
A Separating Data-oblivious and Data-aware Poisoning for Classification

In this section, we show a separation on the power of data-oblivious and data-aware poisoning
attacks on classification. In particular we show that empirical risk minimization (ERM) algorithm
could be much more susceptible to data-aware poisoning adversaries, compared to data-oblivious
adversaries.

Before stating our results, we shall clarify that the attack on classification can also focus on different
goals. One goal could be to increase the population risk of the resulting model θ′ that the learner
generates from the (poisoned) data S ′, compared to the model θ that would have been learned from
S [58]. A different goal could be to make θ′ fail on a particular test set of adversary’s interest,
making it a targeted poisoning [3, 56] or increase the probability of a general “bad predicate” of
θ [44]. Our focus here is on attacks that aim to increase the population risk.

We begin by giving a formal definition of the threat model.

Definition A.1 (data-oblivious and data-aware data injection poisoning for population risk). We
first describe the data data-oblivious security game between a challenger C and an adversary A,
and then will describe how to modify it into a data-aware variant. Such game is parameterized by
adversary’s budget k, a data set S a learning algorithm L, and a distribution D over X ×Y (where
X is the space of inputs and Y is the space of outputs).4

OblRisk(k,S, L,D).

1. Adversary A generates k new examples (e′1, . . . , e
′
k) and them to C.

2. C produces the new data set S ′ by adding the injected examples to S .
3. C runs L over S ′ to obtain (poisoned) model θ′ ← L(S ′).
4. A’s advantage (in winning the game) will be Risk(θ′, D) = Pr(x,y)←D[θ

′(x) 6= y]. 5

In the data-aware security game, all the steps are the same as above, except that in the first step the
following is done.

AwrRisk(k,S, L,D).

• Step 0: C sends S to A.
• The rest of the steps are the same as those of the game OblRisk(k,S, L,D).

One can also envision variations of Definition A.1 in which the goal of the attacker is to increase the
error on a particular instance (i.e., a targeted poisoning [3, 56]) or use other poisoning methods that
eliminate or substitute poison data rather than just adding some.

We now state and prove our separation on the power of data-oblivious and data-aware poisoning
attacks on classification. In particular we show that empirical risk minimization (ERM) algorithm
could be much more susceptible to data-aware poisoning adversaries, compared to data-oblivious
adversaries.

Theorem A.2. There is a distribution of distributions D

such that there is a data injecting adversary with budget ε ·n that wins the data-aware security game
for classification by advantage ε, namely

∃A : E
D←D
S←Dn

[

Advantage of A in AwrRisk(ε · n,S,ERM, D)
)

]

≥ Ω(ε).

On the other hand, any adversary will have much smaller advantage in the data-oblivious game.
Namely, the following holds.

∀A : E
D←D
S←Dn

[

Advantage of A in OblRisk(ε · n,S,ERM, D)
)

]

≤ O(ε2).

Proof. Here we only sketch the proof. To prove this we use the problem of learning concentric
halfspaces in Gaussian space N (0, 1)2. We assume that the prior distribution is uniform over all

4Since we deal with risk, we need to add D as a new parameter compared to the games of Definition 2.1.
5Note that this is a real number, and more generally we can use any loss function, which allows covering

the case ore regression as well.
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concentric halfspaces. We first show that there is a data-aware attack with success (ε). The way
this attack works is as follows, attacker first uses ERM to learn a halfspace w1 on the clean data.
Assume this halfspace has risk δ. Then the attacker selects another halfspace w2 that disagrees with
w1 on ε · n− 1 number of points in the training data. Note that this is possible because the attacker
can keep rotating the half-space until it has exactly n · ε − 1 points disagreeing with w1. Now if
the adversary puts all the poison points on the separating line for w1 and with the opposite label of
what w1 predicts, then ERM would prefer w2 over w1. Therefore the empirical error of w2 on clean
dataset would be at least equal to ε− δ. Now if we increase n, the generalization error would go to
zero which means the population error of w2 would be close to ε− δ. Also, since we are assuming
the problem is realizable by half-spaces, it means δ would also converge to 0. Therefore, the final
population risk could be bounded to be at least ε/2 for n larger than some reasonable values. Which
means our proof for the data-aware attack is complete.

Now, we show that no data-oblivious adversary cannot increase the error by more than ε2, on average.
The reason behind this boils down to the fact that each poison point added can affect at most ǫ-
fraction of the choices of ground truth. To be more specific, we can fix the poison data to a fixed
set Dp with size ǫ · n, as we can assume that the data-oblivious adversary is deterministic. Now if
we fix the ground truth to some wg , and define the epsilon neighborhood of a model w to be all the
points that have angle at most ǫ · π with w and denote it by wǫ. Then we have

E
Xc←N (0,1)n

yc=w
g(Xc)

Dc=(Xc,yc)
wp=ERM(Dc∪Dp),w

c=ERM(Dc)

[Risk(wp)− Risk(wc)] ≤ E
Xc←N (0,1)n

yc=w
g(Xc)

Dc=(Xc,yc)
wp=ERM(Dc∪Dp)

[Risk(ERM(wp))]

