
Published as a conference paper at ICLR 2025

HYMBA: A HYBRID-HEAD ARCHITECTURE FOR
SMALL LANGUAGE MODELS

Xin Dong1∗, Yonggan Fu1,2∗, Shizhe Diao1, Wonmin Byeon1, Zijia Chen1,
Ameya Sunil Mahabaleshwarkar1, Shih-Yang Liu1,3, Matthijs Van Keirsbilck1,
Min-Hung Chen1, Yoshi Suhara1, Yingyan (Celine) Lin1,2, Jan Kautz1, Pavlo Molchanov1

1NVIDIA 2Georgia Institute of Technology 3Hong Kong University of Science and Technology

ABSTRACT

We propose Hymba, a family of small language models featuring a hybrid-head
parallel architecture that integrates attention mechanisms and state space models
(SSMs) within the same layer, offering parallel and complementary processing
of the same inputs. In this hybrid-head module, attention heads provide high-
resolution recall, while SSM heads facilitate efficient context summarization. Ad-
ditionally, we introduce learnable meta tokens, which are prepended to prompts
to store critical meta information, guiding subsequent tokens and alleviating the
“forced-to-attend” burden associated with attention mechanisms. Thanks to the
global context summarized by SSMs, the attention heads in our model can be fur-
ther optimized through cross-layer key-value (KV) sharing and a mix of global
and local attention, resulting in a compact cache size without compromising ac-
curacy. Notably, Hymba achieves state-of-the-art performance among small LMs:
Our Hymba-1.5B-Base model surpasses all sub-2B public models and even out-
performs Llama-3.2-3B, achieving 1.32% higher average accuracy, an 11.67× re-
duction in cache size, and 3.49× higher throughput.

Models on Hugging Face: Hymba-1.5B-Base | Hymba-1.5B-Instruct

1 INTRODUCTION

Transformers, with their attention-based architecture, have become the dominant choice for lan-
guage models (LMs) due to their strong performance, parallelization capabilities, and long-term
recall through key-value (KV) caches (Vaswani, 2017). However, their quadratic computational cost
and high memory demands pose efficiency challenges. In contrast, state space models (SSMs) like
Mamba (Gu & Dao, 2023) and Mamba-2 (Dao & Gu, 2024) offer linear complexity and efficient
hardware optimization but struggle with memory recall tasks, affecting their performance on general
benchmarks (Waleffe et al., 2024; Arora et al., 2024a). While existing hybrid models that stack at-
tention and SSM layers have demonstrated potential (Lieber et al., 2024; Ren et al., 2024), they can
introduce information bottlenecks when one layer type is not well-suited for specific tasks, requiring
compensation from subsequent layers.

In light of this, we propose Hymba, a novel LM architecture that integrates attention heads and SSM
heads within the same layer, offering parallel and complementary processing of the same inputs.
This hybrid-head approach allows each layer to simultaneously harness both the high-resolution
recall of attention and the efficient context summarization of SSMs, increasing the model’s flexibility
and expressiveness in handling various types of information flows and memory access patterns.

To further enhance the achievable performance of Hymba, we introduce learnable meta tokens that
are prepended to the input sequences and interact with all subsequent tokens even in sliding window
attention. These meta tokens appear to act as a compressed representation of world knowledge and
alleviate the issue of “softmax attention not being able to attend to nothing” (Bondarenko et al.,
2023; Miller; Xiao et al., 2023), improving performance across both general and recall-intensive
tasks. In addition, inspired by findings in (Brandon et al., 2024) that consecutive layers have a high
correlation in the KV cache, we propose sharing the KV cache between layers as well. Additionally,

∗Equal contribution.

1

https://huggingface.co/nvidia/Hymba-1.5B-Base
https://huggingface.co/nvidia/Hymba-1.5B-Instruct

Published as a conference paper at ICLR 2025

664

535

246 241 238
271

468

150

250

350

450

550

650

750

Throughput (tok/sec)

61.1

50.3

48.5

55.9

60.0

55.7

59.5

47

49

51

53

55

57

59

61

63

Average Acc. (%)

32

64

128

256

512

1024

2048

4096

1k 3k 5k 7k 9k 11k 13k 15k

Cache Size (MB)

NVIDIA/Hymba-1.5B

META/LLaMA 3.2-1B

Apple/OpenELM-1B

Microsoft/Phi-1.5

HuggingFace/SmolLM2-1.7B

H2O/danube2-1.8B

Alibaba/Qwen2.5-1.5B

Figure 1: Performance comparison of Hymba-1.5B against sub-2B models in terms of average task
accuracy, cache size (MB) relative to sequence length, and throughput (tok/sec). Specifically, the
tasks include 5-shot MMLU, ARC-C, ARC-E, PIQA, Hellaswag, Winogrande, and SQuAD-C, and
the throughput is measured on an NVIDIA A100 with a sequence length of 8k and a batch size
of 128 using PyTorch. For models encountering out-of-memory (OOM) issues during throughput
measurement, we halve the batch size until the OOM is resolved. This approach is used to measure
the maximal achievable throughput without OOM.

we incorporate a mix of global and local (sliding window) attention, with the latter used in most of
layers, to further reduce cache costs without compromising accuracy.

Comprehensive evaluations and ablation studies demonstrate that Hymba not only establishes new
state-of-the-art (SOTA) benchmark performance across a wide range of tasks but also achieves
greater efficiency compared to transformers and previous hybrid models. We provide the bench-
mark with other representative small LMs in Fig. 1, with more comprehensive benchmarks in Fig. 6.
For instance, in commonsense reasoning tasks, Hymba-1.5B can outperform Llama-3.2-3B with
1.32% higher average accuracy, while requiring 11.67× smaller cache size and being 3.49× faster.

To optimize Hymba for on-device tasks, we further employ supervised finetuning and direct pref-
erence optimization (DPO) (Rafailov et al., 2024). Our instruction-tuned model, Hymba-1.5B-
Instruct, achieves best-in-class performance on GSM8K, GPQA, and the Berkeley function-calling
leaderboard, surpassing Llama-3.2-1B. Additionally, parameter-efficient finetuning shows Hymba’s
strong potential in this setting. For instance, a DoRA (Liu et al., 2024d)-finetuned version of Hymba-
1.5B outperforms Llama3.1-8B-Instruct by 2.4% on RoleBench (Wang et al., 2023).

2 HYMBA: THE PROPOSED HYBRID-HEAD ARCHITECTURE

SSMs such as Mamba (Gu & Dao, 2023) were introduced to address the quadratic complexity and
large inference-time KV cache issues of transformers. However, due to their low-resolution memory,
SSMs struggle with memory recall and reasoning accuracy (Waleffe et al., 2024; Jelassi et al., 2024;
Arora et al., 2024a). To overcome these limitations, we propose a roadmap for developing efficient
and high-performing small LMs in Tab. 1 and outlined as follows:

Fused hybrid-head modules. Fusing attention and SSM heads in parallel within a hybrid-head
module outperforms sequential stacking (see Tab. 1 (A)-(B) and Sec. 2.1). Both heads process the
same information simultaneously, leading to improved reasoning and recall accuracy. We argue that
sequential fusion lacks synergy, as both blocks operate on each set of inputs independently.

Configuration Commonsense
Reasoning (%)

Recall
(%)

Throughput
(token/sec)

Cache Size
(MB) Design Reason

Ablations on 300M model size and 100B training tokens
Transformer (Llama) 44.08 39.98 721.1 414.7 Accurate recall while inefficient

State Space Models (Mamba) 42.98 19.23 4720.8 1.9 Efficient while inaccurate recall
A. + Attention heads (sequential) 44.07 45.16 776.3 156.3 Enhance recall capabilities
B. + Multi-head structure (parallel) 45.19 49.90 876.7 148.2 Better balance of two modules
C. + Local / global attention 44.56 48.79 2399.7 41.2 Boost compute/cache efficiency
D. + KV cache sharing 45.16 48.04 2756.5 39.4 Cache efficiency
E. + Meta tokens 45.59 51.79 2695.8 40.0 Learned memory initialization

Scaling to 1.5B model size and 1.5T training tokens
F. + Size / data 60.56 64.15 664.1 78.6 Further boost task performance
G. + Extended context length (2K→8K) 60.64 68.79 664.1 78.6 Improve multi-shot and recall tasks

Table 1: Design roadmap of our Hymba model. We evaluate the models’ (1) commonsense reason-
ing accuracy, averaged over 8 tasks, and (2) recall accuracy, averaged over 2 tasks. The throughput
is on NVIDIA A100, sequence length 8k, batch size 128. The cache size is measured with a 8k
sequence length, assuming the FP16 format.

2

Published as a conference paper at ICLR 2025

Fading Memory
(From SSM)

Meta Memory
(Meta Tokens)

Input
TokensInput

Proj

L
at

en
t F

ea
tu

re

Split

SS
M

 F
ea

t.
A

tt
n

Fe
at

.

... Gate
Norm.

Output
Proj

SSM Head

Attn Head

...

(a) (b)

Gate
Norm.

Mean

...

...

Meta
Tokens

Input
Tokens Snapshot Memory

(From Attn)

Figure 2: (a) Visualize the hybrid-head module in Hymba; (b) Interpret from the memory aspect.

Efficiency and KV cache optimization. While attention heads improve task performance, they
increase KV cache requirements and reduce throughput. To mitigate this, we optimize the hybrid-
head module by combining local and global attention and employing cross-layer KV cache sharing
(see Tab. 1 (C)-(D) and Sec. 2.2). This improves throughput by 3× and reduces cache by almost 4×.

Meta tokens. A set of 128 learnable embeddings is prepended to input tokens, serving as a learned
cache initialization to enhance focus on relevant information. These tokens fulfill a dual purpose: (i)
they mitigate attention drain by acting as backstop tokens, effectively redistributing attention, and
(ii) they encapsulate compressed world knowledge (see Tab. 1 (E) and Sec. 2.3).

Scaling up model size and data. Ablation studies were conducted on a 300M-parameter model
using 100B training tokens. The final models were trained with 1.5T tokens and scaled up to 1.5B-
parameter models (see Tab. 1 (F) and Sec. 2.4).

2.1 A FUSED HYBRID-HEAD MODULE

SSM models are efficient but suffer from limited recall capabilities and task performance (Waleffe
et al., 2024; Jelassi et al., 2024; Arora et al., 2024a; Ben-Kish et al., 2024) as seen in Tab. 1. Given
the high recall resolution of attention, in this step we aim to (1) combine the processing efficiency
and context summarization capabilities of SSMs with the high recall resolution of attention, and (2)
develop a fused building block to achieve this goal, so it can serve as a fundamental component for
constructing future foundation models.

Previous hybrid models (Ren et al., 2024; Glorioso et al., 2024; Lieber et al., 2024) often com-
bine attention and SSMs in a sequential manner. This strategy may lead to information bottlenecks
when a layer type that is poorly suited for a specific task cannot effectively process the informa-
tion. Motivated by the multi-head attention structure in the vanilla Transformer (Vaswani, 2017),
where different heads undertake different roles and focus on different contexts (Lv et al., 2024;
Merullo et al., 2024), we propose an alternative approach: fusing attention and SSMs in parallel
into a hybrid-head module, as shown in Fig. 2 (a). The advantage of this design is that different
attention and SSM heads can store, retrieve, and process the same piece of information in distinct
ways, thereby inheriting the strengths of both operators.

