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ABSTRACT

In this work, we pioneer Semantic Flow, a neural semantic representation of dy-
namic scenes from monocular videos. In contrast to previous NeRF methods that
reconstruct dynamic scenes from the colors and volume densities of individual
points, Semantic Flow learns semantics from continuous flows that contain rich
3D motion information. As there is 2D-to-3D ambiguity problem in the viewing
direction when extracting 3D flow features from 2D video frames, we consider the
volume densities as opacity priors that describe the contributions of flow features
to the semantics on the frames. More specifically, we first learn a flow network to
predict flows in the dynamic scene, and propose a flow feature aggregation mod-
ule to extract flow features from video frames. Then, we propose a flow attention
module to extract motion information from flow features, which is followed by a
semantic network to output semantic logits of flows. We integrate the logits with
volume densities in the viewing direction to supervise the flow features with se-
mantic labels on video frames. Experimental results show that our model is able
to learn from multiple dynamic scenes and supports a series of new tasks such as
instance-level scene editing, semantic completions, dynamic scene tracking and
semantic adaption on novel scenes.

1 INTRODUCTION

In recent years, Neural Radiance Field (NeRF) (Mildenhall et al., 2020) methods bring a storm on
scene reconstruction tasks (Mildenhall et al., 2022; Chen et al., 2021; Yu et al., 2021; Niemeyer &
Geiger, 2021; Deng et al., 2022). NeRF represents the static scene as an implicit neural network
that takes an input of the position and viewing direction at a point in the 3D space, and outputs
the corresponding color and density. The high reconstruction quality facilitates many researchers to
extend its applications toward dynamic scenes (Gao et al., 2021; Wu et al., 2022; Park et al., 2021;
Weng et al., 2022), which are mostly recorded by monocular cameras in the real world.

Dynamic scene reconstruction from monocular videos is a challenging problem. Since the fore-
ground is dynamically changing in the scene, learning dynamic radiance fields from monocular
videos suffers from 2D-to-3D ambiguity in the viewing direction when mapping the observed object
motions on the 2D images (i.e., optical flows) to dense object motions in the 3D scene (i.e., scene
flows (Vedula et al., 1999)). Previous works mainly address the challenge and render the scene by
designing spatio-temporal constraints (Peng et al., 2021; Qiao et al., 2022; Li et al., 2021; Gao et al.,
2021; Tian et al., 2023). Specifically, they assume that points are temporally moving in the scene,
and reconstruct the scene with consistency constraints along point trajectories.

While the aforementioned dynamic NeRF methods successfully build radiance fields for dynamic
scenes, the semantics in these fields remain underexplored. Learning the semantic information in

∗Corresponding author. Codes are available at https://github.com/tianfr/Semantic-Flow/.
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Figure 1: Semantic Flow learns from flows capturing motion information in dynamic scenes. In this
way, Semantic Flow can learn semantics from multiple scenes and conduct instance-level editing
(Top). It also supports dynamic scene tracking and semantic completion (Middle), both of which
learn with few semantic labels. Compared to DynNeRF (Gao et al., 2021) and MonoNeRF (Tian
et al., 2023), Semantic Flow can transfer to novel scenes with more accurate details (Bottom).

dynamic scenes is considered beneficial since such information could support the further inter-
pretability and applications of the reconstructed scenes. The potential information in the flow of
each moving object is important for many computer vision tasks such as trajectory prediction (Xu
et al., 2023), action recognition (Feichtenhofer et al., 2019) and other applications (Trucco & Plakas,
2006; Tsai et al., 2016; Alahi et al., 2016; Hu et al., 2023).

To learn semantics in dynamic radiance fields, an intuitive solution is to add a semantic segmentation
head to the previous dynamic NeRF methods. In this way, the semantics of each point is estimated
from the position, timestamp, and other information related to the point. Although such approach
is sufficient for learning color and density, it cannot provide the motion information related to the
scene. In other words, the motion of an object can be observed from its continuous flow over
time rather than a single point at each moment. Due to the lack of motion information, predicting
semantics from points forces the model to overfit to the training views in the current scene, which
limits its generalization performance when training with few annotated labels or transferring to novel
scenes. Such limitation heavily restrains the model from a wider range of applications in the world.

In this paper, we propose a neural semantic representation for dynamic scenes. Instead of learning
from separate points, we propose to learn from continuous flows that capture motion information
of scenes. While extracting 3D flow features from 2D frames suffers from 2D-to-3D ambiguity
problem, we consider the volume densities as opacity priors describing the contributions of flow
features to the semantic labels on frames, so that the 2D semantic labels could be used to supervise
the semantic field by integrating the flow features in the viewing direction.

To achieve this, we propose Semantic Flow for building semantic fields of dynamic scenes from
flows. We first design a flow network to predict flows in the dynamic scene. Then, we exploit the
locations of the points on the flows as indexes to extract local image features from video frames,
and aggregate the extracted local features and flow displacements as flow features. We design a flow
attention module to fully exploit motion information from flows and employ a semantic network to
output the semantic logits of each flow. We aggregate the semantic logits in the viewing direction
with volume densities and supervise the logits with semantic labels on the video frames.

In addition, we also develop a dataset called Semantic Dynamic Scene Dataset based on the dy-
namic scenes from the Dynamic Scenes dataset (Yoon et al., 2020) to conduct semantic tasks. In
our dataset, there are seven forward-facing dynamic scenes with complex foreground motions. We
manually annotate the pixel-wise semantic labels of each video, and conduct a series of experiments
on the dataset. As shown in Figure 1, Semantic Flow can learn from multiple dynamic scenes, and
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present strong generalization ability on various tasks such as semantic adaption on novel scenes,
semantic completion, and dynamic scene tracking.

