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S1 Dataset

Class:

Phylum:

Order:

Family:

Subfamily:

Genus:

Species:

Tylozygus

Tylozygus
geometricus

Country:

Province/state:

Latitude:

Longitude:

Num. of pixels:

Area fraction:

Scale factor:

BIN:

... (660 bp)

Figure S1: The BIOSCAN-5M Dataset provides taxonomic labels, a DNA barcode sequence, barcode
index number, a high-resolution image along with its cropped and resized versions, as well as size
and geographic information for each sample.

S2 Ethics and responsible use

The BIOSCAN project was instigated by the International Barcode of Life (iBOL) Consortium, which
has collected a large dataset of manually-labelled images of organisms (International Barcode of Life
Consortium, 2024; Steinke et al., 2024). As part of our project, we conducted a thorough review
to identify any potential ethical issues related to the inclusion of our data sources. After careful
evaluation, we did not find any ethical concerns. Therefore, we confirm that this work adheres to all
relevant ethical standards and guidelines.

∗Joint first author. †Joint senior/last author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.

https://biodiversitygenomics.net/5M-insects/


S3 Dataset availability and maintenance

To explore more about the BIOSCAN-5M dataset, kindly visit the following landing page:
https://biodiversitygenomics.net/5M-insects/.

The BIOSCAN-5M dataset and all its contents are available in a GoogleDrive Folder. The Google
Drive folder serves as the primary repository for the BIOSCAN-5M dataset, ensuring ongoing
maintenance and the potential addition of new content as necessary. It will be gradually updated to
address any data issues that may arise.

The Google Drive folder contains the following dataset contents:

• BIOSCAN_5M_IMAGES: This directory contains images:
– BIOSCAN_5M_original_full: The original full-size images.
– BIOSCAN_5M_original_256: The original images resized to 256 pixels on their

shorter side.
– BIOSCAN_5M_cropped: The cropped images.
– BIOSCAN_5M_cropped_256: The cropped images resized to 256 pixels on their shorter

side.
• BIOSCAN_5M_METADATA: This directory contains metadata:

– BIOSCAN_5M_Insect_Dataset_metadata_MultiTypes.zip: A zip file containing
both CSV and JSON formats of the metadata file.

• BIOSCAN_5M_CropTool: This directory contains our cropping tool components:
– bounding_box/BIOSCAN_5M_Insect_bbox.tsv: A TSV file that includes bound-

ing box information obtained from our cropping tool.
– checkpoint/BIOSCAN_5M_Insect_cropping_tool.ckpt: The model checkpoint

used to crop the original full-size images, which generated the cropped images of the
BIOSCAN-5M dataset.

Additionally, the dataset is released on several platforms, including Zenodo, Kaggle, and Hugging-
Face.

We provide a code repository for dataset manipulation, which supports tasks like reading images and
metadata, cropping images, statistical processing, dataset splitting into pretrain, train, and evaluation,
as well as running benchmark experiments presented in the BIOSCAN-5M paper. To access the
BIOSCAN-5M code repository, please visit https://github.com/bioscan-ml/BIOSCAN-5M.

Additionally, we provide a Python package for working with the BIOSCAN-5M dataset,
designed in the style of torchvision’s VisionDataset class, which can be installed with
pip install bioscan-dataset. For usage details, please visit https://bioscan-dataset.
readthedocs.io/.

S4 Licensing

Table S1 shows all the copyright associations related to the BIOSCAN-5M dataset with the corre-
sponding names and contact information.

Table S1: Copyright associations related to the BIOSCAN-5M dataset

Copyright Associations Name & Contact
Image Photographer CBG Robotic Imager
Copyright Holder CBG Photography Group
Copyright Institution Centre for Biodiversity Genomics (email: CBGImaging@gmail.com)
Copyright License Creative Commons Attribution 3.0 Unported (CC BY 3.0)
Copyright Contact collectionsBIO@gmail.com
Copyright Year 2021

The authors state that they bear all responsibility in case of violation of usage rights.

2

https://biodiversitygenomics.net/5M-insects/
https://drive.google.com/drive/u/0/folders/1Jc57eKkeiYrnUBc9WlIp-ZS_L1bVlT-0
https://zenodo.org/records/11973457
https://www.kaggle.com/datasets/zahragharaee/bioscan-5m
https://huggingface.co/datasets/Gharaee/BIOSCAN-5M
https://huggingface.co/datasets/Gharaee/BIOSCAN-5M
https://github.com/bioscan-ml/BIOSCAN-5M
https://bioscan-dataset.readthedocs.io/
https://bioscan-dataset.readthedocs.io/
https://creativecommons.org/licenses/by/3.0/


S5 RGB images

The BIOSCAN-5M dataset comprises resized and cropped images, as introduced in BIOSCAN-1M
Insect (Gharaee et al., 2023). We have provided various packages of the BIOSCAN-5M dataset,
detailed in Table S2, each tailored for specific purposes.

• original_full: The raw images of the dataset, typically 1024×768 pixels.

• cropped: Images after cropping with our cropping tool (see §S14.1).

• original_256: Original images resized to 256 on their shorter side (most 341×256 pixels).

• cropped_256: Cropped images resized to 256 on their shorter side.

Among these, the original_256 and cropped_256 packages are specifically provided for experimen-
tation as they are small and easy to work with. Therefore, using our predefined split partitions, we
provide per-split experimental packages in addition to the packages with all the original_256 and
cropped_256 images.

Table S2: Various downloadable packages of the images comprising the BIOSCAN-5M dataset.

Image set Package Partition(s) Size (GB) # Parts

original_full BIOSCAN_5M_original_full.zip All 200 5

cropped BIOSCAN_5M_cropped.zip All 77.2 2

original_256 BIOSCAN_5M_original_256.zip All 35.2 1
BIOSCAN_5M_original_256_pretrain.zip Pretrain 31.7 1
BIOSCAN_5M_original_256_train.zip Train 2.1 1
BIOSCAN_5M_original_256_eval.zip Evaluation 1.4 1

cropped_256 BIOSCAN_5M_cropped_256.zip All 36.4 1
BIOSCAN_5M_cropped_256_pretrain.zip Pretrain 33.0 1
BIOSCAN_5M_cropped_256_train.zip Train 2.1 1
BIOSCAN_5M_cropped_256_eval.zip Evaluation 1.4 1

Accessing the dataset images is facilitated by the following directory structure used to organize the
dataset images:

bioscan5m/images/[imgtype]/[split]/[chunk]/[processid.jpg]

where [imgtype] can be original_full, cropped, original_256, or cropped_256. The
[split] values can be pretrain, train, val, test, val_unseen, test_unseen, key_unseen,
or other_heldout. Note that the val, test, val_unseen, test_unseen, key_unseen, and
other_heldout splits are within the evaluation partition of the original_256 and cropped_256 image
packages.

The [chunk] is determined by using the first one or two characters of the MD5 checksum (in
hexadecimal) of the processid. This method ensures that the chunk name is purely deterministic
and can be computed directly from the processid. As a result, the pretrain split organizes files
into 256 directories by using the first two letters of the MD5 checksum of the processid. For the
train and other_heldout splits, files are organized into 16 directories using the first letter of the
MD5 checksum. The remaining splits do not use chunk directories since each split has less than 50 k
images.

S6 Metadata file

To enrich the metadata of our published dataset, we provide integrated structured metadata conforming
to Web standards. Our dataset’s metadata file is titled BIOSCAN_5M_Insect_Dataset_metadata.
We provide two versions of this file: one in CSV format (.csv) and the other in JSON-LD format
(.jsonld). Accessing the dataset metadata files is facilitated by the following directory structure used
to organize the dataset images:
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bioscan5m/metadata/[type]/BIOSCAN_5M_Insect_Dataset_metadata.[type_extension]

In this structure, [type] refers to the file type of the metadata file, which can be either CSV or
JSON-LD. The [type_extension] indicates the corresponding file extensions, which are csv for
CSV files and jsonld for JSON-LD files.

Table S3 outlines the fields of the metadata file and the description of their contents.

