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Supplementary Material

Figure 1. Further 3D reconstructions of our method on a diverse set of examples including out-of-distribution samples.

1. Datasets

As described in the main paper, we use the datasets CelebV-

Text [25] and NeRSemble [12] and generate new annota-

tions and metadata to train our model. In addition, we

recorded challenging samples for validating the synthesis

of extreme facial expressions in an in-the-wild setting; this

benchmark is referred to as Joker benchmark.

CelebV-Text Dataset The CelebV-Text Dataset [25] is a

large-scale facial text-video dataset containing 70k facial

video clips from the internet with a total length of 279

hours. We first filter out videos of low quality by dis-

carding samples with a HyperIQA score [18] of less than

40. Second, we filter for videos with extreme and diverse

poses and expressions. For that, we use an off-the-shelf

model1 [6] to annotate the video frames with 3DMM pa-

rameters and select the frames with the highest expressive-

ness and diversity. The filtered images are cropped fol-

lowing the alignment procedure of [8] and automatically

annotated with BFM parameters and text captions using

Deep3DFaceRecon [8] and Blip2 [13]. Samples for which

the 3DMM parameters estimation fails and with implausi-

ble captions are discarded.

We select 50k samples for training and 2.5k for evalu-

ation. Reference images are randomly sampled from the

same sequence as the target image, weighted by the relative

1https : / / github . com / radekd91 / inferno / tree /

master/inferno_apps/FaceReconstruction

distance in pose and expression. To avoid identity overlap

between the training and validation sets, we use an off-the-

shelf face recognition network [7] and enforce an identity

similarity score of less than 0.4 between each validation

sample and its closest training sample. The automatically

generated annotations and metadata will be made publicly

available to the research community.

NeRSemble Dataset The NeRSemble dataset [12] is a

multi-view portrait video dataset containing 4734 record-

ings of 222 subjects captured with 16 machine vision cam-

eras. The subjects perform a wide set of extreme expres-

sions in an environment with uniform lighting and back-

ground. We follow the same procedure as for CelebV-

Text for sample filtering, image cropping, and annotation.

Further, we assign a higher sampling ratio to the samples

for which the automatically generated caption contains the

keyword ”tongue” because such samples are sparse in the

CelebV-Text dataset. Note that we only create the image

captions for the frontal images and reuse them for the other

multi-view images. Reference images are randomly sam-

pled from images showing the same subject as the target

image but with a different expression and captured from

a different camera. We split the dataset into 199 subjects

for training and 23 for validation and automatically selected

2,000 and 2,500 frames, respectively.

https://github.com/radekd91/inferno/tree/master/inferno_apps/FaceReconstruction
https://github.com/radekd91/inferno/tree/master/inferno_apps/FaceReconstruction
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Figure 2. Random samples from our Joker benchmark. The samples contain in-the-wild scenes with natural backgrounds and lighting and

studio scenes with uniform backgrounds and lighting.

Joker Benchmark Evaluating our method on the valida-

tion sets of CelebV-Text and NeRSemble alone is insuffi-

cient: CelebV-Text only contains moderately extreme ex-

pressions, and NeRSemble is restricted to uniform lighting

and background scenarios. For this reason, we captured

the Joker benchmark for the evaluation of extreme expres-

sion synthesis, which will be made publicly available to

the research community. It provides monocular videos of

13 subjects performing extreme expressions both in in-the-

wild scenarios, as well as in a lab environment with uniform

lighting and background, see Figure 2. The subjects are of

diverse ethnicity and equal gender parity (6 male, 7 female).

We apply the same alignment and annotation pipeline to the

dataset as for CelebV-Text.

