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Abstract

Structural biology has long been dominated
by the one sequence, one structure, one func-
tion paradigm, yet many critical biological pro-
cesses—from enzyme catalysis to membrane
transport—depend on proteins that adopt multi-
ple conformational states. Existing multi-state
design approaches rely on post-hoc aggregation
of single-state predictions, achieving poor exper-
imental success rates compared to single-state
design. We introduce DynamicMPNN, an in-
verse folding model explicitly trained to gener-
ate sequences compatible with multiple confor-
mations through joint learning across conforma-
tional ensembles. Trained on 46,033 conforma-
tional pairs covering 75% of CATH superfamilies
and evaluated using AlphaFold initial guess, Dy-
namicMPNN outperforms ProteinMPNN by up to
13% on structure-normalized RMSD across our
challenging multi-state protein benchmark.

1. Introduction
The conformational diversity of proteins underlies biologi-
cal functions such as enzyme catalysis, protein recognition,
allostery, protein evolution modulation or human disease
(Monzon et al., 2016). Of particular importance is the design
of bioswitches, with huge implications in biotechnology, e.g.
in creating artificial motors, signalling pathways, biosensors
or drug delivery systems (Stein & Alexandrov, 2015; Prae-
torius et al., 2023). While most known switches undergo
rearrangements in the context of a single fold (Ambroggio
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& Kuhlman, 2006a), the class of metamorphic proteins un-
dergo changes in their secondary structure and fold (Fig. 1a)
and have been predicted to represent up to 4% of the PDB
chains (Porter & Looger, 2018). These proteins are known
to take two main functional states (Dishman & Volkman,
2018) and a finite number of conformations (see Discus-
sion), thus this study is not aimed at the design of protein
sequences adopting continuous conformational landscapes
(e.g. intrinsically disordered proteins (Tompa & Fuxreiter,
2008)).

Multi-state protein design was first achieved through ra-
tional design and physics-based RosettaDesign (Liu &
Kuhlman, 2006) of: metamorphic metal-binding peptides
(Ambroggio & Kuhlman, 2006b; Cerasoli et al., 2005);
closely related sequences that adopt diverging folds (Wei
et al., 2020); and hinge proteins with binder-regulated equi-
librium between states (Zhang et al., 2022; Quijano-Rubio
et al., 2021; Praetorius et al., 2023). Remarkably, Prae-
torius et al. (2023) additionally employed ProteinMPNN
Multi-state Design (ProteinMPNN-MSD) (Dauparas et al.,
2022)—an inference strategy for extending ProteinMPNN
to multiple states by averaging the logits of two independent
single-state ProteinMPNN embeddings during the decoding
step—to design proof-of-concept multi-helix hinge proteins.

Praetorius et al. (2023) however report an overall very
low experimental success rate: only 46 2-state hinge se-
quences, corresponding to roughly 0.002% of all designs,
were successfully expressed in solution out of which only
nine showed binding with the corresponding target peptide.
This and the absence of any reported de novo designs for
full natural multi-state backbones is proof that multi-state
protein design lags behind single-state design (Appendix E)
due to limited conformational datasets, weak benchmarks,
and the poor record of folding models in predicting alterna-
tive states (Chakravarty et al., 2024) - which made for poor
self-consistency filters.

Our contributions. This paper introduces DynamicMPNN
(Fig. 1b), a novel geometric deep learning-based pipeline
for multi-state protein sequence design.

• DynamicMPNN is the first explicit multi-state inverse
folding model for protein design. To train Dynam-
icMPNN, we create a new ML-ready dataset of pro-
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Figure 1: DynamicMPNN for multi-state protein design. (a) Examples of proteins with multiple conformational states:
transporters in closed and open states (PDB: 6NC7, 6NC9), metamorphic protein with alternative folds (PDB: 4QHH,
4QHF) and hinges showing domain movement (PDB: 5D0W, 1CFC). (b) Schematic of DynamicMPNN, an inverse folding
model trained to generate protein sequences with multiple conformational states. Conformations are encoded with their
respective chemical environments (i.e. interaction partners shown in gray). Solid lines show the flow of information in the
model, while dashed lines show the evaluation pipeline using AlphaFold Initial Guess (AFIG), which evaluates structural
self-consistency by initializing AlphaFold2 backbone frames on target structure coordinates and measuring the deviations
between predicted and target structures, with decoy structures serving as negative controls.

teins with multiple conformations using the PDB and
CoDNaS (Monzon et al., 2016) databases, and evaluate
the method on 94 biologically relevant metamorphic,
hinge, and transporter proteins.