Table S3: Table presents fields of the metadata file of BIOSCAN-5M dataset.

Field Description Type

1 processid A unique number assigned by BOLD (International Barcode of Life Consortium). String
2 sampleid A unique identifier given by the collector. String
3 taxon Bio.info: Most specific taxonomy rank. String
4 phylum Bio.info: Taxonomic classification label at phylum rank. String
5 class Bio.info: Taxonomic classification label at class rank. String
6 order Bio.info: Taxonomic classification label at order rank. String
7 family Bio.info: Taxonomic classification label at family rank. String
8 subfamily Bio.info: Taxonomic classification label at subfamily rank. String
9 genus Bio.info: Taxonomic classification label at genus rank. String

10 species Bio.info: Taxonomic classification label at species rank. String
11 dna_bin Bio.info: Barcode Index Number (BIN). String
12 dna_barcode Bio.info: Nucleotide barcode sequence. String
13 country Geo.info: Country associated with the site of collection. String
14 province_state Geo.info: Province/state associated with the site of collection. String
15 coord-lat Geo.info: Latitude (WGS 84; decimal degrees) of the collection site. Float
16 coord-lon Geo.info: Longitude (WGS 84; decimal degrees) of the collection site. Float
17 image_measurement_value Size.info: Number of pixels occupied by the organism. Integer
18 area_fraction Size.info: Fraction of the original image the cropped image comprises. Float
19 scale_factor Size.info: Ratio of the cropped image to the cropped_256 image. Float
20 inferred_ranks An integer indicating at which taxonomic ranks the label is inferred. Integer
21 split Split set (partition) the sample belongs to. String
22 index_bioscan_1M_insect An index to locate organism in BIOSCAN-1M Insect metadata. Integer
23 chunk The packaging subdirectory name (or empty string) for this image. String

S7 Comparison between BIOSCAN-5M and BIOSCAN-1M

The six key differences between BIOSCAN-1M and BIOSCAN-5M are as follows:

1. Increased data volume: BIOSCAN-5M contains five times as many samples as BIOSCAN-
1M.

2. Greater data diversity: BIOSCAN-5M is collected from a broader range of geographic
locations (3 countries in BIOSCAN-1M; 47 countries in BIOSCAN-5M) and encompasses
a wider variety of insect life (1 class and 16 orders in BIOSCAN-1M; 10 classes and 55
orders in BIOSCAN-5M).

3. Enhanced post-processing: The taxonomic labels in BIOSCAN-5M underwent a rigorous
data cleaning pipeline to identify and resolve inconsistencies in the original data, resulting
in more reliable labels compared to those in BIOSCAN-1M.

4. Geographic and specimen size data: This information is available in BIOSCAN-5M but
not in BIOSCAN-1M.

5. Comprehensive partitioning support: BIOSCAN-5M offers robust support for both
closed-world and open-world tasks, whereas BIOSCAN-1M only supports closed-world
partitioning.

6. Enhanced benchmarking experiments: BIOSCAN-1M included a baseline with an image-
only model evaluated at order and family ranks. In contrast, BIOSCAN-5M features three
baselines that leverage the multimodal aspects of the dataset (including DNA barcode se-
quences, textual taxonomic labels, and RGB images), allowing for performance exploration
in both closed- and open-world settings.
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S8 Focus and objectives

We have released dataset splits for closed-world and open-world settings, using labelled species data
for evaluation and reserving unlabelled data for pretraining. Our splitting approach and configura-
tions offer valuable resources to the ML community. BIOSCAN-5M experiments evaluate down
to the species level. Additionally, we benchmark three distinct tasks to showcase BIOSCAN-5M’s
multimodal utility in real-world applications: fine-grained taxonomic classification with DNA se-
quences, classification using DNA, images, and taxonomic labels, and clustering of DNA and image
embeddings.

S8.1 Leveraging unlabelled and multimodal data for enhanced taxonomic classification

It’s important to note that taxonomic classification from images presents greater challenges compared
to DNA barcodes, as illustrated by our clustering experiments; thus, paired data can be valuable even
when unlabelled. Additionally, data not labelled at the species level remains useful for pretraining,
highlighting the crucial role of unlabelled data in model development. In BIOSCAN-5M, we employ
BERT-style masked sequence modelling to pretrain and encode DNA sequences, complemented by
contrastive learning to align image and DNA embeddings. This pretraining approach enhances the
model’s ability to generalize across various applications.

S8.2 Lack of utilization of geographic and size information in models

In BIOSCAN-5M, we focus on biological (taxonomic labels) and genetic (DNA barcode sequences
and BIN) data for fine-grained taxonomic classification, intentionally excluding geographic and size
information from our experiments. Our rationale is that while geographic and size data can help
rule out certain species (e.g., knowing a sample was collected in North America excludes species
not found there, and knowing a sample’s size eliminates species that do not grow that large), they
alone do not provide sufficient information for accurate species classification. In contrast, image and
genetic data are often sufficient for accurate species-level predictions.

We believe that models incorporating geographic and size data will need to do so alongside image and
genetic data. Therefore, models using only image and genetic information serve as valuable baselines
for future work that combines these data types. Given the complexities of integrating geographic and
size data into our models, we prioritized establishing a broad range of image and genetic baselines in
this study and plan to explore the incorporation of geographic and size data in future research. We
anticipate that effective use of this additional information will enhance model performance and look
forward to the community’s advancements in this area.

S9 Dataset features statistics

This section provides additional information regarding the dataset, including a detailed statistical
analysis of its diverse multimodal data types and processing methods.

S9.1 Geographical information

The detailed statistical analysis of the geographical locations where the organisms were collected is
presented in Table S4. This table indicates the number of distinct regions represented by country,
province or state, along with their corresponding latitude and longitude. Additionally, Table S4
provides the count of labelled versus unlabelled records, as well as the class imbalance ratio (IR) for
each location group within the dataset.

The latitude and longitude coordinates indicate that the dataset comprises 1,650 distinct regions
with unique geographical locations shown by Table S4. However, a significant portion of the
organisms—approximately 73.36%—were collected from the top 70 most populated regions, which
represent only 4.24% of the total regions identified by their coordinates.

Figure S2 shows the distinct countries where the organisms were collected on the world map. The
majority of the organisms, over 62%, were collected from Costa Rica.
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Table S4: The statistics for the columns indicating geographical locations where the specimens are
collected.

Geo locations Categories Labelled Labelled (%) Unlabelled Unlabelled (%) IR

country 47 5,150,842 100.00 8 0.00 325,631.6
province_state 102 5,058,718 98.21 92,132 1.79 1,243,427.0
coord-lat 1,394 5,149,019 99.96 1,831 0.04 556,352.0
coord-lon 1,489 5,149,019 99.96 1,831 0.04 618,931.0

Location (lat, lon) 1,650 5,149,019 99.96 1,831 0.04 520,792.0

1. Costa Rica:    3,256,316
2. South Africa:    322,096 
3. United States:  281,411 
4. Thailand:           152,975 
5. Pakistan:           126,990 
6. Canada:             117,599
7. Tanzania:          108,945
8. Ecuador:     104,676

9. Australia:   90,664
10. Suriname:  82,842
11. Norway:     60,925
12. Mexico:      46,982
13. Ghana:       38,256
14. Colombia:  34,444
15. Sweden:     27,912
16. Lebanon:    27,744

17. Peru:          26,656
18. Portugal:     25,780
19. Philippines:  24,708
20. Argentina:    24,626
21. Finland:         19,978
22. Egypt:           19,841
23. Vietnam:       16,395
24. Bangladesh:   15,352

25. New Zealand: 14,184
26. Mozambique: 12,217
27. Gabon:             11,942
28. Germany:        11,310
29. Montenegro:  10,869
30. Namibia:          10,278
31. Georgia:             9,205
32. Brazil:                 7,427

33. Madagascar:            4,359
34. Austria:                           711
35. Italy:                                701
36. Czech Republic:           515
37. Albania:                          379
38. United Kingdom:          376
39. Russia:                     361
40. Antigua and Barbuda: 358

41. Sao Tome and Principe: 356
42. Spain:                                 345
43. Chile:                                  329
44. France:                               261
45. Cameroon:                        203
46. Bulgaria:                              33
47. Japan:                                 10
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Figure S2: Global distribution of sample collection efforts. The countries are ranked by the number
of samples collected.