2 RELATED WORK

NeRF for semantics. In recent years, NeRF achieves great progress on the novel view synthesis task
by representing scenes as neural implicit representations (Mildenhall et al., 2020; Liu et al., 2020;
Gafni et al., 2021; Yu et al., 2021; Niemeyer & Geiger, 2021; Gu et al., 2022; Zhi et al., 2021; Martin-
Brualla et al., 2021; Srinivasan et al., 2021). Such success in scene reconstruction tasks encourages
many researchers to explore its possibility in scene understanding tasks. The first attempt is the
Semantic NeRF (Zhi et al., 2021), which exploits many semantic tasks in the neural radiance field
by adding a semantic head to the origin NeRF pipeline. Based on that, recent works focus on the
semantic understanding of static scenes (Yang et al., 2021; Liu et al., 2023a; Vora et al., 2022; Fan
et al., 2023; Kundu et al., 2022). Liu et al. (2023a) studied the generalization ability of semantic
radiance field by introducing semantics into each ray. Vora et al. (2022) proposed NeSF that is able to
reason semantics from geometry stored in the radiance field. Fan et al. (2023) proposed NeRF-SOS
that studies the segmentation problem in a self-supervised way. Although above mentioned methods
achieve promising performance, semantic learning in dynamic scenes remains underexplored.

Dynamic NeRF from monocular videos. The monocular videos are commonly captured by per-
sonal phones in daily life. Hence many researchers make huge progress on building the dynamic
radiance field from monocular videos (Li et al., 2021; Gao et al., 2021; Park et al., 2021; Pumarola
et al., 2020; Peng et al., 2021; Qiao et al., 2022; Ost et al., 2021; Weng et al., 2022; Gafni et al.,
2021). The major challenge behind scene reconstruction from monocular videos is the ambiguity
problem, which means the same observed image sequences can be inferred from different scene
reconstructions. Initially, some works extend the vanilla NeRF to dynamic scenes by introducing
a time dimension (Li et al., 2021; Gao et al., 2021; Pumarola et al., 2020). Based on that, a series
of studies try to reconstruct the dynamic parts of the scene more precisely with shape priors (Peng
et al., 2021; Qiao et al., 2022; Ost et al., 2021; Weng et al., 2022; Gafni et al., 2021). Besides, Tian
et al. (2023) studied the generalization problem and proposed MonoNeRF which builds a general-
izable dynamic radiance field by jointly optimizing the spatial and temporal features. In this study,
we explore the dynamic radiance field with semantic representations.

3 SEMANTIC FLOW

In this section, we introduce our model which we term as Semantic Flow. Given a monocular video
I containing N frames {I1, I2, ..., IN} with known camera poses {P1, P2, ..., PN}, we denote It, Pt

as the frame and pose at timestamp t and hence t ∈ {1, 2, ..., N}. We use semantic labels to delineate
foregrounds in each video frame, and reconstruct semantic fields of the dynamic foreground and
static background separately. We follow previous works (Li et al., 2021; Gao et al., 2021; Tian
et al., 2023) and supervise the model with optical flow and depth signals, which can be readily
obtained from the state-of-the-art pretrained models (Teed & Deng, 2020; Ranftl et al., 2022). For
the semantic field of dynamic foreground, we first build a flow field based on the input video to
calculate the flow of each point in the scene. Based on that, we exploit the moving points on the
flows as indexes to locate local image patches on each frame and extract the local image features.
We combine the local features and flow displacements as flow features and design a flow attention
module to uncover the semantic information related to the motion information of flows. To supervise
the semantic field with labels on video frames, we employ a semantic network to output semantic
logits of each flow, and render the logits of each pixel on the frames by integrating the semantic logits
of flows in the viewing direction with volume densities. For the semantic field of static background,
we directly sample the semantic features of each point from video frames. Our pipeline is shown in
Figure 2. Before introducing our model, we first present a review of concurrent dynamic radiance
fields.

3.1 PRELIMINARIES

To build a neural radiance field for dynamic scenes, previous works (Gao et al., 2021; Li et al.,
2021; Tian et al., 2023) build static and dynamic radiance fields for reconstructing backgrounds
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Figure 2: The overview of the proposed model. We first design a flow network to predict flows
in the dynamic scene. Then, taking the orange flow (in the bottom left part) as an example, we
aggregate the flow features from the feature map of each frame. We propose the flow attention
module to reveal the motion information from the aggregated flow features. Finally, we design a
semantic network to output the semantic logits of each flow, and predict semantics on the frame by
rendering the semantic logits along camera rays with volume densities σdy as opacity priors.

and foregrounds separately and blend static and dynamic radiance fields to render the entire scene
with learned blending weights. Specifically, for static radiance field, they learn an implicit function
Ψst : (σst, cst) = Ψst(x) that converts the input coordinate x ∈ R3 to the corresponding color
cst ∈ R3 and density σst ∈ R. Then they exploit the volume rendering technology to synthesize
novel view images of static backgrounds. Given a ray r = o+ ud emitting from the camera center
o ∈ R3 along the direction d ∈ R3 through a pixel on the image, the volume rendering function can
be formulated as

Cst(r) =

∫ uf

un

Tst(u)σst(u)cst(u)du, (1)

wherein un, uf are the upper and lower bounds of the rendering depth range and Tst(u) =
exp(−

∫ u

un
σst(s)ds) is the accumulated transmittance. We simplify c(u) = c(r(u)) and σ(u) =

σ(r(u)). For the dynamic radiance field, it takes the position x and time t as input and learns an im-
plicit function Ψdy : (σst, cst, b) = Ψdy(x, t), where b is the blending weight that decides whether
the point belongs to the dynamic foreground (Tian et al., 2023). Similarly, novel view images of dy-
namic foreground could be also synthesized by (1). The static and dynamic radiance fields Ψst,Ψdy

collaboratively render the novel view images of the entire scene,

Cfull(r) =

∫ uf

un

Tfull(u)σfull(u)cfull(u)du, (2)

where σfull(u)cfull(u) = (1 − b)σst(u)cst(u) + bσdy(u)cdy(u). In this paper, we follow the
principle to separately reconstruct the semantic fields of dynamic foreground and static background.

3.2 SEMANTIC FIELD FOR DYNAMIC FOREGROUND

In this section, we introduce our semantic field for dynamic foreground. We first describe our
implicit flow field which generates the flows in the dynamic scenes. Then, we introduce the flow
feature aggregation module and flow attention module to predict semantics of each flow. In the end,
we present our semantic rendering method.

