A Complements on SVGPs

As discussed in Section 3, SVGPs approximate the posterior of exact GPs through either a set of induc-
ing points Z; £ {21, ..., 2, } or through a set of inducing features ¢, (z) £ {¢1(2), ..., pm(x)}. The
resulting inducing features, defined as u; ; = f (z¢,4) (for inducing points) or u; ; = f Py f (2)oi(z)dx
(for inducing features), are assumed to follow a prior Gaussian density q;(u;) = N (my, S;). We
now discuss how to set these variational parameters m; and S, for a given dataset.

For SVGPS, the posterior mean and covariance is given in closed form as
w (@) = kg, Kz g me K (w,2") = k(z,2') + kL, K71, (St — Kz,2,)K7) 2, kz,0
and
(5) _ T k(s) AN k / T S _ A /
pi(x) = @y, (x)my i (@,2) = k(z,2") + ¢p,, (2) (St — A, ), (1),

for the inducing point and inducing features representations, respectively. See Section 3 or [26] for
more details. However, the marginal likelihood for these models is intractable, and so, as is common
practice in variational inference methods, we set of our variational parameters (as-well as the SVGP’s
kernel parameters) to maximize instead the tractable Evidence-based Lower BOund (ELBO).

For inducing point SVGPS, the ELBO can be written as

1 _ 1 t 0
ELBO(t) = —53’3((215 +7L) "y - 5108 |Q¢ + 71| — 3 log(2m) — ﬁ»
where Qt = I(gt,XtKZ_tl,Ztht,Xt’ I(tht = [k:zi,wj]i,js 1= 1, . ,77’1/,5,]' = 1, . ,t, It isthet xt

identity matrix and 6, = Tr(Kx, x, — @¢). See [32] for a full derivation.

For inducing feature SVGP, the expression of ELBO is the same but with @Q; =
KdT;mt,XtA;liK‘bmpxt’ I(¢mt7xt = [Aigﬁi(ﬂij)}i’j, 1=1,...,my, ] =1,...,t.

To optimize the ELBO in practice, [32] proposed a numerical solution allowing for mini-batching
[see also 26] and the use of stochastic gradient descent algorithms such as Adam [65]. In addition,

[20] provides an explicit solution for the convex optimization problem of finding (m, S;), allowing
more involved alternate optimization schemes.

B Detailed Proofs

In this section, we provide detailed proofs for Theorem 1, Lemma 1, Proposition 1 and Theorem 2, in
order.

B.1 Proof of Theorem 1

Before presenting the proof of Theorem 1, we first overview the regret bound for vanilla GP-TS [3,
Theorem 4].

The Existing Regret Bound for Vanilla GP-TS. [3] proved that, with probability at least 1 — 0,
[f(x) — pe(x)| < upoe(x), where vy = (B+R\/2(’yt +1 +log(1/5))) and ~,; is the max-

imal information gain. Based on this concentration inequality, [3] showed that the regret of
GP-TS scales with the cumulative uncertainty at the observation points measured by the stan-

dard deviation: O(Zil uto¢—1(2¢)). Furthermore, [29] showed that Zle o? (zi) < . Us-
ing this result and applying Cauchy-Schwarz inequality to O(Zil upoy—1(2¢)), [3] proved that

R(T,1;f)=0 (VT\ /T 1og(T)), for vanilla GP-TS.

a

We build on the analysis of GP-TS in [3] to prove the regret bounds for S-GP-TS. We stress that
despite some similarities in the proof, the analysis of standard GP-TS does not extend to S-GP-TS.
This proof characterizes the behavior of the upper bound on regret in terms of the approximation
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constants, namely a, @, c and €. A notable difference is that the additive approximation error in the
posterior standard deviation (e;) can cause under-exploration which is an issue the analysis of exact
GP-TS cannot address. In addition, we account for the effect of batch sampling on the regret bounds.

We first focus on the instantaneous regret at each time ¢ within the discrete set, f(x*®) — f(z,,).
Recall x*() £ argmin,, ., ||2* — 2'[| from Assumption 5. It is then easy to upper bound the
cumulative regret by the cumulative value of f (x*(t)) — flzep) + t% as our discretization ensures
that f(a*) — f(x* (t)) < t% For upper bounds on instantaneous regret, we start with concentration of

GP samples ftﬁ p around their predicted values and the concentration of the prediction around the true
objective function. We then consider the anti-concentration around the optimum point. The necessary
anti-concentration may fail due to approximation error in the standard deviation around the optimum

point. We thus consider two cases of low and sufficiently high standard deviation at x*® separately.

While a low standard deviation implies good prediction at x* ® 4 sufficiently high standard deviation
guarantecs sufficient exploration. We use these results to upper bound the instantancous regret at
each time ¢ with uncertainties measured by the standard deviation.

