A NMT Training Setup

In this appendix, we provide full details of our experimental setup for Sectiond.1] All models use
pre-LN encoder-decoder transformer architecture. The base model, used for the majority of the
experiments of this section, has 3 encoder layers and 3 decoder layers. Note that we intentionally
chose a small model to exacerbate interference among the tasks and make our experimental setup
more favorable to MTO algorithms. Following the NMT literature convention, our models are trained
with 0.1 label smoothing and 0.1 dropout [27] for feed-forward and attention layers. We use a
sentence piece vocabulary of size 64K for our models. Table] provides the architecture details.

Table 4: Overview of network and optimizer hyper-parameters.

Hyper-parameter

Feed-forward dim 2048
Model dim 512
Attention heads 8
Attention QKV dim 512
Label smoothing 0.1

Dropout 0.1
Batch-size 1024
Warm-up steps 40K

Models are trained using Adam optimizer [14] with a fixed batch-size of 1024. En—{Zh, Fr} models
are trained for 530038 steps while the rest of models (due to smaller training data size) are trained
for 397529 steps. For all the runs, we use 40K steps of linear warm-up and then use a learning rate
schedule of the form

M
\/E7
For each model run, we sweep for 7 in the grid {0.05,0.1,0.5,1.0,2.5,5.0}. Often times, n = 0.5
yields the optimal performance and 7 = 5.0 diverges. For sampling experiments, we sweep the rate

for En—Fr in the grid {i/10}{_,. This determines the rate for the other language pair automatically.
As such, to derive each scalarization front, we train a total of 54 models.

7 : base learning rate, t : training step.

Some of the MTO algorithms under our investigation have algorithm-specific hyper-parameters.
In particular, RLW [20] requires specifying the task weight distribution and GradNorm [4] re-
quires specifying a parameter . For RLW, we examined Gaussian and Dirichlet distributions
and presented the results separately in our plots. For GradNorm, we sweep for « in the grid
{0.25,0.5,0.75,1.0,1.25, 1.5} and present all non-Pareto dominated models.

When examining the generalization performance (left hand side of Figures [2] @} and[5) we use early
stopping: we evaluate the model every 5000 steps and use the step that yields the smallest average
validation loss for the two tasks. For En—{Zh, Fr} and En—{De, Fr} models, it is often the case that
the final step is the optimal step. As such early stopping doesn’t significantly change the picture. For
En—{Ro, Fr}, performance statistics change noticeably with early stopping but the overall qualitative
picture remains the same. For the training performance (right hand side of Figures [2] @] and [5)) we
report the final step training statistics.

14

B Additional Results

In this appendix section, we provide additional performance comparisons for NMT models trained in
Section .11

Generalization Behavior Overview En - {Zh, Fr}

Optimization Behavior Overview En - {Zh, Fr}
\ : 1554 | Sore
1 1
161 !
E |I E 1.50 ||
1 H) \
S \ -@- Sampling S1.45 \ -@- Sampling
wisd - IMTL-G w “ -l- IMTL-G
S ¢ -%- MGDA K] e A -%- MGDA
2 ' -4 GradNorm 2 \ . - -4 GradNorm
I v . -9~ RLW (Normal) g 3 L\, c -9~ RLW (Normal)
S 14 L. 'v RLW (Dirichlet) | & 3% ® . RLW (Dirichlet)
& ® . o e ™ .
8 " " .. PCGrad g \ \ PCGrad
5 Yo 7 -%- Equally Weighted | 5 1:30 LQ 1 ~%- Equally Weighted
g 45 : 5))
3] © *
. = 1.25 Sty
Fi3 X = o«
ok | .| .
el __ 1.20 e |
i Bk LT S, e |] T °
2.2 2.4 2.6 2.8 3.0 1.6 1.7 1.8 19 20 21 22 23
Test Cross-Entropy Loss (En - Zh)

Train Cross-Entropy Loss (En - Zh)
Figure 12: The full generalization / optimization performance overview for En—{Zh, Fr} models.

Small dots correspond to Pareto dominated models excluded from Figure [2]to avoid clutter. Pareto
dominated trade-off curves correspond to models trained with suboptimal base learning rate.