Implicit flow field. We build a flow field to trace the flow on each point. Concretely, we first extract
the video features Fdy = Edy(I) by a video encoder Edy . Then, we build a flow field with a multi-
layer perceptron (MLP) Ψflow based on Fdy . Given a point position x at timestamp t, the flowing
point positions Φt−1,Φt+1 ∈ R3 at timestamps t− 1, t+ 1 can be calculated as

(Φt−1,Φt+1) = Ψflow(Fdy;Φt, t), (3)
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where Φt = x. Then, the point trajectories Φt−r,Φt+r at timestamps t− r, t+ r could be inferred
from (3) by introducing Φt−r+1,Φt+r−1 and t − r + 1, t + r − 1 into Ψflow. In this way, we can
derive the flow related to a point as a set of point positions with timestamps Γ = {Γ1,Γ2, ...,ΓN}
where Γt = (Φt, t). We follow previous works (Tian et al., 2023; Gao et al., 2021; Li et al., 2021)
and employ optical flows as the supervision signal. Concretely, for a point x = r(u) on the ray at
timestamp t, we obtain its flow with Ψflow. We estimate the optical flow by integrating the flow
displacements of the points on the ray with densities σdy . The estimated flows are then supervised
by the flows generated from the pretrained model (Teed & Deng, 2020). In the following, we build
the flow features based on the flow of each point.

Flow feature aggregation. Given a point with its position x, timestamp t and flow Γ, we sample
the flow features from video features over the flow of the point. Specifically, for each Γt = (Φt, t),
we employ the camera pose Pt to project the Φt onto the video frame It as Pt(Φt). We extract
the feature map of It by Edy and exploit Pt(Φt) as index to sample the point feature vector on the
feature map with bilinear interpolation,

Fdy(I;Φt) = Ω(Edy(It);Pt(Φt)), (4)

where the function Ω(·) is the bilinear interpolation. Edy(It) denotes the frame-wise feature map
extracted by Edy . The flow features vector at any timestamp τ could be built based on the point
feature vector with the relative flow displacement ∆Γ = Γτ − Γt,

Fdy(I;Γτ ) = {Fdy(I;Φτ ), γ(∆Γ)}, (5)

where the function γ(·) denotes the position embedding function. The initial flow features are
defined as

Fdy(I;Γ) = [Fdy(I;Γ1),Fdy(I;Γ2), ...,Fdy(I;ΓN )]T . (6)

In the following, we introduce our flow attention module for uncovering the motion information of
the flow.

Flow attention. As the flow features sampled from video features provide specific information for
object motions from different views and timestamps, we propose a flow attention module to reason
the semantic features related to flow motions. Concretely, for each flow feature Fdy(I;Γ), our flow
attention module is defined as

Q = Fdy(I;Γ)×Wq,K = Fdy(I;Γ)×Wk, V = Fdy(I;Γ)×Wv,

A(h) = softmax(
Q(h)K(h)T

√
dk

V (h)), h ∈ {1, ...,H},
(7)

where dk = C/H is the dimension of each head. Q,K, V ∈ RC×C denote the query, key and
value features extracted from Fdy(I;Γ) by the fully connected layers Wq,Wk,Wv . We employ
a multi-head attention module and Q = [Q(1), Q(2), ..., Q(H)],K = [K(1),K(2), ...,K(H)], V =
[V (1), V (2), ..., V (H)] where Q(h),K(h), V (h) ∈ RN×dk . A(h) is the output from h-th head. We
exploit a semantic network implemented by a MLP Ψo to obtain the final semantic feature vector
from the outputs of all heads {A(1), A(2), ..., A(N)},

F sem
dy (I;Γ) = Ψo

(
A(1), A(2), ..., A(N)

)
, (8)

wherein F sem
dy (I;Γ) denotes the final semantic feature vector of the flow.

Semantic rendering. As there is ambiguity in the viewing direction when estimating precise se-
mantic labels in 3D space from the semantic labels on 2D video frames, we propose to supervise
the semantic field by aggregating the semantics along the camera ray with the corresponding vol-
ume densities as opacity priors. Concretely, we design a semantic network Ψsem

dy : sdy(Γ) =

Ψsem
dy (F sem

dy (I;Γ)) implemented by an MLP to generate the semantic logits sdy(Γ) of the flow.
Given a ray r starting from the camera center through a pixel on the image, for each point r(u) on
the camera ray, we find its flow in the scene and calculate the corresponding semantic logits of the
flow. The semantic logits of the ray are calculated by the following integration,

sdy(r) =

∫ uf

un

Tdy(u)σdy(u)sdy(Γ(u))du, (9)
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where sdy(Γ(u)) denotes the semantic logits of point r(u) obtained from it flow feature vector. We
simplify sdy(Γ(u)) = sdy(Γ(r(u))) here. σdy is predicted by our geometric network Ψgeo. We
supervise the rendered labels with ground truths by employing a multi-class crossentropy loss:

Lsem
dy (r) = −

∑
r

[ L∑
l=1

pl(r)logp̂ldy(r)
]
, (10)

wherein p̂ldy, p
l are the semantic probabilities of class l from the prediction and ground truth map,

respectively. L is the total number of classes and 1 ≤ l ≤ L.

3.3 SEMANTIC FIELD FOR STATIC BACKGROUND

In this section, we introduce our semantic field for the static background. Since some parts of the
background may be occluded by the changing foreground, the semantic features extracted from
video frames in these parts always imply the foreground information. To obtain the correct semantic
features of occluded background parts, we choose to extract the features from non-occluded views
as the following equation,

Fst(I;x) = Ω
(
Est(I

∗;P ∗(x))
)
, (11)

where Est is the encoder of the static scene. I∗,P ∗ denote the non-occluded frame and correspond-
ing camera pose. Following Tian et al. (2023), we employ the straightforward random sampling
strategy by effectively choosing one frame in the video. Then, the semantic logits in the static scene
is represented by an MLP Ψsem

st : sst(x) = Ψsem
st (Fst(I;x)). Similar to the semantic field for

dynamic foreground described in Section 3.2, for each point r(u) on the ray, we exploit volume
densities to render the semantic logits of the ray in the static scene,

sst(r) =

∫ uf

un

Tst(u)σst(u)sst(r(u))du, (12)

where sst(r(u)) denotes the semantic logits of the point r(u). We supervise the logits by crossen-
tropy loss:

Lsem
st (r) = −

∑
r

[ L∑
l=1

pl(r)logp̂lst(r)
]
, (13)

where p̂lst is the predicted semantic probability of l-th class in the static scene.

