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A Discussion1

We in this paper propose ALIGN, a unified framework for multi-modal prompt tuning, where multi-2

mode modality-specific prompts are learned via the token-level alignment strategy. Moving beyond3

the single-model methods, which focus on textual prompt tuning or visual prompt tuning, ALIGN4

allows one to learn textual and visual prompts simultaneously, resulting in better representations in5

the shared vision-text embedding space. Compared to recent multi-modal methods, such as UPT [1]6

and MaPLe [2], ALIGN prefers to learn multi-mode prompts to capture diverse class attributes7

and develop the token-level alignment for fine-grained comparisons. This provides ALIGN with8

an efficient tool to calculate the similarity between prompts. We find that many previous works9

can be merged into our ALIGN framework with special hypermeter settings. We summarize this10

relationship at Table. 1. The N/A in Table. 1 means that PLOT calculates the similarity between the11

prompt-level label embeddings and the visual patch embeddings, which is not the case in ALIGN,12

where we calculate the similarity of prompt-level OT between textual label embeddings and visual13

image embeddings. and calculate the similarity of token-level OT between token embeddings and14

patch embeddings.15

Table 1: Most previous works can be merged into our ALIGN framework. M : Number of visual prompts. N :
Number of textual prompts. β: Weight of token-level OT in Eq.6 in the manuscript.

Methods Type M N β
CoOp [3] Textal Prompt Tuning 0 1 0
VPT [4] Visual Prompt Tuning 1 0 0

PLOT [5] Textual Prompt Tuning 0 ≥ 1 N/A
UPT [1] Multi-modal Prompt Tuning 1 1 0

MaPLe [2] Multi-modal Prompt Tuning 1 1 0
ALIGN(Ours) Multi-modal Prompt Tuning ≥ 0 ≥ 0 ≥ 0

B Data statistics and Hyperparameter setting16

We thoroughly evaluate our proposed ALIGN framework across four distinct tasks: few-shot recog-17

nition, base-to-new generalization, cross-dataset transfer, and cross-domain generalization. These18

extensive experiments are conducted on a diverse set of fifty commonly used vision datasets, covering19

various contexts. These datasets include ImageNet [6] and Caltech101 [7] for generic image classifi-20

cation, OxfordPets [8], StanfordCars [9], Flowers102 [10], Food101 [11], and FGVCAircraft [12] for21

fine-grained image recognition, SUN397 [13] for scene recognition, UCF101 [14] for action recogni-22

tion, DTD [15] for texture classification, and EuroSAT [16] for satellite imagery recognition. In the23

case of the cross-domain generalization task, our model is trained on ImageNet and subsequently24

tested on ImageNetV2 [17], ImageNet-Sketch [18], ImageNet-A [19], and ImageNet-R [20]. We25

summarize data statistics at Table. B. 126
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The evaluation pipeline for each task follows the approach employed by previous works [3, 2]. The27

specific details of this pipeline are summarized below:28

Few-shot Recognition. To evaluate the efficiency of the proposed ALIGN on the few-shot case,29

we follow CoOp [3], and first partition the dataset into base and novel sets. Those two sets share the30

same categories. Models are trained on the base set using a variety of shot settings, including 1, 2, 4,31

8, and 16 shots per class, and then tested on the full novel set. The accuracy scores are reported to32

compare the performance. The training epoch is set as 10 for 1, 2, and 4 shots and 40 for 8 and 1633

shots.34

Base-to-New Generalization. To show the Generalizability of unseen categories, we first divide35

the dataset into two separate subsets: the base subset and the new subset. Importantly, these subsets36

do not share the same categories. The base subset contains a specific set of categories used for37

model training, while the new subset consists of previously unseen categories that the model has not38

been exposed to during training. Besides reporting the accuracy score on base and novel sets, we39

also calculate the harmonic mean H = (2× Base × New)/(Base + New), which acts as a trade-off40

between Base and New, providing a comprehensive measure of overall model performance. The41

training epoch is set as 8.42

Cross-Dataset Transfer. To determine the transferability of our model across different datasets,43

we first train our model on the source dataset (ImageNet) and then evaluate it on 10 different target44

datasets. The training epoch is set as 2 and the learning rate is set as 0.0026.45

Cross-Domain Generalization. To determine the robustness of our model on the distribution-shift46

setting, we trained our model on the source dataset (ImageNet) and then assess it on 4 domain-shifted47

datasets, including ImageNetV2, ImageNet-Sketch, ImageNet-A, and ImageNet-R. The training48

epoch is set as 2 and the learning rate is set as 0.0026.49

The other training hyperparameters in the previous experiments are set according to MaPLe [2],50

which are detailed listed at Table B. 2.51

Table B. 1: Statistics of the used 15 datasets. N/A denotes that we do not use the corresponding training or
validation sets.