Generalization Behavior Overview En - {Zh, Fr}

Optimization Behavior Overview En - {Zh, Fr}
[} -@ Sampling 0314 @ -® Sampling
0321} IMTL-G \ IMTL-G
1 * MGDA \ * MGDA
031l |} < GradNorm 0304 < GradNorm
= ll € RLW (Normal) i \‘ € RLW (Normal)
1 1 RLW (Dirichlet) i 020l & RLW (Dirichlet)
) 0.301 * PCGrad w 4 PCGrad
2 \ % Equally Weighted % \\ # Equally Weighted
5] \
< 0.29 \ < 0.28 &
5 1Y s .
& AT] \ L 4
8 0.28 ‘i § 0.27 1‘
A " = .*
0.27 ok Ok
| R 0.26 1 Sy
“O~__ TTe-—__
0.26 A e ® T~~~
0.25-
0.44 0.46 0.48 0.50 0.52 0.54 0.34 0.36 0.38 0.40
Test Error Rate (En— Zh)

Train Error Rate (En - Zh)

Figure 13: Observations of Section [4.T] generalize across the choice of performance metrics. Left:

Next token prediction error rate evaluated on the validation data. Right: Next token prediction error
rate evaluated on the training data.

In order to avoid the artifacts and complexities decoding, in the main text, we used cross-entropy loss
as the main evaluation metric for models in Section To complete the picture, Figure [T4]examines

the quality of generated translations (as measured by (Sacre-)BLEU score [23])). All translations
are generated via Beam-Search with beam size of 4. Note that, for the sake of computational

tractability, we do not optimize the decoding algorithm hyper-parameters for each model. As such
the performance trade-off frontier is more noisy.

15

Translation Quality Overview En - {Zh, Fr}

Translation Quality Overview En - {De, Fr}

35 Translation Quality Overview En - {Ro, Fr}

[] []
34
34 ® 5 ® o 3 ° °
9 34
T 33 < ’ ® T 33)‘1. T
T . <% T ¢ - o © °
5 32 g 32 o | 533
w w Ehad] ®
o W IMTLG ®] M IMTL-G v lq ® IMTL-G
S 31 o o
8 * MGDA ey 8 31 * MGDA 3 2 n {,;"‘ * MGDA
> <« GradNorm > <« GradNorm > ; <« GradNorm
2307 @ RLW (Normal) 2301 @ RLW (Normal) 3 *o'm @ RLW (Normal)
¢ RLW (Dirichlet) ¢ RLW (Dirichlet) 31 * ¢ RLW (Dirichlet)
e PCGrad 29 PCGrad PCGrad
28 @® Sampling PY @® Sampling ‘ @® Sampling
30
28 29 30 31 32 33 24 25 26 27 28 25.0 252 254 256 258 26.0

BLEU Score (En—Zh)

BLEU Score (En - De)

BLEU Score (En - Ro)

Figure 14: Translation quality of our models as measured by BLEU score. For En— {Ro, Fr} models
(right) scalarization clearly outperforms the rest of the optimizers.

16

C Vision Benchmarks

We analyze results on three main vision benchmarks used in multi-task optimization, Multi-MNIST
[26]], CelebA [22] and CityScapes [6]. Multi-MNIST is a two task dataset, which uses the handwritten
digits of MNIST but overlays a right digit and a left digit over each other. CelebA is a dataset of
celebrity faces and is cast as a 40-task classification problem; each task predicts a different attribute
of the face. Finally, CityScapes is a dataset for understanding urban street scenes. In our setting, it
is a two task problem with one task being 7-class semantic segmentation and the other being depth
estimation.

We would like to thank Lin et al. (2021) [20] and Sener et al. (2018) [26]] for publicly releasing
their code. Our CelebA and Multi-MNIST experiments heavily utilize code from Sener et al. and
our CityScapes experiments heavily utilize code from Lin et al. For CelebA and Multi-MNIST, our
primary changes to the code base include integrating more optimization algorithms, speeding up the
dataloaders via the Tensorflow datasets library and creating a validation set for Multi-MNIST by
partitioning the training set. Our validation set for Multi-MNIST is 12000 images, while our training
set is 48000 images. We use the original MNIST testing set as our test set, but transformed to a
multi-task setting. For CityScapes, we primarily changed the dataloader to have it pre-load images
into memory, added statistic tracking for the validation set, and integrated other optimizers.