3.4 OPTIMIZATION

During the training phrase, we first pretrain the semantic field of the static background by using the
semantic labels that belong to the background, and then optimize the semantic field of the dynamic
foreground combined with the pretrained static background field to render the entire semantic field,

ssemfull(r) =

∫ uf

un

Tfull(u)σfull(u)s
sem
full(r(u))du, (14)

where σfull(u)s
sem
full(u) = (1− b)σst(u)s

sem
st (r(u)) + bσdy(u)s

sem
dy (Γ(u)). b denotes whether the

point belongs to the dynamic foreground or static background. The semantic loss of the entire scene
is defined as

Lsem
full(r) = −

∑
r

[ L∑
l=1

pl(r)logp̂lfull(r)
]
, (15)

where p̂lfull is the predicted semantic probability of class l. In the following, we apply several
optimization strategies to the model for rendering the semantic field with better quality.

Semantic consistency constraint. We suppose that the semantics of flows are consistent over time
across the whole dynamic scene. Specifically, rτ denotes the warped ray r at timestamp τ by
employing the flows of the points on the ray, i.e., rτ (u) = Φτ (r(u)), where Φτ (r(u)) denotes the
new position of r(u) when moving from the original timestamp to timestamp τ . We supervise the
semantic label of rτ with the ground truth label of the ray r,

Lconsis = −
∑
rτ

[ L∑
l=1

pl(r)logp̂ldy(rτ )
]
, (16)

where p̂ldy(rτ ) is l-th class semantic possibility of the ray rτ .
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(a) Learning semantics from multiple dynamic scenes.

(b) Semantic adaption on novel scenes (500 finetuning steps).

(c) Semantic completion (50% semantic labels). We train the models with semantic labels of video frames
{I1, I2, I3, I10, I11, I12} and predict novel semantic views on the rest frames {I4, I5, ..., I9}.

(d) Dynamic scene tracking (25% semantic labels). We use the semantic labels of frames {I1, I2, I3} to
train the models, and conduct semantic predictions of novel views on the frames {I4, I5, ...I12}.

Figure 3: Visualizations on various tasks. Different from DynNeRF (Gao et al., 2021)+semantic
head and MonoNeRF (Tian et al., 2023)+semantic head that learn from point features, Semantic
Flow learns from flow features for capturing motions. In this way, Semantic Flow predicts semantic
labels of dynamic foregrounds with more accurate motions and clearer boundaries.

4 EXPERIMENTS

We evaluate our method by conducting experiments on various semantic tasks of dynamic scenes.
We first introduce our new dataset and the implementation details. Then, we present experiments by
training with full annotated labels. After that, we tested the performance on training with few labels.

4.1 DATASET AND IMPLEMENTATION DETAILS

Dataset. We introduce Semantic Dynamic Scene dataset which is built upon the Dynamic Scene
dataset (Yoon et al., 2020). Dynamic Scene dataset contains 9 dynamic scenes captured by 12
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Table 1: Performance on semantic representation learning from multiple scenes and semantic adap-
tion of novel scenes (500 finetuning steps). ♢ represents adding a semantic head to the original
model. By learning from flow features, our model could reconstruct semantic fields and transfer to
novel scenes with the state-of-the-art performance. More comparisons are in Table 9 in Appendix.

Total Acc↑ / mIoU ↑ Learning semantics from multiple scenes Semantic adaption of novel scenes
Balloon1 Balloon2 Jumping Skating Umbrella Playground Truck

DynNeRF♢ (Gao et al., 2021) 0.767 / 0.515 0.459 / 0.229 0.912 / 0.570 0.955 / 0.431 0.941 / 0.795 0.914 / 0.387 0.967 / 0.662
MonoNeRF♢ (Tian et al., 2023) 0.907 / 0.760 0.967 / 0.616 0.929 / 0.576 0.973 / 0.590 0.961 / 0.685 0.879 / 0.393 0.968 / 0.425
Semantic Flow 0.919 / 0.844 0.967 / 0.839 0.938 / 0.703 0.970 / 0.608 0.970 / 0.884 0.937 / 0.742 0.977 / 0.765

Table 2: Quantitative results on scene completion and dynamic scene tracking. ♢ denotes that we
added a semantic head to the original model. The results show the superiority of our model when
learning from with few labels. Detailed results are shown in Table 10 and Table 11 in Appendix.

method Completion (50% labels) Tracking (25% labels)
Total Acc↑ Avg Acc↑ mIoU↑ Total Acc↑ Avg Acc↑ mIoU↑

DeAOT (Yang & Yang, 2022) 0.816 0.600 0.412 0.776 0.533 0.359
DynNeRF♢ (Gao et al., 2021) 0.934 0.849 0.738 0.896 0.760 0.660
MonoNeRF♢ (Tian et al., 2023) 0.956 0.891 0.786 0.935 0.818 0.716
Semantic Flow 0.961 0.901 0.818 0.942 0.835 0.767

cameras with a camera rig. We manually annotate 7 dynamic scenes: Balloon1, Balloon2, Jumping,
Skating, Playground, Truck and Umbrella. More details refer to Section D in Appendix.