Design formulation. We show that the hybrid-head module can be represented by a unified and
symmetric formulation. As shown in Fig. 2 (a), given the input sequence X̃ , which is the original
input sequence X prepended with meta tokens introduced in Sec. 2.3, the input projection Win proj =

[WQ,WK ,WV ,WSSM ,WG] projects X̃ to the query, key, and value of the attention heads using
WQ, WK , and WV , respectively, as well as the input features and gates of the SSM heads using
WSSM and WG, respectively.

Following (Vaswani, 2017), the output of attention heads Yattn can be formulated as:

Yattn = softmax(QKT /
√
d)WV X̃ = MattnX̃ (1)

where Mattn = softmax(QKT /
√
d)WV and Q = WQX̃ , K = WKX̃ .

Similar to the attention heads, the SSM heads in our model, for which we adopt Mamba (Gu & Dao,
2023), can also be represented using a data-controlled linear operator Mssm, following (Ali et al.,

3

Published as a conference paper at ICLR 2025

2024; Ben-Kish et al., 2024). Specifically, the SSM head output Yssm can be formulated as:

αi,j = Ci

 i∏
k=j+1

exp(A∆k)

Bj∆j ,

Yssm = G⊙ α(A,B,C,∆) WSSM X̃ = MssmX̃,

(2)

where Mssm = G ⊙ α(A,B,C,∆) WSSM , G = WGX̃ is an output gate, and A,B,C,∆ are the
SSM parameters following the definition in (Gu & Dao, 2023). More specifically, A is a learnable
matrix, B = WBXssm, C = WCXssm, and ∆ = Softplus(W∆Xssm) with Xssm = WSSM X̃ .

We observed that the output magnitudes of the SSM heads, Yssm, are consistently larger than those
of the attention heads, Yattn, as visualized in Fig. 9 in Append. D. To ensure effective fusion, we
normalize and re-scale them using learnable vectors to improve training stability, and then average
the outputs, followed by a final output projection. The overall formulation of our fused module can
be represented symmetrically:

Y = Wout proj

(
β1norm(MattnX̃) + β2norm(MssmX̃)

)
(3)

where β1 and β2 are learnable vectors that re-scale each channel of the outputs from the attention
and SSM heads, respectively. We further explore the optimal ratio of SSMs and attention in hybrid
heads in Append. D, and analyze the relative importance of heads in Append. E.

Interpretation from the memory aspect. The components in the hybrid-head module can be in-
terpreted as analogous to human brain functions. Specifically, as shown in Fig. 2 (b), the attention
heads provide high recall resolution and thus act like snapshot memories in the human brain, stor-
ing detailed recollections of a moment or event. In contrast, the SSM heads summarize the context
through a constant cache and thus function as fading memories, which gradually forget the details of
past events while retaining their core or gist. As shown in Tab. 11 in Append. D, in our Hymba, the
summarized global context from fading memories enables allocating more snapshot memories for
memorizing local information while maintaining recall capabilities. This is achieved by replacing
most global attention with local attention, thus improving memory efficiency.

2.2 KV CACHE OPTIMIZATION

Our hybrid-head module improves recall and reasoning capabilities but can compromise memory
and throughput efficiency due to the KV cache required by the attention heads. To address this, we
aim to reduce the KV cache while maintaining comparable task performance.

Combine global and local attention. Local attention, also known as sliding window attention
(SWA) (Beltagy et al., 2020), offers a more efficient alternative to global full attention, though it
risks losing global context. However, with the presence of SSM heads in our hybrid-head module,
which already summarize global context, we can more aggressively replace global full attention with
local attention, achieving a better balance between efficiency and performance.

Exploring the ratio of local attention and global attention. As shown in Tab. 11 in Append. D,
we initially replace global attention in all layers with SWA, which results in a significant degradation
in recall capabilities, with accuracy dropping by over 20% on recall-intensive tasks. In response, we
progressively reinstate global attention in some layers. Interestingly, as shown in Tab. 1 (C), we find
that using global attention in just three layers (i.e., the first, middle, and last layers) is sufficient to
recover recall accuracy while maintaining comparable commonsense reasoning accuracy. In turn,
this strategy achieves 2.7× throughput and 3.8× cache reduction.

Cross-layer KV sharing. Recent works (Liu et al., 2024a) observe that KV cache shares a high
similarity between adjacent layers, suggesting that using separate KV caches for each layer leads to
both cache and parameter redundancy. In light of this, we employ cross-layer KV sharing (Brandon
et al., 2024), where keys and values are shared between consecutive layers (e.g., every two layers
share the same KV cache). This strategy reduces both KV memory usage and model parameters,
allowing the saved parameters to be reallocated to other model components. As shown in Tab. 1
(D), cross-layer KV sharing improves throughput by 1.15× while maintaining comparable recall
accuracy and boosting commonsense accuracy by +0.60%.

4

Published as a conference paper at ICLR 2025

Em
be

dd
in

g

In
pu

t t
ok

en

N
ex

t t
ok

en

KV sharing
every 2 layers

Repeat (N-3)/2

Full Attn

Hymba
Block

Hymba
Block

SWA

Hymba
Block

KV sharing
every 2 layers

Repeat (N-3)/2

Hymba
Block

SWA

Hymba
Block

La
ye

r n
or

m

La
ye

r n
or

mHybrid-
head

module FF
N

LM
 H

ea
d

Full Attn Full Attn

Figure 3: The overall architecture and building block of our Hymba model.

After the above optimization, Hymba’s overall architecture is visualized in Fig. 3. It is worth noting
that the proposed KV cache optimization strategies are related to the design of the hybrid-head
modules. For example, if we apply the same KV cache sharing strategy to the Llama3 model, its
average commonsense reasoning accuracy drops from 44.08% to 43.61% and recall accuracy drops
from 39.98% to 28.18%. This suggests that, with the help of Mamba heads, attention heads in our
hybrid-head modules are more tolerant to those lossy KV cache optimization strategies.

2.3 META TOKENS

We observed that the initial tokens, though not semantically important, often receive significant at-
tention scores from subsequent tokens, similar to observations in prior work (Xiao et al., 2023; Han
et al., 2024). As shown in Fig.11, more than 50% of the attention is focused on the BOS token for
Llama3.2-3B. To address this, we aim to guide the attention to focus more on tokens that mean-
ingfully contribute to task performance. Specifically, we introduce a set of learnable meta tokens
R = [r1, r2, . . . , rm] to serve as the initial tokens. Given the input sequence X = [x1, x2, . . . , xn],
these meta tokens are prepended to the input sequence, forming the modified input sequence:

X̃ = [R,X] = [r1, r2, . . . , rm, x1, x2, . . . , xn] (4)

where X̃ represents the new input sequence for our model. At inference time, since the meta tokens
are fixed and appear at the beginning of any input sequences, their computation can be performed of-
fline. Thus, the role of meta tokens at inference can also be viewed as learned cache initialization to
modulate the subsequent tokens, allowing subsequent tokens to focus more on those that contribute
meaningfully to task performance. Similar to the analogy in Sec. 2.1, the meta tokens participate
in the attention and SSM calculations of all subsequent tokens, analogous to metamemory in the
human brain, which helps recognize where to locate needed information in other memories. We
provide further analysis from the memory perspective in Append. G.

The role of Meta Tokens. We hypothesize that meta tokens perform the following functions.
Prevent token overwriting. As shown in (Darcet et al., 2023), attention tends to overwrite and ex-
cessively focus on certain tokens, functioning as a garbage collector. This phenomenon was later
observed in LLMs and termed “attention sinks” (Xiao et al., 2023; Han et al., 2024). Introducing
learnable tokens independent of the input improves the learning of a generalizable garbage collector.

Exit tokens to deal with “forced-to-attend”. Prepending tokens to the input affects the shape of the
softmax function by modifying the denominator. Quiet Attention (Miller, 2023) alters the softmax
denominator by adding one, enabling the attention to output zeros. Adding one is equivalent to
prepending an all-zero token to the keys and values. Our meta tokens extend this idea by being
learnable, allowing the model to optimize the softmax shape.

Initialization for KV cache and SSM state. Learning initial tokens can be seen as a form of learned
prompt tuning (Lester et al., 2021; Gu et al., 2021c) or learned initialization. For inference, meta
tokens are fixed, and the keys and values can be precomputed offline and stored. Task-specific meta
tokens can be used, though in this work we use one set for all tasks.

Meta tokens boost recall capabilities and commonsense reasoning accuracy. To analyze the
impact of meta tokens on the attention mechanism, we visualize the entropy of the attention map

5

Published as a conference paper at ICLR 2025

Figure 4: Visualize Hymba’s attention map as the contributions of meta tokens, SWA, and Mamba.

for both the attention and SSM heads (Ali et al., 2024; Ben-Kish et al., 2024) before and after
introducing meta tokens. Specifically, the attention map entropy reflects the distribution of attention
scores across tokens, where lower entropy indicates stronger retrieval effects (Ren et al., 2024), as
the attention scores are concentrated around a smaller subset of tokens, and vice versa.

We provide the visualization in Fig. 13 in Append. G, where we observe that, after introducing meta
tokens, both the attention and SSM heads exhibit an overall reduction in entropy. Combined with the
improved reasoning and recall capabilities shown in Tab. 1 (E), this suggests that meta tokens may
help both the attention and SSM heads focus more on a subset of important tokens that contribute
most to task performance.

Hymba attention map. Hymba’s attention pattern can be viewed as a combination of individual
components from SWA, meta tokens, and SSM, as shown in Fig. 4. More analysis of Hymba’s
real attention map and a comparison with the Llama and Jamba models are provided in Append. F.
We observe that in vanilla Transformers, attention scores are more concentrated on the beginning-
of-sequence token, which is consistent with the findings in (Xiao et al., 2023), and have a higher
proportion of local attention scores focusing on the token itself. In Hymba, meta tokens, attention
heads, and SSM heads complement each other, leading to a more balanced distribution of attention
scores across different types of tokens.

2.4 HYMBA MODEL FAMILY

Building on the design insights explored above, we scale up the model sizes and training tokens to
deliver the Hymba model family, which includes a 125M model, a 350M model, and a 1.5B model.

We train Hymba-125M/350M/1.5B models using a mix of DCLM-Baseline-1.0 (Li et al., 2024),
SmolLM-Corpus (Ben Allal et al., 2024), and a proprietary high-quality dataset, with 1T, 250B,
and 50B tokens, respectively. We combine the Warmup-Stable-Decay (WSD) learning rate sched-
uler (Hu et al., 2024), with maximum and minimum learning rates of 3e-3 and 1e-5, and the data
annealing technique (Dubey et al., 2024; Shen et al., 2024) to ensure stable pretraining. We use a se-
quence length of 2k and a batch size of 2M tokens throughout the training process until the last 100B
tokens, where we increase the sequence length to 8k and change the ROPE base following (bloc97,
2023). The overall training pipeline is illustrated in Fig. 5. More details are provided in Append. H.

