A Additional results and experiment details

A.1 Detailed results on ImageNet-C

In this section, we provide a detailed version of the results shown in our experiment section concerning the ImageNet-C dataset, which technically contains a total of 75 variants of the ImageNet dataset. The 75 variants fall into 15 categories of corruption; each category presents 5 gradually increasing degrees of severity, where "degree=1" denotes the lowest degree of severity.

Table 4: mean Corrupted Error (mCE) of each corruption category in ImageNet-C.

			Nois	e		Bl	ur			Wea	ather		_	Digit	al		
Network	Clean	Gauss.	Shot	Impulse	Defocus	Glass	Motion	Zoom	Snow	Frost	Fog	Bright	Contrast	Elastic	Pixel	JPEG	mCE
Base model AdvBN	23.9 23.0	80 75	82 76	83 77	75 70	89 85	78 75	80 80		75 71		57 54	71 66	85 82	77 71	77 72	76.7 72.7

				1	au	nc	J. Kaw ell	UI	U	C C	aci	1 5	u	DSCI III IIIIa	ige	11	cu-	C	•						
			D	egi	ree			Degree Degree							Degree										
Model	Corruption	1	2	3	4	5	Corruption	1	2	3	4	5	(Corruption	1	2	3	4	5	Corruption	1	2	3	4	5
AugMix + AdvBN	Blur-Defocus	35 34	40 39	50 51	62 64	74 74	Blur-Glass	39 38	50 49) 74) 74	4 78 4 79	84 86	; 1	Blur-Motion	28 29	33 36	42 50	58 69	71 80	Blur-Zoom					7 65 5 73
AugMix + AdvBN	Weather-Snow	39 40	59 59	57 56	69 68	77 75	Weather-Frost	35 34	50 49) 62) 60	2 64) 62	71 69	, ,	Weather-Fog	37 34	42 40	52 48	58 55	75 72	Weather-Bright	25 24	26 25	29 28	33 32	3 40 2 37
AugMix + AdvBN	Digital-Contrast	29 29	33 33	39 41	59 63	85 87	Digital-Elastic	31 31	53 53	37 38	748 350	71 75	1	Digital-Pixel	30 30	32 31	41 40	53 53	60 58	Digital-JPEG					3 52 1 49
AugMix + AdvBN	Noise-Gauss.	32 - 31 -	40 37	55 48	76 64	94 84	Noise-Shot	33 32	42 39	2 55 9 49	5 77 9 69	88 81	1	Noise-Impulse	36 37	46 44	56 51	79 67	95 84						

Table 5:	Raw	error	of	each	subset	in	ImageNet-C	
----------	-----	-------	----	------	--------	----	------------	--

In Table 4, we list the mCE of each corruption category. The mCE of a given category is calculated by taking the average of the 5 corruption errors corresponding to the 5 corruption degrees of the given category, and then normalize the mean value with a constant. The constant differs between corruption categories, which reflects the difficulty of a given corruption type. For detailed formulations, please refer to the official ImageNet-C repository⁴. From the results, we can see that AdvBN alone can improve the baseline model on all corruption types. In Table 5, we list the raw error rate on each sub-dataset in ImageNet-C. The two models in this table are the AugMix model and AugMix model fine-tuned with AdvBN respectively.

A.2 Other architectures

We apply our method to other network architectures and evaluate on the task of image classification. Datasets in Table 6 are the same as in Table 1. We apply AdvBN using the same setting as introduced in Section 5.1, by fine-tuning a pre-trained model for 20 epochs using SGD optimizer. For DenseNet-121, we place the AdvBN layer after the first block, and we use 6 PGD steps with stepsize $\tau = 0.2$, $\epsilon = 1.1$. For the EfficientNet, we place the AdvBN layer after the second block, and we use 3 PGD steps with stepsize $\tau = 0.2$, $\epsilon = 0.2$, $\epsilon = 0.5$.