Dataset Domains #Classes #Train #Val #Test
ImageNet generic object 1000 1.28M N/A 50,000

Caltech101 generic object 100 4,128 1,649 2,465
OxfordPets fine-grained object 37 2,944 736 3,669

StanfordCars fine-grained object 196 6,509 1,635 8,041
Flowers102 fine-grained object 102 4,093 1,633 2,463

Food101 fine-grained object 101 50,500 20,200 30,300
FDVCAircraft fine-grained object 100 3,334 3,333 3,333

SUN397 scene recognition 397 15,880 3,970 19,850
UCF101 action recognition 101 7,639 1,808 3,783

DTD texture recognition 47 2,820 1,128 1,692
EuroSAT satellite object 10 13,500 5,400 8,100

ImageNetV2 generic object 1000 N/A N/A 10,000
ImageNet-Sketch sketch object 1000 N/A N/A 50,889

ImageNet-A generic object 200 N/A N/A 7,500
ImageNet-R generic object 200 N/A N/A 30,000

C Training Algorithm52

Given the training datasets D = {Xi, yXi}
ND
i=1, our method aims to learn M visual and N textual53

prompts simultaneously. All parameters in ALIGN are optimized by minimizing the cross-entropy54

loss end-to-end. We summarize the training algorithm at Algorithm. 1.55
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Table B. 2: Hyperparameter setting used in the previous experiments.

Hyperparameters Values
Batch Size 4
Input Size 224× 224
Input Interpolation "Bicubic"
Input Pixel Mean [0.48145466, 0.4578275, 0.40821073]
Input Pixel STD [0.26862954, 0.26130258, 0.27577711]
Transforms ["random resized crop", "random filp", "normalize"]
Optimizer SGD
Learning Rate 0.0035
LR Scheduler "cosine"
Warmup Epoch 1
Warmup Type "constant"
Warmup LR 1e-5
Backbone ViT-B/16
Number of Textual Prompts 4
Number of Visual Prompts 4
Learnable Prompt Length 2
Fixed Prompt Length 2
weight of token-level cost 1
weight of regularization in OT 0.1
Prompt Initialization "a photo of a"
Precision "fp16"

Algorithm 1 Training algorithm of ALIGN.

Input: Training dataset D, a pre-trained vision-language model, class name set, number of visual prompts M ,
number of textual prompts N , and the training epoch.
Output: The learned ALIGN, which discovers multi-modal multi-mode prompts for downstream tasks.
Initialize: The M and N multi-modal prompt embeddings.
Preprocess: Built N ×K textual token inputs according to Sec 2.1 in the manuscript.
for iter = 1,2,3,... do

1. Feed the textual input into the text encoder g and collect the outputs with the corresponding prompt-level
representation {hn

k}K,N
k=1,n=1 and token embeddings {sn

k}K,N
k=1,n=1, where each sn

k is the output token
embeddings of n-th prompt of k-th label with length b+ kl.
2. Sample a batch of J images. Built N ×B visual patch inputs according to Sec2.1 in the manuscript.
Feed the visual input into the visual encoder f and collect the outputs with the corresponding prompt-level
representation {zm

j }J,Mj=1,m=1 and patch embeddings {rm
j }J,Mj=1,m=1, where each rm

j denotes the output
patch embeddings of m-th prompt of j-th image with length b+O.
# Two-level OT
3. Calculate the token-level OT distance between each image and each label in Eq.5 with the collected
patch set and token set.
4. Calculate the cost matrix in prompt-level OT according to Eq.6, and then get the prompt-level OT
distance in Eq.4.
Compute the cross-entropy loss L with the obtained prompt-level OT distance according to Eq.8 and update
all learnable parameters by minimizing L with the stochastic gradient descent algorithm.

end for

D Additional Results56

We in this section report additional results of other datasets on the few-shot task and conduct the57

ablation studies on the prompt and token-level OT.58
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Figure D1: Harmonic mean (H) results of ALIGN on Base-to-New task under different β.