3 EXPERIMENTAL RESULTS

3.1 EXPERIMENT SETTINGS

Baselines. Our baselines include popular (small) LMs with quadratic attention (e.g., Llama 3.2 (AI,
2024c), SmolLM (Allal et al., 2024b), SmolLM2 (Allal et al., 2024a), AMD-OLMo (Liu et al.,
2024b), StableLM (Bellagente et al., 2024), Olmo (Groeneveld et al., 2024), Cosmo (Huggingface,

5. DPO _4. SFT-2
Constant large learning rate 3e-3

Large dataset, DataCompLM dataset

1T tokens training

Learning rate decay to 1e-5

High quality datasets

SmolLM and Proprietary

500B tokens total

8k context length extension

Supervised finetuning

Code, math, MMLU, function
calling, Q&A, roleplay

6.5M samples / 10B tokens

Direct Preference Optimization

Further improve Instruction
Following

200K samples / 0.7B tokens

General instruction following

900K samples / 3B tokens

High quality data

Base Model Instruct Model

3. SFT-12. LR annealing1. General pretraining

Figure 5: Training pipeline adapted for Hymba family. See Fig. 14 for detailed loss curve.

6

Published as a conference paper at ICLR 2025

Table 2: Benchmark Hymba with SOTA small LMs. All models have fewer than 2B parameters, ex-
cept for Llama-3.2-3B, which is marked as gray. All results are obtained through LM-EVALUATION-
HARNESS (Gao et al., 2023). SQuAD-C (SQuAD-Completion) indicates a variant of the SQuAD
question answering task proposed by Arora et al. (2024b). The throughput is measured with a 8k
sequence length and a 128 batch size on an NVIDIA A100 GPU. The best results are highlighted in
bold, and the second-best results are highlighted in underline, where Llama-3.2-3B is not included
in the ranking due to its 3B model size.

Model #Params. Train Token/s Cache MMLU ARC-E ARC-C PIQA Wino. Hella. SQuAD-C Avg.
tokens (MB) 5-shot 0-shot 0-shot 0-shot 0-shot 0-shot 1-shot

OpenELM-1 1.1B 1.5T 246 346 27.06 62.37 19.54 74.76 61.80 48.37 45.38 48.47
Rene-v0.1 1.3B 1.5T 800 113 32.94 67.05 31.06 76.49 62.75 51.16 48.36 52.83
Phi-1.5 1.3B 0.15T 241 1573 42.56 76.18 44.71 76.56 72.85 48.00 30.09 55.85
SmolLM 1.7B 1T 238 1573 27.06 76.47 43.43 75.79 60.93 49.58 45.81 54.15
Cosmo 1.8B 0.2T 244 1573 26.10 62.42 32.94 71.76 55.80 42.90 38.51 47.20
h2o-danube2 1.8B 2T 271 492 40.05 70.66 33.19 76.01 66.93 53.70 49.03 55.65
Llama-3.2-1B 1.2B 9T 535 262 32.12 65.53 31.39 74.43 60.69 47.72 40.18 50.29
Qwen2.5 1.5B 18T 469 229 60.92 75.51 41.21 75.79 63.38 50.20 49.53 59.51
AMD-OLMo 1.2B 1.3T 387 1049 26.93 65.91 31.57 74.92 61.64 47.30 33.71 48.85
SmolLM2 1.7B 11T 238 1573 50.29 77.78 44.71 77.09 66.38 53.55 50.50 60.04
Llama-3.2-3B 3.0B 9T 191 918 56.03 74.54 42.32 76.66 69.85 55.29 43.46 59.74

Hymba 1.5B 1.5T 664 79 51.19 76.94 45.90 77.31 66.61 53.55 55.93 61.06

2024), Phi-1.5 (Li et al., 2023), H2O-Danube (Singer et al., 2024), OpenELM (Mehta et al., 2024),
and MiniCPM (Hu et al., 2024)), as well as hybrid models (e.g., Rene (AI, 2024a)).

Benchmark settings. We adopt two benchmarking settings: (1) In Sec. 3.2, we directly bench-
mark our delivered Hymba against SOTA public small LMs, and (2) in Sec. 3.3, we train different
architectures from scratch with the same dataset, number of layers, model size, and training recipes.

Benchmark tasks. In addition to evaluating commonsense reasoning and recall-intensive tasks on
our base models, we also evaluate our instruction-tuned models on downstream tasks such as math,
function calling, and role-playing in Sec. 3.4.

3.2 BENCHMARK WITH SOTA SMALL LMS

We present the benchmark results of our Hymba models with parameter sizes of 125M, 350M, and
1.5B, compared to SOTA small language models within the same size range.

As highlighted in Tab. 2, with only 1.5T pretraining tokens, our Hymba-1.5B model achieves the best
performance among all sub-2B LMs and demonstrates better throughput and cache efficiency com-
pared to all transformer-based LMs, with this speedup becoming even more pronounced as the se-
quence length increases. For instance, compared to the strongest sub-2B baseline, SmolLM2-1.7B,
trained on 11T tokens, our Hymba-1.5B, trained on only 1.5T tokens, achieves a 1.02% average ac-
curacy improvement, a 19.91× cache size reduction, and 2.79× throughput. When comparing with
small LMs trained on no more than 2T tokens, our model achieves a 5.21%/5.41% average accu-
racy improvement over the most competitive baselines, Phi-1.5 and h2o-danube2-1.8B, respectively.
Additionally, our model even outperforms Llama-3.2-3B, with 1.32% higher average accuracy, an
11.67× cache size reduction, and 3.49× throughput.

We visualize the trade-offs between commonsense reasoning accuracy and cache size/throughput in
Fig. 6. In addition, our delivered tiny LMs, Hymba-125M/350M, consistently outperform all LMs of
comparable model size, as summarized in Tab. 5 and Tab. 6 in Append. A.1. We have also provided
a Hymba-1.5B model trained exclusively on public data in Append. A.2.

3.3 BENCHMARK DIFFERENT ARCHITECTURES UNDER THE SAME SETTING

General and recall-intensive tasks performance comparison. We do a comprehensive compar-
ison between Hymba and other model architectures, including standard Transformer (Llama3 (AI,
2024b)), pure Mamba (Gu & Dao, 2023; Dao & Gu, 2024), Mamba with FFN, and hybrid archi-
tecture with sequential layer stacking (Samba (Ren et al., 2024)) on several downstream tasks. All

7

Published as a conference paper at ICLR 2025

(a) (b)

19.91 Cache Reduction 2.79 Faster

Figure 6: Visualize the trade-off between (a) commonsense reasoning accuracy (avr. ARC-C, ARC-
E, PIQA, Hellaswag, OBQA, and Winogrande using (Gao et al., 2023)) and cache size, with through-
put represented by the point size of different models, and (b) commonsense reasoning accuracy and
throughput, with cache size represented by the point size. The throughput is measured with a 8k
sequence length and a 128 batch size on an NVIDIA A100 GPU. The cache size is measured with a
8k sequence length, assuming the FP16 format.

Task Type
Arch. Style

(1B) Mamba2 Mamba2
w/ FFN Llama3 Samba Hymba

Language Wiki. ppl. ↓ 19.17 20.42 19.28 19.91 18.62
LMB. ppl. ↓ 12.59 14.43 13.09 12.65 10.38

Recall
Intensive

SWDE ↑ 50.24 26.43 75.95 30.00 54.29
SQuAD-C ↑ 36.43 31.40 18.70 42.33 44.71
Avg. ↑ 43.34 28.92 47.33 36.17 49.50

Common-
sense

Reasoning
and

Question-
answering

Lambda ↑ 47.51 44.54 47.95 49.08 52.84
PIQA ↑ 73.94 73.07 73.45 73.23 74.97
ARC-C ↑ 38.91 37.03 39.68 39.59 41.72
ARC-E ↑ 70.96 71.00 73.74 73.36 74.12
Hella. ↑ 57.73 55.83 57.64 58.49 60.05
Wino. ↑ 58.48 55.56 56.20 57.54 57.85
TruthfulQA ↑ 30.75 29.86 31.64 28.84 31.76
SIQA ↑ 41.86 42.22 42.22 42.48 43.24
Avg. ↑ 52.52 51.14 52.82 52.83 54.57

Table 3: Apple-to-apple comparison of our Hymba, pure Mamba2 (Dao & Gu, 2024), Mamba2
with FFN, Llama3 (Dubey et al., 2024) style, and Samba-style (Mamba-FFN-Attn-FFN) (Ren et al.,
2024) architectures. All models have 1B parameters and are trained from scratch for 100B tokens
from SmolLM-Corpus (Ben Allal et al., 2024) with exactly the same training recipe. All results are
obtained through LM-EVALUATION-HARNESS (Gao et al., 2023) using a zero-shot setting. The best
and second best results are highlighted in bold and underline, respectively.

models have the same number of layers and total parameters to facilitate fair comparison. Models are
trained on the same data with the same hyperparameters and under the same codebase. To ensure our
conclusions are generally valid, we run comparison experiments at different scales (1B and 300M)
and different training datasets (SmolLM-corpus (Ben Allal et al., 2024) and FineWeb (Penedo et al.,
2024)) in Tab. 3 and Tab. 8, respectively. We evaluate the models on language modeling, real-world
recall-intensive, commonsense reasoning, and question-answering tasks.

As shown in Tab. 3, our Hymba model consistently outperforms other 1B architectures across most
tasks, e.g., achieving an average score 1.45% higher than the second-best model at the 300M scale
and 1.74% higher at the 1B scale. The ablation study for the 300M scale is in Append. A.

In addition, considering that Mamba models suffer from limited recall capabilities due to their
constant-size cache and recurrent nature (Ben-Kish et al., 2024; Arora et al., 2024a; Jelassi et al.,

8

Published as a conference paper at ICLR 2025

Figure 7: Needle-in-the-haystack performance comparison across different architecture under apple-
to-apple setting. The white vertical line represents the finetuning sequence length (4k).

2024), we test the models on two real-world recall-intensive tasks, SWDE (Arora et al., 2024a;
Lockard et al., 2019) and SQuAD (Arora et al., 2024a; Rajpurkar et al., 2018), where the former
is to to extract semi-structured relations from given raw HTML websites and the latter is to extract
answers from a given context passages. Echoing the previous findings, Mamba2 and Mamba2 with
FFN architectures under-perform the Transformer model (i.e. Llama3) on these tasks (see Tab. 3).
Hymba model augments the Mamba heads with attention heads, which allows the model to have a
large effective receptive field to establish long-range dependencies and high-resolution memory to
store and retrieve key information in all layers. As a result, Hymba outperforms the Transformer
and Samba architectures (where the latter stacks Mamba and attention layers sequentially).

Needle-in-the-Haystack performance comparison. We further do an apple-to-apple comparison
between Hymba, Mamba2, and Llama3 on the synthetic retrieval task, needle-in-the-haystack. A
random and informative sentence (i.e., needle) is inserted into a long document (i.e., haystack) and
the model is required to retrieve the needle from the haystack to answer the questions. All models
are of size 1B and trained with the same setting: (i.) pretrain is done with 1k sequence length; (ii.)
finetune with 4k sequence length; (iii.) test with up to 16k sequence length. If model has ROPE,
then we adjust the ROPE as in (Liu et al., 2023) during finetuning.