S9.2 Size information

Monitoring organism size is crucial as it can signal shifts in various factors affecting their lives,
including food access, nutrition, and climate change (Sheridan & Bickford, 2011). For instance, in
humans, limited access to nutrition correlates with a decrease in average height over generations
(Steckel, 1995), reflecting environmental and economic changes. Tracking organism size offers
insights into environmental shifts vital for biodiversity conservation (Hickling et al., 2006).

Pixel count. The raw dataset provides information about each organism’s size by quantify-
ing the total number of pixels occupied by the organism. This information is provided in the
image_measurement_value field. Since the image capture settings are consistent for all images,
irrespective of scale, as indicated by the organism’s distance to the camera, the number of pixels
occupied by the organism should approximate its size. Less than 1% of samples of the BIOSCAN-5M
dataset do not have this information.

To provide a clearer understanding of the content in the image_measurement_value field, Figure S3
displays examples of original images along with their corresponding masks, highlighting the total
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number of pixels occupied by an organism. To determine the real-world size of the organism based
on the number of pixels, it is also important to have the pixel to metric scaling factor. For the original
full sized images, most of the images are captured using a Keyence imaging system with a known
pixel to millimetre scaling. See §S14.1 for details on the pixel scale and how to determine it for
cropped and resized images.

101,635 119,860 110,052 63,711 189,931 21,951 143,329

Figure S3: Examples of original images of the BIOSCAN-5M dataset, along with their respective
total number of pixels (size) that occupy the image. The top row shows original images and the
bottom row shows masks.

S10 Dataset category distribution

Figure S4 illustrates the taxonomic class distribution within the rank order. For example, of the
99.9% of organisms labelled at the class level, approximately 71% are classified within the order
Diptera of the class Insecta.
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Figure S4: Distribution of taxonomic ranks in the BIOSCAN-5M dataset. Each darker cell represents
a taxonomic class, while the lighter cells within each class represent the corresponding taxonomic
orders. The numbers indicate the records belonging to each class and order. The unlabeled
category denotes records assigned to a class but not to any specific order.
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For detailed insights into the class distribution within the major categories of the BIOSCAN-5M
dataset, Table S5 presents comprehensive statistics. This table provides the total number of categories
across 7 taxonomic group levels and BINs, highlighting both the most and least densely populated
ones. Additionally, it includes calculated means, medians, and standard deviations of the population
vectors of all subcategories of each attribute.

Table S5: BIOSCAN-5M taxonomic and BIN categories distribution. For each attribute, we show the
value which occurs most often in the dataset and the least populated value (in the event of a tie, we
show an exemplar selected at random).

Most populated Least populated

Attributes Categories Name Size Name Size Mean Median Std. Dev.

phylum 1 Arthropoda 5,150,850 Arthropoda 5,150,850.0
class 10 Insecta 5,038,818 Ostracoda 7 514,683.7 369.0 1,508,192.8
order 55 Diptera 3,675,317 Cumacea 1 93,363.4 172.0 495,969.5
family 934 Cecidomyiidae 938,928 Pyrgodesmidae 1 5,281.3 63.5 45,321.1
subfamily 1,542 Metopininae 323,146 Bombyliinae 1 953.7 23.0 9,092.8
genus 7,605 Megaselia 200,268 chalMalaise9590 1 161.3 6.0 2,492.2
species 22,622 Psychoda sp. 11GMK 7,694 Microcephalops sp. China3 1 20.9 2.0 139.5

dna_bin 324,411 BOLD:AEO1530 35,458 BOLD:ADT1070 1 15.8 2.0 146.4

S11 DNA barcode statistics

This section presents the DNA barcode statistics and analysis for the BIOSCAN-5M dataset. We
provide several different statistics to show how the diversity of DNA barcodes varies across the
different taxonomic levels. In Table S6, we report the number of distinct barcodes, the Shannon
diversity index (e.g. entropy), and the average pairwise distances between barcodes at different
taxonomic ranks. The different analysis all show that at higher levels of taxa, there are more distinct
barcodes, and that at the genus and species level, the lexical distance between different barcodes are
much smaller than at the higher levels of taxa. Below we provide more details on how these statistics
are computed.

S11.1 Identical DNA barcodes: Statistical insights from the BIOSCAN-5M dataset

We compute and show in Table S6 the statistics for identical DNA barcode sequences across taxonomic
ranks, including the total number of distinct barcodes per rank, as well as the average, median, and
standard deviation of barcodes counts across subgroups within each rank.

Based on the statistics in Table S6, the total number of identical DNA barcode sequences within
each subgroup of a specific taxonomic rank is lower than the total number of DNA sequences
corresponding to the labelled samples in that subgroup. This indicates that some samples share
identical DNA barcodes, possibly due to sequencing limitations. Since DNA barcodes are merely
short snippets, they alone do not fully capture the unique genetic characteristics of individual samples.

S11.2 Analyzing genetic diversity with the Shannon Index

Shannon Diversity Index (SDI). The Shannon Diversity Index (SDI) (Shannon, 1948), which
measures the entropy within a group, is an effective metric for measuring genetic diversity as it
considers both barcode richness (the number of distinct barcodes) and evenness (the distribution of
samples among those barcodes). A high prevalence of identical barcodes leads to lower evenness and,
consequently, a reduced SDI, indicating limited diversity and redundancy in genetic makeup.

Incorporating duplicated barcodes allows the SDI to capture the prevalence of specific barcodes
within the subgroup. If certain barcodes are common across samples, the index may reflect a dominant
genetic signature, resulting in a lower SDI and suggesting reduced diversity. Conversely, a greater
presence of distinct barcodes with even distributions yields a higher SDI, indicating a more diverse
subgroup structure. This dual focus on richness and evenness underscores the SDI’s value in assessing
genetic diversity and elucidating the genetic relationships within a subgroup.
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Table S6: The DNA barcode statistics for various taxonomic ranks in the BIOSCAN-5M dataset. We
indicate the total number of unique barcodes for the samples labelled to a given rank, and the mean,
median, and standard deviation of the number of unique barcodes within the subgroupings at that
rank. We also show the average across subgroups of the Shannon Diversity Index (SDI) for the DNA
barcodes, measured in bits. We report the mean and standard deviation of pairwise DNA barcode
sequence distances, aggregated across subgroups for each taxonomic rank.

Unique Barcodes Pairwise Distance
Attributes Categories Total Mean Median Std. Dev. Avg SDI Mean Std. Dev.
phylum 1 2,486,492 19.78 158 42
class 10 2,482,891 248,289 177 725,237 8.56 166 103
order 55 2,474,855 44,997 57 225,098 7.05 128 53
family 934 2,321,301 2,485 46 19,701 5.42 90 46
subfamily 1,542 657,639 426 17 3,726 4.28 78 51
genus 7,605 531,109 70 5 1,061 2.63 50 39
species 22,622 202,260 9 2 37 1.46 17 18

We compute the Shannon Diversity Index (SDI) for each subgroup, T , within a taxonomic rank as

SDIT = −
N∑
i=1

pi log2(pi), (1)

where N is the number of unique DNA barcodes within a subgroup, and pi is the fraction of samples
in subgroup T which have the i-th barcode.

In Table S6, we report the average SDI (Avg SDI) for each taxonomic rank by computing SDIT
for each subgroup and then averaging these values across all subgroups within the respective rank.
From the Table S6, the Avg SDI values indicate a high level of biodiversity at the phylum (19.78)
and class (8.56) levels, suggesting a rich community with a wide variety of taxa. However, as we
move down the taxonomic hierarchy, the index values decline significantly, reaching the lowest point
at the species level (1.46). This pattern suggests that while there is a diverse range of phyla and
classes, the distribution of species within these groups is uneven, indicating the presence of a
few dominant species or genera.