≤ E
Xc←N (0,1)n

yc=w
g(Xc)

Dc=(Xc,yc)
wp=ERM(Dc∪Dp)

[RiskDc
(wp)] + δ (1)

where δ is the generalization parameter that relates to n and goes to 0 with rate 1/n. Now consider
an event E where the angle between wc and wg is at most ǫ · π and wg2ǫ ∩Xc has at least ǫ points on
each side of wg . We denote the probability of this event by 1 − δ′ and we know that δ′ goes down
to 0 as n grows, by rate 1/

√
n (Using Chernoff Bound). Now we can observe that conditioned on

E, we have RiskDc
(wp) ≤ |wg2ǫ ∩Xc|. This is because the poison points cannot increase the errorn

by more than ǫ so wp would disagree with wc on at most ǫ · n points in Dc. On the other hand, we
know that in 2ǫ neighborhood of wg there are at least ǫ · n points on each side of wg , which means
there are at least ǫ ·n points on each side of wc (because wc and wg would fall between the same two
points in Dc). Therefore, the poisoned model, would definitely be in the 2 · ǫ neighborhood of the
wg . At the same time, we know that the maximum number of points in Dc that wg and wp disagree
on are at most equal to the number of poison points that fall in their disagreement region. And since
the disagreement region is a subset of wg2ǫ, we have the maximum number of points in Dc that wg

and wp disagree on are at most equal to |wg2ǫ ∩Xc|. Now having this, using Equation (12) we can
write

E
Xc←N (0,1)n

yc=w
g(Xc)

Dc=(Xc,yc)
wp=ERM(Dc∪Dp),w

c=ERM(Dc)

[Risk(wp)− Risk(wc)] ≤ |Dp ∩ wg2ǫ|
n

+ δ + δ′

Now by also taking the average over wg we get

E
wg
←D

Xc←N (0,1)n

yc=w
g(Xc)

Dc=(Xc,yc)
wp=ERM(Dc∪Dp),w

c=ERM(Dc)

[Risk(wp)− Risk(wc)] ≤ E
wg←D

[
|Dp ∩ [wg2ǫ|

n
] + δ + δ′ = 2ǫ2 + δ + δ′

As δ and δ′ converge to 0 with rate 1/
√
n, for n ≥ ω(1/ǫ2) we have

E
wg
←D

Xc←N (0,1)n

yc=w
g(Xc)

Dc=(Xc,yc)
wp=ERM(Dc∪Dp),w

c=ERM(Dc)

[Risk(wp)− Risk(wc)] ≤ O(ǫ2).
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We also state the theorem about separation of data-oblivious and data-aware adversaries in the data
elimination setting. This theorem has shows that the gap between data-oblivious and data-aware

adversaries could be wider in the data elimination settings. We use AwrRisk
elim and OblRiskelim

to denote the information risk in presence of data-oblivious and data-aware data elimination attacks.

Theorem A.3. There is a distribution of distributions D

such that there is a data elimination adversary with budget ε · n that wins the data-aware security
game for classification by advantage ε, namely

∃A : E
D←D
S←Dn

[

Advantage of A in AwrRisk
elim(ε · n,S,ERM, D)

)

]

≥ Ω(ε).

On the other hand, any adversary will have much smaller advantage in the data-oblivious game.
Namely, the following holds.

∀A : E
D←D
S←Dn

[

Advantage of A in OblRiskelim(ε · n,S,ERM, D)
)

]

≤ e−ω((1−ε)n).

Proof. For the negative part on the power of data-aware attacks, we observe that for a fixed wg the
attacker can find a half-space wc that has angle πǫ/2 with the ground-truth wg , and remove all the
points where wc and wg disagree. Note that the number of points in the disagreement region would
be at most ǫ with some large probability 1−δ where δ goes to 0 with rate 1/

√
n. After the adversary

removes all the points in disagreement region, the learner cannot distinguish them and will incur an
error ǫ/2 on average. We note that this attack is similar to the hybrid attack described in the work
of Diochnos et al. [24]. For the positive result, we make a simple observation that data-oblivious
poisoning adversary can only reduce the sample complexity for the learner. In other words, non-
removed examples would remain i.i.d examples. This means that after removal, we can still use
uniform convergence theorem to bound the error of resulting classifier. Since the error of learning
realizable half-spcaces will go to zero with rate Ω(1/n), therefore the average error after the attack
would be Ω(1/(1− ǫ)n)).

A.1 Experiments

In this section, we design an experiment to empirically validate the claim made in Theorem A.2, that
there is a separation between oblivious and data-aware poisoning adversaries for classification. We
setup the experiment just as in the proof of Theorem A.2, as follows.

First, we sample training points X = x1, x2, . . . xm for m = 1, 000 from the Gaussian space
N (0, 1)2, and pick a random ground-truth halfspace w∗ from N (0, 1)2. Using w∗, we find our
labels y1, y2, . . . ym by taking (w∗)Txk for k ∈ [m]. This ensures the data is linearly separable by
the homogeneous halfspace produced by w∗.