As shown in Fig. 7, the Hymba model significantly outperforms the Mamba2 and Llama3 models.
While the Mamba2 model has good extrapolation capabilities when the needle is inserted in the end
of the haystack, it struggles to retrieve the needle when the needle is in the beginning or middle of the
haystack. In contrast, Llama3 model has limited extrapolation capabilities (Peng et al., 2023b; Liu
et al., 2023; Zhang et al., 2024) and struggles to the “lost in the middle” (Liu et al., 2024c) scenario.
We provide more real-world long-context tasks evaluation in Append. B, where we show that Hymba
has comparable or better length generalization capabilities comparing to vanilla Transformers under
similar training length.

3.4 BENCHMARK INSTRUCTION-TUNED MODELS

Implementation details of post-training. We post-train Hymba-1.5B base model with a two-stage
strategy: the first full-finetuning (FFT) stage and another DPO (Rafailov et al., 2024) training. The
learning rates are 5e-5 and 3e-6 for FFT and DPO, respectively. To accelerate training, we follow
the training recipe (Tunstall et al., 2023; Diao et al., 2024; Dong et al., 2024) to pack the sam-
ples and use a block size of 8192. We compare Hymba-1.5B-Instruct with competitive lightweight
instruction-tuned models, i.e., Llama-3.2-1B-Instruct (AI, 2024c), OpenELM-1-1B-Instruct (Mehta
et al., 2024), Qwen2.5-1.5B-Instruct (Team, 2024), and SmolLM-1.7B-Instruct (Allal et al., 2024b).
We test the instruction-tuned models on MMLU (5-shot), IFEval, GSM8K (5-shot), GPQA (0-shot),
and Berkeley Function-Calling Leaderboard v2 (BFCLv2) (Yan et al., 2024). More details about the
experimental settings, baseline models, and evaluation tasks are shown in Append. H.

Evaluation results. The evaluation results are shown in Tab. 4. In general, Hymba-1.5B-Instruct
achieves the highest performance on an average of all tasks, outperforming the previous SoTA
model, Qwen2.5-Instruct, by around 2%. It demonstrates a great ability in math, reasoning, and
function calling, with the best-in-class performance.

In addition to full finetuning, we evaluate whether Hymba is compatible with parameter-efficient
finetuning methods by finetuning the post-trained Hymba on RoleBench (Wang et al., 2023) using
DoRA (Liu et al., 2024d). Results are provided in Append. C, where we find that DoRA-finetuned
Hymba significantly outperforms larger models.

9

Published as a conference paper at ICLR 2025

Table 4: The comparison between lightweight instruction-tuned models. The best and second-
best results are highlighted in bold and underline, respectively. ∗OpenELM and SmolLM cannot
understand function calling, leading to zero accuracy in most categories.

Model #Params MMLU ↑ IFEval ↑ GSM8K ↑ GPQA ↑ BFCLv2 ↑ Avg. ↑
SmolLM 1.7B 27.80 25.16 1.36 25.67 -∗ 20.00
OpenELM 1.1B 25.65 6.25 56.03 21.62 -∗ 27.39
Llama-3.2 1.2B 44.41 58.92 42.99 24.11 20.27 38.14
Qwen2.5 1.5B 59.73 46.78 56.03 30.13 43.85 47.30
SmolLM2 1.7B 49.11 55.06 47.68 29.24 22.83 40.78

Hymba-1.5B 1.5B 52.79 57.14 58.76 31.03 46.40 49.22

4 RELATED WORKS

Large language models. Prior to the rise of LLMs, transformer-based models (Vaswani, 2017;
Devlin et al., 2018; Raffel et al., 2020; Roberts et al., 2022) proved highly effective at captur-
ing relationships between tokens in complex sequences through the use of the attention mecha-
nism (Vaswani, 2017). These models also demonstrated considerable scalability (Qin et al., 2023;
Kaplan et al., 2020; Biderman et al., 2023) in terms of both model size and the volume of pretraining
data. This scalability paved the way for the development of LLMs, such as GLM (Du et al., 2021),
OPT (Zhang et al., 2022), Mistral (Jiang et al., 2023), the Llama series (Touvron et al., 2023; AI,
2024b), Gemma (Team et al., 2024), and GPT-4 (Achiam et al., 2023), which showcase remarkable
zero-shot and few-shot in-context learning abilities.

Efficient language model architectures. The quadratic computational complexity and the linearly
increasing KV cache size of attention modules with longer sequences limit their processing effi-
ciency. To address this, efficient LMs featuring sub-quadratic complexity in sequence length and
strong scaling properties have emerged (Peng et al., 2023a; Sun et al., 2023; Gu & Dao, 2023; Dao
& Gu, 2024; Yang et al., 2023; Katharopoulos et al., 2020). As pointed out by (Gu & Dao, 2023),
popular efficient LM architectures such as RWKV (Peng et al., 2023a) and RetNet (Sun et al., 2023)
can be viewed as variants of SSMs (Gu et al., 2021a;b). Mamba (Gu & Dao, 2023), one of the
most widely used SSMs, improves upon previous SSMs by selectively propagating or forgetting
information along the sequence length in an input-dependent manner. Follow-up works such as
Mamba2 (Dao & Gu, 2024) and GLA (Yang et al., 2023) introduce more hardware-friendly gating
mechanisms to enhance training throughput over Mamba.

Hybrid language models. To combine the processing efficiency of SSMs with the recall capabilities
of transformers, an emerging trend is the creation of hybrid models that incorporate both types of
operators. Specifically, (Park et al., 2024; Waleffe et al., 2024) propose hybrid models that interleave
Mamba and attention modules to improve commonsense reasoning and in-context learning capabil-
ities. Jamba (Lieber et al., 2024) and Zamba (Glorioso et al., 2024) develop sequentially stacked
Mamba-Attention hybrid models. Samba (Ren et al., 2024) introduces a structure that sequentially
stacks Mamba, SWA, and MLP layers by repeating the Mamba-MLP-SWA-MLP structure, achiev-
ing constant throughput as sequence lengths increase. Other recent work has also explored hybrid
models that mix either linear RNNs or convolutions with attention (De et al., 2024; Pilault et al.,
2024; Saon et al., 2023; Yang et al., 2024).

5 CONCLUSION

In this work, we present Hymba, a new family of small LMs featuring a hybrid-head architecture
that combines the high-resolution recall capabilities of attention heads with the efficient context
summarization of SSM heads. To further optimize the performance of Hymba, we introduce learn-
able meta tokens to enhance the model’s focus on salient information and propose a series of KV
cache optimization techniques. Through the roadmap of Hymba, comprehensive evaluations, and
ablation studies, we demonstrate that Hymba sets new SOTA performance across a wide range of
tasks, achieving superior results in both accuracy and efficiency. Additionally, our work provides
detailed insights into the advantages of hybrid-head architectures, offering a promising direction for
future research in efficient language and multi-modal models.

10

Published as a conference paper at ICLR 2025

6 ACKNOWLEDGMENTS

This work would not have been possible without additional contributions from many people at
NVIDIA, including Hanah Zhang, Maksim Khadkevich, Mohammad Shoeybi, Mostofa Patwary,
Nikolaus Binder, Chenhan Yu, Meredith Price, and Oluwatobi Olabiyi.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Cartesia AI. The On-Device Intelligence Update. 2024a. URL https://cartesia.ai/blog/
on-device.

Meta AI. Introducing Meta Llama 3: The most capable openly available LLM to date. 2024b. URL
https://ai.meta.com/blog/meta-llama-3/.

Meta AI. Llama 3.2: Revolutionizing edge AI and vision with open, cus-
tomizable models. 2024c. URL https://ai.meta.com/blog/
llama-3-2-connect-2024-vision-edge-mobile-devices/.

Ameen Ali, Itamar Zimerman, and Lior Wolf. The hidden attention of mamba models. arXiv
preprint arXiv:2403.01590, 2024.

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martı́n Blázquez, Lewis Tunstall, Agustı́n
Piqueres, Andres Marafioti, Cyril Zakka, Leandro von Werra, and Thomas Wolf. Smollm2 - with
great data, comes great performance, 2024a.

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Leandro von Werra, and Thomas Wolf. Smollm
- blazingly fast and remarkably powerful, 2024b.

Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, Dylan Zinsley,
James Zou, Atri Rudra, and Christopher Ré. Simple linear attention language models balance
the recall-throughput tradeoff. arXiv preprint arXiv:2402.18668, 2024a.

Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, Dylan Zinsley,
James Zou, Atri Rudra, and Christopher Ré. Simple linear attention language models balance
the recall-throughput tradeoff, 2024b.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
context understanding. arXiv preprint arXiv:2308.14508, 2023.

Marco Bellagente, Jonathan Tow, Dakota Mahan, Duy Phung, Maksym Zhuravinskyi, Reshinth
Adithyan, James Baicoianu, Ben Brooks, Nathan Cooper, Ashish Datta, et al. Stable lm 2 1.6 b
technical report. arXiv preprint arXiv:2402.17834, 2024.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo, Thomas Wolf, and Leandro von
Werra. Smollm-corpus, 2024. URL https://huggingface.co/datasets/
HuggingFaceTB/smollm-corpus.

Assaf Ben-Kish, Itamar Zimerman, Shady Abu-Hussein, Nadav Cohen, Amir Globerson, Lior Wolf,
and Raja Giryes. Decimamba: Exploring the length extrapolation potential of mamba, 2024. URL
https://arxiv.org/abs/2406.14528.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

11

https://cartesia.ai/blog/on-device
https://cartesia.ai/blog/on-device
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus
https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus
https://arxiv.org/abs/2406.14528

Published as a conference paper at ICLR 2025

bloc97. Dynamically scaled rope further increases performance of long context llama with zero
finetuning, July 2023. URL https://www.reddit.com/r/LocalLLaMA/comments/
14mrgpr/dynamically_scaled_rope_further_increases/.

Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Quantizable transformers: Remov-
ing outliers by helping attention heads do nothing. Advances in Neural Information Processing
Systems, 36:75067–75096, 2023.

William Brandon, Mayank Mishra, Aniruddha Nrusimha, Rameswar Panda, and Jonathan Ragan
Kelly. Reducing transformer key-value cache size with cross-layer attention. arXiv preprint
arXiv:2405.12981, 2024.

Mikhail S Burtsev, Yuri Kuratov, Anton Peganov, and Grigory V Sapunov. Memory transformer.
arXiv preprint arXiv:2006.11527, 2020.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

CodeParrot. Codeparrot/github-code · datasets at hugging face. URL https://huggingface.
co/datasets/codeparrot/github-code.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060, 2024.

Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need
registers. arXiv preprint arXiv:2309.16588, 2023.

Soham De, Samuel L Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Al-
bert Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, et al. Griffin: Mix-
ing gated linear recurrences with local attention for efficient language models. arXiv preprint
arXiv:2402.19427, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Shizhe Diao, Rui Pan, Hanze Dong, Kashun Shum, Jipeng Zhang, Wei Xiong, and Tong Zhang. Lm-
flow: An extensible toolkit for finetuning and inference of large foundation models. In Proceed-
ings of the 2024 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume 3: System Demonstrations), pp. 116–127,
2024.