Concentration events &£ and é:t:

Define &, as the event that at time ¢, for all z € Dy, | f(z) — fuu—1(2)| < 304(6¢—1(x) + €). Recall
o = 204(1/(t?)). Applying lemma 1, we have Pr[&] > 1 — .

Define £, as the event that for all z € Dy, and for all b € [B], |fis(2x) — ji—1(2)| < aybyds_1(z)
where b, = \/21In(BN,t2). We have Pr[€;] > 1 — .

Proof. For a fixed € Dy, and a fixed b € [B],

~ - N b? 1
Pr [|ft7b(w) — 1 (x)] > atbtcrt_l(x)] < exp(f%) = BN,

The inequality holds because of the following bound on the CDF of a normal random variable

1 — CDFr(0,1)(c) < %exp(—%) and the observation that f“’é?f:—_ﬂlﬁ(’m;(z) has a normal distribution.

Applying a union bound we get Pr[gt] < t% which gives us the bound on probability of &. ]

We thus proved &; and &, are high probability events. This will facilitate the proof by conditioning

on & and &;. Also notice that when both & and &, hold true, we have, for all 2 € D;, and for all
b€ [B],

Fial®) = $@) < Bidea (@) + soves ™
where 3; = o (bs + %)

Anti Concentration Bounds. It is standard in the analysis of TS methods to prove sufficient

exploration using an anti-concentration bound. That establishes a lower bound on the probability

of a sample being sufficiently large (so that the corresponding point is likely to be selected by

TS rule). For this purpose, we use the following bound on the CDF of a normal distribution:
2

1 — CDFn0,1y(¢c) > %. The underestimation of the posterior standard deviation at the

optimum point however might result in an under exploration. On the other hand, a low standard

deviation at the optimum point implies a low prediction error. We use this observation in our regret
analysis by considering the two cases separately. Specifically, the regret f(x*®) — f (2¢,p) at each
time ¢ for each sample b is bounded differently under the conditions: I. 5t_1(x*(t)) < ¢ and II.
&tfl(X*(t)) > €.
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Under Condition I (5;_1 (x*(t)) < ¢;), when both & and & hold true, we have

Fx* D) = fly)

~ ) . 1
< ft,b(X*(t)) + B 1 (D) + Qs
3 - 1
- ft(ﬂﬁt,b) + ﬁtUt—l(th,b) + 504,56,5 by (7),
< g1 (x" )+ Bi5—1 (o) + aver by the selection rule of TS, ®)
< BiGe-a(@en) + (B + a)er by Condition I.

that upper bounds the instantaneous regret at time ¢ by a factor of approximate standard deviation up

to an additive term caused by approximation error. Since f(x*®) — f (x1,) < 2B, under Condition
I’

B[ (V) — f(m0)] < Bider(@s) + (5 + e + 75 ©)

where the inequality holds by Pr[E; or &] < Z.

Under Condition II (¢;_; (x*(t)) > €;), we can show sufficient exploration by anti-concentration at
the optimum point. In particular under Condition II, if £ holds true, we have

Pr(fos(x*") > f(x* )] = p, (10)
where p = ﬁ.
Proof. Applying the anti-concentration of a normal distribution

pr [ Fea (D) — () e 0) — i ()
-1 (x*1) aGe—1 (x* 1)

Prlfp(x" V) > f(x*™)]

v

p.
As a result of the observation that the right hand side of the inequality inside the probability argument
is upper bounded by 1:
f(X*(t)) — ﬂt_l(X*(t)) %at&t_l(x*(t)) + %OétEt
at&t_l(x*(t)) o Oét&t_l(X*(t))
< L By Condition I [

By 5t

Sufficiently Explored Points. Let S; denote the set of sufficiently explored points which are
unlikely to be selected by S-GP-TS if f; 5 (x*®) is higher than f(x*(*)). Specifically, we use the
notation

- 1 .
St = {.L S Dt : f(.L) + ﬂtO't_l(IL') + §(Xt€t S f(X (t))} (11)
Recall 8; = ay (b + %) In addition, we define
Ty = argminmeDt\St&t_l(x). (12)

We showed in equation (8) that the instantaneous regret can be upper bounded by the sum of standard

deviations at z; , and x* (*), The standard method based on information gain can be used to bound
the cumulative standard deviations at x; ;. This is not sufficient however because the cumulative

standard deviations at x*® do not converge unless there is sufficient exploration around z*. To
address this, we use T as an intermediary to be able to upper bound the instantaneous regret by a
factor of 6;_1 () through the following lemma.