Implementation details. We follow previous works (Yu et al., 2021; Liu et al., 2023a; Tian et al.,
2023) to use MLPs with residual links as our flow network Ψflow and geometry network Ψgeo.
The semantic networks Ψdy

sem,Ψst
sem are implemented by three fully connected layers with ReLU

activation. For the semantic field of dynamic foreground, we employ SlowOnly (Feichtenhofer et al.,
2019) pretrained on Kinetics-400 dataset (Carreira & Zisserman, 2017) as our backbone encoder Edy

with the frozen weights. We remove the final fully-connected layer and combined the first, second,
and third feature layers as the output of Edy(It). We simplify Equation (6) where we only sample the
flow feature vector F (Γ) at timestamp t from frames {It−1, It, It+1}. We train the semantic field
of dynamic foreground for 40,000 iterations with Adam optimizer (Kingma & Ba, 2015). For the
semantic field of static background, we employ ResNet18 (He et al., 2016) pretrained on ImageNet
(Deng et al., 2009) as our backbone encoder. We pretrain the semantic field of static foreground for
100,000 iterations. The learning rate is set to 5× 10−4. More details refer to Section E in Appendix.

4.2 SEMANTIC VIEW SYNTHESIS WITH FULL LABELS

In this section, we evaluate our model with fully annotated labels. We first test the ability of se-
mantic representation by learning from multiple scenes. Then, we conduct ablation studies and
instance-level scene editing application based on the learned representation. Finally, we evaluate the
generalization ability by finetuning our model on novel scenes.

Learning semantics from multiple scenes. Similar to Tian et al. (2023), we train our model on
two scenes simultaneously: 1) Balloon1 and Balloon2; 2) Jumping and Skating. To compare with
other state-of-the-art methods, we reimplement DynNeRF (Gao et al., 2021) and MonoNeRF (Tian
et al., 2023) from their official implementation and add a semantic head to their models for predict-
ing semantics. As shown in Figure 3a, because DynNeRF learns the semantic field from position
embedding, it has limited generalization ability cross scenes, and hence the semantic information
of two scenes is mixed together. As for MonoNeRF, due to the lack of motion information, the
boundaries of dynamic objects are difficult to predict. In Table 1, since the mIoU matrix is sensitive
to boundary accuracy, Semantic Flow outperforms the above two methods with a large margin.

Ablation studies. We conduct a series of ablation studies on Figure 4 and Table 6 by learning
semantics from multiple scenes. It can be seen that with the proposed flow attention module, our
model successfully extracts motion information in the flows and improves the performance on mIoU
matrix. σdy provides an important prior for integrating the semantic logits of dynamic objects. Our
model renders the semantic field with finer details by using Lconsist. Ψsem

st and ∆Γ contribute to
reconstructing the semantics in the foregrounds.
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Table 3: Label percentages
(Total Acc↑ / mIoU↑).

Labels Completion Tracking

25% 0.979 / 0.904 0.975 / 0.893
50% 0.983 / 0.920 0.979 / 0.908
75% 0.985 / 0.934 0.985 / 0.934

Table 4: Flow displacements
(Total Acc↑ / mIoU↑).

Disp. Completion Tracking

∆Γ 0.984 / 0.925 0.975 / 0.893
Γ 0.983 / 0.920 0.974 / 0.894

Γ&∆Γ 0.985 / 0.932 0.970 / 0.874

Table 5: Finetuning steps on
novel scene. ♢: semantic head.

Ft steps MonoNeRF♢ Semantic Flow

100 0.819 / 0.296 0.906 / 0.689
200 0.869 / 0.316 0.925 / 0.736
500 0.879 / 0.393 0.937 / 0.742

Table 6: Numeric compar-
isons on σdy prior, flow atten-
tion module, Ψsem

st , Lconsist

and ∆Γ.

Acc↑ / mIoU↑
w/o. σdy prior 0.903 / 0.838
w/o. flow attn 0.921 / 0.643
w/o. Ψsem

st 0.853 / 0.734
w/o. Lconsist 0.917 / 0.741
w/o. ∆Γ 0.915 / 0.770
Semantic Flow 0.932 / 0.859 Figure 4: Ablation studies on σdy prior, flow attention module,

Lconsist, ∆Γ and Ψsem
st .

Instance-level scene editing. Our model could conduct instance-level scene editing applications
with the learned semantic field. As shown in Figure 1, our model can remove the dynamic instances
in the foreground by forcing the volume densities of points related to target instances to zeros.

Semantic adaption on novel scenes. After training on multiple scenes, we finetune our model on
unseen monocular videos to test the generalization ability on novel scenes. Specifically, we pre-
train our model on Balloon1 and Balloon2 scenes with 10,000 training iterations and finetune the
model on Umbrella, Playground and Truck scenes separately. We also evaluate the performance
of DynNeRF (Gao et al., 2021) and MonoNeRF (Tian et al., 2023) with the same experiment set-
tings for a fair comparison. As shown in Figure 3b, since our model learns semantics from flow
features, it could predict more accurate boundaries of moving objects in dynamic foreground by
capturing motion information. In contrast, the predictions from DynNeRF and MonoNeRF methods
show blurring and even wrong boundaries, which causes many false positive predictions outside the
moving objects and leads to a severe performance drop on mIoU matrix in Table 1 and Table 5.

4.3 SEMANTIC VIEW SYNTHESIS WITH FEW LABELS

Since manually annotating semantic labels is a time-consuming and laborious task, in this sections,
we introduce two strategies to evaluate the generalization ability of our model with few labels: (1)
Semantic completion. We apply models to learn the semantic representation over the entire scene
with the semantic labels in the first and last few frames {I1, I2, I3, I10, I11, I12}. (2) Dynamic scene
tracking. We train on the front video frames {I1, I2, I3} with fully annotated labels and directly in-
fer the semantics over the rest frames. As shown in Figure 3c and Figure 3d, since DynNeRF builds
the semantic field from position embedding, it cannot transfer to unseen frames with accurate seman-
tic predictions. As MonoNeRF predicts the semantic labels with point features, it meets difficulties
in predicting the semantic labels of the moving balloons in the foreground. In Table 2, with the
extracted flow features, Semantic Flow is easier to identify the dynamic parts and hence presents
higher performance. Table 3 and Table 4 show that our model could extract motions in flows from
various types of displacements and build semantic fields by using 25% labels.

5 CONCLUSION

In this paper, we build a semantic field of dynamic scenes from monocular videos. We propose to
learn from flow features that contain motion information and consider the volume densities as opac-
ity prior for supervising the field with semantic labels on video frames. Experiments demonstrate
the effectiveness of our model.

