension to enhance
performance in long contexts.

Although these RoPE variants are meticulously designed, there is no definitive evidence to suggest that
any single variant consistently outperforms the others across all scenarios. In fact, existing positional
encoding interpolation schemes exhibit certain oversights to varying degrees. Through analysis, we
have found that all RoPE-based positional encodings can be expressed within a unified functional
framework, implying that each variant is merely a specific instance within this broader functional
space, as illustrated in Figure 1. The principles and shortcomings of existing positional encodings
will be elaborated in Section 2.2. Within this unified functional space, we hypothesize the existence
of a positional encoding that can comprehensively surpass current methods in length extrapolation
scenarios. Based on this insight, we propose three guiding principles, under which we introduce a
new positional encoding, S3PE. We employ the NIAH score from RULER [9] as an evaluation metric
to validate the effectiveness of S3PE across multiple model scales. Experimental results indicate that
S3PE consistently outperforms the aforementioned mainstream positional encodings.

In summary, our contributions are as follows:

• We provide a theoretical unification framework for all existing positional interpolation
methods based on RoPE.

• We propose guiding principles for optimal positional encoding interpolation, leading to the
introduction of a novel positional encoding, S3PE, designed to approximate this theoretical
optimal solution.

• We conducted length extrapolation experiments across models of varying scales, compre-
hensively comparing existing mainstream positional encoding approaches. The results
demonstrate that S3PE consistently outperforms current mainstream positional encodings in
all configurations.
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Figure 1: An introduction of S3PE

2 Mainstream Position Encodings

2.1 Preliminary

RoPE [4] encodes positional information by applying phase rotation to each element of the query and
key vectors before calculating the attention scores. Formally, we define a transformation f as follows:

fW(xt, θθθ) = R(θθθ, t)Wxt,

where xt ∈ Rd is the input at position t, W is the projection matrix, and θθθ ∈ Rd/2 represents the
frequency basis. The rotation transformation matrix R(θθθ, t) is defined as:

R(θθθ, t) =
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where

Rk(iθk) =

(
cos(iθk) − sin(iθk)
sin(iθk) cos(iθk)

)
.

This matrix possesses the property:

R(θθθ, n−m) = R(θθθ,m)⊤R(θθθ, n).

Thus, the relative positional information n−m is implicitly encoded in the attention scores through
the query-key product. In standard RoPE, the components of θθθ are defined as θj = b−

2j
d , where the

base frequency b = 10, 000.
fW(xt, θθθ) = R(θθθ, t)Wxt,

2.2 RoPE-based Position Interpolation Methods

Existing RoPE-based positional encodings can be categorized into two types based on modifications
relative to RoPE: increasing the base frequency or modifying interpolation factors. Modifications
to the scaling factor can also be divided into two categories: those that are related to the expansion
factor of the context window (e.g., PI, NTK, YaRN, LongRoPE) and those that use a scaling factor
greater than the context window without a clear numerical correlation (e.g., ABF). Interestingly,
while ABF is widely adopted by the majority of current long-text large models, there is a lack of
comparative studies examining ABF against other positional encodings under the same interpolation
factors. Researchers seem to assume that ABF and other positional encoding schemes are independent
techniques; however, they are, in fact, equivalent. We will elaborate on this in this section.

PI

In PI[5], the RoPE function f is replaced with f ′, expressed as follows:

fPI(x, t)j = (x2j + ix2j+1)e
i(b−

2j
d )t/s

where the expansion factor of the context window is s = L′

L , x is the input sequence, and t is the
token index. Figure 3 illustrates the positional encoding interpolation when L = 4096 and s = 2.
As shown in Figure 2, PI can interpolate token indices that exceed the original context window
into the well-trained periodic range during the pre-training phase, thereby avoiding OOD issues.
Consequently, compared to the training costs associated with directly extrapolating from L to L′, the
expense of extending the context window will be significantly reduced.

