Supplementary Material for "Diffusion Model Based Posterior Sampling for Noisy Linear Inverse Problems"

In this supplementary material, we provide results on the effect of scaling parameter λ , as well as results on more datasets.

Effect of Scaling Parameter λ

As shown in both Algorithm 1 and Algorithm 2, a hyper-parameter λ is introduced as a scaling value for the likelihood score. Empirically it is found that DMPS is robust to different choices of λ around 1 though most of the time $\lambda > 1$ yields slightly better results. As one specific example, we show the results of DMPS for super-resolution for different values of λ , as shown in Figure 5 (DDPM version) and Figure 6 (flow-based version). It can be seen that DMPS is robust to different choices of λ , i.e., it works well in a wide range of values.

Figure 5: Results of DMPS (DDPM version) with different λ for the task of noisy super-resolution (×4) with $\sigma = 0.05$.

Results on More Datasets

We provide more experimental results on AFHQ-cat and LSUN-bedroom for flow-based models are shown as follows:

	super-resolution			deblur			C	olorizatio	on	denoising		
Method	$PSNR\uparrow$	SSIM \uparrow	LPIPS \downarrow	PSNR ↑	SSIM \uparrow	LPIPS \downarrow	$\overrightarrow{\text{PSNR}} \uparrow$	SSIM \uparrow	LPIPS \downarrow	$\overrightarrow{\text{PSNR}} \uparrow$	SSIM \uparrow	LPIPS ↓
DMPS (DDPM, ours)	26.79	0.7653	0.2632	27.22	0.7571	0.2909	25.07	0.9190	0.3124	28.59	0.7994	0.2882
DPS (DDPM)	23.08	0.6127	0.3860	24.64	0.6625	0.3033	15.92	0.5976	0.6381	28.86	0.7828	0.2941
PGDM	25.44	0.7185	0.2837	26.69	0.7316	0.2896	16.74	0.6348	0.5335	27.06	0.7453	0.3236

Table 3: Results on FFHQ-Cat validation dataset using the same pre-trained DDPM model.

Figure 6: Results of DMPS (flow-based version) with different λ for the task of noisy superresolution (×4) with $\sigma = 0.05$.

	super-resolution			deblur			C	olorizati	on	denoising		
Method	$\overline{\text{PSNR}\uparrow}$	SSIM \uparrow	LPIPS \downarrow	$\overline{\text{PSNR}\uparrow}$	SSIM \uparrow	LPIPS \downarrow	$\overline{\text{PSNR}\uparrow}$	SSIM \uparrow	LPIPS \downarrow	$PSNR\uparrow$	SSIM \uparrow	LPIPS ↓
DMPS (DDPM, ours)	25.63	0.7362	0.2281	28.21	0.8162	0.2113	23.19	0.9344	0.2117	29.81	0.8599	0.1884
DPS (DDPM) PGDM	22.83 24.60	0.6190 0.6854	0.3275 0.2590	24.97 26.90	0.6988 0.7721	0.2593 0.2482	11.38 17.69	0.5375 0.7335	0.6606 0.3350	30.75 27.90	0.8674 0.8153	0.1841 0.2304

Table 4: Results on LSUN-Bedroom validation dataset using the same pre-trained DDPM model.

	sup	er-resolu	ition	deblur			(olorizati	on	denoising		
Method	$\overline{\text{PSNR}\uparrow}$	SSIM \uparrow	LPIPS \downarrow	PSNR ↑	SSIM ↑	LPIPS ↓	PSNR 1	SSIM ↑	LPIPS \downarrow	PSNR ↑	SSIM ↑	LPIPS 🗸
DMPS (Flow-based, ours)	29.06	0.7905	0.2627	26.74	0.6942	0.3192	24.65	0.9140	0.2531	26.53	0.7870	0.3353
DPS (Flow-based) OT-ODE	27.61 27.61	0.7089 0.7081	0.3190 0.3205	23.26 26.32	0.5534 0.6592	0.4122 0.3333	21.64 25.21	0.8259 0.8692	0.3833 0.3180	26.10 23.12	0.6418 0.3647	0.4049 0.5289

Table 5: Results on AFHQ-Cat validation dataset using the same pre-trained flow-based model.

	sup	er-resolu	ition	deblur			C	olorizati	on	denoising		
Method	PSNR ↑	SSIM \uparrow	LPIPS ↓	PSNR ↑	SSIM ↑	LPIPS \downarrow	PSNR 1	SSIM ↑	LPIPS ↓	PSNR 1	SSIM ↑	LPIPS 🗸
DMPS (Flow-based, ours)	24.36	0.6795	0.3837	23.19	0.5869	0.4384	23.37	0.8756	0.2838	22.68	0.6477	0.4458
DPS (Flow-based) OT-ODE	24.39 23.88	0.6430 0.6193	0.3781 0.4001	20.13 22.69	0.4318 0.5590	0.4931 0.4264	11.03 23.62	0.5283 0.7592	0.7843 0.3923	23.18 18.17	0.5457 0.2039	0.4598 0.6405

Table 6: Results on LSUN-Bedroom validation dataset using the same pre-trained flow-based model.