9
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A SUPPLEMENTAL VIDEO

We recommend readers to watch our supplemental video for more visual comparisons.

B CODES AND DATASET

The implementation codes of our model and our Semantic Dynamic Scene dataset are available at
https://github.com/tianfr/Semantic-Flow/.

C LOSS

Similiar to MonoNeRF (Tian et al., 2023), we use RGB loss and optical flow loss to supervise the
static and dynamic radiance fields. Let Lrgb

st , Lrgb
dy denote the RGB color loss of static and dynamic

field separately, Lrgb
full denote the RGB color loss when jointly optimizing the static and dynamic

radiance fields, and Lopt denote the optical flow loss. The entire loss of the model is defined as

L =αrgb
st Lrgb

st + αrgb
dy Lrgb

dy + αrgb
fullL

rgb
full + αoptLopt + αsem

fullL
sem
full + αsem

dy Lsem
dy

+ αsem
st Lsem

st + αconsistLconsist,
(17)

where the hyper-parameters of each loss is listed in Table 7.

Param αrgb
st αrgb

dy αrgb
full αopt αsem

full αsem
dy αsem

st αconsist

Value 4 1 1 0.02 0.16 0.08 0.08 0.01

Table 7: Hyper-parameters of loss.

D ANNOTATION DETAILS

We annotate 7 dynamic scenes from Dynamic Scene dataset (Yoon et al., 2020). For each scene,
we classify two different types of semantic labels: foreground labels and background labels. All
the foreground semantic labels in one scene formulate the foreground mask of the scene. The label
details of each scene is shown in Table 8. The examples of annotated images are shown in Fig-
ure 5. We follow previous works (Tian et al., 2023; Gao et al., 2021) and use video frames from
different cameras to simulate the camera movement. All the cameras capture images at 12 different
timestamps. During the training, each monocular video contains 12 frames, where the t-th frame is
sampled from t-th camera at time t.

Table 8: Scene labels in our dataset.

Scene Foreground labels Background labels

Jumping person1, person2, person3, person4, bag, lamp, ground, window, red wall, gray wall
Skating person, skate lamp, ground, window, red wall, gray wall
Truck truck car, ground, building

Umbrella umbrella red wall, plants, ground
Balloon1 person, balloon red wall grey wall, newspaper
Balloon2 person, balloon red wall grey wall, window

Playground person, balloon gym device, ground

E IMPLEMENTATION DETAILS

In this section, we introduce the details of our Semantic Flow and experimental settings. The entire
model is trained on a Nvidia RTX 3090 GPU with a total batch size of 1024 rays. The learning rate
is 0.0005. We used Adam optimizer (Kingma & Ba, 2015) where betas is (0.9, 0.999). During the
training, we first pretrain the semantic field of static background, and optimize the semantic field of
dynamic foreground with the pretrained static semantic field.
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Figure 5: Annotation examples in Semantic Dynamic Scene dataset.

Details of semantic fields for dynamic foreground. We use the SlowOnly50 network (Feicht-
enhofer et al., 2019) as our encoder Edy and remove all the pooling layers in the network. The
encoder is pretrained on Kinetics-400 dataset (Carreira & Zisserman, 2017). We remove the final
fully-connected layer in the encoder. We froze the pretrained weights and the point feature vector
Fdy(I; Φt) is sampled from the first, second and third spatial feature maps of the encoder, which
are concatenated in the channel dimension and fused with a fully connected layer. The vector has
256 channels. We follow previous works (Gao et al., 2021; Tian et al., 2023) and use the same
embedding function γ(·). We follow Tian et al. (2023) and implement the flow network Ψflow and
geometric network Ψgeo by using MLPs with residual links and width 128. We employ 4 residual
blocks to implement Ψflow and Ψgeo. The semantic network Ψdy

sem is implemented by three fully
connected layers with ReLU activation. As for flow attention module, the head number H is 4 and
the number of channels C is 64. The inital training steps is 40,000 for each scene.

Details of semantic field for static backgrounds. We follow Tian et al. (2023) and use ResNet18
(He et al., 2016) as our encoder Est. The point feature Fst(I;x) is sampled from four feature maps
prior to four pooling layers of ResNet18 and concatenated in the channel dimension. We fused
the concatenated features with a fully connected layer to form a feature vector of size 256. The
semantic network Ψsem

st is implemented by three fully connected layers with ReLU activation. The
initial training steps is 100,000 for each scene.

Details of learning from multiple scenes. We train our semantic field on two scenes simultane-
ously. During training, there are 512 rays for each scene in a mini-batch. It takes about 16 hours to
learn the semantic field from two scenes.

Details of semantic adaption on novel scenes. After training from multiple scenes, we finetune
our model on novel scenes by using the pretrained model on Balloon1 and Balloon2 scenes with
10,000 training steps. The semantic fields of foregrounds and backgrounds are separately finetuned
with preferred finetuning steps. It takes about 10 minutes to finetune the model on a novel scene
with 500 steps.

Scene editing. We conduct instance-level scene editing applications by control the volume densities
related to specific semantic labels. For instance, we delete the person1 in the Jumping scene by
forcing the volume densities of the points that has the label of person1 to zeros.

Details of semantic completion. In this setting, after training the model on the frames that include
semantic labels, we directly employ the symantic view synthesis on the rest unseen frames. We
change the initial flow displacement to Γ&∆Γ.

Details of dynamic scene tracking. Similar to semantic completion, we directly conduct semantic
view synthesis on the unseen frames by using the pretrained model on the frames with semantic
labels. The initial flow displacement here is ∆Γ.
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Table 9: More comparisons on semantic representation learning from multiple scenes and semantic
adaption of novel scenes (500 finetuning steps). ♢ represents adding a semantic head to the original
model. By learning from flow features, our model could reconstruct semantic fields and transfer to
novel scenes with the state-of-the-art performance.