To attack this dataset simulating our data-aware adversary with budget ǫ, we construct ǫ ·m poison
points d as follows:

d = cos(ǫπ) · v

‖v‖ + sin(ǫπ) · w

‖w‖ , where v =
[

1, −w1

w2

]

and we add ǫ ·m of these d rows to our dataset. Note that this specific d corresponds to halfspace w2

in our Proof of Theorem A.2, the halfspace obtained by rotating the original halfspace until it has
exactly ǫ ·m points disagreeing with w∗. We label each of these d rows to be yd = −(w∗)T d, the
opposite label from ground-truth. Then, we train our halfspace via ERM on this poisoned dataset of
m · (1 + ǫ) points (from appending ǫ ·m rows of d). We evaluate our poisoned halfspace on another
X ′ = x′1, x

′
2, . . . x

′
m test points from the same Gaussian N (0, 1)n distribution.

To attack this dataset simulating the oblivious adversary, we try three oblivious strategies of attack
that an adversary with no knowledge of the dataset might wage, each with ǫ budget:

1. Sample a single random point p from N (0, 1)n and repeat it ǫ ·m times. Choose the label
py uniformly at random from {−1, 1}. Poison by adding these ǫ ·m rows to the dataset.
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2. Sample ǫ ·m points IID from N (0, 1)n and choose the label py uniformly at random from
{−1, 1}. Label all of the ǫ · m points with py . Poison by adding these ǫ · m rows to the
dataset.

3. Sample ǫ ·m points IID from N (0, 1)n and choose the label py uniformly at random from
{−1, 1} for each point. That is, we flip a coin to label each poison example, rather than
just choosing one label, as in 2. Poison by adding these ǫ ·m rows to the dataset.

We also use the same ERM algorithm, as in the data-aware case, to train the poisoned classifiers on
these three oblivious poisoning strategies. We repeat this experiment 20 times for poison budget ǫ ∈

Figure 4: Oblivious and data-aware poisoning separation in classification. Over 20 trials, we vary
the poisoning budget ǫ and construct poisoned datasets as discussed above for each adversary. We
plot the effect of each adversary’s attack on the accuracy of our resulting poisoned ERM halfspace.

{0, 0.01, 0.02, . . . 0.19, 0.2}. We observe in Figure 4 that there indeed exists a separation between
the power of our data-aware adversary and the oblivious adversaries. The data-aware adversary can
increase the error linearly with ǫ using this strategy, while the oblivious adversaries fail to have any
consistent impact on the resulting classifier’s error with their strategies.

B More Details on Related Work

As opposed to the data poisoning setting, the question of adversary’s (adaptive) knowledge was
indeed previously studied in the line of work on adversarial examples [41, 49, 62]. In a test time
evasion attack the adversary’s goal is to find an adversarial example, the adversary knows the input
x entirely before trying to find a close input x′ that is misclassified. So, this adaptivity aspect already
differentiates adversarial examples from random noise. Moreover, the question of whether adversary
knows the θ completely or it only has a black-box access to it [50] also adds another dimension of
adaptivity to the story.

Some previous work have studied poisoning attacks in the setting of federated/distributed learning [5,
48]. Their attacks, however, either (implicitly) assume a full information attacker, or aim to increase
the population risk (as opposed to injecting features in a feature selection task). Thus, our work is
novel in both formally studying the differences between data-aware vs. data-oblivious attacks, and
provably separating the power of these two attack models in the contexts of feature selection. Xiao
et al. [71] also empirically examine the robustness of feature selection in the context of poisoning
attacks, but their measure of stability is across sets of features. We are distinct in that our paper
studies the effect of data-oblivious attacks on individual features and with provable guarantees.

Our work’s motivation for data secrecy might seem similar to other works that leverage privacy-
preserving learning (and in particular differential privacy [23, 26, 25]) to limit the power of poisoning
attacks by making the learning process less sensitive to poison data [42]. However, despite seeming
similarity, what we pursue here is fundamentally different. In this work, we try to understand the
effect of keeping the data secret from adversaries. Whereas the robustness guarantees that come
from differential privacy has nothing to do with secrecy and hold even if the adversary gets to see
the full training set (or even select the whole training set in an adversarial way.).
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We also distinguish our work with another line of work that studies the computational complexity
of the attacker [46, 29]. Here, we study the “information complexity” of the attack; namely, what
information the attacker needs to succeed in a poisoning attack, while those works study the compu-
tational resources that a poisoning attacker needs to successfully degrade the quality of the learned
model. Another recent exciting line of work that studies the computational aspect of robust learn-
ing in poisoning contexts, focuses on the computational complexity of the learning process itself
[18, 40, 16, 20, 21, 19, 53, 22], and other works have studied the same question about the com-
plexity of the learning process for evasion attacks [11, 10, 17]. Furthermore, our work deals with
information complexity and is distinct from works that study the impact of the training set (e.g.,
using clean labels) on the success of poisoning [55, 73, 59, 67].

Finally, we try to categorize the existing poisoning attacks in literature into data-oblivious and data-
aware categories. The recent survey of [31] and classifies existing poisoning attacks based on their
techniques and goals. We use the same classes to categorize the attacks.

