Joker: Conditional 3D Head Synthesis with Extreme Facial Expressions

Supplementary Material

Figure 1. Further 3D reconstructions of our method on a diverse set of examples including out-of-distribution samples.

1. Datasets

As described in the main paper, we use the datasets CelebV-
Text [25] and NeRSemble [12] and generate new annota-
tions and metadata to train our model. In addition, we
recorded challenging samples for validating the synthesis
of extreme facial expressions in an in-the-wild setting; this
benchmark is referred to as Joker benchmark.

CelebV-Text Dataset The CelebV-Text Dataset [25] is a
large-scale facial text-video dataset containing 70k facial
video clips from the internet with a total length of 279
hours. We first filter out videos of low quality by dis-
carding samples with a HyperIQA score [18] of less than
40. Second, we filter for videos with extreme and diverse
poses and expressions. For that, we use an off-the-shelf
model' [6] to annotate the video frames with 3DMM pa-
rameters and select the frames with the highest expressive-
ness and diversity. The filtered images are cropped fol-
lowing the alignment procedure of [8] and automatically
annotated with BFM parameters and text captions using
Deep3DFaceRecon [8] and Blip2 [13]. Samples for which
the 3DMM parameters estimation fails and with implausi-
ble captions are discarded.

We select 50k samples for training and 2.5k for evalu-
ation. Reference images are randomly sampled from the
same sequence as the target image, weighted by the relative

]https :/ / github . com/ radekd91 / inferno / tree /
master/inferno_apps/FaceReconstruction

distance in pose and expression. To avoid identity overlap
between the training and validation sets, we use an off-the-
shelf face recognition network [7] and enforce an identity
similarity score of less than 0.4 between each validation
sample and its closest training sample. The automatically
generated annotations and metadata will be made publicly
available to the research community.

NeRSemble Dataset The NeRSemble dataset [12] is a
multi-view portrait video dataset containing 4734 record-
ings of 222 subjects captured with 16 machine vision cam-
eras. The subjects perform a wide set of extreme expres-
sions in an environment with uniform lighting and back-
ground. We follow the same procedure as for CelebV-
Text for sample filtering, image cropping, and annotation.
Further, we assign a higher sampling ratio to the samples
for which the automatically generated caption contains the
keyword “tongue” because such samples are sparse in the
CelebV-Text dataset. Note that we only create the image
captions for the frontal images and reuse them for the other
multi-view images. Reference images are randomly sam-
pled from images showing the same subject as the target
image but with a different expression and captured from
a different camera. We split the dataset into 199 subjects
for training and 23 for validation and automatically selected
2,000 and 2,500 frames, respectively.
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Figure 2. Random samples from our Joker benchmark. The samples contain in-the-wild scenes with natural backgrounds and lighting and
studio scenes with uniform backgrounds and lighting.

Joker Benchmark Evaluating our method on the valida-
tion sets of CelebV-Text and NeRSemble alone is insuffi-
cient: CelebV-Text only contains moderately extreme ex-
pressions, and NeRSemble is restricted to uniform lighting
and background scenarios. For this reason, we captured
the Joker benchmark for the evaluation of extreme expres-
sion synthesis, which will be made publicly available to
the research community. It provides monocular videos of
13 subjects performing extreme expressions both in in-the-
wild scenarios, as well as in a lab environment with uniform
lighting and background, see Figure 2. The subjects are of
diverse ethnicity and equal gender parity (6 male, 7 female).
We apply the same alignment and annotation pipeline to the
dataset as for CelebV-Text.

2. Description of the baseline methods

VOODOO 3D [20] finetunes a pretrained model [21] to lift
the reference image into 3D and trains a model to transfer
expressions between the 3D representations of the driving
and the reference subject. VOODOO XP [19] similarly to
VOODOO 3D also leverages 3D lifting but learns an ex-
pression encoder in an end-to-end fashion to provide fine-
grained expression control. Real3D-Portrait [24] combines
an image-to-plane model with a tri-plane motion adapter to
synthesize 3D talking head avatars that can be controlled
via audio or 3DMM parameters. Portrait4D-v2 [9] com-
bines a modified EG3D [2] pipeline with a control mecha-
nism through the FLAME 3DMM [14]. GOHA [15] uses
a 3DMM to control facial expressions by mapping 3DMM
parameters to residuals of a tri-plane representation of the
face. AniFaceDiff [3] follows a similar approach as our
method, yet instead of using a ControlNet, they encode

normal maps of FLAME [14] through stacked 2D convolu-
tions and directly add them to the noisy input latents. Fur-
ther, they don’t use text control but apply cross-attention
to features extracted from the FLAME parameters. X-
Portrait [23] also follows a similar approach as our method.
In contrast to our method, however, they don’t utilize text
and 3DMM as inputs. Instead, they use patches of the driv-
ing image as input to the ControlNet. To avoid identity
leakage during training, X-Portrait uses a pre-trained facial
reenactment method to generate them.

Note that for the baselines Real3DPortrait, AniFaceD-
iff, and X-Portrait, we use the renderings of our method to
obtain the dynamic camera sweep results presented in the
suppl. video. For the other baselines, we directly use the
ground truth camera parameters for rendering.