• We propose a multi-state self-consistency metric and
benchmark based on AlphaFold initial guess (AFIG)
(Roney & Ovchinnikov, 2022; Bennett et al., 2023)
which we argue to be superior to sequence recovery.

• DynamicMPNN improves performance over Protein-
MPNN (Dauparas et al., 2022) on AFIG by up to 13%
on RMSD and 3% on pLDDT self-consistency values.

2. The DynamicMPNN pipeline
2.1. Protein multi-conformational dataset

While over 750,000 individual protein chains (sequence-
structure pairs) are available in the PDB, multi-
conformational data is far more scarce with only 11,833
NMR-derived protein ensembles covering just 21% of
CATH superfamilies. To overcome this limitation, we ex-
ploit the redundancy of chains with very high sequence sim-
ilarity (≥95%) in the PDB to build a multi-conformational
dataset of 46,033 conformer pairs that expands coverage to
75% of CATH superfamilies (Fig. 2a).

For dataset splitting, we first curate a benchmark set from
five previous studies of proteins with large conformational
changes: 92 metamorphic proteins (Porter & Looger, 2018),
91 apo-holo proteins (Saldaño et al., 2022), the OC23/OC85
open-closed datasets, and 20 transporter proteins (Kalakoti
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& Wallner, 2025). The 94 highest RMSD pairs were as-
signed to the test set and the next 100 to the validation set.
Training clusters were filtered to exclude any with TM-score
> 0.4 (Zhang & Skolnick, 2004) to test/validation structures,
preventing structural similarity leakage and yielding a final
training set of 44,243 conformer pairs. See Appendix B for
further details on dataset composition.

2.2. DynamicMPNN for multi-state inverse folding

Single-state inverse folding methods seek to model the
conditional distribution p(Y |X) where X ∈ Rn×3×3 rep-
resents a protein backbone with n residues, and Y =
(y1, . . . , yn) is the amino acid sequence. Extensions of
these methods to multi-state design have thus far been lim-
ited to post-hoc aggregation of independent single-state
predictions. Instead, DynamicMPNN learns the joint condi-
tional distribution of p(Y |X1, . . . , Xm) directly through au-
toregressive sequence generation (see Appendix C), where
{X1, . . . , Xm} represent distinct conformations; thus cap-
turing sequence compatibility across all states simultane-
ously within a single model.

Overall architecture. DynamicMPNN independently en-
codes each of the functional states of the protein, together
with their interaction partners, into a shared latent feature
space (Fig. 1b). Embeddings of the target chains are then
pooled across conformations to obtain a single embedding
from which a sequence is auto-regressively generated.

Our architecture is based on gRNAde (Joshi et al., 2025),
a multi-state GNN for RNA inverse folding. For both the
encoder and the decoder, we employ SE(3)-equivariant Ge-
ometric Vector Perception (Jing et al., 2021) layers which
maintain computational efficiency through edge sparsity.
Both encoder and decoder were assigned 8 GVP layers,
following Hsu et al. (2022). See Appendix D for further
details.

Alignment and pooling. To deal with nonidentical se-
quences and missing residues during training, structure pairs
are featurized and encoded independently, and subsequently
aggregated based on pairwise sequence alignments (i.e.,
only nongap residues are taken into account when pooling).

Multi-chain encoding and masking. Given that conforma-
tional shifts often depend on interactions, DynamicMPNN
encodes the chemical environment for each conformational
state (currently limited to proteins). During training, we
expose the sequence information of binding partners in the
encoding, only masking chains with >70% sequence simi-
larity to the ground truth sequence of the chain of interest.

Conformation order-invariant pooling. We employ Deep
Set pooling (Zaheer et al., 2017) over the conformations as
it is invariant to conformation order and does not add extra
parameters to our model. We note that while some more
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Figure 2: Multi-state protein dataset. (a) Data processing
pipeline used to construct sequence-aligned structure pairs.
(b) Distribution of the number of conformations per CoD-
NaS cluster. (c) Distribution of the maximum Cα-RMSD
between pairs of structures in each CoDNaS cluster.

expressive pooling strategies have been shown to provide
marginal performance improvements, they usually come at
a great cost in efficiency (Joshi et al., 2025).