• Feature Collision Attacks: [data-oblivious] Feature Collision is a technique used in targeted
poisoning attacks where the adversary tries to inject poison points around a target point x so
that the classification of x is different than the correct label [1, 34, 55, 73]. There is usually
a “clean label” constraint for targeted attacks that prevents the adversary from using the
same point as the target point. These attacks will be mostly categorized as data-oblivious
as the attacker does not usually need to see the training set.

• Bi-level Optimization Attacks: [data-aware] Bi-level optimization is generic technique
used for optimizing the poisoning points to achieve attacker’s objective [8, 13, 30, 35].
This optimization heavily relies on knowledge of training set.

• Label-Flipping Attacks: [both] The idea of label-flipping is very simple yet effective. The
random label-flipping attacks are data-oblivious as the only thing that the adversary does
is to sample data from (conditional) distribution and flip the label. However, some variants
of label-flipping [72, 28, 7] are relying on the training set to optimize the examples which
makes them data-aware.

• Influence Function Attacks: [data-aware] Attacks based on influence function look at the
effect of training examples on the final loss of the model[37, 27]. This technique require
the knowledge of the training set.

• Online Learning Attacks: [data-aware] Online poisoning adversaries studied in [45, 70,
47]is a form of attack that lies somewhere between data-oblivious and data-aware attacks.
In their model, an online adversary needs to choose its decision about the ith example
(i.e., to tamper or not tamper it) based only on the history of the first i − 1 examples, and
without the knowledge of the future examples. So, their knowledge about the training data
is limited, in a partial way. Since we separate the power of data-aware vs. data-oblivious
attacks, a corollary of our results is that at least one of these models is different from
the online variant for recovering sparse linear regression. In other words, we are in one
of the following worlds: (i) online adversaries are provably stronger than data-oblivious
adversaries or (ii) data-aware adversaries are provably stronger than online adversaries.

• Federated Learning Attacks: [both] The attack against federated learning [5, 64, 60, 14],
use a range of ideas that covers all the previous techniques and hence have both data-aware
and data-oblivious variants. In general, since in federated learning the adversary sees the
model updates at each round, they are more aware of the randomness of training process
compared to typical poisoning attacks hence they can be more effective.

C Further Details on Defining Oblivious Attacks

In this section, we discuss other definitional aspects of oblivious and full-information poisoning
attacks.

C.1 Oblivious Variants of (Data-aware) Data Poisoning Attacks

In this section, we explain how to formalize oblivious poisoning attackers in general, and in the next
subsection we will describe how to instantiate this general approach for the case of feature selection.
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A poisoning adversary of “budget” k, can tamper with a training sequence S = {e1, . . . , en}, by
“modifying” S by at most k changes. Such changes can be in three forms

• Injection. Adversary can inject k new examples e′1, . . . , e
′
k to S . This is without loss

of generality when the learner is symmetric and is not sensitive to the order in the training
examples. More generally, when the training set is treated like a sequence S = (e1, . . . , en),
the adversary can even choose the location of these planted examples e′1, . . . , e

′
k. More

formally, the adversary picks k numbers 1 ≤ i1 < · · · < ik ≤ n + k, and constructs the
new data sequence S ′ = (e′′1 , . . . , e

′′
n+k) by letting e′′j = e′ij and letting S fill the remaining

coordinates of S ′ in their original order from S .

Oblivious injection. In the full-information setting, the adversary can choose the poison
examples and their locations based on S . In the oblivious variant, the adversary chooses
the poison examples e′1, . . . , e

′
k and their locations 1 ≤ i1 < · · · < ik ≤ n + k without

knowing the original set S .

• Elimination. Adversary can eliminate k of the examples in S . When S is a sequence, the
adversary only needs to state the indexes 1 ≤ i1 < . . . , ik ≤ n of the removed examples.

Oblivious elimination. In the full-information setting, the adversary can choose the loca-
tions of the deleted examples based on S . In the oblivious variant, the adversary chooses
the locations without knowing the original set S .

• Substitution and it oblivious variant. These two settings are similar to data elimination,
with the difference that the adversary, in addition to the sequence of locations, chooses k
poison examples e′1, . . . , e

′
k to substitute eij by e′j for all j ∈ [k].

More general attack strategies. One can think of more fine-grained variants of the substitution at-
tacks above by having different "budgets" for injection and elimination processes (and even allowing
different locations for eliminations and injections), but we keep the setting simple by default.

C.2 Taxonomy for Attacks on Feature Selection

Sometimes the goal of a learning process is to recover a model θ̂, perhaps from noisy data, that

has the same set of features Supp(θ̂) as the true model θ. For example, those features could be the
relevant factors determining a decease. Such process is called feature selection (or model recovery).
A poisoning attacker attacking a feature selection task would directly try to counter this goal. Now,

regardless of how an attacker is transforming a data set S into S ′, let θ̂′ be the model that is learned
from S ′. Below we give a taxonomy of various attack scenarios.

• Feature adding. In this case, the adversary’s goal is to achieve Supp(θ̂′) 6⊆ Supp(θ).
Namely, adding a feature that is not present in the true model θ.