Architecture	ImageNet-C	ImageNet-Ins.	ImageNet-Sketch	ImageNet-Style
	mCE.↓	Top-1 acc. ↑	Top-1 acc. ↑	Top-1 acc. ↑
DenseNet-121	73.4	66.6	24.3	7.9
+ AdvBN (w/ AA)	70.4	69.3	28.6	15.5
EfficientNet-B0	72.1	69.7	26.7	12.5
+ AdvBN (w/ AA)	68.7	71.3	27.4	15.7

Table 6: Applying AdvBN to other architectures.

⁴https://github.com/hendrycks/robustness

A.3 AdvBN at inference time

Models containing Batchnorm layers, such as ResNet, will have two sets of BN statistics in deeper layers after being fine-tuned by our method, because we use auxiliary BN [46] for propagating adversarially perturbed features. The auxiliary BN in our model stores the mean and standard deviation of the adversarial feature, which is very different from the feature statistics of the original data.

Intuitively, when testing on data whose distribution is "close" to the training data, using the main BN (as compared to the auxiliary BN) in a model would be more favorable than using the auxiliary BN, and vice versa. In this work, we take a naive measurement for the "closeness" of an ImageNet variant to the original ImageNet by comparing a model's accuracy on the two datasets. For example, on ImageNet-Instagram, the accuracy of a standard baseline is not degraded much from that on the original ImageNet validation set, and we consider it to be "close" to the original data. Following this rule, at the inference time, we use the main BN on the original ImageNet-Instagram and ImageNet-C, and use auxiliary BN on ImageNet-Sketch and ImageNet-Style. A future direction is to improve the measurement of the distance between test samples and the training data using unsupervised techniques. To demonstrate the discrepancy of the main and auxiliary BN statistics in our model, we include full results of using both statistics in Table 7.

Method	ImageNet-C	ImageNet-Ins.	ImageNet-Sketch	ImageNet-Style
	mCE↓	Top-1 acc. ↑	Top-1 acc.↑	Top-1 acc.↑
Standard Training	76.7	67.2	24.1	7.4
AdvBN (w/ main BN)	72.7	69.5	26.4	9.0
AdvBN (w/ aux. BN)	72.4	68.5	27.9	11.9

Table 7: Evaluation using main and auxiliary batch normalization statistics respectively.

B ImageNet-AdvBN Dataset

B.1 Creation of the ImageNet-AdvBN dataset

We process the entire ImageNet validation set using the visualization technique introduced in Section 3. We consider two encoder architectures: one is the VGG-19 encoder we use for visualization, another consists of layers of a ResNet-50 up to conv2_3. Both encoders are paired with the same decoder architecture from Huang and Belongie [15]. The resulting datasets, denoted by ImageNet-AdvBN-VGG and ImageNet-AdvBN-ResNet respectively, contain 50000 images each. The data we synthesize for testing other models is generated using these autoencoders that contain the AdvBN module but on ImageNet validation data. AdvBN is conducted with 6 steps, stepsize = 0.20, $\epsilon = 1.1$, and a batch size of 32. We do not shuffle the ImageNet validation data when generating these batches.

B.2 Classification on ImageNet-AdvBN

Table 8 shows the classification performance of various models on the two ImageNet-AdvBN variants, denoted as IN-Adv-VGG and IN-Adv-ResNet respectively. Models in Table 8 are the same ResNet-50 models we use in section 5.1, where we give the details of each model. The significantly degraded accuracy on our generated dataset indicates the adversarial property of our method. We also test these models on ImageNet images reconstructed using our autoencoders, denoted as VGG Reconstructed and ResNet Reconstructed, for each autoencoder. The performance gap between ImageNet-AdvBN and Reconstructed ImageNet indicates that the degradation on ImageNet-AdvBN is not solely caused by the reconstruction loss due to the autoencoders we use.

B.3 Additional Example Images

We include more images from ImageNet-AdvBN-VGG in this section. Example images in Figure 7 are randomly chosen. We do not include the ImageNet-AdvBN-ResNet, because the resulting images are mostly in extreme contrast with small textures that are hard to observe. It is possible that features output from ResNet based encoders are more sensitive to AdvBN perturbations; another explanation is that the features we extract from ResNet-50 are relatively shallow features compared to their VGG counterparts.