2.3. Multi-state design evaluation

Following previous work (Wang et al., 2023), we evalu-
ate the refoldability of generated sequences rather than se-
quence recovery (Appendix A). Existing refoldability meth-
ods compare target structures to single conformations pre-
dicted by folding models (e.g., AlphaFold2 (Jumper et al.,
2021)). We argue that this approach is unsuitable for multi-
state design since folding models typically predict one dom-
inant state or interpolate between conformations rather than
sampling the full conformational ensemble (Lane, 2023;
Chakravarty et al., 2024; Saldaño et al., 2022).

We propose using the AlphaFold initial guess (AFIG) frame-
work (Roney & Ovchinnikov, 2022; Bennett et al., 2023),
originally suggested to rank candidate protein structures, to
evaluate multi-state designs (Praetorius et al., 2023). AFIG
initializes the AF2 reference frames on the target backbone
coordinates during inference to bias the model towards the
target conformation. The similarity (Cα-RMSD) between
predicted and target structures, along with AF2 confidence
scores, serves as a proxy for the likelihood that the designed
sequence will fold into the target structure. This framework
naturally enables evaluation of refoldability across multiple
conformations.

Formally, for a protein with conformational states X =
{X1, X2, . . . , Xm} and designed sequence Y , we define
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Table 1: Multi-state design benchmark. Comparison of average sequence design performance between DynamicMPNN
and ProteinMPNN (multi-state design inference strategy) on a test set of 94 common pairs.

RMSD ↓ pLDDT ↑
Model Best Paired Best Paired Best Paired Best Single All Avg. Best Paired Best Single All Avg.

(Å) (Struct Norm) (Decoy Norm) (Å) (Å)

DynamicMPNN 13.43 3.86 0.58 12.76 17.39 58.65 59.31 50.22
ProteinMPNN-MSD 14.76 4.47 0.65 13.99 17.24 55.89 57.74 50.18
Natural sequence 16.85 5.51 0.76 16.85 16.85 48.51 48.51 48.51

(a) (b) (c)

Figure 3: Benchmark performance comparison across design approaches. All plots compare the best designs of
DynamicMPNN (Our model, left) and ProteinMPNN MSD (middle), as well as Natural WT sequences (right). Dynam-
icMPNN demonstrates statistically significant improvements across all metrics compared to ProteinMPNN MSD and natural
sequences. Statistical significance is indicated by p-values calculated using the Wilcoxon signed-rank test due to non-normal
distribution of the data. (a) Raw AFIG RMSD (Å) values (Table 1, column 2) measuring structural deviation between
ground-truth backbones and AFIG-predicted structures, following Equation 1. (b) Decoy-normalized RMSD values (Table
1, column 4) showing RMSD divided by AFIG RMSD of random decoy structures, following Equation 3. (c) pLDDT
confidence scores (Table 1, column 7) from AFIG predictions.

the AFIG RMSD for each target conformation Xk as:

AFIG(Y,Xk) = RMSD(AF2(Y,Xk), Xk) (1)

where AF2(Y,Xk) is the structure predicted by AlphaFold2
for sequence Y when backbone frames are initialized on
coordinates of structure Xk. We define two normalization
criteria to contextualize observed deviations:

Structure normalization (Struct Norm): We normalize
AFIG RMSD by the maximum RMSD between target con-
formations to capture task difficulty; i.e. designing proteins
with large conformational shifts is inherently more difficult
than small rearrangements:

RMSDstruct(Y,Xk;X) =
AFIG(Y,Xk)

maxi,j RMSD(Xi, Xj)
(2)

Decoy normalization (Decoy Norm): We initialize AF2
with structurally dissimilar decoy structures (TM-score <

0.4) using the same sequences designed and measure the re-
sulting deviations. This control assesses whether sequences
fold specifically into their targets or may fold equally well
into arbitrary structures:

RMSDdecoy(Y,Xk;D) =
AFIG(Y,Xk)

AFIG(Y,D)
(3)

where D is a decoy that is structurally dissimilar to Xk.

Additionally, we measure pLDDT confidence scores to eval-
uate AFIG fold uncertainty. High RMSD with low pLDDT
indicates poor template matching, while low RMSD with
high pLDDT suggests a successful design.

3. Results and Discussion
Setup. DynamicMPNN was trained for 50 epochs, and an
AFIG evaluation on the validation set was performed every
third epoch to select the best-performing model. Then, Dy-
namicMPNN and ProteinMPNN (using Multi-state Design
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inference strategy) were used to sample 16 sequences for
the benchmark set of 94 paired conformations, which were
each run through the AFIG pipeline separately against both
target states.