• Feature removal. In this case, the adversary’s goal is to achieve Supp(θ) 6⊆ Supp(θ̂′).
Namely, removing a feature that is present in the true model θ.

• Feature flipping. In this case, the adversary’s goal is to do either of the above. Namely,

Supp(θ) 6= Supp(θ̂′), which means that at least one of the features’ existence is flipped.

Targeted variants of the attacks above. For each of the three attack goals above (in the context of
feature selection), one can envision a targeted variant in which the adversary aims to add/remove or
flip a specific feature i ∈ [d] where d is the data dimension.

D Borrowed Results

In this section, we provide some preliminary results about the LASSO estimator. We first specify
the sufficient conditions for a dataset that makes it a good dataset for robust recover using Lasso
estimator. We borrow these specifications from the work of [63]. We use these results in proving
Theorem 3.1.

Definition D.1 (Typical systems). Suppose θ∗ ∈ [0, 1]d be a model such that | Supp(θ∗)| = s. Let

X ∈ R
n×d and Y ∈ R

n×1 and W = Y − X × θ∗. Also let XI ∈ R
n×s be a matrix formed by

columns of X whose indices are in Supp(θ∗) and XO ∈ R
n×(d−s) be a matrix formed by columns

of X whose indices are not in Supp(θ∗). The pair (θ∗, [X Y ]) is called an (n, d, s, ψ, σ)-typical
system, if the following hold:
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• Column normalization: Each column of X has ℓ2 norm bounded by
√
n.

• Incoherence:
∥

∥((XT
OXI)(X

T
I XI)

−1sign(θ∗))
∥

∥

∞
≤ 1/4.

• Restricted strong Convexity: The minimum eigenvalue of XIX
T
I is at least ψ.

• Bounded noise
∥

∥XT
O(In×n −XI(X

T
I XI)

−1XT
I )W

∥

∥

∞
≤ 2σ

√

n log(d).

The following theorem is a modified version of result of [69] borrowed from [63].

Theorem D.2 (Model recovery with Lasso [69]). Let (θ∗, [X Y ]) be a (n, d, s, σ, ψ)-typical system.

Let α = argmini∈[d] max(θ∗i , 1 − θ∗i ). If n ≥ 16 · σ
ψ·α

√

s · log(d) and then θ̂ = Lasso([X Y ])

would have the same support as θ∗ when λ = 4σ
√

n · log(d).

The following theorem is about robust model recovery with Lasso in [63].

Theorem D.3 (Robust model recovery with Lasso [63]). Let (θ∗, [X Y ]) be a (n, d, s, σ, ψ)-typical
system. Let α = argmini∈[d] max(θ∗i , 1− θ∗i ). If

n ≥ max(
16σ

ψ · α
√

s · log(d), 4s
4k2(1/ψ + 1)2

log(d)σ2
)

then θ̂ = Lasso([X Y ]) would have the same support as θ∗ when λ = 4σ
√

n · log(d).
In addition, adding any set of k labeled vectors [X ′ Y ′] with ℓ∞ norm at most 1 to [X Y ] would
not change the support set of the model recovered by Lasso estimator. Namely,

Supp

(

Lasso

([

X Y

X ′ Y ′

]))

= Supp(Lasso([X Y ]) = Supp(θ∗).

Two theorems above are sufficient conditions for (robust) model recovery using lasso estimator. Bel-
low, we show two simple instantiating of the theorems on Normal distribution. Theorem bellow
from the seminal work of Wainwright [69] shows that the Lasso estimator with proper parameters
provably finds the correct set of features, if the dataset and noise vectors are sampled from normal
distributions.

Theorem D.4 ([69]). Let X be a dataset sampled from N (0, 1/4)n×d and W be a noise vector

sampled from N (0, σ2)n. For any θ∗ ∈ (0, 1)d with at most s number of non-zero coordinates, for

λ = 4σ
√

n× log(d) and n = ω(s · log(d)), with

probability at least 3/4

over the choice of X and W (that determine Y as well) we have Supp(θ̂) = Supp(θ∗) where

θ̂ = Lasso([X Y ]). Moreover, θ̂ is a unique minimizer for Risk(·, [X Y ]).

The above theorem requires the dataset to be sampled from a certain distribution and does not take
into account the possibilities of outliers in the data. The robust version of this theorem, where part
of the training data is chosen by an adversary, can be instantiated using Theorem D.2 as follows:

Theorem D.5 ([63]). Let X be a dataset sampled from N (0, 1/4)n×d and W be a noise vector

sampled fromN (0, σ2)n. For any θ∗ ∈ (0, 1)d, if λ = 4σ
√

n× log(d) and n = ω(s log(d)+s4·k2),
with probability at least 3/4

over the choice of X,W (determining Y ), and Y = X × θ∗ +W it holds that, adding any set of k
labeled vectors [X ′ Y ′], such that rows of X ′ has ℓ∞ norm at most 1 and Y has ℓ∞ norm at most
s, to [X Y ] would not change the support set of the model recovered by Lasso estimator. Namely,

Supp

(

Lasso

([

X Y

X ′ Y ′

]))

= Supp(Lasso([X Y ]) = Supp(θ∗).