3. Additional Experiments
3.1. Ablation Study of Our 2D Prior

We ablate the design choices of our 2D prior in Table 1
and Figure 3. In contrast to X-Portrait, we unfreeze the up-
sampling blocks of our denoising UNet and find that this
consistently improves all metrics. Qualitatively, we observe
particularly significant improvements for identity preserva-
tion under extreme expression changes (see results "Frozen
Denoising UNet’ in Figure 3).

Removing the text control from our method during train-
ing and inference significantly worsens all metrics (see re-
sults for "No Text Control’). Qualitatively, we observe
that extreme expressions, most prominently tongue artic-
ulations, cannot be controlled through 3DMM parameters
alone, which explains the observed deterioration of the eval-
uation scores. Note that none of the existing methods can
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Figure 3. Qualitative ablation study of our 2D prior. Too small classifier-free guidance scale values (cfg) reduce the faithfulness of
extreme expressions, while too high values cause oversaturation and artifacts. We find that cfg=3 yields the best trade-off. Not training
the upsampling layers of the denoising UNet (”Frozen Denoising UNet”) worsens identity preservation and synthesis quality in general.
Dropping the text control disables tongue control since it is not represented in the 3DMM. Similar effects occur when not fine-tuning on
NeRSemble, since samples with visible tongue are underrepresented in CelebV-Text.

Self-reenactment Cross-reenactment
PSNR+ LPIPS| SSIM{ FID| CSIM? AKD| AED| APD| |FID| CSIMt AED| APD|
Frozen Denoising UNet 18.11 0.227 0.603 8.38 0.58 0.0072  0.119 0.325 9.59 0.54 0.223 0.494
No Text Control 1702 0259 0566 1346 056 00132 0.148 0380 | 1468 055 0249 0530
No Finetuning on NerSemble 18.72 0.210 0.622 8.15 0.61 0.0061  0.109 0.310 9.00 0.58 0.221 0.486
Ours 18.63 0.212 0.619 7.57 0.62 0.0067  0.110  0.306 8.48 0.57 0.220  0.489
Table 1. Quantitative ablation study of the design choices of our 2D prior.
Self-reenactment Cross-reenactment
PSNRT LPIPS| SSIMtT FID| CSIMT AKDJ| AED| APD| | FID| CSIMt AED| APD]
Ours, cfg=1.0 18.49 0.216 0.611 9.95 0.618  0.00667 0.109 0310 | 11.03  0.567  0.2203  0.490
Ours, cfg=3.0 18.63 0.212 0.619 7.57 0.616  0.00669 0.110 0.306 | 8.48 0.566  0.2201 0.489
Ours, cfg=6.0 18.40 0.221 0.618 8.12 0.594  0.00690 0.116 0.318 | 9.05 0.548  0.2224 0.491
Ours, cfg=10.0 18.10 0.234 0.611 10.58  0.572 0.00712 0.122 0329 | 11.70  0.528  0.2245 0.493

Table 2. Quantitative ablation study of the impact of classifier-free guidance scale (cfg) on our 2D prior.

leverage text for avatar control.

We found that fine-tuning our model on a mixture of
NerSemble and CelebV-Text after pretraining on CelebV-
Text greatly helps in synthesizing tongue articulations (see
last column of Figure 3) since these samples are underrep-
resented in CelebV-Text. However, the quantitative scores
slightly deteriorate. We attribute this to a slight overfitting
effect on the lighting situation of NeRSemble which causes
predictions on samples with uniform backgrounds to have a
bias toward this particular lighting setting.

We also evaluate the impact of the classifier-free guid-
ance scale (cfg) on our 2D prior in Figure 3 and Table 2.
We found that too small values reduce the faithfulness of
extreme expressions while too high values cause oversatu-
ration artifacts. We found that cfg=3 is a good compromise
and also achieves the best FID, PSNR, LPIPS, and SSIM
scores in the quantitative self-reenactment evaluation.

3.2. Collapse of Dynamic-Target Distillation Ap-
proaches for Small Noise Levels

In the main paper, we found that our distillation approach
yields better reconstruction results than methods like Im-
ageDream [22], which update the target images at each
NeRF optimization step (="dynamic target”). We argue
that this is because such approaches sample the noise levels