Aggregated evaluation metrics were computed as follows.
(Best Single) The minimum RMSD and maximum pLDDT
values across all sets of 16 sequences are selected from
among both states. (Best Paired) The RMSD and pLDDT
values are averaged over the 2 states for each sequence, then
the best RMSD and pLDDT across all 16 averaged values
are selected. Struct Norm and Decoy Norm RMSD values
are then calculated for each protein. (All Avg.) The RMSD
and pLDDT values are averaged across all 16 sequences
and both states. The natural sequences were processed
identically and resulting metrics were averaged over the
benchmark set and reported in Table 1.

DynamicMPNN outperforms ProteinMPNN. We see this
across all metrics, with the largest gains in the ”Best Paired”
metrics of up to 13% - arguably the most important set of
metrics for experimental design, as only the best sequences
are selected for in vitro validation. Visual structural inspec-
tion of both states (Fig. 4) confirms successful design of
the metamorphic Switch Arc protein by DynamicMPNN,
compared to failure to recapitulate the central beta sheet
fold by the best scoring ProteinMPNN sequence. Dynam-
icMPNN also outperforms ProteinMPNN in the ”Best Sin-
gle” metrics, which is surprising since ProteinMPNN was
trained on single-state design tasks. It should be noted that
ProteinMPNN training dataset contains proteins within the
sequence clusters of 84 out of 94 benchmark proteins. This
represents a substantial data leakage advantage for Protein-
MPNN, while DynamicMPNN was specifically trained to
exclude any sequence similarity to the test set. We plan on
training a single-state version of DynamicMPNN to more
fairly demonstrate the advantage of the multi-state design
approach. While DynamicMPNN AFIG RMSD values are
still high, it is important to contextualize these results within
our deliberately challenging benchmark: our test set com-
prises proteins with the largest documented conformational
changes in the known proteome. This can be seen as an
extrapolation beyond the overall modest conformational
changes observed in most PDB structures and hence our
training data.

Natural sequence vs. multi-state designs. While the best-
of-16 sequence from DynamicMPNN and ProteinMPNN
(Dauparas et al., 2022) outperform natural sequences, the av-
erage metrics are slightly worse than the natural sequences
(Fig. 5). Dauparas et al. (2022) have presented a similar
finding with respect to single-state protein design, where
the ProteinMPNN designed sequences showed improved Al-
phaFold refoldability over the natural sequences. A possible
explanation is that while both inverse folding models are

trained mostly to optimize the sequence for structure stabil-
ity, evolution has undergone a multi-objective optimization
for different functions, which might have prevented it from
reaching the energy minima for those structures. Addi-
tionally, due to graph sparsity, DynamicMPNN and Pro-
teinMPNN emphasize local interactions, making designed
sequences more foldable by AFIG - since AFIG does not
use any MSA, it poorly captures long-range interactions
present in natural sequences (Zhang et al., 2024).

Figure 4: Switch Arc protein case study. (a, b) Protein-
MPNN and (c,d) DynamicMPNN best design structure pre-
diction (pink and salmon, respectively) against both Arc
states from PDB ID: 1BDT and 1QTG respectively (grey).
The DynamicMPNN design recapitulates the beta sheet fold
(c), but the ProteinMPNN design does not (a).

4. Conclusion
We present DynamicMPNN, the first explicit multi-state in-
verse folding model, achieving up to 13% improvement over
ProteinMPNN on our multi-state benchmark. By jointly
learning across conformational ensembles rather than ag-
gregating single-state predictions, DynamicMPNN captures
sequence constraints required for multiple functional confor-
mations. This opens possibilities for engineering synthetic
bioswitches, allosteric regulators, and molecular machines.

Software and Data
We provide the code for our model in the following reposi-
tory: github.com/Alex-Abrudan/DynamicMPNN.
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A. Supplementary Results
A.1. Additional Performance Analysis

For our statistical analysis, we first evaluated the normality of the paired differences between model performances (RMSD
values) using the Shapiro-Wilk test. The test results (W = 0.913, p< 0.001) strongly rejected the null hypothesis of normality
for the distribution of differences.