Table 8: **Classification accuracy on ImageNet-AdvBN and reconstructed images**. Models of all methods are implemented based on ResNet-50 and trained on the original ImageNet training set. IN-Adv-VGG and IN-Adv-ResNet are two ImageNet-AdvBN datasets generated using different auto-encoders. VGG-reconstructed and ResNet-reconstructed are two datasets generated using the same auto-encoder as their AdvBN counterparts but without feature perturbation.

Method	ImageNet Top-1 acc. ↑	IN-Adv-VGG Top-1/ Top-5 acc. ↑	VGG Reconstructed Top-1/ Top-5 acc. ↑	IN-Adv-ResNet Top-1/ Top-5 acc. ↑	ResNet Reconstructed Top-1/ Top-5 acc. ↑
Standard Training	76.1	1.6/ 4.7	45.8/ 70.6	0.4/ 1.3	65.7/ 86.9
MoEx (w/ Cutmix)	79.1	1.0/ 2.9	40.2/ 63.8	0.3/ 1.1	65.7/ 86.8
Adv. Training	76.6	2.0/ 5.5	48.1/72.5	0.5/ 1.5	68.0/ 88.3
AdvBN	77.0	4.7/ 11.9	46.8/ 71.4	1.7/ 4.0	67.2/ 87.9
AdvProp	77.4	1.6/ 4.5	53.1/76.6	0.3/ 0.9	71.1/90.0
AdvProp + AdvBN	77.3	7.4/ 17.2	51.4/ 75.3	1.8/ 4.2	70.5/ 89.7
Cutmix	78.6	1.1/ 3.2	39.0/ 62.2	0.3/ 1.0	64.6/ 85.8
Cutmix + AdvBN	78.4	4.1/ 10.3	42.3/ 66.3	1.4/ 3.4	66.7/ 87.4
AA*	76.4	1.9/ 5.3	45.8/ 70.2	0.8/ 2.3	65.5/ 86.9
AA + AdvBN	76.5	6.3/ 15.6	54.6/ 78.3	2.9/ 6.4	66.4/ 87.3
Fast AA	77.8	1.9/ 5.0	43.4/ 67.0	0.8/ 2.5	66.8/ 87.3
Fast AA + AdvBN	77.6	5.1/ 12.8	44.4/ 68.5	1.8/ 4.4	67.4/ 87.8
AugMix	77.6	3.9/ 9.9	53.5/ 77.0	1.0/ 2.7	71.9/ 90.7
AugMix + AdvBN	77.8	8.6/ 19.5	50.9/ 74.7	2.4/ 5.3	70.2/ 89.7

Figure 7: More example images. For each pair of adjacent columns, original versions are on the left, ImageNet-AdvBN-VGG is on the right.

C Details concerning the training budget

We evaluate the training time of our method on a workstation with 4 GeForce RTX 2080 Ti GPUs. We use the default settings for AdvBN on ResNet-50: an AdvBN layer placed after the conv2_3 layer, and 20 epochs of fine-tuning with 6-step PGD inside the AdvBN layer. Fine-tuning is conducted on the ImageNet training set, containing 1.3 million images. Training in this setting takes approximately 48 hours, with batch size set to 256. Besides the model size (i.e., the number of model parameters),

Table 9: **Training duration of AdvBN under different model configurations**. *l* denotes the placement of the AdvBN layer within a ResNet-50, and *m* is the number of PGD steps.

Model			<i>l</i> =cor	1v2_3			$l=conv2_3$	$l=conv3_4$	l=conv4_6
configuration	m=3	<i>m</i> =4	<i>m</i> =5	m=6	<i>m</i> =7	m=8		m=6	
Training duration (hrs)	30	36	43	48	53	59	48	31	15

there are other factors that can affect the training speed of our method. The first factor is the number of PGD steps used by AdvBN layer, as each step evokes a backpropagation through the later part (after the AdvBN layer) of the network. The default setting of our method on ResNet-50 uses 6 PGD steps, so the training time is longer than standard training for the same number of epochs. Another factor is the placement of AdvBN layer within a network. In each PGD step, gradients only backpropagate through the sub-network after the AdvBN layer, so it takes a notably shorter time to train a model with our method, if the AdvBN layer is placed at later network layers.