Charles Dickens. The Adventures of Oliver Twist. Ticknor and Fields, 1868.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
Sahoo, Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf.
arXiv preprint arXiv:2405.07863, 2024.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and Jie Tang.
Glm: General language model pretraining with autoregressive blank infilling. arXiv preprint
arXiv:2103.10360, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

12

https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://huggingface.co/datasets/codeparrot/github-code
https://huggingface.co/datasets/codeparrot/github-code

Published as a conference paper at ICLR 2025

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 12 2023. URL https://zenodo.org/records/
10256836.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 07 2024. URL https://zenodo.org/records/
12608602.

Paolo Glorioso, Quentin Anthony, Yury Tokpanov, James Whittington, Jonathan Pilault, Adam
Ibrahim, and Beren Millidge. Zamba: A compact 7b ssm hybrid model. arXiv preprint
arXiv:2405.16712, 2024.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David Atkinson,
Russell Authur, Khyathi Chandu, Arman Cohan, Jennifer Dumas, Yanai Elazar, Yuling Gu, Jack
Hessel, Tushar Khot, William Merrill, Jacob Morrison, Niklas Muennighoff, Aakanksha Naik,
Crystal Nam, Matthew E. Peters, Valentina Pyatkin, Abhilasha Ravichander, Dustin Schwenk,
Saurabh Shah, Will Smith, Nishant Subramani, Mitchell Wortsman, Pradeep Dasigi, Nathan Lam-
bert, Kyle Richardson, Jesse Dodge, Kyle Lo, Luca Soldaini, Noah A. Smith, and Hannaneh
Hajishirzi. Olmo: Accelerating the science of language models. Preprint, 2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021a.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré. Com-
bining recurrent, convolutional, and continuous-time models with linear state space layers. Ad-
vances in neural information processing systems, 34:572–585, 2021b.

Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang. Ppt: Pre-trained prompt tuning for few-shot
learning. arXiv preprint arXiv:2109.04332, 2021c.

Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-infinite:
Zero-shot extreme length generalization for large language models. In Proceedings of the 2024
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pp. 3991–4008, 2024.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language models
with scalable training strategies. arXiv preprint arXiv:2404.06395, 2024.

Huggingface. HuggingFaceTB/cosmo-1b. 2024. URL https://huggingface.co/
HuggingFaceTB/cosmo-1b.

Samy Jelassi, David Brandfonbrener, Sham M Kakade, and Eran Malach. Repeat after me: Trans-
formers are better than state space models at copying. arXiv preprint arXiv:2402.01032, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

13

https://zenodo.org/records/10256836
https://zenodo.org/records/10256836
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://huggingface.co/HuggingFaceTB/cosmo-1b
https://huggingface.co/HuggingFaceTB/cosmo-1b

Published as a conference paper at ICLR 2025

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik Bansal, Etash
Guha, Sedrick Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas Muennighoff, Reinhard Heckel,
Jean Mercat, Mayee Chen, Suchin Gururangan, Mitchell Wortsman, Alon Albalak, Yonatan Bit-
ton, Marianna Nezhurina, Amro Abbas, Cheng-Yu Hsieh, Dhruba Ghosh, Josh Gardner, Maciej
Kilian, Hanlin Zhang, Rulin Shao, Sarah Pratt, Sunny Sanyal, Gabriel Ilharco, Giannis Daras,
Kalyani Marathe, Aaron Gokaslan, Jieyu Zhang, Khyathi Chandu, Thao Nguyen, Igor Vasiljevic,
Sham Kakade, Shuran Song, Sujay Sanghavi, Fartash Faghri, Sewoong Oh, Luke Zettlemoyer,
Kyle Lo, Alaaeldin El-Nouby, Hadi Pouransari, Alexander Toshev, Stephanie Wang, Dirk Groen-
eveld, Luca Soldaini, Pang Wei Koh, Jenia Jitsev, Thomas Kollar, Alexandros G. Dimakis, Yair
Carmon, Achal Dave, Ludwig Schmidt, and Vaishaal Shankar. Datacomp-lm: In search of the
next generation of training sets for language models, 2024.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
Textbooks are all you need ii: phi-1.5 technical report. arXiv preprint arXiv:2309.05463, 2023.

Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez Safahi,
Shaked Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, et al. Jamba: A hybrid transformer-
mamba language model. arXiv preprint arXiv:2403.19887, 2024.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholamreza Haffari, and Bohan Zhuang. Mini-
cache: Kv cache compression in depth dimension for large language models. arXiv preprint
arXiv:2405.14366, 2024a.

Jiang Liu, Jialian Wu, Prakamya Mishra, Zicheng Liu, Sudhanshu Ranjan, Pratik Prabhanjan
Brahma, Yusheng Su, Gowtham Ramesh, Peng Sun, Zhe Li, Dong Li, Lu Tian, and Emad Bar-
soum. Amd-olmo: A series of 1b language models trained from scratch by amd on amd instinct™
mi250 gpus., October 2024b. URL https://huggingface.co/amd/AMD-OLMo.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024c.

Shih-yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In Forty-first
International Conference on Machine Learning, 2024d.

Xiaoran Liu, Hang Yan, Shuo Zhang, Chenxin An, Xipeng Qiu, and Dahua Lin. Scaling laws of
rope-based extrapolation. arXiv preprint arXiv:2310.05209, 2023.

Colin Lockard, Prashant Shiralkar, and Xin Luna Dong. OpenCeres: When open information extrac-
tion meets the semi-structured web. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.),
Proceedings of the 2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp.
3047–3056, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi:
10.18653/v1/N19-1309. URL https://aclanthology.org/N19-1309.

Ang Lv, Kaiyi Zhang, Yuhan Chen, Yulong Wang, Lifeng Liu, Ji-Rong Wen, Jian Xie, and Rui
Yan. Interpreting key mechanisms of factual recall in transformer-based language models. arXiv
preprint arXiv:2403.19521, 2024.

Sachin Mehta, Mohammad Hossein Sekhavat, Qingqing Cao, Maxwell Horton, Yanzi Jin, Chenfan
Sun, Seyed Iman Mirzadeh, Mahyar Najibi, Dmitry Belenko, Peter Zatloukal, et al. Openelm:
An efficient language model family with open training and inference framework. In Workshop on
Efficient Systems for Foundation Models II@ ICML2024, 2024.

14

https://huggingface.co/amd/AMD-OLMo
https://aclanthology.org/N19-1309

Published as a conference paper at ICLR 2025

Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. Talking heads: Understanding inter-layer com-
munication in transformer language models. arXiv preprint arXiv:2406.09519, 2024.

Evan Miller. Attention is off by one. URL https://www.evanmiller.org/
attention-is-off-by-one.html.

Evan Miller. Attention if off by one, 2023. URL https://www.evanmiller.org/
attention-is-off-by-one.html.

Jongho Park, Jaeseung Park, Zheyang Xiong, Nayoung Lee, Jaewoong Cho, Samet Oymak, Kang-
wook Lee, and Dimitris Papailiopoulos. Can mamba learn how to learn? a comparative study on
in-context learning tasks. arXiv preprint arXiv:2402.04248, 2024.

Guilherme Penedo, Hynek Kydlı́ček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the
finest text data at scale, 2024. URL https://arxiv.org/abs/2406.17557.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for
the transformer era. arXiv preprint arXiv:2305.13048, 2023a.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context window
extension of large language models. arXiv preprint arXiv:2309.00071, 2023b.

Jonathan Pilault, Mahan Fathi, Orhan Firat, Chris Pal, Pierre-Luc Bacon, and Ross Goroshin. Block-
state transformers. Advances in Neural Information Processing Systems, 36, 2024.

Zhen Qin, Dong Li, Weigao Sun, Weixuan Sun, Xuyang Shen, Xiaodong Han, Yunshen Wei, Bao-
hong Lv, Fei Yuan, Xiao Luo, et al. Scaling transnormer to 175 billion parameters. arXiv preprint
arXiv:2307.14995, 2023.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL http:
//jmlr.org/papers/v21/20-074.html.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Jian Su, Kevin Duh, and Xavier Carreras (eds.), Pro-
ceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp.
2383–2392, Austin, Texas, November 2016. Association for Computational Linguistics. doi:
10.18653/v1/D16-1264. URL https://aclanthology.org/D16-1264.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions
for squad, 2018.

Liliang Ren, Yang Liu, Yadong Lu, Yelong Shen, Chen Liang, and Weizhu Chen. Samba: Sim-
ple hybrid state space models for efficient unlimited context language modeling. arXiv preprint
arXiv:2406.07522, 2024.

Adam Roberts, Hyung Won Chung, Anselm Levskaya, Gaurav Mishra, James Bradbury, Daniel
Andor, Sharan Narang, Brian Lester, Colin Gaffney, Afroz Mohiuddin, Curtis Hawthorne, Aitor
Lewkowycz, Alex Salcianu, Marc van Zee, Jacob Austin, Sebastian Goodman, Livio Baldini
Soares, Haitang Hu, Sasha Tsvyashchenko, Aakanksha Chowdhery, Jasmijn Bastings, Jannis Bu-
lian, Xavier Garcia, Jianmo Ni, Andrew Chen, Kathleen Kenealy, Jonathan H. Clark, Stephan
Lee, Dan Garrette, James Lee-Thorp, Colin Raffel, Noam Shazeer, Marvin Ritter, Maarten
Bosma, Alexandre Passos, Jeremy Maitin-Shepard, Noah Fiedel, Mark Omernick, Brennan
Saeta, Ryan Sepassi, Alexander Spiridonov, Joshua Newlan, and Andrea Gesmundo. Scaling
up models and data with t5x and seqio. arXiv preprint arXiv:2203.17189, 2022. URL
https://arxiv.org/abs/2203.17189.

15

https://www.evanmiller.org/attention-is-off-by-one.html
https://www.evanmiller.org/attention-is-off-by-one.html
https://www.evanmiller.org/attention-is-off-by-one.html
https://www.evanmiller.org/attention-is-off-by-one.html
https://arxiv.org/abs/2406.17557
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/D16-1264
https://arxiv.org/abs/2203.17189

Published as a conference paper at ICLR 2025

George Saon, Ankit Gupta, and Xiaodong Cui. Diagonal state space augmented transformers for
speech recognition. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 1–5. IEEE, 2023.

Yikang Shen, Zhen Guo, Tianle Cai, and Zengyi Qin. Jetmoe: Reaching llama2 performance with
0.1 m dollars. arXiv preprint arXiv:2404.07413, 2024.

Philipp Singer, Pascal Pfeiffer, Yauhen Babakhin, Maximilian Jeblick, Nischay Dhankhar, Ga-
bor Fodor, and Sri Satish Ambati. H2o-danube-1.8 b technical report. arXiv preprint
arXiv:2401.16818, 2024.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models. arXiv
preprint arXiv:2307.08621, 2023.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma
2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118, 2024.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine Fourrier, Nathan Habib, et al. Zephyr: Direct
distillation of lm alignment. arXiv preprint arXiv:2310.16944, 2023.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Korthikanti, Tri Dao, Albert
Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak Narayanan, et al. An empirical study of mamba-
based language models. arXiv preprint arXiv:2406.07887, 2024.