2. Description of the baseline methods

VOODOO 3D [20] finetunes a pretrained model [21] to lift

the reference image into 3D and trains a model to transfer

expressions between the 3D representations of the driving

and the reference subject. VOODOO XP [19] similarly to

VOODOO 3D also leverages 3D lifting but learns an ex-

pression encoder in an end-to-end fashion to provide fine-

grained expression control. Real3D-Portrait [24] combines

an image-to-plane model with a tri-plane motion adapter to

synthesize 3D talking head avatars that can be controlled

via audio or 3DMM parameters. Portrait4D-v2 [9] com-

bines a modified EG3D [2] pipeline with a control mecha-

nism through the FLAME 3DMM [14]. GOHA [15] uses

a 3DMM to control facial expressions by mapping 3DMM

parameters to residuals of a tri-plane representation of the

face. AniFaceDiff [3] follows a similar approach as our

method, yet instead of using a ControlNet, they encode

normal maps of FLAME [14] through stacked 2D convolu-

tions and directly add them to the noisy input latents. Fur-

ther, they don’t use text control but apply cross-attention

to features extracted from the FLAME parameters. X-

Portrait [23] also follows a similar approach as our method.

In contrast to our method, however, they don’t utilize text

and 3DMM as inputs. Instead, they use patches of the driv-

ing image as input to the ControlNet. To avoid identity

leakage during training, X-Portrait uses a pre-trained facial

reenactment method to generate them.

Note that for the baselines Real3DPortrait, AniFaceD-

iff, and X-Portrait, we use the renderings of our method to

obtain the dynamic camera sweep results presented in the

suppl. video. For the other baselines, we directly use the

ground truth camera parameters for rendering.

3. Additional Experiments

3.1. Ablation Study of Our 2D Prior

We ablate the design choices of our 2D prior in Table 1

and Figure 3. In contrast to X-Portrait, we unfreeze the up-

sampling blocks of our denoising UNet and find that this

consistently improves all metrics. Qualitatively, we observe

particularly significant improvements for identity preserva-

tion under extreme expression changes (see results ’Frozen

Denoising UNet’ in Figure 3).

Removing the text control from our method during train-

ing and inference significantly worsens all metrics (see re-

sults for ’No Text Control’). Qualitatively, we observe

that extreme expressions, most prominently tongue artic-

ulations, cannot be controlled through 3DMM parameters

alone, which explains the observed deterioration of the eval-

uation scores. Note that none of the existing methods can
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Figure 3. Qualitative ablation study of our 2D prior. Too small classifier-free guidance scale values (cfg) reduce the faithfulness of

extreme expressions, while too high values cause oversaturation and artifacts. We find that cfg=3 yields the best trade-off. Not training

the upsampling layers of the denoising UNet (”Frozen Denoising UNet”) worsens identity preservation and synthesis quality in general.

Dropping the text control disables tongue control since it is not represented in the 3DMM. Similar effects occur when not fine-tuning on

NeRSemble, since samples with visible tongue are underrepresented in CelebV-Text.

Self-reenactment Cross-reenactment

PSNR ↑ LPIPS ↓ SSIM ↑ FID ↓ CSIM ↑ AKD ↓ AED ↓ APD ↓ FID ↓ CSIM ↑ AED ↓ APD ↓

Frozen Denoising UNet 18.11 0.227 0.603 8.38 0.58 0.0072 0.119 0.325 9.59 0.54 0.223 0.494

No Text Control 17.02 0.259 0.566 13.46 0.56 0.0132 0.148 0.380 14.68 0.55 0.249 0.530

No Finetuning on NerSemble 18.72 0.210 0.622 8.15 0.61 0.0061 0.109 0.310 9.00 0.58 0.221 0.486

Ours 18.63 0.212 0.619 7.57 0.62 0.0067 0.110 0.306 8.48 0.57 0.220 0.489

Table 1. Quantitative ablation study of the design choices of our 2D prior.