In Figure 2, we observe that the periods of different dimensions in RoPE vary, with smaller dimensions
having larger periods. PI treats each dimension equally and scales them by the factor corresponding
to the increase in the context window. Although experiments show that PI is effective, subsequent
research suggests that interpolation factors should not be treated equally.

NTK-aware

NTK-aware[10] is an improvement over linear position interpolation. It posits that linear interpolation
is very sub-optimal, preventing neural networks from distinguishing the order and positions of closely
spaced tokens. Consequently, the idea behind NTK-aware is to directly modify the base frequency
of RoPE, thereby altering the "spinning speed" of different dimensions in RoPE. Specifically, it is
defined as:

fNTK(x, t)j = (x2j + ix2j+1)e
i(s

d
d−2 b)−

2j
d t

The characteristic of NTK-aware is that when j takes the minimum value of 0, the corresponding
angular frequency is highest, making NTK-aware equivalent to the original RoPE. Conversely, when j
takes the maximum value of d−2

2 , the corresponding angular frequency is lowest, making NTK-aware
equivalent to PI. Thus, it can be seen as a trade-off between RoPE and PI. However, compared to PI,
NTK-aware makes fewer modifications to the high-frequency dimensions, resulting in better training-
free extrapolation performance. The idea of non-linear interpolation across different dimensions in
NTK-aware has inspired subsequent models such as YaRN and LongRoPE.

ABF

Adjusted Base Frequency (ABF) builds on the concept of non-linear interpolation introduced by NTK
but modifies the base frequency more directly, without being constrained by the expansion factor of
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the context window. In this sense, NTK-aware can be considered a special case of ABF. Let β be the
factor by which the base frequency is increased, then:

fABF(x, t)j = (x2j + ix2j+1)e
i(βb)−

2j
d t

In this formulation, NTK-aware corresponds to the case where β = s
d

d−2 . Interestingly, the modifi-
cations for β are often much greater than the factors used for expanding the context window. For
example, when L = 4096 and s = 8, a common setting for β might be 50 or even larger. ABF
posits that a larger “granularity” allows the model to better differentiate positional embedding images,
thereby improving performance on downstream tasks, which is consistent with the intuition behind
NTK-aware. Additionally, this work theoretically demonstrates that the granularity of ABF is greater
than that of PI, even if the modification factor for ABF is several times larger than that for PI.

However, ABF does not analyze why the modification factor of β = 50 is chosen. This seems
more like an experimental conclusion rather than a theoretical derivation, suggesting that using
a modification factor greater than s yields better performance after fine-tuning. Despite this, the
experimental conclusions of ABF have been widely adopted in other open-source large models,
such as LLaMA3. ABF sets a precedent for exploring the maximum factors in positional encoding
interpolation but has not seen subsequent research that follows up on this discovery. Instead, there
seems to be a tendency to separate positional encoding interpolation schemes from strategies for
modifying the base frequency. For instance, LLaMA3.1 simultaneously employs both ABF and YaRN.
This paper will conduct ablation studies in the Experiment section on various positional encoding
schemes with different interpolation factors, including ABF, to provide a more comprehensive
comparative analysis.

YaRN

YaRN also adopts the non-linear interpolation concept from NTK-aware and employs piecewise
functions to further articulate this idea. In essence, YaRN uses the wavelength along with two
hyperparameters, α̃ and β̃, to calculate the boundaries jlow and jhigh for applying different interpolation
strategies, resulting in the following piecewise function:

fYaRN(x, t)j = (x2j + ix2j+1)e
i(b)−

2j
d t/αj ·m,

where m is the attention temperature coefficient, defined as:

αj =


1, j < jlow

s, j ≥ jhigh[
1
s +

(
1− 1

s

)
·

L
2π b−

2j
d −α̃

β̃−α̃

]−1

, else

Since the attention temperature coefficient m is typically a small variable slightly greater than 1, or
even a constant, this study temporarily fixes m at 1 to facilitate a clearer comparison of the effects of
interpolation factors.