Note that Theorems D.4 and D.5 are instantiation of Theorems D.2 and D.3 for normal distribution
and are proved by showing that the sufficient conditions of those theorems will happen with high
probability over the choice of dataset.
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E Omitted Proofs

In this section, we prove Proposition 3.6 and Theorem 3.1.

E.1 Proof of Proposition 3.6

Proof. We first argue that winning the data-aware game of Definition 2.1 is always possible. This
is because, after getting the dataset [X Y ] the adversary inspects the dataset to find out which
coordinate is unstable and find a poisoning dataset that would add that unstable coordinate to the
support set of the model.

Now, we prove the other part of the proposition. That is, we show that no adversary can win the
oblivious security game of Definition 2.1 with probability more than ǫ. The reason behind this
claim is the (k, ǫ)-resiliency of the dataset. For any fixed poisoning dataset S′ selected by adversary,
the probability of S′ being successful in changing the support set is at most ǫ. Therefore, the best
strategy for an adversary that does not see the dataset is to pick the best possible poison dataset that
maximizes the average success over all training data sampled from D, which we know is smaller
than ǫ because of the resiliency. Note that, by averaging argument, randomness does not help the
oblivious attack.

Therefore, the proof of Proposition 3.6 is complete.

E.2 Proof of Theorem 3.1

Here, we outline the main lemmas that we need to prove Theorem 3.1. We first some intermediate
theorem and lemmas that will be used to prove the main result. Then we prove these these inter-
midiate lemmas in the following subsection. The following theorem shows an upper bound on the
number of examples that a data-aware adversary need to add a non-relevant feature to the support
set of resulting model. Before stating the Theorem, we define two useful notions.

Definition E.1. We define

αi([X Y ]) = XT [i](Y −X · θ̂)
where θ̂ = Lasso([X Y ]).We also define βi similarly with difference that the minimization of Lasso
is done in the subspace of vectors with the correct support. Namely,

βi(

[

X Y

X ′ Y ′

]

) = XT [i](Y −X · θ̂′)

where θ̂′ = argminθ∈C
1
n
·
∥

∥

∥

∥

[

Y
Y ′

]

−
[

X
X ′

]

× θ
∥

∥

∥

∥

2

2

+ 2λ
n
· ‖θ‖1 . and C is the subspace of models that

their ith feature is 0 for all i 6∈ Supp(θ).

Theorem E.2 (Unstability of Gaussian). Let X ∈ R
n×d be an arbitrary matrix, θ∗ ∈ [0, 1]d be an

arbitrary vector, W be a noise vector sampled from N (0, σ2)n×1, and let Y = X × θ∗ +W . Also
let λ be the penalty parameter that is used for Lasso. Then for any i there is a dataset [X ′ Y ′] with
at most λ− |αi([[X Y ])| examples of ℓ2 norm at most 1, such that

i ∈ Supp

(

Lasso

([

X Y

X ′ Y ′

]))

.

Theorem above proves the existence of an attack that can add any feature to the training set. Below,
we first provide the description of the attack.

The Attack: To attack a feature i with k examples, The attack first calculates b = Sign(αi([X Y ]))
use a dataset S ′ = [X ′ Y ′] as follows:

X ′ =







0 . . . 1 0
...

. . .
...

...
0 . . . 1 0






∈ R

k×d, Y ′ =







b
...
b






∈ R

k×1.

The attack then adds S′ to the training set. Note that this attack is oblivious as it does not use the
knowledge of the clean training set. This is the attack that we use in our experiments in Section 3.2.
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Definition E.3 (Re-sampling Operator). We define R(X, I, σ) to be an operator that removes the
ith column of X and replace it with a fresh sample from N (0, σ2) for all i ∈ I .

Theorem E.4 (Resilience of Gaussian). Let [X ′, Y ′] be a dataset such that |X ′|1 ≤ k and let
S = Supp(Lasso([X Y ]) then we have

Pr[Supp(Lasso(

[

R(X, [d] \ S, σ) Y

X ′ Y ′

]

)) 6= S] ≤ 2e
−

(λ−2k)2

2σ2
2

where σ2
2 =

∥

∥

∥
(Y − θ̂′X)

∥

∥

∥

2

2
· σ2 ≤ (n+ k)σ2.

Theorem above states that if we re-sample the ith coordinate of X , then the probability of [X ′, Y ′]
being successful in adding ith feature to support set is limited.

Lastly, we state a lemma that shows a lower bound on the error of the lasso estimator. This Lemma
will be used in analyzing the power of data-aware adversary.

Lemma E.5. Let θ̂ = Lasso([X Y ]) and w =
∥

∥

∥
Y −Xθ̂

∥

∥

∥

2
. Also assume for each column of X we

have
∥

∥XT [i]
∥

∥

2
≤ L. then we have,

w ≥ λ

L
.