S11.3 Pairwise distance analysis of identical DNA barcodes

Damerau-Levenshtein Distance. The Damerau-Levenshtein distance (Damerau, 1964) is a string-
edit distance metric that measures the minimum number of operations required to transform one
string into another. It is an extension of the standard Levenshtein distance (Levenshtein, 1966), which
counts the number of single-character edits needed for transformation. The key difference is that the
Damerau-Levenshtein distance also accounts for transpositions, i.e., when two adjacent characters
are swapped. In the context of our DNA barcoding, it measures how similar or different two DNA
sequences are by counting how many single-character changes (insertions, deletions, substitutions, or
transpositions) are needed to make one sequence identical to another.

We report the average Damerau-Levenshtein pairwise distance between unique DNA barcodes at
different taxonomic ranks in Table S6. To compute the statistics for the pairwise distances, we take
each subgroup at every taxonomic rank, and only consider subgroups with sufficient number of
distinct barcodes. For a given subgroup, if the total number of unique DNA barcode sequences is
fewer than 4, the subgroup is not considered. If the total exceeds 1,000, up to 1,000 sequences are
randomly sampled; otherwise, all sequences are included.

To compute the distances between barcodes, the sampled DNA barcode sequences are first aligned
using the MAFFT alignment technique (Katoh & Standley, 2013). Next, the pairwise distances
between aligned DNA barcodes are computed using the Damerau-Levenshtein metric, with a total of
n× (n−1)

2 comparisons (where n is the number of DNA barcodes). The mean and standard deviation
of these distance values are then computed within each subgroup and subsequently aggregated using
the mean function across subgroups at each taxonomic rank.
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The statistics (Table S6, right columns) indicate that as we progress from higher to lower taxonomic
ranks (e.g., from phylum and class to genus and species), both the mean and standard deviation
of pairwise genetic distances decrease. This reduction indicates that genetic differences between
organisms become smaller as we move down the taxonomic hierarchy, meaning organisms at lower
ranks are more genetically similar to each other compared to those at higher ranks. For instance,
species within the same genus tend to have much more similar DNA sequences than families
within an order or orders within a class. This pattern aligns with the hierarchical structure of
biological classification, where organisms are grouped based on increasing genetic relatedness as we
move to finer taxonomic levels.

At the same time, the larger standard deviations observed at higher taxonomic ranks, such as class
and order, reflect greater variability in genetic distances, suggesting a broader range of genetic
diversity at these levels. Conversely, at lower ranks, such as genus and species, the smaller mean
and standard deviation of pairwise distances highlight closer genetic relationships. However, these
reduced distances can pose challenges for classification since the differences between closely related
species become subtle.

This emphasizes the need for finer genetic markers or additional traits beyond pairwise distances to
accurately distinguish between organisms, especially at the species level, where genetic distinctions
can be minimal. Incorporating multimodal data, such as combining DNA sequences with images, can
help address this challenge by providing complementary information. While DNA sequences offer
insights into genetic differences, images capture morphological traits that may not be reflected in
the genetic data. This multimodal approach can enhance classification accuracy, particularly when
distinguishing between closely related species.
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Figure S5: Distribution of pairwise distances of subgroups of class. The x-axis shows the subgroup
categories sorted alphabetically.

Figure S5, Figure S6 and Figure S7 provide a visual representation of the statistics of pairwise
distances computed in Table S6 for taxonomic ranks class, order, and species, respectively. The
Interquartile Range (IQR) is a measure of statistical dispersion that describes the range within which
the central 50% of the pairwise distances lies. It is calculated as the difference between the third
quartile (Q3) and the first quartile (Q1) of the data,

IQR = Q3 −Q1,

where Q1 is the 25th percentile of the data, and Q3 is the 75th percentile. The line inside the box
represents the median (Q2) of the data. The height of the box illustrates the IQR. The lines extending
from the box (whiskers) indicate the range of the data outside the IQR, typically extending up to 1.5
times the IQR from the quartiles, which help identify the spread of the data.
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Figure S6: Distribution of pairwise distances of subgroups of order. The x-axis shows the
subgroup categories sorted alphabetically.
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Figure S7: Distribution of pairwise distances of subgroups of species. Among the species, there are
8,372 distinct subgroups with sufficient identical barcodes for calculating pairwise distances, which
makes visualization challenging. To address this, the groups are sorted in descending order based
on their mean distances and partitioned into 100 bins. These bins are used to plot the distribution
of pairwise distances within the species rank. The mean distance of each bin is displayed along the
x-axis.

A small IQR (e.g., Collemboda in Figure S5) indicates that the pairwise distances among DNA
barcode sequences within the group are tightly clustered around the median, suggesting that the
sequences are similar to one another. This homogeneity may imply that the groups consist of closely
related species or individuals with minimal genetic divergence, possibly due to a recent common
ancestor.
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Conversely, a large IQR (e.g., Ostracoda in Figure S5) signifies significant variability in the pairwise
distances among sequences within a group, indicating a wider range of genetic diversity. This
heterogeneity suggests that the groups may encompass genetically diverse species or populations
with notable evolutionary divergence. Additionally, the presence of a large IQR may point to
potential outliers—sequences that differ substantially from the majority—which could warrant further
investigation to understand the underlying genetic variations.

If the whiskers are long while the IQR is small (e.g., Malacostraca in Figure S5), it implies that there
are outlier values or a wider distribution of data points beyond the central cluster, highlighting the
presence of variability in the dataset that may be worth investigating further.

If the median Q2 is closer to Q1 (e.g., Copepoda in Figure S5), the distribution is positively skewed,
with most data points concentrated at the lower end and fewer but larger values at the higher end.
Conversely, if the median is closer to Q3 (e.g., Branchiopoda in Figure S5), the distribution is
negatively skewed, with more values at the higher end and fewer, smaller values at the lower end.

Note that in all taxonomic ranks except for species, a random selection of 1,000 records is made
for subgroups with more than 1,000 samples. For the species rank, all subgroups with a large
number of records are included in the pairwise distance calculations. Some taxonomic ranks contain
extremely large subgroups, such as Arthropoda in phylum and Insecta in class, each with over 2
million unique DNA records. Consequently, the 1,000 selected records may not fully represent the
pairwise distances within the large subgroups. Due to computational limitations—since 1,000 records
result in about 500 k unique pairwise distance computation—we adhere to this rule of selecting a
random subset of 1,000 records.

S12 Insect vs non-insect organisms

Focusing on Insecta as the most populous group at the class level, we present its detailed statistical
records for DNA, BIN, and various taxonomic ranks in Table S7.

Arachnida: 59,950 Malacostraca: 476Collembola: 46,545

Copepoda: 98 Ostracoda: 7 Diplura: 7

Chilopoda: 199Branchiopoda: 310Diplopoda:428

Figure S8: Examples of original images of non-insect organisms from the BIOSCAN-5M dataset.
Below each image, the class name and its population within the BIOSCAN-5M dataset are displayed.

Figure S4 shows the class distribution within the taxonomic rank class, with 99.9% of organisms
labelled at this level, of which 97.8% belong to the class Insecta. Figure S8 displays original images
of non-insect taxonomic classes from the BIOSCAN-5M dataset, which includes a total of 137,479
organisms.
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Table S7: Detailed statistical records for DNA, BIN and taxonomic ranks within class Insecta of
the BIOSCAN-5M dataset.