Considering the piecewise definition of αj , it is noted that YaRN further develops the ideas of NTK-
aware and ABF by minimizing modifications to the high-frequency components, directly leaving
the highest-frequency dimensions unchanged. Despite its careful design, YaRN’s scaling factor
choices are still somewhat limited to those of NTK-aware and PI. It does not fully recognize that, in
the context of fine-tuning, increasing the maximum scaling factor may yield greater benefits than a
meticulously designed interpolation strategy. Consequently, the conclusions drawn from YaRN also
carry certain limitations.

LongRoPE

LongRoPE is inspired by NTK-aware and YaRN, applying different interpolation factors across the
various dimensions of RoPE. It is defined as:

fLongRoPE(x, t)j = (x2j + ix2j+1)e
i(b−

2j
d )t/λj

where λj is the interpolation factor for the corresponding dimension, determined through a search
process based on evolutionary algorithms. This search aims to minimize perplexity (PPL) on a given
dataset without fine-tuning the model. The values for λj are constrained by the following conditions:{

λj+1 ≥ λj

λj ∈ [1, 1.25× s]
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where s is the factor by which the context window is expanded. The search strategy used in
LongRoPE offers a new perspective on improving the training-free performance of the model.
However, this search-based approach has several drawbacks: (1) the complexity of the search process;
(2) the interpolation factors obtained may be model-specific and difficult to generalize; (3) the
results of the search can be influenced by the initialization method. Most importantly, interpolation
factors optimized for training-free perplexity reduction may not remain optimal after fine-tuning.
Additionally, like the other interpolation methods mentioned (excluding ABF), LongRoPE does not
explore maximum interpolation factors that are several times greater than s.

The LongRoPE paper also mentions two strategies: not applying interpolation for the first n̂ tokens
and performing recovery within the original context window. The former will not be discussed further
here, as it undermines the foundational properties of RoPE. For the latter, LongRoPE essentially
adopts the strategy of using one set of interpolation factors within the original context window,
while applying a different set for sequences longer than the original context window. To facilitate a
comparison of the effects of interpolation factor shapes, we will not examine scenarios with multiple
sets of interpolation factors.

3 Methods

Let SN = {wt}Nt=1 denote a sequence of N input tokens, where wt represents the t-th token. The
corresponding word embeddings for SN are denoted as EN = {xxxt}Nt=1, where xxxt ∈ Rd is the
d-dimensional word embedding vector for the token wt. For j ∈ [0, d

2 ), the RoPE positional encoding
can be expressed as:

fRoPE(x, t)j = (x2j + ix2j+1)e
i(b−

2j
d )t (1)

In this section, we will discuss several existing positional encodings and provide visualizations from
a unified perspective.

3.1 Unified Form

Let SN = {wt}Nt=1 denote a sequence containing N input tokens, where wt represents the t-th token.
The corresponding hidden states are denoted as XN = {xxxt}Nt=1, with xxxt ∈ Rd as a d-dimensional
vector. For j ∈ [0, d

2 ), the RoPE positional encoding can be expressed as:

fRoPE(xxx, t)j = (x2j + ix2j+1)e
i(b−

2j
d )t

It is easy to observe that modifying the base frequency is equivalent to modifying the interpolation
factors, specifically:

ei(βb)
− 2j

d t = eib
− 2j

d ·(t/β
2j
d )

Thus, we can unify the various positional encoding interpolation schemes mentioned in Section 2.2,
including ABF and NTK-aware:

f(xxx, t)j,m = (x2j + ix2j+1)e
ib−

2j
d (t/αj) ·m

where αj represents the different interpolation factors, and m denotes the attention temperature
coefficient. To focus on the influence of the shape and maximum scaling of αj , we set m = 1.
Clearly, the various positional encodings mentioned in Section 2.2 are all special cases of this unified
form. In this way, modifications to positional encoding, whether applied to token position t or base
frequency b, are equivalent to modifying αj .

