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Sparse-Sparse Matrix Multiplication 

Irregular structure of sparse workloads across various domains 2



Current Approaches

● Hardware accelerators customized for the three widely recognized SpGEMM 
execution dataflow schemes: inner product (IP), outer product (OP) and 
row-wise product (RW).
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Issues with the current approaches

● Employ a fixed execution dataflow, which optimizes the input or output data 
reuse, at the expense of the other.  

● The performance is sub-optimal if the sparsity of the workload does not align 
with the rigid design of the accelerator.
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To achieve a more universal hardware, we require a mechanism to select the 
best dataflow for diverse workloads across different domains. 



Selecting Optimal Dataflow

● Works like Spada and Flexagon acknowledge the limitations of fixed dataflow 
designs

● Spada: Uses window-based profiling to determine efficient dataflows; risks 
sub-optimal choices due to insufficient profiling.

● Flexagon: Simple profiling based on SpGEMM characteristics to select 
dataflows; acknowledges need for more comprehensive methods.
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Current profiling methods lack accuracy and generalization.

https://dl.acm.org/doi/10.1145/3575693.3575706
https://arxiv.org/abs/2301.10852


Using Machine Learning in Dataflow Selection

● The characteristics of this problem are well-suited to machine learning (ML) 
techniques commonly employed in data classification – given the features of 
the input matrices, we can categorize them into classes corresponding 
to different data flow schemes.
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Objective

● Assess whether employing machine learning (ML) techniques can provide a 
more viable and efficient solution compared to traditional approaches.

● Determine which ML techniques offer the best balance between prediction 
accuracy and model efficiency.



Sparsity Analysis

Illustrates the relationship between sparsity of input matrix A (x-axis), sparsity of input 
matrix B (size of the bubble), average number of nonzero per-row in matrix A (color 
depth) and the latency (total number of cycles).
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Decision Tree & Reinforcement Learning Model
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Misam Architecture
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Dataset 

● Dataset Development: Created a dataset of 50K matrix multiplication 
simulations with matrices diverse dimensions and sparsity patterns.
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Feature Selection Feature Name Description

sparsity of A & B Total nonzero in matrix size 
of matrix

avg_row_length of A & B Average number of 
nonzero per row

avg_col_length of A & B Average number of 
nonzero per column

avg_row_length_var of A & 
B

Variance in average 
number of nonzero per row

avg_col_length_var of A & 
B

Variance in average 
number of nonzero per 
column

blocks_accessed of B Blocks of rows accessed 
not in memory

size Size of matrix block
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Decision Tree Evaluation Methodology

● 70:30 dataset split for training and validation 
● Select the top five features for our decision tree model as identified in feature 

selection model: blocks accessed, avg_col_lengthB, avg_row_lengthA_var, 
sparsityA, and sparsityB

● Used sklearn library to create the model
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Reinforcement Learning Evaluation Methodology 

● Environment: Agent predicts the 
optimal dataflow scheme for 
processing streaming input 
matrices 

● State: [blocks accessed, 
avg_col_lengthB, 
avg_row_lengthA_var, sparsityA, 
and sparsityB]

● Action: [IP, OP, RW]
● Reward: +1 if action yields 

minimum latency
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Reinforcement Learning Evaluation Methodology 

● Neural network features just one 
hidden layer and contains 9,219 
parameters

● Use validation set, similar to 
decision trees, for evaluation
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Decision-Tree-Guided Heuristic Evaluation Methodology

● Critical features are 
positioned at the top of 
the decision tree  

● Created a decision tree, 
with two levels and 
transforming it into 
nested if-else statements
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Performance of Decision Tree Model

Average speedups of 2.7× over the IP, 2.1× over the OP, 2.64× over the RW, 
and 1.13× over the heuristic approach. 
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 Performance of Reinforcement Learning Model

Average speedup of 2.36× over IP, 1.85× over OP, and 2.3× over RW.  The 
heuristic performance was comparable to that of the RL model. 
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Storage Comparison

● Storage optimization in ML systems is essential for enhancing resource 
efficiency, minimizing energy consumption, and improving inference latency.

Model Storage Requirement

Decision Tree 24KB

Reinforcement Learning Model 38KB

Decision-Tree-Guided Heuristic 512B
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ML or Heuristic? 

Aspect ML Heuristic

Performance Adaptability Better equipped to adapt to 
system changes, especially with 
RL models featuring online 
learning.

Best suited for static systems 
that don't undergo significant 
change

Storage Requirements Generally higher, varies by 
model complexity. RL model is 
around 38KB.

Lightweight around 512B

System Suitability Ideal for dynamic systems Ideal for stable systems

Feedback Incorporation Can adapt by considering 
additional environmental 
parameters like PE utilization 
and system bandwidth.

Need to establish specific 
thresholds for each 
environmental parameter 
targeted for optimization.
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Conclusions & Future Work

● Misam aimed to investigate the application of ML in selecting dataflows for 
SpGEMM. It explored three distinct approaches: decision trees, RL models, 
and heuristics. 

○ This study pioneered in its examination of techniques to identify the most optimal dataflow in 
SpGEMM.

● Future Direction
○ Expand our dataset and develop a more sophisticated online reinforcement learning model 

that remains lightweight. 
○ Comparison with Spada and Flexagon 
○ Target deployment into a self-reconfigurable hardware system, where a lightweight ML model 

predicts the optimal dataflow based on the features of sparse matrices streaming from 
memory
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