Attributes Categories Labelled Labelled (%) Unlabelled Unlabelled (%) IR

order 25 5,037,247 99.97 1,571 0.03 1,837,658
family 681 4,853,383 96.32 185,435 3.68 938,928
subfamily 1,305 1,431,962 28.42 3,606,856 71.58 323,146
genus 6,897 1,188,043 23.58 3,850,775 76.42 200,268
species 21,512 450,215 8.93 4,588,603 91.07 7,694
taxon 26,603 5,038,818 100.00 0 0.00 925,520

dna_bin 311,743 5,025,921 99.74 12,897 0.26 35,458
dna_barcode 2,423,704 5,038,818 100.00 0 0.00 3,743

S13 Limitations and challenges

S13.1 Fine-grained classification

The BIOSCAN-5M dataset offers detailed biological features for each organism by annotating
images with multi-grained taxonomic ranks. The class imbalance ratio (IR) across taxonomic groups
reveals significant disparities in sample sizes between the majority class (with the most samples) and
minority classes (with fewer samples). Notably, among the 55 distinct orders, Diptera accounts for
approximately 71% of the total organisms. Figure S9 illustrates various species within the order
Diptera, highlighting the high similarity among images of distinct categories, which poses additional
challenges for downstream image classification tasks.
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Figure S9: Sample images of distinct species from the order Diptera, which comprises about
71% of BIOSCAN-5M dataset. High similarity between samples of different species highlights
significant image classification challenges.

S13.2 Accessing ground-truth labels

The BIOSCAN-5M dataset exposes a limitation regarding labelling. The number of labelled records
sharply declines as we delve deeper into taxonomic ranking groups, particularly when moving towards
finer-grained taxonomic ranks beyond the family level. In fact, over 80% of the organisms lack
taxonomic labels for ranks such as subfamily, genus and species. This circumstance poses a
significant challenge for conducting taxonomic classification tasks. However, this limitation also
opens doors to opportunities for research in various domains. The abundance of unlabelled data
presents avenues for exploration in clustering, unsupervised, semi-supervised, and self-supervised
learning paradigms, allowing for innovative approaches to data analysis and knowledge discovery.

S13.3 Sampling Bias

The BIOSCAN-5M dataset also exposes a sampling bias as a result of the locations where and the
methods through which organisms were collected, as depicted by Figure S2.
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S14 Data processing

To optimize our benchmark experiments using the BIOSCAN-5M dataset, we implemented two
critical pre-processing steps on the raw dataset samples. These steps were necessary to enhance the
efficiency and accuracy of our downstream tasks.

The first step involved image cropping and resizing. Due to the high resolution and large size of images
in the dataset, processing the original images is both time-consuming and computationally expensive.
Additionally, the area around the organism in each image is redundant for our feature extraction. To
address these issues, we cropped the images to focus on the region of interest, specifically the area
containing the organism. This step eliminated unnecessary background, reducing the data size and
focusing the analysis on the relevant parts of the images. After cropping, we resized the images to a
standardized resolution, further reducing the computational load and ensuring uniformity across all
image samples.

The second step addressed inconsistencies in the taxonomic labels. In the raw dataset, we encountered
identical DNA nucleotide sequences labelled differently at certain taxonomic levels, likely due to
human error (e.g., typos) or disagreements in taxonomic naming conventions. Such discrepancies
posed significant challenges for our classification tasks involving images and DNA barcodes. To
address this, we implemented a multi-step cleaning process for the taxonomic labels. We identified
and flagged inconsistent labels associated with identical DNA sequences and corrected typographical
errors to ensure accurate and consistent naming.

We present additional details of our pre-processing steps in the following section.

S14.1 Image processing details

The BIOSCAN-5M dataset contains resized and cropped images following the process in BIOSCAN-
1M Insect (Gharaee et al., 2023). We resized images to 256 px on the smaller dimension. As in
BIOSCAN-1M, we opt to conduct experiments on the cropped and resized images due to their smaller
size, facilitating efficient data loading from disk.

Cropping. Following BIOSCAN-1M (Gharaee et al., 2023), we develop our cropping tool by fine-
tuning a DETR (Carion et al., 2020) model with a ResNet-50 (He et al., 2016) backbone (pretrained
on MSCOCO, Lin et al., 2014) on a small set of 2,837 insect images annotated using the Toronto
Annotation Suite1.

For BIOSCAN-1M, the DETR model was fine-tuned using 2,000 insect images (see Section 4.2 of
Gharaee et al., 2023 for details). While the BIOSCAN-1M cropping tool worked well in general,
there are some images for which the cropping was poor. Thus, we took the BIOSCAN-1M cropping
tool checkpoint, and further fine-tuned the model for BIOSCAN-5M using the same 2,000 images
and an additional 837 images that were not well-cropped previously. We followed the same training
setup and hyperparameter settings as in BIOSCAN-1M and fine-tuned DETR on one RTX2080 Ti
with batch size 8 and a learning rate of 0.0001.

Table S8: We compare the performance of the DETR model we used for cropping that was trained
with the extra 837 images (NWC-837) that were previously not well-cropped to the model used for
BIOSCAN-1M. We report the Average Precision (AP) and Average Recall (AR) computed on an
additional validation set consisting of 100 images that were not-well cropped previously (NWC-100-
VAL), as well as the images (IP-100-VAL + IW-150-VAL) used to evaluate the cropping tool’s model
used in BIOSCAN-1M. Our updated model performs considerably better on NWC-100-VAL, while
given comparable performance on the original validation set of images.

NWC-100-VAL IP-100-VAL + IW-150-VAL

Dataset Training data AP[0.75] AR[0.50:0.95] AP[0.75] AR[0.50:0.95]

BIOSCAN-1M IP-1000 + IW-1000 0.257 0.485 0.922 0.894
BIOSCAN-5M IP-1000 + IW-1000 + NWC-837 0.477 0.583 0.890 0.886

1https://aidemos.cs.toronto.edu/annotation-suite/
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Table S8 shows that our model with additional data achieves better cropping performance on an
evaluation set of 100 images that were previously poorly cropped (NWC-100-VAL). Before cropping,
we increase the size of the predicted bounding box by a fixed ratio R = 1.4 relative to the tight
bounding box to capture some of the image background. If the bounding box extends beyond the
image’s edge, we pad the image with maximum-intensity pixels to align with the white background.
These processes are the same as used by Gharaee et al. (2023). After cropping, we save the cropped-
out bounding box.

Resizing. After cropping the image, we resize the image to 256 pixels on its smaller side while
maintaining the aspect ratio (r = w

h ). As nearly all original images are 1024×768 pixels, our resized
images are (nearly all) 341×256 pixels.

Area fraction. The area_fraction field in the metadata file indicates the proportion of the original
image represented by the cropped image. This factor is calculated using the bounding box information
predicted by our cropping tool and serves as an indicator of the organism’s size. Figure S10 displays
the bounding boxes detected by our cropping model, which we used to crop images in the BIOSCAN-
5M dataset. The area fraction factor is calculated as follows:

fa =
wc hc

w h
(2)

Area fraction: 0.18 Area fraction: 0.02Area fraction: 0.24

Area fraction: 0.45 Area fraction: 0.03 Area fraction: 0.34

Area fraction: 0.12Area fraction : 0.38Area fraction : 0.07

Area fraction : 0.70

Area fraction: 0.06

Area fraction: 0.02

Area fraction: 0.01

Area fraction: 0.14

Area fraction : 0.48

Figure S10: Examples of original images of organisms of the BIOSCAN-5M dataset with the
bounding boxes detected by our cropping module. The area fraction value below each image shows
how much of the original image is included in the crop.

Scale factor. When capturing images of physical objects, such as medical scans or biological samples,
it is essential to ensure that measurements derived from these images accurately represent the real
objects. To compute real-world sizes from captured images, a consistent relationship between pixel
size and physical size is necessary. Therefore, we introduced the scale_factor field in the metadata
file, which defines the ratio between the cropped image (cropped) and the cropped and resized image
(cropped_256).

Assuming the original images (I) have constant dimensions, width (w) and height (h), the cropped
images (Ic) are extracted using bounding box information from our cropping tool and have varying
widths (wc) and heights (hc) proportional to the size of the organism. The resized images (Ir) are
adjusted so that the shorter dimension, either width (wr) or height (hr), is set to a constant size of
256 px, while the other dimension is scaled proportionally to maintain the aspect ratio, resulting in a
dimension greater than 256 px.

We calculated the scale-factor (fs) as follows:

fs =
min(wc, hc)

256
(3)
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If we define the pixel scale as the number of millimeters per pixel, then the pixel scale of the cropped
and resized image (cropped_256) is equivalent to the pixel scale of the original image multiplied by
the scale factor:

pixel_scalecropped_256 = pixel_scaleoriginal × fs (4)

Note the pixel scale of the original image remains unchanged during the cropping process, as cropping
only involves cutting out areas around the region of interest (the organism) without scaling the image.