By expanding the positional encoding with Euler’s formula, we obtain:

ei(b
− 2j

d )t/αj = cos

(
b−

2j
d t

αj

)
+ i sin

(
b−

2j
d t

αj

)
indicating that the exponential term corresponds to the angular frequency of the trigonometric
functions. Within this unified form, we can plot the αj corresponding to all positional encoding
schemes mentioned in Section 2.2 to facilitate visual comparison. For ABF, we fix the hyperparameter
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β to align with other positional encodings for comparison. For YaRN, we follow the settings in the
original paper, with α̃ = 1 and β̃ = 32. For LongRoPE, we use the official codebase to search for
a set of factors based on PPL reduction (as prescribed, setting the maximum interpolation factor to
s = 8× 1.25 = 10). In the case where d = 64 and s = 8, the visualization of different positional
encodings is shown in Figure 2 (a)-(e).

Figure 2: Visualized scaling factors of all position encodings when extension ratio is 8.

3.2 S3PE

The positional encodings discussed in Section 2.2 either overlook the fact that the maximum inter-
polation factor can be multiple times greater than the context window expansion factor s (e.g., PI,
NTK-aware, YaRN, LongRoPE), or they ignore the diversity of interpolation factor shapes (e.g.,
ABF). By leveraging the unified formulation presented in Section 3.1, it becomes evident that all of
these positional encodings are mathematically special cases, each with varying degrees of limita-
tions. In conducting ablation studies on positional encoding interpolation schemes, each shape of
interpolation factor maps one-to-one to a set of fine-tuning evaluation scores, serving as a measure of
the optimality of the positional encoding. We hypothesize that the encodings mentioned in Section
2.2 are likely far from optimal and that an interpolation scheme exists which can outperform these
positional encodings.

To this end, we conducted comprehensive experiments to compare the impact of the maximum
interpolation factor across various positional encoding shapes. Through comparative testing of
multiple shapes, we identified the optimal interpolation factor shape, derived from transformations of
a Sigmoid function through translation and scaling. For this shape, we further experimented with
different symmetry centers and curve slopes, ultimately identifying the pattern illustrated in Figure
(f), which we denote as S3PE. The shape of S3PE is both elegant and simple, yet it demonstrates
superior performance over other positional encoding schemes. Additionally, S3PE is compatible with
computation acceleration techniques, such as flash attention, positioning it as a promising candidate
for positional encoding.

As with prior work, the form of S3PE is rigorously derived from theoretical analysis. However, for
the optimal shape of the interpolation factor function αj , we make the following observations, which
align closely with the shape of S3PE:

• αj+1 ≥ αj ≥ 1;
• When j is closer to 0, αj approaches 1, with a slower growth rate;

• When j is closer to the maximum value d
2 − 1, αj remains at a high level, satisfying αj > s.

For (1), this nonlinearity has already been validated by a substantial number of experiments involving
the positional encodings discussed in Section 2.2. Regarding (2), insights can be drawn from the ABF
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Table 1: Training hyper parameter settings of different model sizes
Model Model Size Batch Tokens Warmup Steps Learning Rate Training Steps
s2 0.031B 128k 200 2e-4 3000
s3 0.106B 256k 200 2e-4 3000
s4 0.251B 512k 200 2e-4 3000
s5 0.486B 1M 200 2e-4 3000
s6 0.849B 2M 250 2e-4 2500

paper’s theoretical analysis on "granularity," suggesting that larger modifications to high-frequency
components reduce the model’s ability to discern minimal token index differences. Indeed, as long as
conditions (1) and (2) are satisfied, the model tends to achieve better performance in extended context
windows after fine-tuning. Condition (3) represents a key distinction between S3PE and ABF, which
may explain why S3PE consistently outperforms ABF across various settings for αj’s maximum
values (s′ = 8 or s′ = 50), as evidenced in Section 4. We hypothesize that this is due to the fact
that when j is large, the rotational period corresponding to RoPE’s angular frequency far exceeds
the pre-training length of 4k, while most pre-training data is shorter than 4k tokens. This suggests
that for lower-frequency dimensions of j, the model achieves optimal recognition within a range
potentially smaller than the 4k pre-training length, say [0, L0]. Hence, the selected maximum factor
would be s′ = L