C.1 Hyper-Parameter and Experiment Details

Multi-MNIST For all optimizers, we searched through all combinations of learning rate n €
[0.001,0.005,0.01,0.05,0.1,0.5,1.0,5.0], and dropout rate v € [0.1,0.2,0.3,0.4,0.5]. We use a
LeNet architecture detailed in Sener et al. (2018) [26] with two fully-connected layers devoted for
each task. For GradNorm specifically, we also search through « € [0.5,1.0, 1.5, 2.0]. Our learning
rate follows a step-wise scheduler with a multiplicative factor of 0.85 every 30 epochs. To create our
dataset, we follow steps outlined in Sener et al. (2018), overlaying two random digits on top of each
other, one positioned at the top left, and the other at the bottom left. We then resize the image to
28 x 28. We use batch size of 256 and SGD with momentum of 0.8.

CelebA Similarly our hyper-parameter search for CelebA included all combinations of learning
rate n € [0.0001,0.0005,0.001, 0.005,0.01,0.05,0.1,0.5, 1.0] and weight decay A € [0,1075,5 x
107°,107%,5 x 1074,1073,5 x 10~3]. For GradNorm, we search through « € [0.5,1.0,1.5,2.0].
Our learning rate schedule was the same as the one for Multi-MNIST and we use a batch size of 256.
For CelebA we also use SGD with momentum of 0.8. The model follows the one detailed in Sener et
al. (2018).

Cityscapes Here our hyper-parameter search implements something slightly different. We search
through all combinations of learning rates € [107°,10~%5 10=%,1073°,1073,1072:5, 107 2]
and weight decay A € [0,1075,107°,1075,10=%5,10*,1073-5,10~3,1072%, 10~2]. For Grad-
Norm, we search through « € [0.5,1.0, 1.5, 2.0]. We use a batch size of 64 for all optimizers. We
split the training data set of 2975 images into a validation set of 595 with the rest being our actual
training set and we use the original validation set of 500 images as our test set. All images are resized
to 128 x 256 and we use Adam [14] as our base optimizer. For model we use the architecture utilizing
ResNet-50 as a shared encoder detailed in Lin et al. (2021) [20].

C.2 Additional Comparisons

We present additional metrics from Section[4.2]for Cityscapes dataset. The results are presented in
Figure[I5] We compute mIOU for segmentation, and for depth estimation we compute absolute error.
All models are trained with early stopping on validation data. The experimental results align closely
with our findings in Sections [.T]and [4.2]

In figure [16|we also present our results on the Multi-Mnist data set, whose results also align with our
previous findings. We see in figure [T6]the performance of MTO algorithms on this benchmark again
do not out perform scalarization.

17

0.70 =1 =@
/./‘. ‘ ’
0.69 = 2
o

5
S 0.681
8
T
£ 0.671
o
&
— 0.66 1
3
€ |
= 0.65 -@- Sampling
2 GradNorm

0.64 MGDA

€ RLW (Normal)
0.63 ¢ RLW (Dirichlet)
PCGrad
0.62

0.0128 0.0130 0.0132 0.0134 0.0136 0.0138 0.0140
Test Absolute Error (Depth)

Figure 15: Additional metrics for the generalization performance of different optimizers on the

Cityscapes benchmark. We have test segmentation mIOU (y-axis) and test depth absolute error
(x-axis).

Multi-Mnist Pareto Frontier

S —
B3I [T o
1
= 95.01 :
2 ®.
o ¢ >
S 9451 e I‘
£ \
r 94.0 ll
1
1
[}
g93-5 --e-- Scalarization E
293,01 GradNorm “‘
f MGDA l*
f 92.51 & RLW (Normal) '
920/ ¢ RLW (Dirichlet)
PCGrad *
91.5

93.0 93.5 94.0 94.5 95.0 95.5 96.0 96.5 97.0
Test Accuracy (Left Digit)

Figure 16: Test accuracy behavior on Multi-MNIST dataset aligns with our observation of Section
41l

C.3 CityScape Hyper Parameter Analysis

We see more evidence that hyper parameter tuning has an immense effect on performance. Figure
[I7] visualizes this effect with respect to both learning rate and weight decay for each CityScape
task. Secondly we note that even though hyper parameter tuning creates quite a bit of variability in
performance, hyper parameters for optimally performing points are bounded within a relatively tight
region. Figure[I8]shows per scalarization mixture, the non pareto dominated points and their learning
rate and weight decay parameters. We see that for these pareto optimal points, hyper parameters are
bounded between 10~ and 1072 even though our search space covers the full x axis and y axis.