Putting things together Now we put things together to complete the proof of Theorem 3.1. For
the oblivious adversary, by Theorem E.4, the probability of the oblivious attacker succeeding ac-

cording to Theorem E.9 is bounded by probability 2e
−

(λ−2k)2

2(n+k)σ2 . This means, setting λ = 2k +

σ
√

2(n+ k) log(2/ǫ2) will guarantee that the oblivious attacker will succeed with probability at

most ǫ2. For the data-aware adversary, consider the distribution R(X, {i} , σ)[i](Y −Xθ̂). We know

that this distribution is a Gaussian distribution with standard deviation wσ for w =
∥

∥

∥
Y − θ̂X

∥

∥

∥

2
.

Therefore, by Theorem E.2, and Gaussian tail bound, we know that with probability at least

p1 ≥ 1 − (1 − 2e−2
(λ−k)2

wσ2 )d−s over the choice of randomness on the ith column, the data-aware
adversary will succeed by just doing succeed in adding a feature to the support set. Also, using

Lemma E.5, we can show that this probability is larger than 1 − (1 − 2e−2
(λ−k)2L2

λ2σ2 )d−s. Now, we

can set d = s + log(1−ε1)

log(1−2e
−2

L2(λ−k)2

λ2σ2 )

so that the oblivious adversary succeeds with probability at

least ε1.

E.3 Proofs of Theorems E.2, E.9 and E.4 and Lemmas E.10 and E.5

We first state and prove the following useful lemma.

Lemma E.6. Let X ∈ R
n×d and Y ∈ R

n. Let θ̂ be a vector that minimizes Risk(·, [X Y ]). Then,

for all non-zero coordinates j ∈ [d], where θ̂j 6= 0 we have

n
∑

i=1

X(i,j) · (Yi − 〈θ̂, Xi〉) = −λ · Sign(θ̂j),

and for all 0 coordinates j ∈ [d], where θj = 0, we have
∣

∣

∣

∣

∣

n
∑

i=1

X(i,j) · (Yi − 〈θ̂, Xi〉)
∣

∣

∣

∣

∣

< λ.

Proof of Lemma E.6. Since θ̂ is a minimizer of f(·), the derivative of f should be 0 or undefined

on all coordinates at θ̂. Note that, for all non-zero coordinates i the derivative of the second term
2λ ‖θ‖1 is equal to 2λ Sign(θi). Therefore, for non-zero coordinates the derivative of the first term
should be equal to −2λ · Sign(θi). That is,

2(XT × (Y −X × θ̂))i = 2λ · Sign(θi)
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which proves the first part of the lemma. For the second part, note that the derivative of f does

not exist, but the left-hand and right-hand derivatives exist and θ̂ minimizes f . Therefore, the left-
derivative should be negative and the right hand derivative should be positive. Thus, we have

2(XT × (Y −X × θ̂))i + 2λ > 0,

and
2(XT × (Y −X × θ̂))i − 2λ < 0,

which implies that

−λ < (XT × (Y −X × θ̂))i < λ,

finishing the proof of the lemma.

Now we state an analytical lemma that helps us bound the effect of an oblivious adversary in increas-
ing the ℓ∞ norm of a Gaussian distribution by adding a predetermined vector to it.

Lemma E.7. Define fL,σ(x) =
erf(L+x

σ
)+erf(L−x

σ
)

2erf(L
σ
)

. For any a ∈ R and b ∈ R we have f(a)f(b) >

f(|a|+ |b|).

Proof. Define g(x) = log(fL,σ(x)). It is easy to check that g is a concave function with the property
that |x|g′(|x|) ≤ g(x). Assume |b| < |a|, we have

g(|a|+ |b|) ≤ g(|a|) + |b|g′(|a|) ≤ g(a) + |b|g′(|b|) ≤ g(a) + g(b).

Corollary E.8. Let a = Rd be a vector such that |a|1 = l and let b ≡ N(0, σ2)d. We have,

Pr[|b+ a|∞ > r] ≤ 2e
−(r−l)2

2σ2 .

Proof. This follows from Lemma E.7 by writing the exact probability using the CDF of Gaussian
and then applying a Gaussian tail bound.

Now we state another theorem that shows a lower bound on the number of poisoning points required
to add a specific feature.

Theorem E.9. Let [X ′ Y ′] be such that

i ∈ Supp

(

Lasso

([

X Y

X ′ Y ′

]))

and
i 6∈ Supp (Lasso ([X Y ]))

then for some j 6∈ Supp (Lasso ([X Y ])) we have

2
∥

∥X ′T [j]
∥

∥

1
≥ λ− βj(

[

X Y

X ′ Y ′

]

).

Proof. Consider θ̂′ to be the optimal model on the subspace defined by the support of θ̂. If [X ′ Y ′]

adds feature i to the support set, then by uniqueness, θ̂′ cannot be a solution. This means that the

sub-gradients of θ̂′ should not satisfy the properties of Lemma E.6. The only thing the adversary can
do is to violate the condition on of the coordinates that are not in support. In particular, for some j,
the jth coordinate must have

∣

∣

∣

∣

∣

n+k
∑

i=1

[

X
X ′

]

(i,j)

· (
[

Y
Y ′

]

i

− 〈θ̂′,
[

X
X ′

]

i

〉)
∣

∣

∣

∣

∣

≥ λ.