Total Acc↑ / mIoU ↑ Learning semantics from multiple scenes Semantic adaption of novel scenes
Balloon1 Balloon2 Jumping Skating Umbrella Playground Truck

NeRF+time♢ (Mildenhall et al., 2020) 0.780 / 0.529 0.455 / 0.211 0.913 / 0.564 0.857 / 0.277 0.953 / 0.763 0.919 / 0.416 0.920 / 0.433
NSFF♢ (Li et al., 2021) 0.583 / 0.402 0.511 / 0.224 0.865 / 0.420 0.891 / 0.337 0.954 / 0.773 0.910 / 0.623 0.918 / 0.614
RoDyNeRF♢ (Liu et al., 2023b) 0.567 / 0.459 0.531 / 0.312 0.886 / 0.432 0.888 / 0.536 0.900 / 0.312 0.876 / 0.432 0.904 / 0.606
D-NeRF♢ (Pumarola et al., 2020) 0.267 / 0.079 0.381 / 0.076 0.267 / 0.135 0.305 / 0.136 0.700 / 0.221 0.605 / 0.323 0.780 / 0.501
DynNeRF♢ (Gao et al., 2021) 0.767 / 0.515 0.459 / 0.229 0.912 / 0.570 0.955 / 0.431 0.941 / 0.795 0.914 / 0.387 0.967 / 0.662
MonoNeRF♢ (Tian et al., 2023) 0.907 / 0.760 0.967 / 0.616 0.929 / 0.576 0.973 / 0.590 0.961 / 0.685 0.879 / 0.393 0.968 / 0.425
Semantic Flow 0.919 / 0.844 0.967 / 0.839 0.938 / 0.703 0.970 / 0.608 0.970 / 0.884 0.937 / 0.742 0.977 / 0.765

F DETAILED RESULTS ON SEMANTIC COMPLETION AND DYNAMIC SCENE
TRACKING

Table 10: Quantitative results on semantic completion. We train the semantic field with 50% frames
with semantic labels and tested the semantic view synthesis performance on the rest frames. ♢

denotes that we added a semantic head to the original model.

Acc↑ / mIoU ↑ Jumping Skating Truck Umbrella Balloon1 Balloon2 Playground Average

DeAOT (Yang & Yang, 2022) 0.773 / 0.292 0.863 / 0.344 0.932 / 0.566 0.877 / 0.520 0.567 / 0.324 0.837 / 0.424 0.866 / 0.415 0.816 / 0.412
DynNeRF♢ (Gao et al., 2021) 0.896 / 0.660 0.955 / 0.660 0.949 / 0.719 0.953 / 0.820 0.883 / 0.782 0.947 / 0.784 0.956 / 0.745 0.934 / 0.738
MonoNeRF♢ (Tian et al., 2023) 0.937 / 0.725 0.964 / 0.701 0.975 / 0.769 0.966 / 0.844 0.912 / 0.820 0.978 / 0.899 0.962 / 0.746 0.956 / 0.786
SemanticFlow 0.940 / 0.771 0.981 / 0.777 0.976 / 0.786 0.967 / 0.860 0.922 / 0.843 0.983 / 0.920 0.961 / 0.769 0.961 / 0.818

Table 11: Quantitative results on dynamic scene tracking. We train the model on the front 25%
frames with semantic labels and evaluated the performance by render novel semantic views on the
rest frames. ♢ represents that we add a semantic head to the original model.

Acc↑ / mIoU ↑ Jumping Skating Truck Umbrella Balloon1 Balloon2 Playground Average

DeAOT (Yang & Yang, 2022) 0.695 / 0.200 0.784 / 0.222 0.915 / 0.524 0.797 / 0.412 0.560 / 0.325 0.824 / 0.393 0.855 / 0.437 0.776 / 0.359
DynNeRF♢ (Gao et al., 2021) 0.856 / 0.593 0.912 / 0.563 0.914 / 0.637 0.926 / 0.767 0.823 / 0.689 0.925 / 0.729 0.922 / 0.648 0.896 / 0.660
MonoNeRF♢ (Tian et al., 2023) 0.896 / 0.619 0.964 / 0.624 0.928 / 0.623 0.954 / 0.762 0.897 / 0.798 0.954 / 0.791 0.954 / 0.797 0.935 / 0.716
Semantic Flow 0.906 / 0.676 0.966 / 0.665 0.946 / 0.688 0.955 / 0.866 0.902 / 0.806 0.975 / 0.893 0.950 / 0.772 0.942 / 0.767

Semantic completion. We list the detailed performance of semantic completion in Table 10. The
results are reported by training with 50% labels.

Dynamic Scene tracking. We present the detailed results of dynamic scene tracking in Table 11.
The experiments are conducted by training the model with semantic labels on frames {I1, I2, I3}
i.e., 25% labels.

G DISCUSSIONS

G.1 DISCUSSION ABOUT SCENE RECONSTRUCTION

In this section, we compare the scene reconstruction performance of our model with MonoN-
eRF (Tian et al., 2023) and DynNeRF (Gao et al., 2021). Table 12 shows that our model achieves
better performance in PSNR, SSIM and LPIPS indexes. By reconstructing the dynamic scenes pre-
cisely, our model could conduct instance-level scene editing applications.

G.2 DISCUSSION ABOUT FLOW FIELD AND CORRESPONDENCE

We visualize the predicted flow fields and pixel correspondence of the dynamic foreground in three
consecutive frames in Figure 6. Although we do not add extra restrictions to the mappings of flows in
(16), the visualization of the flow fields and correspondence shows that our model is able to predict
flows that map similar parts of the dynamic foreground across time.

15



Published as a conference paper at ICLR 2024

Table 12: The results of scene reconstruction. Our model achieves better color rendering perfor-
mance compared with other state-of-the-art methods.

PSNR ↑ / SSIM ↑ / LPIPS ↓ Jumping Skating Average

DynNeRF (Gao et al., 2021) 21.91 / 0.6856 / 0.174 24.68 / 0.7866 / 0.175 23.30 / 0.7361 / 0.176
MonoNeRF (Tian et al., 2023) 22.41 / 0.7484 / 0.145 26.18 / 0.8739 / 0.115 24.30 / 0.8112 / 0.130
Semantic Flow 22.86 / 0.7658 / 0.138 25.75 / 0.8774 / 0.113 24.31 / 0.8216 / 0.126

Figure 6: Visualization of rendered RGB images, estimated flow fields, semantic predictions and
pixel correspondence in three consecutive frames. In the correspondence visualization, the color
coding illustrates correspondences of the dynamic foreground across time.