The original images were captured using a Keyence VHX-7000 Digital Microscope system imaging
system at a resolution of 2880×2160 pixels. These images were then resized to a resolution of
1024×768 pixels to obtain the original images (original_full) of the BIOSCAN-5M dataset. Each
pixel in the raw images represents a physical space of 2.95 µm by 2.95 µm. Using this pixel scale and
the scale factor obtained from Equation 4, we can estimate the size of the object in the real-world.

S14.2 HDF5 file

To load data efficiently during the training of the CLIBD baseline, we also generated a 190 GB HDF5
file to store images and related metadata from the BIOSCAN-5M dataset. This file is structured to
allow rapid access and processing of large-scale data.

At the top level, the file consists of a group of the following datasets representing different partitions
of BIOSCAN-5M. Each partition includes keys or queries for one or all of the splits (pretraining,
validation, or test).

For more information or to download the HDF5 file, the instructions are found at the CLIBD GitHub
repo: https://github.com/bioscan-ml/clibd.

S14.3 Taxa of unassigned placement

Some taxonomic labels had “holes” in them due to the complexities of the definition of taxonomic
labels. Established taxonomic labels for some species can omit taxonomic ranks because there is
currently no scientific need to define a grouping at that taxonomic level.

In particular, we found there were 1,448 genera which were missing a subfamily label because their
genus had not been grouped into a subfamily by the entomological community. Note that these genera
might at some point in the future be assigned a subfamily, if a grouping of genera within the same
family becomes apparent.

This situation of mixed rankings creates a complexity for hierarchical modelling, which for simplicity
typically assumes a rigid structure of level across the labelling tree for each sample. We standard-
ized this by adding a placeholder subfamily name where there was a hole, equal to “unassigned
<Family_name>”. For example, for the genus Alpinosciara, the taxonomic label was originally:

Arthropoda > Insecta > Diptera > Sciaridae > [none] > Alpinosciara

and after filling the missing subfamily label, it became:

Arthropoda > Insecta > Diptera > Sciaridae > unassigned Sciaridae > Alpinosciara

This addition ensures that the mapping from genus to subfamily is injective, and labels which are
missing because they are not taxonomically defined are not confused with labels which are missing
because they have not been identified. Furthermore, this ensures that each subsequent rank in the
taxonomic labels provides a partitioning of each of the labels in the rank that proceeds it.

S14.4 Taxonomic label cleaning

The taxonomic labels were originally entered into the BOLD database by expert entomologists using
a drop-down menu for existing species, and typed-in manually for novel species. Manual data entry
can sometimes go awry. We were able to detect and resolve some typographical errors in the manual
annotations, as described below.

Genus and species name comparison. Since species names take the form “<Genus_name>
<species_specifier>”, the genus is recorded twice in samples which possess species labels. This
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redundancy provides an opportunity to provide a level of quality assurance on the genus-level an-
notations A few samples (82 samples across 13 species) had a species label but no genus label; for
these we used the first word of the species label as the genus label. For the rest of the samples with a
species label, we compared the first word of the species label with the genus label, and resolved 166
species where these were inconsistent. These corrections also uncovered cases where the genus name
was entered incorrectly more broadly, and we were able to correct genera values which were entered
incorrectly even in cases where they were consistent with their species labels or had no species labels.

Conflicted annotations for the same barcode. We found many DNA barcodes were repeated
across the dataset, with multiple images bearing the same barcode. Overall, there were on average
around two repetitions per unique barcode in the dataset. It is already well-established that the COI
mitochondrial DNA barcode is a (sub)species-level identifier, i.e. same barcode implies same species,
and different species implies different barcodes (Moritz & Cicero, 2004; Sokal & Sneath, 1963;
Blaxter et al., 2005). Hence we have a strong prior that samples with the same barcode should be
samples of the same species. This presents another opportunity to provide quality assurance on
the data, by comparing the taxonomic annotations across samples which shared a DNA barcode.
Differences can either arise by typographical errors during data entry, or by differences of opinion
between annotators.

We investigated cases where completed levels of the taxonomic annotations differed for the same
barcode. This indicated some common trends as values often compared as different due to stylistic
differences, where one annotation differed only by casing, white-space, the absence of a 0 padding
digit to an identifier code number, or otherwise misspellings. We resolved some such disagreements
automatically, by using the version more common across the dataset.

The majority of placeholder genus and species names follow one of a couple of formats such as
“<Genus_name> Malaise1234”, e.g. “Oxysarcodexia Malaise4749”. Comparing different taxonomic
annotations of the same barcode only allows us to find typos where a barcode has been annotated
more than once. However, there are of course more barcodes than species and so there may remain
some typos which make two samples of the same species with different barcodes compare as different
when they should be the same. To address this, we found labels which deviated from the standardized
placeholder name formats and modified them to fit the standardized format. Examples of these
corrections include adding missing zero-padding on digits, fixing typos of the word “Malaise”, and
inconsistent casing. In this way, we renamed the species of 6,756 samples and genus of 3,675 across
7,673 records.

We resolved the remaining conflicts between differently annotated samples of the same barcode as
follows. We considered each taxonomic rank one at a time. In cases where there was a conflict
between the annotations, we accepted the majority value if at least 90% of the annotations were the
same. If the most common annotation was less prevalent than this, we curtailed the annotation at
the preceding rank. Curtailed annotations which ended at a filler value (i.e. a subfamily name of the
format “unassigned <Family_name>”) were curtailed at the last completed rank instead. In total, we
dropped at least one label from 3,478 records.

Next, we considered barcodes whose multiple annotations differed in their granularity. In such cases,
we inferred the annotations for missing taxonomic ranks from the samples that were labelled to a
greater degree of detail. In total, we inferred at least one label for 172,895 records. We believe these
inferred labels are unlikely to have an error rate notably higher than that of the rest of the data. Even
so, we provide details about which ranks were inferred in the metadata field inferred_ranks in
case the user wishes to exclude the inferred labels. This field takes the following values:

• 0 — Original label only (nothing inferred).

• 1 — Species label was copied. (Sample was originally labelled to genus-level.)

• 2 — Genus and (if present) species labels were copied.

• 3 — Subfamily, and every rank beneath it, were copied.

• 4 — Family, and every rank beneath it, were copied.

• 5 — Order, and every rank beneath it, were copied.

• 6 — Class, and every rank beneath it, were copied.
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Table S9: Example species from each species set.

Number of samples

Train/
Species set Genus Species All Keys Val Test

seen Aacanthocnema Aacanthocnema dobsoni 3 3 0 0
Glyptapanteles Glyptapanteles meganmiltonae 65 45 2 18
Megaselia Megaselia lucifrons 699 640 34 25
Pseudomyrmex Pseudomyrmex simplex 378 335 18 25
Rhopalosiphoninus Rhopalosiphoninus latysiphon 148 116 7 25
Stenoptilodes Stenoptilodes brevipennis 16 10 1 5
Zyras Zyras perdecoratus 10 6 0 4

unseen Anastatus Anastatus sp. GG28 42 24 6 12
Aristotelia Aristotelia BioLep531 87 51 13 23
Glyptapanteles Glyptapanteles Whitfield155 11 6 1 4
Megaselia Megaselia BOLD:ACN5814 24 13 3 8
Orthocentrus Orthocentrus Malaise5315 39 23 5 11
Phytomyptera Phytomyptera Janzen3550 14 8 1 5
Zatypota Zatypota alborhombartaDHJ03 9 8 1 0

heldout Basileunculus Basileunculus sp. CR3 268
Cryptophilus Cryptophilus sp. SAEVG Morph0281 55
Glyptapanteles Glyptapanteles Malaise2871 1
Odontofroggatia Odontofroggatia corneri-MIC 13
Palmistichus Palmistichus ixtlilxochitliDHJ01 416
gelBioLep01 gelBioLep01 BioLep3792 16
microMalaise01 microMalaise01 Malaise1237 13

Non-uniquely identifying species names. Finally, we noted that some species names were not
unique identifiers for a species. Theses cases arise where an annotator has used open nomenclature to
indicate a suspected new species, e.g. “Pseudosciara sp.”, “Olixon cf. testaceum”, and “Dacnusa nr.
faeroeensis”. Since this is not a uniquely identifying placeholder name for the species, it is unclear
whether two instances with the same label are the same new species or different new species. For
example, there were 1,247 samples labelled as “Pseudosciara sp.”, and these will represent a range
of new species within the Pseudosciara genus, and not repeated observations of the same new species.
Consequently, we removed such species annotations which did not provide a unique identifier for the
species. In total, 198 such species values were removed from 5,101 samples.