Self-reenactment Cross-reenactment

PSNR ↑ LPIPS ↓ SSIM ↑ FID ↓ CSIM ↑ AKD ↓ AED ↓ APD ↓ FID ↓ CSIM ↑ AED ↓ APD ↓

Ours, cfg=1.0 18.49 0.216 0.611 9.95 0.618 0.00667 0.109 0.310 11.03 0.567 0.2203 0.490

Ours, cfg=3.0 18.63 0.212 0.619 7.57 0.616 0.00669 0.110 0.306 8.48 0.566 0.2201 0.489

Ours, cfg=6.0 18.40 0.221 0.618 8.12 0.594 0.00690 0.116 0.318 9.05 0.548 0.2224 0.491

Ours, cfg=10.0 18.10 0.234 0.611 10.58 0.572 0.00712 0.122 0.329 11.70 0.528 0.2245 0.493

Table 2. Quantitative ablation study of the impact of classifier-free guidance scale (cfg) on our 2D prior.

leverage text for avatar control.

We found that fine-tuning our model on a mixture of

NerSemble and CelebV-Text after pretraining on CelebV-

Text greatly helps in synthesizing tongue articulations (see

last column of Figure 3) since these samples are underrep-

resented in CelebV-Text. However, the quantitative scores

slightly deteriorate. We attribute this to a slight overfitting

effect on the lighting situation of NeRSemble which causes

predictions on samples with uniform backgrounds to have a

bias toward this particular lighting setting.

We also evaluate the impact of the classifier-free guid-

ance scale (cfg) on our 2D prior in Figure 3 and Table 2.

We found that too small values reduce the faithfulness of

extreme expressions while too high values cause oversatu-

ration artifacts. We found that cfg=3 is a good compromise

and also achieves the best FID, PSNR, LPIPS, and SSIM

scores in the quantitative self-reenactment evaluation.

3.2. Collapse of Dynamic­Target Distillation Ap­
proaches for Small Noise Levels

In the main paper, we found that our distillation approach

yields better reconstruction results than methods like Im-

ageDream [22], which update the target images at each

NeRF optimization step (=”dynamic target”). We argue

that this is because such approaches sample the noise levels

randomly from a specified range, even at the last step of dis-

tillation. However, the predictions of the 2D prior at high

noise levels typically lack details and exhibit artifacts, par-

ticularly for high cfg values. Their contribution to the opti-

mization objective bottlenecks the quality of the distillation

result. The natural question is if the negative impact of high

noise level sampling can be avoided by annealing the upper

bound of the sampled noise levels to zero (note that Image-

Dream caps it to at least 0.5 by default). The result of this

experiment is demonstrated in Figure 4. We found that an-

nealing the upper bound of the noise levels to zero makes

the distillation diverge. The reason for this is that when per-

forming score distillation sampling (SDS) on small noise

levels only, supervision for the low-frequency features like

the general shape and outline of the distilled scene is lacking

because, at these low-noise levels, only high-frequency de-

tails are added by the diffusion prior while the rest is copied

over from the input images. However, minor inaccuracies

in this process cause the coarse geometry of the 3D recon-

struction to drift during the repeated SDS updates while the

diffusion prior does not provide correcting gradient direc-

tions. As a result, the 3D reconstruction diverges. Only by

also sampling high noise levels even at the end of the dis-

tillation procedure, guidance on the coarse scene geometry

can be achieved, while coming at the cost of reconstruction
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Figure 4. Divergent behavior of score-distillation sampling (SDS)

for small noise levels. Typically, SDS-based methods like Image-

Dream [22] ensure that even towards the end of the distillation

procedure high noise levels are sampled, i.e. t ∼ [0.02, 0.5] (see

column 2). This bottlenecks the fidelity of the 3D reconstructions

and causes artifacts for high cfg values. We found that SDS di-

verges when not ensuring high-noise levels towards the end of dis-

tillation, i.e. t ∼ [0.02, 0.02] (”without capped tmax”, column 1).

Our 2-staged approach with deterministic noise levels is able to

overcome this limitation (3rd column).

fidelity.

3.3. Ablations of Our 3D Distillation Procedure

Classifier-free guidance scale (cfg) Figure 6 and Table 3

ablate the impact of the cfg value during distillation. For

the quantitative evaluation in Table 3, we follow the same

procedure as in the main paper. We find that too small cfg

values (∼ 5) produce blurry results while too high values

(∼ 30) result in oversaturation. We chose cfg=19.0 and

found that it yields plausible results of high quality without

oversaturation effects.