Therefore, we selected the Wilcoxon signed-rank test as the appropriate non-parametric alternative to the paired t-test
for assessing statistical significance between model performances. This test makes no assumptions about the underlying
distribution shape, making it robust for our analysis of paired protein structure comparisons across the different design
approaches.

Fig. 5 (a), (e) shows how DynamicMPNN maintains its superiority for the single-state best sequence design for the RMSD
and pLDDT metrics. However, averaging the performance of all designed sequences erases the advantage of DynamicMPNN
over ProteinMPNN and natural sequences (Fig. 5 (b), (c), (d), (f)).

(a) (b) (c)

(d) (e) (f)

Figure 5: Extended performance metrics across design approaches. All box plots compare DynamicMPNN (Our model,
left), ProteinMPNN MSD (middle), and Natural sequences (right). Statistical significance between DynamicMPNN and
other models is indicated by p-values calculated using the Wilcoxon signed-rank test due to non-normal distribution of
the data (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001). (a) Best Single RMSD values (Table 1, column 5) measuring structural
deviation for the best individual conformation of each protein. (b) All Avg. RMSD values (Table 1, column 6) showing
average structural deviation across all 16 sampled sequences for each protein. (c) Best Paired normalized RMSD values
((Table 1, column 3)) showing the 2-state AFIG RMSD divided by the WT inter-state RMSD according to Equation 2 (d)
All Avg. decoy-normalized RMSD values (not shown in table) averaged across all sampled sequences. (e) Best Single
pLDDT scores (Table 1, column 8) showing confidence in AFIG prediction for the best individual conformation. (f) All Avg.
pLDDT scores (Table 1, column 9) showing the average prediction confidence across all sampled sequences.

While ProteinMPNN outperforms DynamicMPNN on sequence recovery and perplexity (Table 2), Wang et al. (2023) argue
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that refoldability - emphasised in the present work - is more direct, structure-grounded, and superior to sequence recovery
and perplexity when it comes to evaluating inverse folding models.

Table 2: Comparison of sequence recovery and perplexity between models, averaged over all sequences

Model Sequence Recovery ↑ Perplexity ↓
DynamicMPNN 0.29 10.2
ProteinMPNN MSD 0.38 5.12

B. Dataset Details
To construct the dataset, we obtained 46,033 Multiple Sequence Alignment (MSA) clusters at ≥ 95% local sequence
similarity from the latest version of CoDNaS (v2025) (Monzon et al., 2016), including NMR model structures. Importantly,
the CoDNaS dataset prevents potential errors created by mixing different homologues in the same cluster by enforcing the
same UniProt ID for all custer members. The 95% similarity threshold accounts for soluble tags or point mutations/alterations
performed in different experiments so that all available conformations of a protein are included - as different experimental
conditions and sequence variations can reveal distinct thermodynamic states of the same protein (Best et al., 2006). While
clusters contain varying numbers of conformations (Fig. 2b) we constructed our dataset using only pairs of chains from
one or two PDB entries that have the largest RMSD from each cluster (Fig. 2c). Since the proteins targeted by this project
explore two functional states, this choice aims to minimize alignment artifacts and maximize conformational signal during
training - chosen pairs represent the most distinct conformational states. We will include conformational information of the
whole cluster in future work.

C. Multi-conformational inverse folding
Given a set of target conformations X1, . . . , Xm we seek to model the conditional probability distribution over amino acid
sequences Y that can adopt all specified structures. The challenge lies in learning a sequence distribution that simultane-
ously satisfies multiple structural constraints. We decompose this joint conditional probability using the autoregressive
factorization:

p(Y |X1 , ...,Xm) =
n∏

i=1

p(yi |yi−1 , ..., y1 ;X1 , ...,Xm) (4)

where each factor represents the probability of selecting residue yi given the sequence prefix and the complete structural
ensemble.

D. Model Details
D.1. Featurisation scheme

We use a similar featurisation scheme as in (Jamasb et al., 2024). Node scalar features are transformer-like positional
encoding in a 16-dimensional array; backbone dihedral angles ϕ, ψ, ω ∈ R6 ; the virtual torsion and virtual bond angle
κ, α ∈ R4 . Node vector features are position vectors of Cα, x̃i ∈ R3 . Edge scalar features are established via k-NN
(k=16) and the edge length expressed in 32 Radial Basis Functions, eRBF ∈ R32 , as well as the length of the edge itself.
Edge vector features are edge directional unit vectors for both directions ˜veij = x̃i − x̃j . To further prevent overfitting on
crystallisation artifacts, random Gaussian noise (x̄ = 0, σ = 0.1Å) was added to the coordinates (Dauparas et al., 2022).