Conclusion. As a result of this cleaning process we can make the following claims about the dataset,
with a high degree of confidence:

• All records with the same barcode have the same annotations across the taxonomic hierarchy.
• If two samples possess a species annotation and their species annotation is the same, they

are the same species. (Similarly for genus level annotations, etc.)
• If two samples possess a species annotation and their species annotations differ, they are not

the same species. (Similarly for genus level annotations, etc.)

S15 Dataset partitioning — Additional details

S15.1 Species sets

As summarized in §4.1 of the main text, we first partitioned the data based on their species label into
four categories as follows:

• Unknown: samples without a species label (note: these may truly belong in any of the other
three categories).

• Seen: all samples whose species label is an established scientific name of a species. Species
which did not begin with a lower case letter, contain a period, contain numerals, or contain
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“malaise” (case insensitive) were determined to be labelled with a catalogued, scientific
name for their species, and were placed in the seen set.

• Unseen: Of the remaining samples, we considered the placeholder species which we were
most confident were labelled reliably. These were species outside the seen species, but
the genus occurred in the seen set. Species which satisfied this property and had at least 8
samples were placed in the unseen set.

• Heldout: The remaining species were placed in heldout. The majority of these have a
placeholder genus name as well as a placeholder species name, but some have a scientific
name for their genus name.

This partitioning ensures that the task that is posed by the dataset is well aligned with the task that is
faced in the real-world when categorizing insect samples. Example species for each species set are
shown in Table S9, and the number of categories for each taxonomic rank are shown in Table S10.

Table S10: Number of (non-empty) categories for each taxa, per species set.

Species set Phylum Class Order Family Subfamily Genus Species

unknown 1 10 52 869 1,235 4,260 0
seen 1 9 42 606 1,147 4,930 11,846
unseen 1 3 11 64 118 244 914
heldout 1 4 22 188 381 1,566 9,862

overall 1 10 55 934 1,542 7,605 22,622

S15.2 Splits

To construct partitions appropriate for a closed world training and evaluation scenario, we partitioned
the seen data into train, val, and test partitions. Because many of the DNA barcodes have more
than one sample (i.e. multiple images per barcode), we partitioned the data at the barcode level. The
data was highly imbalanced, so to ensure the test partition had high sample efficiency, we flattened
the distribution for the test set. For each species with at least 2 barcodes and at least 8 samples, we
selected barcodes to place in the test set. We tried to place a number of samples in the test set
which scaled linearly with the number of samples for the species, starting with a minimum of 4, and
capped at a maximum of 25 (reached at 92 samples total). The target increased at a rate of 1/4. We
capped the number of barcodes to place in the test set at a number that increased linearly with the
number of barcodes for the species, starting at 1 and increasing at a rate of 1/3. This flattened the
distribution across species in the test set, as shown in Figures S11e, S12e, and S13e.

Table S11: Number of (non-empty) categories for each taxa, per partition.

Partition Phylum Class Order Family Subfamily Genus Species

pretrain 1 10 52 869 1,235 4,260 0
train 1 9 42 606 1,147 4,930 11,846
val 1 5 27 350 598 1,704 3,378
test 1 6 27 352 594 1,736 3,483
key_unseen 1 3 11 64 118 244 914
val_unseen 1 3 11 62 116 240 903
test_unseen 1 3 11 62 113 234 880
other_heldout 1 4 22 188 381 1,566 9,862

overall 1 10 55 934 1,542 7,605 22,622

To evaluate model performance during model development cycles, we also created a validation
partition (val) with the same distribution as the test set. This was partition was created to contain
around 5% of the remaining samples from each of the seen species, by selecting barcodes to place
in the val partition. To mimic the long tail of the distribution, for each species with fewer than 20
samples and at least 6 samples, and for which one of their barcodes had only a single image, we
added one single-image barcode to the val partition. This step added 1,766 individual samples from
the tail; for comparison, our target of 5% of the samples from the tail would be 1,955 samples.
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Table S12: Number of species in common between each pair of partitions.
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pretrain 0 0 0 0 0 0 0 0
train 0 11,846 3,378 3,483 0 0 0 0
val 0 3,378 3,378 2,952 0 0 0 0
test 0 3,483 2,952 3,483 0 0 0 0
key_unseen 0 0 0 0 914 903 880 0
val_unseen 0 0 0 0 903 903 878 0
test_unseen 0 0 0 0 880 878 880 0
other_heldout 0 0 0 0 0 0 0 9,862

Table S13: Fraction of species (%) in common between each pair of partitions, relative to the number
of species for the row.
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pretrain N/A N/A N/A N/A N/A N/A N/A N/A
train 0.0 100.0 28.5 29.4 0.0 0.0 0.0 0.0
val 0.0 100.0 100.0 87.4 0.0 0.0 0.0 0.0
test 0.0 100.0 84.8 100.0 0.0 0.0 0.0 0.0
key_unseen 0.0 0.0 0.0 0.0 100.0 98.8 96.3 0.0
val_unseen 0.0 0.0 0.0 0.0 100.0 100.0 97.2 0.0
test_unseen 0.0 0.0 0.0 0.0 100.0 99.8 100.0 0.0
other_heldout 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0

The remaining barcodes with samples of seen species are placed in the train partition. For retrieval
paradigms, we use the train partition as keys and the val and test partitions as queries.

For the unseen species, we use the same methodology as for the seen species to create and
val_unseen, with the exception that the proportion of samples placed in the val_unseen par-
tition was increased to 20% to ensure it is large enough to be useful. The remaining samples of unseen
species are placed in the keys_unseen partition. For retrieval paradigms, we use the keys_unseen
partition as keys and the val_unseen and test_unseen partitions as queries. For open world
evaluation, we train on the test partition, without presenting any samples from the unseen species
during training, and evaluate on test_unseen.

The samples of heldout species are placed in the partition other_heldout. The utility of these
species varies depending on the model paradigm. In particular, we note that as these species are in
neither the seen nor unseen species, they can be used to train a novelty detector without the novelty
detector being trained on unseen species.

The samples of unknown species are placed entirely in the pretrain partition, which can be used for
self-supervised pretraining, or semi-supervised learning.

To aid comparison between the coverage of the partitions, we show the number of species in common
between each pair of partitions (Table S12), and the percentage of species in common (Table S13).
This is a block-diagonal matrix as species labels do not overlap between species sets. The train
partition has higher diversity than the val and test partitions, which each cover less than 30% of the
seen species. This is due to the long-tail of the distribution — of the 11,846 species, 7,919 species
(two thirds) have 6 or fewer samples, and of these 3,756 species only have a single sample. However,
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Table S14: Number of genera in common between each pair of partitions.
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pretrain 4,260 2,372 1,190 1,206 217 214 209 682
train 2,372 4,930 1,704 1,736 244 240 234 519
val 1,190 1,704 1,704 1,517 151 148 145 266
test 1,206 1,736 1,517 1,736 157 154 151 276
key_unseen 217 244 151 157 244 240 234 177
val_unseen 214 240 148 154 240 240 232 175
test_unseen 209 234 145 151 234 232 234 172
other_heldout 682 519 266 276 177 175 172 1,566

Table S15: Fraction of genera (%) in common between each pair of partitions, relative to the number
of genera for the row.

pr
et

ra
in

tr
ai

n

va
l

te
st

ke
y_

un
se

en

va
l_

un
se

en

te
st

_u
ns

ee
n

ot
he

r_
he

ld
ou

t

pretrain 100.0 55.7 27.9 28.3 5.1 5.0 4.9 16.0
train 48.1 100.0 34.6 35.2 4.9 4.9 4.7 10.5
val 69.8 100.0 100.0 89.0 8.9 8.7 8.5 15.6
test 69.5 100.0 87.4 100.0 9.0 8.9 8.7 15.9
key_unseen 88.9 100.0 61.9 64.3 100.0 98.4 95.9 72.5
val_unseen 89.2 100.0 61.7 64.2 100.0 100.0 96.7 72.9
test_unseen 89.3 100.0 62.0 64.5 100.0 99.1 100.0 73.5
other_heldout 43.6 33.2 17.0 17.6 11.3 11.2 11.0 100.0

these rare species only constituted a small fraction of the train samples—only 17,572 samples
are members of species with 6 or fewer samples, which is 6% of the train partition. Due to our
selection process for unseen species, in which only species with enough samples to be confident they
are accurate are included, a much higher fraction of the unseen species are included in val_unseen
and test_unseen.

