
Misam: Using ML in Dataflow
Selection of Sparse-Sparse

Matrix Multiplication
Sanjali Yadav, Bahar Asgari

University of Maryland

1

Sparse-Sparse Matrix Multiplication

Irregular structure of sparse workloads across various domains 2

Current Approaches

● Hardware accelerators customized for the three widely recognized SpGEMM
execution dataflow schemes: inner product (IP), outer product (OP) and
row-wise product (RW).

3

Issues with the current approaches

● Employ a fixed execution dataflow, which optimizes the input or output data
reuse, at the expense of the other.

● The performance is sub-optimal if the sparsity of the workload does not align
with the rigid design of the accelerator.

4

To achieve a more universal hardware, we require a mechanism to select the
best dataflow for diverse workloads across different domains.

Selecting Optimal Dataflow

● Works like Spada and Flexagon acknowledge the limitations of fixed dataflow
designs

● Spada: Uses window-based profiling to determine efficient dataflows; risks
sub-optimal choices due to insufficient profiling.

● Flexagon: Simple profiling based on SpGEMM characteristics to select
dataflows; acknowledges need for more comprehensive methods.

5

Current profiling methods lack accuracy and generalization.

https://dl.acm.org/doi/10.1145/3575693.3575706
https://arxiv.org/abs/2301.10852

Using Machine Learning in Dataflow Selection

● The characteristics of this problem are well-suited to machine learning (ML)
techniques commonly employed in data classification – given the features of
the input matrices, we can categorize them into classes corresponding
to different data flow schemes.

6

Objective

● Assess whether employing machine learning (ML) techniques can provide a
more viable and efficient solution compared to traditional approaches.

● Determine which ML techniques offer the best balance between prediction
accuracy and model efficiency.

Sparsity Analysis

Illustrates the relationship between sparsity of input matrix A (x-axis), sparsity of input
matrix B (size of the bubble), average number of nonzero per-row in matrix A (color
depth) and the latency (total number of cycles).

7

Decision Tree & Reinforcement Learning Model

8

Misam Architecture

9

Dataset

● Dataset Development: Created a dataset of 50K matrix multiplication
simulations with matrices diverse dimensions and sparsity patterns.

10

Feature Selection Feature Name Description

sparsity of A & B Total nonzero in matrix size
of matrix

avg_row_length of A & B Average number of
nonzero per row

avg_col_length of A & B Average number of
nonzero per column

avg_row_length_var of A &
B

Variance in average
number of nonzero per row

avg_col_length_var of A &
B

Variance in average
number of nonzero per
column

blocks_accessed of B Blocks of rows accessed
not in memory

size Size of matrix block

11

Decision Tree Evaluation Methodology

● 70:30 dataset split for training and validation
● Select the top five features for our decision tree model as identified in feature

selection model: blocks accessed, avg_col_lengthB, avg_row_lengthA_var,
sparsityA, and sparsityB

● Used sklearn library to create the model

12

Reinforcement Learning Evaluation Methodology

● Environment: Agent predicts the
optimal dataflow scheme for
processing streaming input
matrices

● State: [blocks accessed,
avg_col_lengthB,
avg_row_lengthA_var, sparsityA,
and sparsityB]

● Action: [IP, OP, RW]
● Reward: +1 if action yields

minimum latency

13

Reinforcement Learning Evaluation Methodology

● Neural network features just one
hidden layer and contains 9,219
parameters

● Use validation set, similar to
decision trees, for evaluation

14

Decision-Tree-Guided Heuristic Evaluation Methodology

● Critical features are
positioned at the top of
the decision tree

● Created a decision tree,
with two levels and
transforming it into
nested if-else statements

15

Performance of Decision Tree Model

Average speedups of 2.7× over the IP, 2.1× over the OP, 2.64× over the RW,
and 1.13× over the heuristic approach.

16

 Performance of Reinforcement Learning Model

Average speedup of 2.36× over IP, 1.85× over OP, and 2.3× over RW. The
heuristic performance was comparable to that of the RL model.

17

Storage Comparison

● Storage optimization in ML systems is essential for enhancing resource
efficiency, minimizing energy consumption, and improving inference latency.

Model Storage Requirement

Decision Tree 24KB

Reinforcement Learning Model 38KB

Decision-Tree-Guided Heuristic 512B

18

ML or Heuristic?

Aspect ML Heuristic

Performance Adaptability Better equipped to adapt to
system changes, especially with
RL models featuring online
learning.

Best suited for static systems
that don't undergo significant
change

Storage Requirements Generally higher, varies by
model complexity. RL model is
around 38KB.

Lightweight around 512B

System Suitability Ideal for dynamic systems Ideal for stable systems

Feedback Incorporation Can adapt by considering
additional environmental
parameters like PE utilization
and system bandwidth.

Need to establish specific
thresholds for each
environmental parameter
targeted for optimization.

19

Conclusions & Future Work

● Misam aimed to investigate the application of ML in selecting dataflows for
SpGEMM. It explored three distinct approaches: decision trees, RL models,
and heuristics.

○ This study pioneered in its examination of techniques to identify the most optimal dataflow in
SpGEMM.

● Future Direction
○ Expand our dataset and develop a more sophisticated online reinforcement learning model

that remains lightweight.
○ Comparison with Spada and Flexagon
○ Target deployment into a self-reconfigurable hardware system, where a lightweight ML model

predicts the optimal dataflow based on the features of sparse matrices streaming from
memory

20