L0
× s. For s′ = 50, s = 8, and L = 4096, this corresponds to an approximate L0 of

655, which is plausible. Verification of these findings is presented in Section 4.

4 Experiments

Data Recipe. To simulate the most realistic long-text extrapolation scenario, we carefully adjusted
the data composition during continuous pretraining, drawing on previous research. Specifically,
we followed the stable pretraining data recipe and applied per-source upsampling, an effective
strategy validated by [11]. This involved setting token proportions for each dataset as follows: 25%
CommonCrawl Chinese, 25% Code Pretrain, 24% Dolma, 15% C4, 8% Pile, and 3% other sources,
upsampling based on data length accordingly. Additionally, following practices from LLaMA3.1[3]
and GLM4, we ensured the token count within each interval was proportional to the interval length
during data sampling. For example, the token count within the [4k, 8k] range is approximately half
that of the [8k, 16k] range.

Training Settings. To evaluate the performance of S3PE and other positional encodings across
models of various scales, we conducted sandbox experiments with a series of checkpoints at different
model sizes from the pretraining phase. These checkpoints ranged in size from 0.031B to 0.849B,
with architectures similar to LLaMA2, and were pretrained on texts within a 4k length limit. Using
the data recipe outlined above, we continued pretraining these checkpoints on data with a 32k length
mix. We applied the WSD learning rate strategy from [12], using its first two phases: linearly
increasing the learning rate from zero to the peak rate and then holding it steady. Although the lack
of a decay phase might mean the models do not reach their optimal performance levels, this has no
impact on our conclusions, as we are only conducting a comparative analysis of different positional
encodings. As model size increases, we progressively increase tokens per batch. For each experiment,
the hyperparameter settings for models of different sizes are provided in Table 1, following the setting
of [13].

We denote a positional encoding with a maximum interpolation factor s′ = k as PEk×. For example,
when s′ = 8, the function graph of αj is shown in Figure 2. It is worth noting that for the typical
setting of a practical context expansion factor s = 8, the comparable existing positional encodings
include ABF50×, PI8×, NTK8×, YaRN8×, and LongRoPE8×. However, to ensure rigor, we conducted
experiments on each positional encoding with both s′ = 8 and s′ = 50, providing a thorough
comparison. For each model size, experiments were conducted to comprehensively verify whether
S3PE’s performance remains robust.

Evaluation Methods. It should be noted that relying solely on PPL to evaluate model performance
is insufficient, as a lower PPL does not necessarily indicate better performance, and differences
in performance may exist even when PPL values are very close. Furthermore, given the presence
of smaller models in our experiments, which may perform less effectively on complex tasks such
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Table 2: RULER NIAH Average Scores’ Comparison

Model ABF PI NTK YaRN LongRoPE S3PE
8× [50×] [8×] 50× [8×] 50× [8×] 50× [8×] 50× 8× 50×

s2 12.65 17.84 12.87 9.14 12.76 17.92 10.84 20.28 16.33 23.59 19.16 22.28
s3 25.09 34.25 26.17 20.64 25.09 34.61 25.51 31.06 28.97 36.02 31.34 37.93
s4 32.27 41.31 30.61 34.97 31.66 40.36 35.67 39.09 35.23 42.72 36.63 43.09
s5 36.69 40.56 40.82 41.22 36.42 41.63 39.05 41.77 39.70 43.27 40.31 44.95
s6 47.13 54.44 50.20 54.02 48.52 54.15 51.70 52.02 51.06 54.59 53.02 56.75