D.1 Few-shot Results59

We report the numerical results of various methods on 11 datasets at Table. D. 1.. From the results, we60

find that our method ALIGN outperforms baselines in most cases, which demonstrates the efficiency61

of the token-level prompt alignment module.62

D.2 Ablation studies63

Recall that the proposed model consists of the prompt-level and token-level OT, which align the64

textual and visual modalities from hierarchical semantics. In the previous experiment, we view the65

prompt-level and token-level OT equally and set the hyperparameter weight β = 1 in Eq.6 in the66

manuscript. Here want to analyze how those two OTs affect the model performance. To this end, we67

rewrite the cost matrix in Eq.6 in the manuscript as:68

Cmn = (1− β)(1− sim(zm,hn)) + βdλOT(xm,yn; Ĉ
mn). (1)

Note that β = 0 and β = 1 denote two of our variants, where the former denotes only prompt-OT69

works and the latter means we only focus on token-level similarity. We report the ablation results of70

ALIGN on Base-to-New tasks under various settings, e.g., β = [0, 0.2, 0.5, 0.7, 1.0] at Fig. D1. We71

have the following interesting findings: 1) The combined ALIGN works better than each of them; 2)72

After finetuning β for each dataset, one can obtain better results than the reported values in our paper.73
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Table D. 1.: The few-shot results of various methods on 11 datasets. We report mean value over 3 different
seeds. The best results are highlighted.

Dataset Methods 1 shot 2 shots 4 shots 8 shots 16 shots

Caltech101

CoOp 92.4 93.2 93.5 94.0 94.8
PLOT 88.40 89.95 91.50 93.00 93.24
UPT 93.66 94.17 94.09 95.04 95.95

MaPLe 91.73 93.33 94.23 94.43 95.26
ALIGN 93.97 94.13 95.00 95.43 96.00

DTD

CoOp 48.4 51.5 59.2 64.4 69.5
PLOT 51.90 55.95 58.24 65.50 70.52
UPT 45.01 52.97 60.74 65.44 70.62

MaPLe 51.16 54.70 61.63 65.63 70.60
ALIGN 54.07 56.53 63.3 67.6 71.40

EuroSAT

CoOp 51.8 60.9 69.0 76.0 84.1
PLOT 60.10 68.45 72.97 79.84 83.12
UPT 66.46 69.07 75.36 85.62 90.77

MaPLe 66.67 79.26 84.25 89.96 92.14
ALIGN 53.23 71.43 80.93 85.97 90.77

FGVCAircraft

CoOp 24.2 25.8 27.9 32.7 34.2
PLOT 21.50 21.71 23.96 27.02 30.24
UPT 28.43 29.91 33.34 39.50 46.61

MaPLe 26.64 27.86 33.56 40.66 49.93
ALIGN 29.57 31.63 34.03 40.95 49.99

Flowers102

CoOp 72.9 80.4 85.7 92.3 96.2
PLOT 70.00 81.34 88.29 92.84 95.10
UPT 74.97 81.81 91.90 95.17 97.41

MaPLe 80.24 88.14 90.07 95.10 96.34
ALIGN 81.33 88.77 92.53 95.43 96.57

FOOD101

CoOp 81.6 80.9 81.5 82.4 84.9
PLOT 69.10 72.89 74.89 76.70 77.87
UPT 84.21 85.01 85.34 86.16 86.83

MaPLe 78.73 77.30 79.03 80.10 82.43
ALIGN 85.29 86.05 86.66 86.74 86.90

ImageNet

CoOp 68.07 69.26 69.60 70.35 71.53
PLOT 67.51 68.80 70.00 70.21 71.40
UPT 69.55 69.88 70.28 71.58 72.64

MaPLe 69.56 69.94 70.65 71.80 72.74
ALIGN 69.80 70.02 70.84 71.77 72.45

OxfordPets

CoOp 90.0 89.8 92.3 92.0 92.1
PLOT 83.21 85.77 86.02 89.13 89.95
UPT 82.93 85.40 85.97 87.40 88.10

MaPLe 89.80 86.76 90.76 90.23 91.30
ALIGN 91.36 91.93 93.4 93.67 94.17

StanfordCars

CoOp 66.4 69.2 70.1 72.8 75.2
PLOT 46.20 51.67 54.35 60.52 65.32
UPT 67.60 69.57 75.88 80.19 84.17

MaPLe 65.96 69.10 75.73 79.76 85.36
ALIGN 68.27 72.84 76.58 81.65 86.75

SUN397

CoOp 65.2 66.6 68.1 70.5 73.2
PLOT 55.33 60.02 63.21 66.02 67.98
UPT 68.84 69.76 72.12 74.00 75.90

MaPLe 61.73 63.23 67.60 69.13 73.00
ALIGN 69.14 69.98 71.88 74.15 76.57

UCF101

CoOp 70.7 73.8 76.6 79.6 80.4
PLOT 51.42 54.89 61.23 67.45 70.85
UPT 71.98 74.93 77.49 80.91 83.86

MaPLe 73.23 73.00 77.45 81.2 84.67
ALIGN 74.42 75.87 80.18 81.99 95.69
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