Zekun Moore Wang, Zhongyuan Peng, Haoran Que, Jiaheng Liu, Wangchunshu Zhou, Yuhan Wu,
Hongcheng Guo, Ruitong Gan, Zehao Ni, Man Zhang, et al. Rolellm: Benchmarking, eliciting,
and enhancing role-playing abilities of large language models. arXiv preprint arXiv:2310.00746,
2023.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji, Tianjun Zhang, Shishir G. Patil, Ion Stoica,
and Joseph E. Gonzalez. Berkeley function calling leaderboard. https://gorilla.cs.
berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html,
2024.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. arXiv preprint arXiv:2312.06635, 2023.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transform-
ers with the delta rule over sequence length. arXiv preprint arXiv:2406.06484, 2024.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Hao, Xu Han, Zhen
Thai, Shuo Wang, Zhiyuan Liu, et al. Inf bench: Extending long context evaluation beyond
100k tokens. In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 15262–15277, 2024.

Itamar Zimerman, Ameen Ali, and Lior Wolf. A unified implicit attention formulation for gated-
linear recurrent sequence models. arXiv preprint arXiv:2405.16504, 2024.

16

https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html

Published as a conference paper at ICLR 2025

A EXTENSIVE BENCHMARK FOR MORE HYMBA MODEL VARIANTS

A.1 COMPARISON WITH SOTA TINY LMS AT 350M AND 125M SCALES

Besides our 1.5B model, we also evaluate the 350M and 125M Hymba models on a diverse set
of benchmarks in Tab. 5 and Tab. 6, respectively. Consistent with the results of our 1.5B model,
Hymba-350M/125M models outperform the SOTA tiny LMs across most of tasks and achieve the
best average score. This indicates that our Hymba scales effectively across different model sizes.

Table 5: Benchmark Hymba with SOTA tiny LMs, all of which have fewer than 200M parameters.
All results are obtained through HUGGINGFACE/LIGHTEVAL, following (Allal et al., 2024b).

Model #Params. MMLU
(cloze) ↑

ARC
(c+e) ↑ PIQA ↑ Hella. ↑ OBQA ↑ Wino. ↑ Avg. ↑

Mamba-130m-hf 130M 27.41 33.01 63.33 33.86 30.40 51.54 42.43
Cerebras-GPT 111M 25.56 27.75 58.16 26.32 25.40 50.28 37.58
GPT-neo 125M 27.25 31.30 62.35 29.68 29.20 51.54 40.81
LaMini-GPT 124M 26.47 33.26 62.89 30.05 27.80 50.75 40.95
Opt 125M 25.67 31.25 61.97 31.04 29.00 53.20 41.29
GPT2 137M 26.29 31.09 62.51 29.76 29.40 49.72 40.50
Pythia 160M 26.68 31.92 61.64 29.55 27.80 49.49 40.08
MobileLM 125M - 35.51 65.30 38.90 39.50 53.10 46.46
SmolLM 135M 30.23 43.99 69.60 42.30 33.60 52.70 48.44

Hymba 125M 31.12 44.95 68.50 45.54 35.52 52.25 49.35

Table 6: Benchmark Hymba with SOTA tiny LMs, all of which have fewer than 400M parameters.
All results are obtained through HUGGINGFACE/LIGHTEVAL, following (Allal et al., 2024b).

Model #Params. MMLU
(cloze) ↑

ARC
(c+e) ↑ PIQA ↑ Hella. ↑ OBQA ↑Wino. ↑ Avg. ↑

Bloom 560M 27.49 32.86 65.13 35.98 28.80 51.70 42.89
Cerebras-GPT-256M 256M 25.91 29.69 61.37 28.44 28.00 51.62 39.82
Cerebras-GPT-590M 590M 26.93 32.40 62.84 31.99 28.40 50.12 41.15
Opt 350M 26.57 31.94 64.36 36.09 27.80 52.57 42.55
Pythia 410M 28.94 35.05 66.92 39.21 28.40 52.80 44.48
GPT2-medium 380M 27.77 34.30 66.38 37.06 31.20 49.49 43.69
MobileLM 350M - 43.65 68.60 49.60 40.00 57.60 51.89
SmolLM 360M 34.17 51.10 72.00 53.80 37.20 53.70 53.56

Hymba 350M 34.54 52.46 72.91 55.08 38.40 57.85 55.34

A.2 EVALUATING HYMBA-1.5B TRAINED ON PUBLIC DATA ONLY

We have also trained our Hymba-1.5B model exclusively on public data and evaluated its perfor-
mance. Specifically, following the training settings in Sec. 2.4, we train Hymba-1.5B on DCLM-
Baseline-1.0 (Li et al., 2024) for 1T tokens in the first phase and on SmolLM-Corpus (Ben Allal
et al., 2024) for 500B tokens in the second phase, keeping all other settings the same. The results
are summarized in Tab. 7, where only the most competitive baselines from Tab. 2 are included.
We observe that (1) Hymba-1.5B trained exclusively on public data only still surpasses all base-
line small LMs in terms of average accuracy; and (2) Hymba-1.5B trained on public data primarily
suffers from performance drops on 5-shot MMLU compared to the version trained on all data, in-
cluding our proprietary dataset. This suggests that the public data used may lack sufficient factual
knowledge, which is supplemented by our proprietary one.

17

Published as a conference paper at ICLR 2025

Table 7: Benchmark Hymba-1.5B trained with all data and public data only against SOTA small
LMs. All models have fewer than 2B parameters, except for Llama-3.2-3B, which is marked in gray.
The settings follow Tab. 2 in our main paper and we only include the most competitive baselines
here. Hymba (Public Data) refers to our model trained exclusively on public datasets, without
using our proprietary high-quality dataset.

Model #Params. Train Token/s Cache MMLU ARC-E ARC-C PIQA Wino. Hella. SQuAD-C Avg.
tokens (MB) 5-shot 0-shot 0-shot 0-shot 0-shot 0-shot 1-shot

Phi-1.5 1.3B 0.15T 241 1573 42.56 76.18 44.71 76.56 72.85 48.00 30.09 55.85
h2o-danube2 1.8B 2T 271 492 40.05 70.66 33.19 76.01 66.93 53.70 49.03 55.65
Qwen2.5 1.5B 18T 469 229 60.92 75.51 41.21 75.79 63.38 50.20 49.53 59.51
SmolLM2 1.7B 11T 238 1573 50.29 77.78 44.71 77.09 66.38 53.55 50.50 60.04
Llama-3.2-3B 3.0B 9T 191 918 56.03 74.54 42.32 76.66 69.85 55.29 43.46 59.74

Hymba 1.5B 1.5T 664 79 51.19 76.94 45.90 77.31 66.61 53.55 55.93 61.06
Hymba (Public Data) 1.5B 1.5T 664 79 44.31 78.58 47.01 77.53 64.56 53.89 59.82 60.81

Table 8: Apple-to-apple comparison of our Hymba, pure Mamba (Gu & Dao, 2023), Mamba with
FFN, Llama3 (Dubey et al., 2024) style, and Samba-style (Mamba-FFN-Attn-FFN) (Ren et al.,
2024) architectures. All models have 300M parameters and are trained for 100B tokens from
FineWeb dataset (Penedo et al., 2024) with exactly the same training recipes. All results are ob-
tained through LM-EVALUATION-HARNESS (Gao et al., 2023). The best and second best results are
highlighted in bold and underline, respectively.

Task Type
Arch. Style

(300M) Mamba Mamba
w/ FFN Llama3 Samba SMA Hymba

Language Wiki. ppl. ↓ 30.78 33.41 30.04 31.41 29.75 28.53
LMB. ppl. ↓ 19.95 23.64 20.53 19.75 20.85 15.45

Recall
Intensive

SQuAD-C ↑ 21.31 17.56 22.10 39.88 44.44 45.24
SWDE ↑ 17.14 13.10 57.86 22.14 55.48 58.33
Avg. ↑ 19.23 15.33 39.98 31.01 49.96 51.79

Common-
sense

Reasoning
and

Question-
answering

Lambda ↑ 38.95 36.37 40.15 40.59 40.40 44.67
PIQA ↑ 69.64 69.26 70.29 69.86 69.80 70.73
ARC-C ↑ 24.91 25.00 24.83 25.76 25.96 26.28
ARC-E ↑ 50.67 50.34 50.24 49.79 49.62 53.20
Hella. ↑ 44.95 44.08 45.69 46.45 46.42 48.23
Wino. ↑ 51.70 51.78 52.64 52.49 52.72 53.35
TruthfulQA ↑ 23.86 26.23 28.97 27.27 26.47 27.87
SIQA ↑ 39.20 39.53 39.66 39.92 41.25 39.92
Avg. 42.98 42.82 44.08 44.02 44.08 45.53

A.3 APPLE-TO-APPLE COMPARISON WITH OTHER ARCHITECTURES AT 300M SCALE

In addition to the apple-to-apple architecture comparison under the same settings with a 1B
model size in Sec. 3.3 of our main paper, we also validate the superiority of our architecture at
the 300M size. Specifically, we train different 300M model architectures on 100B tokens from
FineWeb (Penedo et al., 2024). We set peak learning rates to 5e-4 and use warmup and cosine decay
scheduler. The training sequence length is set to 1K. For models with sliding window attention,
we set the sliding window size as 256. Since Samba (Ren et al., 2024) only has local attention,
we further build a variant of Samba where we replace its first, last, and middle local attention with
global attention to ensure a fair comparison with our model. We call this variant Sequential-Mix-
attention (SMA). As shown in Tab. 8, Hymba achieves the best performance in almost all tasks
(with a second-best result in one task), yielding an average accuracy boost of +1.45% compared to
the strongest baseline.

18

Published as a conference paper at ICLR 2025

Table 9: Benchmark Hymba-1.5B and other models on real-world long-context tasks from Long-
Bench (Bai et al., 2023).

Model GovReport MultiNews QMSum TriviaQA SAMSum TREC LSHT
(Rouge-L) (Rouge-L) (Rouge-L) (F1) (Rouge-L) (Acc) (Acc)

SmolLM-1.7B 4.77 12.79 8.55 1.97 3.23 1.00 0.00
h2o-danube-1.8B 12.41 14.28 17.01 68.24 11.46 56.00 10.50
Hymba-1.5B 13.95 19.24 17.29 76.82 35.21 56.22 11.00

B PERFORMANCE ON REAL-WORLD LONG-CONTEXT TASKS

We evaluate Hymba-1.5B on a broader range of long-context tasks, including summarization and
few-shot learning tasks from LongBench (Bai et al., 2023). Specifically, we finetune Hymba-1.5B
on an 8k context length using 50B tokens from the SmolLM corpus and benchmark it against the
best-performing models: h2o-danube2-1.8B (trained on a 16k context length) and SmolLM-1.7B
(trained on a 2k context length). We evaluate all models on three English summarization tasks and
four few-shot learning tasks from LongBench.

As shown in Tab. 9, Hymba achieves the best performance across both task types, even surpassing
h2o-danube2-1.8B, which has a much larger KV cache size and was trained on a longer context
length. Additionally, we note that Hymba’s long-context performance can be further improved by
finetuning on longer sequences, which will be a focus in future releases.

Table 10: The comparison between DoRA-finetuned Hymba and baselines on RoleBench. All base-
line results are from Wang et al. (2023).