Table 3: RULER NIAH 16k-32k Scores’ Comparison

Model ABF PI NTK YaRN LongRoPE S3PE
8× [50×] [8×] 50× [8×] 50× [8×] 50× [8×] 50× 8× 50×

s2 2.62 3.19 2.12 1.06 2.38 2.94 2.56 8.81 3.50 5.31 4.56 6.00
s3 3.06 24.44 7.50 9.31 2.94 26.56 7.31 20.69 9.69 29.56 11.94 31.88
s4 11.31 32.62 15.12 31.44 10.25 30.62 24.19 32.12 20.31 38.38 21.00 39.88
s5 14.75 34.69 31.31 35.81 14.31 34.44 28.75 39.62 30.19 42.19 31.31 42.94
s6 18.12 42.44 34.69 44.38 19.94 43.56 37.75 38.25 36.06 44.50 35.38 48.00

as summarization and inference, we employ RULER’s NIAH (Needle in a Haystack) task as an
evaluation metric to balance performance and model discriminability. The NIAH task in RULER
comprises subtasks such as single-needle and multi-needle retrieval. For each sequence length
interval, we calculate the average score across all subtasks.

Results. The table uses "[]" to indicate existing positional encoding schemes, with another set used as
a control. After conducting experiments, we obtained the average NIAH scores from RULER across
all positional encodings for models of various sizes. The comparative results are shown in Table 2.

From Table 2, it is evident that S3PE50× consistently achieves optimal performance across all model
sizes. Examining the results for PI reveals that when model parameters are smaller, PI50× performs
worse after fine-tuning compared to PI8×; however, as model size increases, this trend improves.
This observation supports Finding 2 in Section 3.2. The performance drop for PI50× is likely due
to excessive interpolation disrupting the model’s ability to recognize minimal token distances. Yet,
as model parameters increase, the model’s capacity to capture positional information from finer
granularity strengthens through fine-tuning, gradually restoring PI50×’s effectiveness.

Apart from PI, the performance of each positional encoding with 50× interpolation consistently
surpasses its 8× counterpart, further corroborating Finding 3 in Section 3.2.

Focusing on model performance in the longest input sequence interval post-extrapolation, a compari-
son of the evaluation results is presented in Table 3.

The results in Table 3 supplement those in Table 2, supporting the conclusions drawn from Table
2. From Table 3, we observe that, except for PI in the smaller model (s2), all positional encodings
with a scaling factor of 50x achieve better scores in the 16k-32k interval compared to their 8x
counterparts. This indicates that within a certain range, increasing the interpolation factor enhances
model performance in larger context windows after training.

By combining insights from Tables 2 and 3, we can draw the following conclusions:

• S3PE50× consistently outperforms ABF50×, and, apart from PI, the performance of each
positional encoding with a 50x scaling factor consistently surpasses its 8x counterpart,
further validating Finding 3 in Section 3.2.

• S3PE50× maintains an optimal position with a consistent advantage of approximately 2-3
points in overall average scores, establishing it as the most effective interpolation scheme
among those evaluated.

Further details and results from our experiments will be released in future updates.
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5 Conclusion

In this work, we compared several mainstream positional encoding interpolation schemes, including
PI, NTK-aware, ABF, YaRN, and LongRoPE, and demonstrated that these encodings can all be
expressed in a unified form. Based on this framework, we proposed guiding principles for optimal
interpolation, leading to the discovery of a new interpolation scheme, S3PE, which outperforms all the
above-mentioned positional encodings. We conducted an in-depth analysis of the shape and maximum
value of the interpolation factor αj and carried out comprehensive and detailed experiments. These
experiments fill a gap in the literature by providing a fine-tuning-based, thorough comparison of
existing positional encodings. The results further validate that S3PE consistently achieves the best
performance among all positional encodings to date and generalizes well across different model sizes.
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