randomly from a specified range, even at the last step of dis-
tillation. However, the predictions of the 2D prior at high
noise levels typically lack details and exhibit artifacts, par-
ticularly for high cfg values. Their contribution to the opti-
mization objective bottlenecks the quality of the distillation
result. The natural question is if the negative impact of high
noise level sampling can be avoided by annealing the upper
bound of the sampled noise levels to zero (note that Image-
Dream caps it to at least 0.5 by default). The result of this
experiment is demonstrated in Figure 4. We found that an-
nealing the upper bound of the noise levels to zero makes
the distillation diverge. The reason for this is that when per-
forming score distillation sampling (SDS) on small noise
levels only, supervision for the low-frequency features like
the general shape and outline of the distilled scene is lacking
because, at these low-noise levels, only high-frequency de-
tails are added by the diffusion prior while the rest is copied
over from the input images. However, minor inaccuracies
in this process cause the coarse geometry of the 3D recon-
struction to drift during the repeated SDS updates while the
diffusion prior does not provide correcting gradient direc-
tions. As a result, the 3D reconstruction diverges. Only by
also sampling high noise levels even at the end of the dis-
tillation procedure, guidance on the coarse scene geometry
can be achieved, while coming at the cost of reconstruction
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Figure 4. Divergent behavior of score-distillation sampling (SDS)
for small noise levels. Typically, SDS-based methods like Image-
Dream [22] ensure that even towards the end of the distillation
procedure high noise levels are sampled, i.e. ¢ ~ [0.02,0.5] (see
column 2). This bottlenecks the fidelity of the 3D reconstructions
and causes artifacts for high cfg values. We found that SDS di-
verges when not ensuring high-noise levels towards the end of dis-
tillation, i.e. ¢ ~ [0.02, 0.02] ("without capped tmax”, column 1).
Our 2-staged approach with deterministic noise levels is able to
overcome this limitation (3rd column).

fidelity.
3.3. Ablations of Our 3D Distillation Procedure

Classifier-free guidance scale (cfg) Figure 6 and Table 3
ablate the impact of the cfg value during distillation. For
the quantitative evaluation in Table 3, we follow the same
procedure as in the main paper. We find that too small cfg
values (~ 5) produce blurry results while too high values
(~ 30) result in oversaturation. We chose cfg=19.0 and
found that it yields plausible results of high quality without
oversaturation effects.

Ratio between Stage 1 & 2 Table 4 provides a quanti-
tative ablation study of the impact of the ratios between
Stage 1 and Stage 2 during distillation. Please refer to the
main paper for a qualitative comparison. We find that in-
creasing the ratio of Stage 2 optimization improves high-

LPIPS| SSIMT PSNRT MSE |
Ours, cfg=5.0 0.199 0.84 2200 0.0073
Ours, cfg=10.0 | 0.193 0.83 21.77  0.0076
Ours, cfg=19.0 | 0.191 0.82 2153 0.0080
Ours, cfg=30.0 | 0.191 0.81 21.60  0.0079

Table 3. Quantitative ablation study of the impact of classifier-free
guidance scale (cfg) on our 3D distillation procedure.

Stage 1/Stage2 | LPIPS| SSIM{ PSNR{ MSE |
100% / 0% 0.27 0.83 20.1  0.012
80% / 20% 0.21 0.82 206  0.010

60% / 40% 0.19 0.82 215 0.008
30% /70% 0.18 0.81 220  0.007
0% / 100% 0.18 0.81 220  0.007

Table 4. Quantitative ablation study of the ratios of Stage 1 and
Stage 2 during our 3D distillation. We use the ratio 60%/40% as
the default for our method. While higher ratios of Stage 2 yield
better LPIPS, we qualitatively found that it comes at the cost of
less consistent reconstructions with semi-transparent artifacts (see
main paper).

frequency detail, the LPIPS score improves, yet comes at
the cost of reduced consistency and semi-transparent arti-
facts, the structural similarity index measure (SSIM) wors-
ens. We chose the ratio Stage 1 / Stage 2 of 60%/40% as
our default which we found to be a good trade-off between
high-frequency details and consistency.

3.4. Qualitative Geometry Evaluation

Figure 5 qualitatively visualizes the depth maps of our 3D
reconstructions. We observe that our distillation procedure
yields plausible geometries with a distinct spatial separation
of regions like nose, tongue, mouth cavities, and glasses.

R
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Figure 5. Reconstructed Geometry.

3.5. More Qualitative Comparisons of Our 2D Prior

We provide additional qualitative comparisons of our 2D
prior with all considered baselines in Figure 7 for self-
reenactment and in Figure 8 for cross-reenactment. As ob-
served in the main paper, our 2D prior consistently outper-
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Figure 6. Qualitative ablation study of classifier-free guidance scale (cfg) for our 3D distillation procedure. Too small values produce
blurry results, while too high values cause unnatural oversaturation. We found cfg=19.0 to be a good compromise and set it as the default

for our method.

forms all baselines. It is remarkably robust w.r.t. extreme
expressions and poses in the reference and the driving im-
ages and produces results with high identity alignment and
synthesis quality even on very challenging samples.

4. Ethical Considerations

Our method creates a photo-realistic 3D head reconstruc-
tion from a single reference image while providing control
over the target pose and expression. It is intended to ad-
vance 3D content generation for applications in telecom-
munications, movie production, and entertainment. Never-
theless, similar to previous work [10, 11, 15, 19, 20, 23],
potential misuse in the form of deepfakes is possible. De-
veloping strategies to detect such deepfakes is therefore of
critical importance. The field of passive forgery detection
enables the identification of deepfakes without explicit wa-
termarking [1, 4, 5, 16, 17]. However, generalized meth-
ods [1, 4, 5] have problems in reliably detecting fakes, and
therefore cryptographical methods must be used in the fu-
ture to verify the video’s authenticity.
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