Model #Params Instruction Role
Generalization Generalization

Llama-7B 7B 19.2 19.3
Aplaca-7B 7B 25.6 24.5
Vicuna-13B 13B 25.0 24.3

Llama2-7B-chat 7B 18.8 20.5
RoleLlama-7B 7B 35.5 33.5

Hymba-DoRA 1.5B 40.0 37.9

C DORA-FINETUNING OF HYMBA ON ROLE-PLAY TASKS

We conduct experiments to evaluate whether Hymba is compatible with DoRA (Liu et al., 2024d), a
parameter-efficient finetuning method that updates pretrained models using a minimal set of parame-
ters. This approach is especially well-suited for on-device finetuning scenarios where computational
resources are constrained. Additionally, DoRA significantly reduces storage requirements for saving
multiple downstream models, as it only requires storing the finetuned DoRA parameters, which con-
stitute less than 10% of the original model’s total parameters. Specifically, we further finetune the
instruction-tuned Hymba on RoleBench (Wang et al., 2023) using DoRA to enhance its role-playing
capabilities. The training set of RoleBench is used for training, and the model is evaluated on two
sub-tasks: instruction generalization (Inst. Gene.) and role generalization (Role. Gene.).

As shown in the Tab. 10, our Hymba-DoRA significantly outperforms larger models. For instance,
DoRA-finetuned Hymba achieves scores of 40.0% / 37.9% on instruction generalization/role gener-
alization, outperforming RoleLlama-7B (Wang et al., 2023) by 4.5%, and 4.4% respectively. This
indicates the strong generalization of our model and the effectiveness of using parameter-efficient
finetuning techniques to further enhance its performance.

19

Published as a conference paper at ICLR 2025

Table 11: Ablation study of the design choices of Hymba. The design finally adopted by Hymba is
highlighted in bold. Specifically, the task lists are the same as those in Tab. 3. The throughput is
measured with a 8k sequence length and a 128 batch size on an NVIDIA A100 GPU. The cache size
is measured with a 8k sequence length, assuming the FP16 format.

Design
Factor Configuration Param. Ratio

Attn:Mamba
Avg.

(General) ↑
Avg.

(Recall) ↑
Throughput
(Token/s) ↑

Cache
(MB) ↓

Attn/Mamba
Ratio

1) Mamba Heads Only 0:1 42.98 19.23 4720.8 1.87
2) Mamba + 4 Attn Heads 1:8.48 44.20 44.65 3278.1 99.09
3) Mamba + 8 Attn Heads 1:4.24 44.95 52.53 1816.5 197.39
4) Mamba + 16 Attn Heads 1:2.12 45.08 56.46 656.6 394.00
5) 4) + GQA 1:3.64 45.19 49.90 876.7 148.24
6) Attn Heads Only (Llama) 1:0 44.08 39.98 721.1 414.72

Sliding
Window

7) 5) + All SWA’s 1:3.64 44.42 29.78 4485.09 5.51
8) 5) + SWA’s + Full Attn 1:3.64 44.56 48.79 2399.7 41.19
9) 8) + Cross-layer KV sharing 1:5.23 45.16 48.04 2756.5 39.42

10) 6) + Same KV compression 1:0 43.60 28.18 3710.0 28.98

Fusion 11) 9) Replace Mean by Concat 1: 5.82 44.56 48.94 1413.9 39.42

Meta
Tokens

12) 1) + Meta Tokens 0:1 44.01 19.34 4712.8 1.87
13) 9) + Meta Tokens 1:5.23 45.53 51.79 2695.8 40.01

D ABLATION STUDIES OF OUR HYMBA ARCHITECTURE

We perform further ablation studies and analyses of the design factors in our Hymba.

Parallel vs. sequential fusion. We compare the hybrid-head module with a sequential counterpart,
which interleaves local attention and Mamba layers as adopted by (Ren et al., 2024), by calculating
the models’ effective receptive field (ERF) and their overall cache size. All the compared models
have the same parameter size and are training from scratch using exactly the same training recipe.
ERF is an empirical measure of the averaged distance among tokens that allows effective information
propagation (Ben-Kish et al., 2024; Dosovitskiy, 2020) defined as the following,

ERF ≈
∑
n≤N

∑
h≤H

∑
s≤S

2Mh (S, s) · (S − s) · (N − n+ 1)

HN (N + 1)
, (5)

where S is index of the last token in the sequence, N is index of the last layer in the model, and
Mh(S, s) is the normalized attention score between token s and the last token in head h.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Cache Size (MB) 1e7

102

3 × 101

4 × 101

6 × 101

Ef
fe

ct
iv

e
Re

ce
pt

iv
e

Fi
el

d Parallel (Ours)

Sequential (Samba)

Llama3

Mamba

Figure 8: Visualize the ERF and cache
size trade-off.

As shown in Fig. 8, we observe that (1) in line with
common intuitions, Llama3 exhibits a notably larger ERF
compared to Mamba due to its higher recall resolution, al-
beit at the cost of a larger cache size; (2) our hybrid-head
structure demonstrates the best ERF across the four de-
signs, with an order of magnitude larger ERF while main-
taining a cache size comparable to the sequential struc-
ture. This suggests that the parallel structure can better
leverage the limited cache size to capture longer and more
complex relationships among tokens compared to the se-
quential one. The differences in ERF are also reflected in
task accuracy: According to Tab. 1, the hybrid-head de-
sign (Tab. 1 (B)) improves commonsense reasoning and
recall accuracy by +1.08% and 4.74%, respectively, over
the sequential design (Tab. 1 (A)). Based on this bench-
marking and analysis, we adopt the hybrid-head module as our basic building block.

The ratio of SSMs and attention in hybrid heads. To determine the proper number of attention
heads, we start with a Mamba model and gradually replace Mamba’s hidden dimensions with atten-
tion heads, maintaining the same overall model size. As shown in Tab. 11 (1)∼ (4), we observe that
model performance improves as the ratio of attention parameters increases and gradually saturates
when the parameter ratio of attention to Mamba reaches 1:2.12. We stop introducing more attention
heads, considering that adding more would bring increased memory overhead.

20

Published as a conference paper at ICLR 2025

Figure 9: Left: Visualization of output magnitudes of attention and SSM heads. SSM heads consis-
tently have higher output magnitude than attention heads due to their structure. Right: Visualization
of attention and SSM heads’ gate magnitudes. Through model learning, the relative magnitudes of
attention and SSM gates vary across different layers.

There are two interesting observations: (1) Although the attention-only model outperforms the
Mamba-only model, the hybrid model with both attention and Mamba heads achieves the best per-
formance; (2) with further KV cache optimization, the ratio of attention heads decreases further.
In our final model, attention heads occupy no more than 1/5 of the Mamba heads, yet significantly
boost both recall and commonsense reasoning compared to the vanilla Mamba. This suggests that
the hybrid model leverages the strengths and diversity of both attention and SSM heads, achieving a
better trade-off between efficiency and performance.

The hybrid-head fusion strategy. We have explored two straightforward methods to fuse the out-
puts of attention and SSM heads: concatenation and mean. For concatenation, we combine the
outputs of all heads and use a linear layer to project the concatenated output to the final output di-
mension. However, the parameter size of the linear layer increases with both the number of heads
and the head dimensions. Additionally, based on the empirical comparison between Tab. 11 (9) and
(11), the performance of concatenation fusion is not better than the simple mean fusion. Therefore,
we adopt the mean fusion strategy in our final design.

Impact of KV cache optimization. After applying a series of KV cache optimization techniques,
moving from Tab. 11 (5) to Tab. 11 (9), we observe that our Hymba maintains comparable recall
and commonsense reasoning accuracy while being 2.74× faster. In contrast, applying the same KV
cache optimization to a pure Transformer, as seen in the comparison between Tab. 11 (6) and (10),
results in a recall accuracy drop of 10% or more and degraded commonsense reasoning accuracy.
This supports our analysis in Sec. 2.2, showing that the presence of SSM heads in our hybrid-head
module has already summarized the global context, allowing us to more aggressively replace global
full attention with local attention in our hybrid model.

E HEAD IMPORTANCE ANALYSIS

Setup. To understand how hybrid heads contribute to the final task performance, we zero out the
attention or SSM heads in each layer by setting β1 or β2 in Eq. 3 to 0 and record the final accuracy.
We consider four datasets, which are presented in Fig. 10, and the task performance is measured
using 1000 samples from each task, evaluated with lm-evaluation-harness (Gao et al., 2023) in a
zero-shot setting.

Observations. As shown in Fig. 10, we observe that (1) the relative importance of attention/SSM
heads in the same layer, indicated by the change in task performance before and after being removed,
may vary across different tasks. In other words, the relative importance of attention/SSM heads in
the same layer is input-adaptive, indicating that different types of heads learn to serve different roles
and undertake different responsibilities when handling various inputs; (2) The SSM head in the first
layer is critical for language modeling and removing it causes a substantial increase in PPL or a
substantial drop in accuracy (to random guess levels). Generally, removing one attention/SSM head
results in a 0.46%/1.2% reduction in accuracy averaged across all layers and tasks, respectively.

21

Published as a conference paper at ICLR 2025

(b)

(c)

(d)

(a)

Figure 10: Visualize the task performance difference across three tasks after removing the Attention
or SSM heads in each layer. The task performance is measured using 1000 samples from each task.
Note that removing critical modules in specific layers causes a significant gap compared to others,
making their bars fall outside the box. For such layers, we annotate the task performance with text.

F HYMBA ATTENTION MAP VISUALIZATION

In this section, we visualize the actual attention map of Hymba and compare it with those of the
Llama and Jamba (Lieber et al., 2024) models. Specifically, we categorize elements in the attention

22

Published as a conference paper at ICLR 2025

6%

33% 0%

62%

56%

25%

67%

37%

71%

40%

69%

1%

29%

4%

0 0.2 0.4 0.6 0.8 1

Meta BOS Cross Self

Hymba – state-space heads:

Hymba – sliding window attention:

Meta

BOS

Cross

Llama3.2-3BState-Space HeadSliding Window Att. head

Hymba-1.5B (parallel fusion)

State-SpaceAtt. head

Jamba1.5-50B (sequential fusion)

Distribution of attention scores

62%

56%

37%

71%

40%

1%

29%

4%

0 0.2 0.4 0.6 0.8 1

Llama3.2-3B:

Jamba – attention:

Jamba – state-space model:

Figure 11: Sum of attention score from different categories (i.e., ‘Meta’, ‘BOS’, ‘Self’, ‘Cross’) in
Llama-3.2-3B, Jamba, and Hymba-1.5B.

map into four types: (1) ‘Meta’: attention scores from all real tokens to meta tokens. This category
reflects the model’s preference for attending to meta tokens. In attention map, they are usually
located in the first few columns (e.g., 128 for Hymba) if a model has meta tokens. (2) ‘BOS’:
attention scores from all real tokens to the beginning-of-sequence token. In the attention map, they
are usually located in the first column right after the meta tokens. (3) ‘Self’: attention scores from
all real tokens to themselves. In the attention map, they are usually located in the diagonal line. (4)
‘Cross’: attention scores from all real tokens to other real tokens. In the attention map, they are
usually located in the off-diagonal area.