D.2. Multi-state GNN

DynamicMPNN processes one or multiple protein backbone graphs via a multi-state GNN encoder (Joshi et al., 2025).
Overall, DynamicMPNN’s encoder is equivariant to 3D roto-translation of coordinates as well as ordering of the states in

10



Multi-state Protein Design with DynamicMPNN

its input. Encoding is followed by pooling node features across states, which is invariant to the ordering of the states, and
autoregressive sequence decoding.

When representing conformational ensembles as a multi-graph, each node feature tensor contains three axes: (#nodes,
#conformations, feature channels). Multi-state GNN’s encode multi-graphs by performing message passing on the multi-
graph adjacency to independently process each conformer, while maintaining permutation equivariance of the updated
feature tensors along both the first (#nodes) and second (#conformations) axes.

D.3. Geometric Vector Perceptron layers

Geometric Vector Perceptrons (GVPs) (Jing et al., 2021) are a generalization of MLPs to take tuples of scalar and vector
features as input and apply O(3)-equivariant non-linear updates. GVP GNN layers process scalar and vector features on
separate channels to maintain equivariance. The node scalars si ∈ Rk×m, node vectors ṽi ∈ Rk×m′×3, and edge scalars eij
and vectors ẽij communicate through a message passing operation:

mi, m̃i :=
∑
j∈Ni

GVP ((si, ṽi), (sj , ṽj), eij , ẽij) , (Message & aggregate steps) (5)

s′i, ṽ′
i := GVP ((si, ṽi), (mi, m̃i)) . (Update step) (6)

The overall GNN encoder is SO(3)-equivariant due to the use of reflection-sensitive input features (dihedral angles)
combined with O(3)-equivariant GVP-GNN layers.

D.4. Conformation order-invariant pooling

After using message passing layers that are conformation order-equivariant, we add a conformation order-invariant head,
which performs average pooling across the conformation channel of the scalar and vector feature tensors, similar to Joshi
et al. (2025): S ∈ Rn×k×m and Ṽ ∈ Rn×k×m′×3 to S ∈ Rn×m and Ṽ ∈ Rn×m′×3 , where n is the sequence length, k is
the number of backbones, m is the number of scalar features, and m ′ is the number of vector features. The only pooling
strategy used in this work is the pooling of the maximum RMSD pair of chains - therefore k = 2 - although more pooling
strategies for homo-oligomers can be used, such as equal averaging of all chains to be inverse folded in the selected PDB
entries.

E. Further Discussion
E.1. Motivation

A commonly derived assumption from Anfinsen’s experiment is that proteins adopt only one native 3D structure, leading to
the “one sequence, one structure, one function” canon. This view has been indirectly reinforced by the predominant use of
X-Ray crystallography in experimental protein structure determination - it requires the protein to form a single, diffractible
crystal (Dishman & Volkman, 2018). This led to a bias in the Protein Data Bank towards globular, thermodynamically
stable chains. However, the dynamic nature of protein NMR and the advancements of Cryo-EM as well as the redundancy
among PDB entries (i.e. multiple entries that contain almost identical protein sequences) have offered valuable insights
into protein conformational landscape (Hrabe et al., 2015; Monzon et al., 2016). A series of MD datasets simulating
diverse protein structures have been released (Vander Meersche et al., 2023; Mirarchi et al., 2024), albeit they have limited
sequence variability and only a fraction of the simulations provide valuable information into dynamics of large molecular
conformational changes.

The large number of high-resolution deposited structures in the PDB allowed for the training of large geometric deep
learning models that boosted the prediction accuracy of protein structure (Jumper et al., 2021; Kryshtafovych et al., 2019).
Remarkable breakthroughs in protein backbone inverse folding (Dauparas et al., 2022) and de novo backbone generation
have followed suit (Watson et al., 2023). ProteinMPNN (Dauparas et al., 2022) in particular has streamlined single-state
protein inverse folding due to much smaller computational and time costs coupled with increased sequence recovery, when
compared to physics-based methods (Liu & Kuhlman, 2006) that treat sequence design as an energy optimization problem.
While these models have been successfully used for de novo protein design for improved function (Sumida et al., 2024), they
mostly rely on enhancing protein stability and solubility rather than dealing with dynamics and interaction mechanisms.
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