Ratio between Stage 1 & 2 Table 4 provides a quanti-

tative ablation study of the impact of the ratios between

Stage 1 and Stage 2 during distillation. Please refer to the

main paper for a qualitative comparison. We find that in-

creasing the ratio of Stage 2 optimization improves high-

LPIPS ↓ SSIM ↑ PSNR ↑ MSE ↓

Ours, cfg=5.0 0.199 0.84 22.00 0.0073

Ours, cfg=10.0 0.193 0.83 21.77 0.0076

Ours, cfg=19.0 0.191 0.82 21.53 0.0080

Ours, cfg=30.0 0.191 0.81 21.60 0.0079

Table 3. Quantitative ablation study of the impact of classifier-free

guidance scale (cfg) on our 3D distillation procedure.

Stage 1 / Stage 2 LPIPS ↓ SSIM ↑ PSNR ↑ MSE ↓

100% / 0% 0.27 0.83 20.1 0.012

80% / 20% 0.21 0.82 20.6 0.010

60% / 40% 0.19 0.82 21.5 0.008

30% / 70% 0.18 0.81 22.0 0.007

0% / 100% 0.18 0.81 22.0 0.007

Table 4. Quantitative ablation study of the ratios of Stage 1 and

Stage 2 during our 3D distillation. We use the ratio 60%/40% as

the default for our method. While higher ratios of Stage 2 yield

better LPIPS, we qualitatively found that it comes at the cost of

less consistent reconstructions with semi-transparent artifacts (see

main paper).

frequency detail, the LPIPS score improves, yet comes at

the cost of reduced consistency and semi-transparent arti-

facts, the structural similarity index measure (SSIM) wors-

ens. We chose the ratio Stage 1 / Stage 2 of 60%/40% as

our default which we found to be a good trade-off between

high-frequency details and consistency.

3.4. Qualitative Geometry Evaluation

Figure 5 qualitatively visualizes the depth maps of our 3D

reconstructions. We observe that our distillation procedure

yields plausible geometries with a distinct spatial separation

of regions like nose, tongue, mouth cavities, and glasses.
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Figure 5. Reconstructed Geometry.

3.5. More Qualitative Comparisons of Our 2D Prior

We provide additional qualitative comparisons of our 2D

prior with all considered baselines in Figure 7 for self-

reenactment and in Figure 8 for cross-reenactment. As ob-

served in the main paper, our 2D prior consistently outper-
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Figure 6. Qualitative ablation study of classifier-free guidance scale (cfg) for our 3D distillation procedure. Too small values produce

blurry results, while too high values cause unnatural oversaturation. We found cfg=19.0 to be a good compromise and set it as the default

for our method.

forms all baselines. It is remarkably robust w.r.t. extreme

expressions and poses in the reference and the driving im-

ages and produces results with high identity alignment and

synthesis quality even on very challenging samples.

4. Ethical Considerations

Our method creates a photo-realistic 3D head reconstruc-

tion from a single reference image while providing control

over the target pose and expression. It is intended to ad-

vance 3D content generation for applications in telecom-

munications, movie production, and entertainment. Never-

theless, similar to previous work [10, 11, 15, 19, 20, 23],

potential misuse in the form of deepfakes is possible. De-

veloping strategies to detect such deepfakes is therefore of

critical importance. The field of passive forgery detection

enables the identification of deepfakes without explicit wa-

termarking [1, 4, 5, 16, 17]. However, generalized meth-

ods [1, 4, 5] have problems in reliably detecting fakes, and

therefore cryptographical methods must be used in the fu-

ture to verify the video’s authenticity.
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Figure 7. Further qualitative comparisons of our 2D prior in the self-reenactment scenario. For one sample, Real3D-Portrait’s pose

estimator failed, it is marked as a black tile.
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Figure 8. Further qualitative comparisons of our 2D prior in the cross-reenactment scenario. For one sample, Real3D-Portrait’s pose

estimator failed, it is marked as a black tile.
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