G.3 DISCUSSION ABOUT OPTICAL FLOWS

Table 13: Performance on semantic representation learning from multiple scenes with optical flow
maps generated from different flow estimation methods (Total Acc↑ / mIoU↑).

method Learning semantics from multiple scenes
Balloon1 Balloon2 Jumping Skating

RAFT (Teed & Deng, 2020) 0.919 / 0.844 0.967 / 0.839 0.936 / 0.733 0.970 / 0.716
FlowNet (Dosovitskiy et al., 2015) 0.926 / 0.855 0.974 / 0.766 0.921 / 0.636 0.965 / 0.591

Table 14: Performance on semantic representation learning from multiple scenes under the supervi-
sion of noisy optical flow maps (Total Acc↑ / mIoU↑).

noise scale β
Learning semantics from multiple scenes

Balloon1 Balloon2 Jumping Skating

0 0.919 / 0.844 0.967 / 0.839 0.936 / 0.733 0.970 / 0.716
1% 0.923 / 0.844 0.963 / 0.820 0.937 / 0.715 0.970 / 0.707
5% 0.924 / 0.808 0.964 / 0.813 0.937 / 0.656 0.969 / 0.714

10 % 0.922 / 0.777 0.964 / 0.666 0.936 / 0.690 0.969 / 0.670

Since Semantic Flow relies on the optical flows predicted from the pretrained models, in this sec-
tion, we discuss the robustness of the model supervised by optical flow signals from two perspec-
tives: choosing different optical flow estimation methods and adding noise to optical flow maps.
We first compare the semantic prediction performance by using RAFT (Teed & Deng, 2020) or
FlowNet (Dosovitskiy et al., 2015). accroding to the experiments in RAFT paper, RAFT outper-
forms FlowNet with a large margin in various optical flow estimation tasks. Therefore, it can be
seen that there is about 10% performance drop in mIOU matrix when jointly optimizing Jumping
and Skating scenes, where the dynamic foregrounds are drastically changing. However, our model
still reaches comparable results when jointly optimizing Balloon1 and Balloon2 scenes with the
flow maps estimated from FlowNet. We also test the performance of our model by manually adding
different scales of noise to the predicted optical flow maps. Concretely, for each optical flow map
estimated from two consecutive video frames, we denote Φmin,Φmax as the minimum and maxi-
mum numbers of the optical flows in the map, and the noisy flow can be defined as the following
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equation,
Φnoisy = Φorigin + β × xnoise, (18)

where β controls the scale of the noise and xnoise ∼ U(Φmin,Φmax) denotes the noise. Table 14
presents that our model shows robustness with a small scale of noise on the optical flow maps.

G.4 DISCUSSION ABOUT OCCLUSION

Figure 7: Visualization of the occlusion situation. We manually occlude a part of both static and
dynamic regions in frame #6, which leads to the wrong flow maps estimated by Teed & Deng
(2020). Although Semantic Flow fails to predict the semantics of the occluded part in frame #6, it
successfully conducts accurate predictions in frames #5 and #7.

To test the performance of our model with occluded regions, we manually add an occluded region
to the frame #6 in the Balloon2 scenes. Concretely, as shown in Figure 7, we manually occlude a
region in the RGB image and semantic labels of the frame #6 and generate the wrong flow maps
from the occluded image by using Teed & Deng (2020). We train the model with the occluded image
and wrong optical flow maps. Although Semantic Flow meets difficulty in predicting the semantics
of the occluded region in the frame #6, it successfully predicts the semantics in the frames #5 and
#7.

G.5 COMPARED TO IMAGE SEGMENTATION METHOD

To compare with the image segmentation method, we use the pretrained Masked R-CNN (He et al.,
2017) model to predict the semantic labels in the Jumping scene. As shown in Figure 8, while
Masked R-CNN processes each video frame independently and hence predicts inconsistent labels of
the same instances in different timestamps, our model could generate semantic labels consistent in
time by learning semantics from all the video frames.

Figure 8: Comparison with Masked-RCNN (He et al., 2017). Since Semantic Flow learns a semantic
field that is continuous in time, it predicts consistent semantic labels at all timestamps. In contrast,
image segmentation methods such as Masked-RCNN (He et al., 2017) process each video frame
individually, and hence align inconsistent instance-level labels to the same instance in different
frames.
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G.6 DISCUSSION ABOUT FLOW DISPLACEMENTS

Figure 9: Qualitative results by using different displacements in the dynamic scene tracking setting.
While Table 4 shows that our model has robustness with different displacements, we find that our
model could predict semantics with better visualization quality by using Γ&∆Γ.

In Table 6 and Figure 4 in the main paper, we demonstrate that the boundaries of predicted semantics
could be more precise and the performance could be improved by using flow displacements. While
in Table 4 we show that our model has robustness with different flow displacements, we find that it
could generate better qualitative results by using Γ&∆Γ, as shown in Figure 9.

G.7 LIMITATIONS

Figure 10: A failure case in the tracking setting. Our model fails to predict precise semantics with
imperfect flow predictions.

It is worth noting that training semantic fields with few semantics labels is still a challenging prob-
lem. For instance, in the dynamic scene tracking setting, Semantic Flow may fail to conduct precise
semantic prediction due to imperfect flow predictions as shown in Figure 10.

Figure 11: Comparison of the flow prediction between FlowNet (Dosovitskiy et al., 2015) and RAFT
(Teed & Deng, 2020). In the Jumping scene, the flow maps predicted by FlowNet are totally wrong
and lead to a performance drop in Table 13. On the other hand, in the Balloon1 scene, while the
flow maps predicted by FlowNet are less accurate than RAFT, it successfully predicts the boundary
of the balloon movement. The inaccuracy in the maps can be considered as a small scale of noise,
which may slightly improve the performance in the Balloon1 scene as shown in Table 14.
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