In Fig. 11, we visualize the real attention maps from Llama-3.2-3B and Hymba-1.5B on texts from
Oliver Twist Chapter 29 (Dickens, 1868) and sum up the attention scores from different categories.
The summed scores are normalized by the context length. For SSM heads, we follow (Ben-Kish
et al., 2024) and (Zimerman et al., 2024) to calculate their attention maps and normalize the attention
maps to ensure each row sums to 1.

We observe that the attention pattern of Hymba is significantly different from the vanilla Transform-
ers. In vanilla Transformers, attention scores are more concentrated on ‘BOS’, which is consistent

23

Published as a conference paper at ICLR 2025

Figure 12: Averaged attention scores received by the meta tokens in the last layer of Hymba-
1.5B model. Prompts of ‘Article’, ‘Math’ and ‘Code’ are from SQuAD (Rajpurkar et al., 2016),
GSM8K (Cobbe et al., 2021), and GitHub-Code (CodeParrot) datasets, respectively.

with the findings in (Xiao et al., 2023). In addition, vanilla Transformers also have a higher pro-
portion of ‘Self’ attention scores. In Hymba, meta tokens, attention heads and SSM heads work
complimentary to each other, leading to a more balanced distribution of attention scores across dif-
ferent types of tokens. Specifically, meta tokens offload the attention scores from ‘BOS’, allowing
the model to focus more on the real tokens. SSM heads summarize the global context, which fo-
cus more on current tokens (i.e., ‘Self’ attention scores). Attention heads, on the other hand, pay
less attention to ‘Self’ and ‘BOS’ tokens, and more attention to other tokens (i.e., ‘Cross’ attention
scores). This suggests that the hybrid-head design of Hymba can effectively balance the attention
distribution across different types of tokens, potentially leading to better performance.

G META TOKENS: MORE ANALYSIS AND VISUALIZATION

Interpretation from the memory aspect. Similar to the analogy in Sec. 2.1, the meta tokens
participate in the attention and SSM calculations of all subsequent tokens, analogous to metamemory

24

Published as a conference paper at ICLR 2025

(a) (b)

Figure 13: Visualize the layer-wise attention map entropy of (a) attention heads, and (b) SSM heads
with and without meta tokens.

in the human brain, which helps recognize where to locate needed information in other memories.
To see this, we visualize the averaged attention scores received by the meta tokens in Fig. 12 for a
Hymba-1.5B model. We observe that when the prompts are from different domains (e.g., article,
math, and codes), different meta tokens are activated. This suggests that different meta tokens
encapsulate different world knowledge, which can be leveraged to guide the attention mechanism to
focus on relevant information.

Relationship with prior works. Learnable tokens have also been leveraged in previous transformer-
based models. Previous prompt tuning works (Lester et al., 2021; Gu et al., 2021c) prepend learn-
able prompts while keeping the model weights frozen during the task-specific tuning stage, aiming
to adapt a pretrained LM to downstream tasks in a parameter-efficient manner. (Burtsev et al.,
2020) introduces both learnable tokens and corresponding memory update modules to augment the
memory mechanism in transformers. (Darcet et al., 2023) appends a set of learnable tokens called
registers to the image patches of vision transformers (Dosovitskiy, 2020) to store global information
and improve visual recognition. Our method integrates ideas from all these works in a more flexible
manner. It jointly optimizes meta tokens with model weights during pretraining, remains compat-
ible with SWA heads and other attention types or SSMs, and converts meta tokens into KV-cache
initialization during inference without modifying the architecture.

Meta tokens reduce attention map entropy. We visualize the entropy of the attention map for
both the attention and SSM heads (Ali et al., 2024; Ben-Kish et al., 2024) before and after intro-
ducing meta tokens. As introduced in Sec. 2.3 of our main paper, the attention map entropy reflects
the distribution of attention scores across tokens, where lower entropy indicates stronger retrieval
effects (Ren et al., 2024), as the attention scores are concentrated around a smaller subset of tokens.

As shown in Fig. 13, we observe that after introducing meta tokens, both the attention and SSM
heads exhibit an overall reduction in entropy. Specifically, entropy is significantly reduced in all
attention heads and in 10 out of 12 layers of the SSM heads. This suggests that meta tokens can
reduce attention map entropy, potentially helping both the attention and SSM heads focus more on
a subset of important tokens that contribute most to task performance, as indicated by the boosted
performance in Tab. 11.

Table 12: Ablation study on the number of meta tokens.

Model (300M) Wiki. ppl. LMB. ppl. Lambda PIQA ARC-C ARC-E Hella. Wino. TruthfulQA SIQA Avg.

Hymba w/o meta tokens 28.99 18.68 41.26 71.55 24.66 51.43 47.48 55.17 29.21 40.53 45.16
Hymba w/ 128 meta tokens 28.53 15.45 44.67 70.73 26.28 53.20 48.24 53.35 27.88 39.92 45.53
Hymba w/ 256 meta tokens 28.85 16.20 43.43 72.47 26.37 51.68 48.33 53.75 28.42 40.07 45.57

Number of meta tokens. To better understand the relationship between the number of meta tokens
and the performance of the model, we further compare the performance of Hymba-300M with 0,
128, and 256 meta tokens, trained on 100B tokens from Fineweb (Penedo et al., 2024), following
the apple-to-apple comparison in Tab. 8. As shown in the Tab. 12, we observe that (1) compared
to Hymba without meta tokens, adding meta tokens consistently boosts the average accuracy and
reduces the language model perplexity; (2) increasing the number of meta tokens from 128 to 256
does not result in a notable boost in average accuracy. As such, we adopt 128 meta tokens in Hymba.

25

Published as a conference paper at ICLR 2025

Table 13: Architecture details of Hymba models of different size.
Attribute 125M 350M 1.5B
Blocks 24 32 32
Hidden Size 512 768 1600
SSM State 16 16 16
Attn. Heads 8 12 25
Query Groups 4 4 5
Num. Full Attn 3 3 3
Window Size 1024 1024 1024
MLP Hidden 1664 2432 5504
Tie Embedding True True True
Parameters 125M 350M 1.52B

H PRETRAINING AND POST-TRAINING IMPLEMENTATION DETAILS

Pretraining settings. We train Hymba-125M/350M/1.5B models on 1.5T tokens, using a mix of
DCLM-Baseline-1.0 (Li et al., 2024), SmolLM-Corpus (Ben Allal et al., 2024), and an internal
high-quality dataset for 1T, 250B, and 50B tokens, respectively. We adopt the WSD learning rate
scheduler (Hu et al., 2024) with three phases: (1) warmup steps set to 1% of the total steps, (2) a
stable phase maintaining the peak learning rate of 3e-3, and (3) a decay phase reducing the learning
rate to 1e-5 over 20% of the total steps, while gradually annealing to smaller, higher-quality datasets
like SmolLM-Corpus and the internal dataset. We use a sequence length of 2K and a batch size
of 2M tokens throughout the training process, which is conducted on 128 NVIDIA A100 GPUs.
Details of Hymba-125M/350M/1.5B models are shown in Tab. 13. We also show the training curves
of Hymba-1.5B in Fig. 14.

Implementation details of post-training. We post-train our 1.5B base model with a two-stage
strategy: the first full-finetuning (FFT) stage and another DPO (Rafailov et al., 2024) training. The
learning rates are 5e-5, and 3e-6 for FFT and DPO, respectively. Both FFT and DPO training are
carried out for one epoch with a cosine scheduler. The global batch size is set to 1024. To accelerate
training, we follow the training recipe (Tunstall et al., 2023; Diao et al., 2024; Dong et al., 2024) to
pack the samples and use a block size of 2048. We implement the finetuning and DPO training with
the LMFlow toolkit (Diao et al., 2024). In addition to full-finetuning, we also leverage Dora (Liu
et al., 2024d) to do parameter-efficient finetuning.

Baselines and downstream tasks. We compare Hymba-1.5B-Instruct with competitive
lightweight instruction-tuned models, including Llama-3.2-1B-Instruct (AI, 2024c), OpenELM-
1-1B-Instruct (Mehta et al., 2024), Qwen2.5-1.5B-Instruct (Team, 2024), and SmolLM-1.7B-
Instruct (Allal et al., 2024b). We evaluate these instruction-tuned models on MMLU (5-shot),
IFEval, GSM8K (5-shot), GPQA (0-shot), and the Berkeley Function-Calling Leaderboard v2 (BF-
CLv2) (Yan et al., 2024). For BFCLv2, we use the official code from the Gorilla project (Yan et al.,
2024) and assess the BFCLv2-live category, which includes live simple, live multiple, live parallel,
live parallel multiple, and live relevance. We exclude live irrelevance since we found that some

Figure 14: Training curves of Hymba-1.5B.

26

Published as a conference paper at ICLR 2025

baseline models without function-calling capabilities achieved high scores in this category (where
function calling is not required) but performed poorly on other tasks. As a result, these models at-
tained high overall accuracy despite being ineffective for function calling. For the remaining tasks,
we use the lm-evaluation-harness (Gao et al., 2024) for evaluation.

Implementation of Hymba’s forward process. We provide illustrative pseudocode for Hymba’s
forward process in Alg. 1.

Algorithm 1: Forward Process of Hymba-1.5B

Input: X = [x1, . . . , xn], where X ∈ R(n,d) are text input tokens.
Model Configurations:

• Number of blocks: 32
• Block indices with global attention: [1, 16, 32] // Three global attention

• KV reusing groups: [2, 3], [4, 5], [6, 7], [8, 9], [10, 11], [12, 13], [14, 15], [17, 18, 19],
[20, 21], [22, 23], [24, 25], [26, 27], [28, 29], [30, 31] // share KV per group

Model Forward:
X̃0 = [R,X] = [r1, . . . , rm, x1, . . . , xn] // Prepend n meta tokens R ∈ R(m,d)

for block-i in [1, . . . , 32] do
if block-i in [1, 16, 32] then

X̃i = HYMBABLOCK-GA(X̃i−1) // global attention
else

if block-i is the first block in its KV reusing group then
X̃i,KV i = HYMBABLOCK-SWA(X̃i−1) // sliding window attention

else
Retrieve KV cache from the previous layer: KV i−1

X̃i = HYMBABLOCK-SWA(X̃i−1,KV i−1) // reuse KV
end

end
end

27

	Introduction
	Hymba: The Proposed Hybrid-Head Architecture
	A Fused Hybrid-Head Module
	KV Cache Optimization
	Meta Tokens
	Hymba Model Family

	Experimental Results
	Experiment Settings
	Benchmark with SOTA Small LMs
	Benchmark Different Architectures Under The Same Setting
	Benchmark Instruction-tuned Models

	Related Works
	Conclusion
	Acknowledgments
	Extensive Benchmark for More Hymba Model Variants
	Comparison with SOTA Tiny LMs at 350M and 125M Scales
	Evaluating Hymba-1.5B Trained on Public Data Only
	Apple-to-Apple Comparison with Other Architectures at 300M Scale

	Performance on Real-world Long-context Tasks
	DoRA-Finetuning of Hymba on Role-play Tasks
	Ablation Studies of Our Hymba Architecture
	Head Importance Analysis
	Hymba Attention Map Visualization
	Meta Tokens: More Analysis and Visualization
	Pretraining and Post-training Implementation Details