Therefore, by the norm constraint of the last k columns we have
∣

∣

∣

∣

∣

n
∑

z=1

X(z,j) · (Yz − 〈θ̂′, Xz〉)
∣

∣

∣

∣

∣

≥ λ− 2
∥

∥X ′T [j]
∥

∥

1
.
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Now we state a Lemma that shows how βi is distributed, when re-sampling the ith column of the
matrix.

Lemma E.10. Consider

[

X Y

X ′ Y ′

]

, for any i ∈ [d] and set I such that i ∈ I , we have

βi(

[

R(X, I, σ) Y

X ′ Y ′

]

) ≡ N (0, σ2
2)

where σ2
2 =

∥

∥

∥
(Y − θ̂′X)

∥

∥

∥

2

2
· σ2 ≤ (n+ k)σ2 for θ̂′ of Definition E.1.

Proof. We have

βi(

[

R(X, i, σ) Y

X ′ Y ′

]

) ≡
n
∑

i=1

(Y − θ̂′X)[i] · N (0, σ2) ≡ N (0,
∥

∥

∥
(Y − θ̂′X)

∥

∥

∥

2

2
σ2).

We know that
∥

∥

∥
(Y − θ̂′X)

∥

∥

∥

2

2
≤ (n+ k)s2

because θ′ minimizes the criterion and should lead to a smaller loss than a model with 0 everywhere.

We are now ready to Prove our Theorems E.2 and E.4.

Proof of Theorem E.2. Let k ≥ λ − |αi([X Y ])| and consider X ′ which is a k × d matrix that

is 0 everywhere except on the ith column that is 1 and Y ′ is a k × 1 vector that is equal to b =
Sign(αi([X Y ]) everywhere. We show that by adding this matrix the adversary is able to add

ith coordinate to the support set of the θ̂′ = Lasso

([

X Y

X ′ Y ′

])

. To prove this, suppose the ith

coordinate of θ̂′ is 0. Thus, we have
(

[

X
X ′

]T

×
([

Y
Y ′

]

−
[

X
X ′

]

× θ̂′
)

)

i

= kb+
(

XT × (Y −X × θ̂′)
)

i
. (2)

Now we prove that θ̂′ also minimizes the Lasso loss over [X Y ]. This is because for any vector θ
with ith coordinate 0, we have

Risk

(

θ,

[

X Y

X ′ Y ′

])

= kb+Risk(θ, [X Y ]).

Now, let θ̂ be the minimizer of Risk(·, [X Y ]). We know that θ̂ is 0 on the ith coordinate. Therefore
we have,

Risk

(

θ̂,

[

X Y

X ′ Y ′

])

= kb+Risk
(

θ̂, [X Y ]
)

≥ Risk

(

θ̂′,

[

X Y

X ′ Y ′

])

= kb+Risk(θ̂′, [X Y ]). (3)

where the last inequality comes from the fact that θ̂′ minimizes the loss over

[

X Y

X ′ Y ′

]

. On the other

hand, we know that

Risk(θ̂′, [X Y ]) ≥ Risk(θ̂, [X Y ]) (4)

because θ̂ minimizes Risk(·, [X Y ]). Inequalities 3 and 4 imply that

Risk(θ̂, [X Y ]) = Risk(θ̂′, [X Y ])
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and that θ̂ minimizes Risk(·,
[

X Y

X ′ Y ′

]

). Therefore, based on Lemma E.6, since the ith coordinate

of θ̂ is zero we have
∣

∣

∣

∣

∣

(

[

X
X ′

]T

× (

[

Y
Y ′

]

−
[

X
X ′

]

× θ̂))i
∣

∣

∣

∣

∣

< λ. (5)

However, by definition of α we have
∣

∣

∣

∣

∣

[

X
X ′

]T ([

Y
Y ′

]

−
[

X
X ′

]

× θ̂
)

i

∣

∣

∣

∣

∣

= |αi([X Y ]) + Sign(αi([X Y ])) · k| ≥ λ.

This is a contradiction. Hence, the ith coordinate could not be 0 and the proof is complete.

Now we prove Theorem E.4.

Proof of Theorem E.4. Let rj = |X ′[j]| and vector r = (2r1, . . . , 2rd). also define vector β =
(β1, . . . , βd). According to Theorem E.9, we know that |(r + β)|∞ ≥ λ must hold. On the other
hand, by Lemma E.10 we know that β is distributed according to a Gaussian distribution with
standard deviation σ2. Therefore, by Corollary E.8 we can bound the probability of success of the

adversary by 2e
−

(λ−2k)2

2σ2
2 .

We now finish this section by proving Lemma E.5.

Proof of Lemma E.5. Consider an index j ∈ Supp(θ̂). By Cauchy-Schwarz inequality we have

(

n
∑

i=1

(Yi − 〈θ̂, Xi〉)2)(
n
∑

i=1

X2
(i,j)) ≥ (

n
∑

i=1

X(i,j) · (Yi − 〈θ̂, Xi〉))2.

By Lemma E.6 we have

(

n
∑

i=1

X(i,j) · (Yi − 〈θ̂, Xi〉)2 = λ2

Therefore,
w2L2 ≥ λ2.
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