18

0.040 mee
o .5 ° 4
[
0.035 [] 1.6 [] 08 ,,
Ky
(] . .14 L 2
% 0.030 ° 8 ° =
S = ! 512 ([) ® 0.6 §
g g g ° 8| -
2 [] - e ® [} c
8 0.025 | € 1.0 o
. [~} & =]
i R M Bl 04 8
° PS g 19 M| gos 5]
0.020 B g g R g
" M 0.6 ° 5]
8 K M | ° g8 SN TP
U]) o B | H 04 4 [] " ol N
0.015 LJ | 0 “ 41 A [|| o | 0
v vy v S § 0 N B .
0.2 > i oo
107° 1074 1073 1072 107° 1074 1073 1072
Learning Rate Learning Rate
0.040 e
® | s :
[]
0.035 ® 1.6 ® |fos,
<
[]
s N . S
"
0.030 vlé 3 =
S Ao 1.2 0.6 §
5 e 9 R s ¢ =
=3) 1 V| ® c
@ | £ 1.0 ° S
8 0.025 a i als L : 5
g ¥ 5N % 0 8
@ q o gos $ o 5]
= B €
0.020 ! I ° . ol =
l 0.6 8 o]]
S [} =1 | p “ (] i [0.2 %]
g B B B H K H H ‘ l o]
| | | { 0.4 o
0.015 U 1 | [| 1 v ¥ 'ﬁ A‘ ! f] B | | }N‘ '
v e 8§ 9 0 OB § § ¥
021~ ° 0o
106 1075 1074 1073 102 1076 105 1074 1073 102
Weight Decay Weight Decay

Figure 17: We visualize how sensitive the CityScape’s tasks are to both learning rate and weight
decay. Top Left: learning rate vs test depth loss. Top Right: learning rate vs test semantic loss. Botfom
Left: weight decay vs test depth loss. Top Right: weight decay vs test semantic loss.

107! 1.0

4
®

1072

14
EY

14
IS

1073

L 2
Segmentation Loss Weight

Learning Rate (Pareto Optimal Points)
°
N

1074 — 0.0
1074 1073 1072 107!
Weight Decay (Pareto Optimal Points)

Figure 18: All points here are pareto optimal for a given scalarization mixture. Our total hyper
parameter search space spans 0 to 10~2 for weight decay and 10~ to 10~2 for learning rate.

19

D Theorem Statements and Proofs

In Section[2] we briefly discussed theoretical guarantees for Scalarization. In this appendix section,
we make these statements explicit. The theorem statements and their proofs closely mirror the
discussion in Section 4.7 of [3]].

Theorem 1. Let O(w) € arg ming £(0; w) for w > 0. Then @(w) is Pareto optimal.
Proof. Let’s assume the contrary. In this case, by the definition of Pareto optimality, 30" s.t. V1 <

i < K, L;(8') < L;(6(w)) and for at least one task j, £;(8") < L£;(8(w)). As such, given that
w > 0, we have

K K
L(O5w) =) wili(0) <> wiLi(0(w)) = L(O(w);w)
i=1 i=1

which contradicts our assumption that é(w) is a minimizer of the problem. O

Theorem 2. Let {£;}X | be convex. Also let 0% be an arbitrary point on the Pareto frontier. Then
Jw > 0, w # 0 such that 6% € arg ming L(0; w).

Proof. See Section 4.7.4 of [3]. O

E Compute Resources

For the NMT experiments, we trained a total of 589 models. Each experiment was trained on Google
Cloud Platform v3 TPUs for a period of 12-28 hours. For the vision benchmarks we trained a total of
1960 models for CityScapes, 1008 models for CelebA, and 720 models for Multi-Mnist. Each being
trained on an Nvidia A100 GPU.

20

	Introduction
	Setting
	Prior Work
	Experiments
	Multilingual Machine Translation
	Benchmarks from the Literature
	CityScapes
	CelebA

	Conclusions
	NMT Training Setup
	Additional Results
	Vision Benchmarks
	Hyper-Parameter and Experiment Details
	Additional Comparisons
	CityScape Hyper Parameter Analysis

	Theorem Statements and Proofs
	Compute Resources