Similarly, we show the number and percentage of genera in common between pairs of partitions
(Table S14 and Table S15, respectively). We see that the genera across all seen and unseen species
set partitions are contained in the train partition.

In Figure S14, we show the number of samples per partition. The plot illustrates the vast majority of
the samples (91%) are in the pretrain partition, and most samples are only labelled to family level
(67%).
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(b) key_unseen partition.
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(d) val_unseen partition.

100 101 102 103

Total number of seen samples

100

101

102

103

Nu
m

be
r o

f t
es

t s
am

pl
es

(e) test partition.

100 101 102 103

Total number of unseen samples

100

101

102

103

Nu
m

be
r o

f t
es

t_
un

se
en

 sa
m

pl
es

(f) test_unseen partition.

Figure S11: Number of samples in species set and partition, per species.
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(b) key_unseen partition.
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(c) val partition.
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(d) val_unseen partition.
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(e) test partition.

100 101 102 103

Total number of unseen barcodes

100

101

102

103

Nu
m

be
r o

f t
es

t_
un

se
en

 b
ar

co
de

s

(f) test_unseen partition.

Figure S12: Number of barcodes in species set and partition, per species.
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(b) key_unseen partition.
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(c) val partition.

100 101 102 103

Number of samples

10 5

10 4

10 3

10 2

10 1

De
ns

ity
 o

f s
pe

cie
s w

/ s
am

pl
e 

co
un

t

(d) val_unseen partition.
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(e) test partition.
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(f) test_unseen partition.

Figure S13: Distribution of species prevalences across the main data partitions. Note the log-log
axes due to the power law distribution of the data.. The majority of species are infrequent, but some
species have many samples. The train and key_unseen partitions have similar distributions to
the overall distribution for seen and unseen species. The val partitions have the same distribution,
but shifted left as they they contain a fixed fraction of the samples per species. The test partitions
are truncated with a minimum and maximum number of samples per species, which flattens the
distribution over species for these partitions.
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pretrain seen unseen other 

Figure S14: Treemap diagram showing number of samples per partition. For the pretrain
partition (blues), we provide a further breakdown indicating the most fine-grained taxonomic rank
that is labelled for the samples. For the remainder of the partitions (all of which are labelled to species
level) we show the number of samples in the partition. Samples for seen species are shown in shades
of green, and unseen in shades of red.
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S15.3 Distributional shift

As described above, we partitioned our data into sets to use for open- and closed-world tasks. The
division of our data was directed by the labels, with scientific names places in the “seen” species set
and placeholder names in the “unseen” species set. This partitioning method means our open-world
dataset should be, by construction, well-aligned with the open-world task seen in practice for novel
data collection. Novel arthropod species are continually being discovered and identified as species
that are new to science, and if we assume there is a uniform efficiency for naming across taxa the
distribution is of placeholder names is likely to match the distribution of new species discovery.
However, this distribution does not necessarily match that of taxa prevalence, due to several factors
such as non-uniform speciation rates across arthropods.

We investigated the difference in the distribution at order and class level for the dataset partitions,
tabulated in Table S16 and illustrated in Figures S15 and S16. We observe that the Diptera (fly)
class of Insecta dominates the overall and pretrain dataset (Figure S15b), but “seen” partitions
(Figure S15c) have a flatter distribution with more prevalence of two non-Insecta orders—Arachnida
(spiders, etc.) and Collembola (springtails)—and more instances of non-Diptera Insecta classes.
The distribution is even flatter for the test partition (Figure S16e), due to our capped subsampling
methodology when creating the partition.

For “unseen” partitions (Figure S15d), we find the data is split nearly equally between three domi-
nant Insecta classes—Diptera (flies), Hymenoptera (bees, ants, etc.), and Lepidoptera (moths, etc.).
The test_unseen partition (Figure S16f) contains even more Hymenoptera (around 62%). The
other_heldout partition (Figure S15e) has even less Diptera, and is instead dominated by Lepi-
doptera and Hymenoptera.

Users of the BIOSCAN-5M dataset should thus be sure to consider the effect of this distributional
shift on their results if they wish to make direct comparisons between the test performance and the
test_unseen performance—results for these partitions are not intended to be directly comparable
to each other.
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Table S16: Distribution of predominant classes and orders across data splits. For each taxonomic
class present in the dataset, and selected orders which have a prevalence of at least 0.5% for at least
one split, we show the proportion of samples in each split (%) bearing this taxonomic label. Values
for orders which never occur in a split are left empty. Background: linear colour scale from 0%
(white) to 75% (blue).
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Arachnida Araneae 0.35 2.25 2.15 4.11 0.17 0.16 0.49 0.14
Mesostigmata 0.08 0.13 0.14 0.36 0.49 0.53 0.81 0.16
Sarcoptiformes 0.09 0.34 0.33 0.61
(Other) 0.31 0.13 0.12 0.27 0.01

Branchiopoda (Total) 0.00 0.01 0.01 0.04

Chilopoda (Total) 0.00 0.00 0.01

Collembola Entomobryomorpha 0.57 2.80 2.91 1.03 0.06 0.07 0.14 0.65
(Other) 0.19 0.43 0.45 0.49 0.16 0.17 0.36 0.02

Copepoda (Total) 0.00 0.00

Diplopoda (Total) 0.00 0.00 0.01

Diplura (Total) 0.00

Insecta Coleoptera 5.02 4.47 4.20 7.44 0.39 0.43 0.94 0.48
Diptera 73.64 60.56 61.75 49.21 38.44 38.96 21.74 10.19
Hemiptera 5.06 7.75 7.51 10.15 0.18 0.12 0.36 0.05
Hymenoptera 10.23 11.64 11.42 16.00 37.46 36.50 62.32 41.84
Lepidoptera 2.51 4.75 4.26 5.96 22.65 23.04 12.79 46.39
Psocodea 0.84 2.05 2.09 1.22 0.01
Thysanoptera 0.20 2.02 2.04 1.77 0.00
Trichoptera 0.17 0.24 0.24 0.58 0.01 0.01 0.05 0.01
(Other) 0.38 0.31 0.30 0.66 0.06

Malacostraca (Total) 0.00 0.09 0.08 0.10

Ostracoda (Total) 0.00 0.00
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Figure S15: Distribution of classes and insect orders. In each panel, the distribution of taxa is
shown for one species set of the dataset. Classes are shown in different hues—Arachnida: red,
Collembola: yellow, Insecta orders: shades of blue varying by order, other classes: green. Icons are
redistributed under CC BY(-NC) or Canva pro license, respectively. See Table S16 for names and
more detailed values.
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Figure S16: Distribution of classes and insect orders. Each panel shows the distribution for one
partition. Classes are shown in different hues—Arachnida: red, Collembola: yellow, Insecta orders:
shades of blue varying by order, other classes: green. Icons are redistributed under CC BY(-NC) or
Canva pro license, respectively. See Table S16 for names and more detailed values.
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