Lemma 2. Under Condition II, fort > \/%, if & holds true
- _ 2 .
G1-1(Z;) < ]‘)E[Ut—l(zt,b)], (13)

where the expectation is taken with respect to the randomness in the sample ft, b
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Proof of Lemma 2. First notice that when both &; and & hold true, for all z € S;

flb(.’l?) S f({l;) + ﬂt&t—l(m) + (()[t — 1)615 by (7)
< f(X*(t)), by definition of S;. (14)

Also, if ftvb(x*(t)) > ft,b(x), Vx € S, the rule of selection in TS (x4, = argmaxzexftﬁb(x)) ensures
x1p € Dy \ S;. So we have

Prlzip € DS > Prifi(x*) > fiu(2), Ve € 8]
> Prifio(x*") > fiu(x), Vo € Sy, &) — Pr[&)]
> Piffip(x®) > f ) —Pri&] by (14)
> po by (10)
>

57 fort > /2/p.

Finally, we have

E[5t—1(1’t,b)] > E |:5't—1(xt,b) Ty € Dy \ St:| Pr[xt,b € Dy \ 5] (15)
> poi—1(T4) ,
- 2
where the expectation is taken with respect to the randomness in the sample ft) p at time £. O

Now we are ready to bound the simple regret under Condition II using Z; as an intermediary. Under
Condition II, when both &; and &; hold true,

FED) — floy) = F&D) — f(@) + F(@0) — Flaes)

1
Btﬁt,l(ft) + 5@156,5 —+ f(i't) — f(.’I,'t7b) by deﬁnition Of St

IN

IN

1
BeGe—1(Z¢) + S Oet
+ fen(@e) + BiGe—1(T1) — fup(@ep) + Bibi—1(wep) + cuer by (7)

3
< Bi(264-1(T) + G1—1(mep)) + Jaucs, by the rule of selection in TS.

Thus, since f(z*) — f(x,,) < 2B, under Condition II, for ¢ > \/g

4 3 4B
A DBigls  (200)] + e + = (16)

BIf ) = flan)] < = ;

where we used Lemma 2 and Pr[&; or gt] < 3.

Upper bound on regret. From the upper bounds on instantaneous regret under Condition I and
Condition IT we conclude that, for ¢t > \/%

E[f(X*(t)) - f(l't,b)] < max {ﬂt&t—l(wt,b) + (B + ar)er + 4;—2B, 17

%E[&Fl(mt,b)] + gOéth + t—2B}
(4 +p)'8tIE[

- 4B
» at_l(xt,b)] + (,Bt + Oét)et + t_2
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We can now upper bound the cumulative regret. Noticing {\/%] =4.

R(T, B; f)

[
(]~
[]=
=
=
8
*
=
3
<

4 B T B
= D ) Elf(z") = f(xes) +ZZE Fl@ep)]
t=1 b=1 t=5 b=1
L 1
< 8BB4 (E[f(x"") ~ f(zr)] + )
t=5
T B
4+ N 4B +1
< sm54 5 (gl + 6+ e + )
t=5 b=1 p
mBAB+1)  (4+ & L E
< 8BB+ (6 ) + ( ;}D)ﬁT ZZE[Ut—l(l‘t,b (Br + ar ZZ&
t=1 b=1 t=1 b=1
T B
< 15BB+2B + 3067 Z Z aE[oy—1(xep)] + €) + (Br + ar)eT'B
t=10b
T B
< 15BB+2B+30aBr » Y Eloi_1(xep)] + 308r€T'B + (Br + ar)el'B
t=1 b=1
T B
< 15BB+ 2B + 30a0r E[Utfl(l‘t,b)} + (316'1“ + OéT)ETB.
t=1 b=1

We simplified the expressions by % < 30, 4%2 < 7 and ’%ﬁ < 2.

We now use a technique based on information gain to upper bound Zthl Zszl Elot—1(zsp)] as
formalized in the following lemma.

Lemma 3. For all batch observation sequences {x }1e[1),pe[B), We have

T B
2T’)/T
Z Z Ot—1 xt b) R Y (18)
t=1 b=1 log(1+7)
Proof of Lemma 3. Without loss of generality assume that at each time instance ¢t = 1,2, ...,7, the

batch observations are ordered such that oy—1(x¢,1) > 0y—1(x¢ ), for all b € [B]. We thus have

ZZUt 1(ep) <BZUt 1(2,1)- (19)

t=1 b=1

For the sequence of observations {z; 1 }thl, define the conditional posterior mean and variance

~ ¢ t

fr(r) = E[f(z){zs1}ozi]

~2 ¢ = 2 t

7i(x) = E[(f(z) = m(2))"{2s 1 bzl
By the expression of posterior variance of multivariate Gaussian random variables and by positive
definiteness of the covariance matrix, we know that conditioning on a larger set reduces the posterior
variance. Thus & () > o+(x). Notice that o, (x) is the posterior variance conditioned on full batches

of the observations while 7, () is the posterior variance conditioned on only the first observation at
each batch. We thus have

T
Zat 1(211) SZ 1(@11) (20)
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We can now follow the standard steps in bounding the cumulative standard deviation in the non-batch
setting. In particular using Cauchy-Schwarz inequality, we have

T T
Zﬁtfl(l”t,l) < Tz5t2—1(37t,1)~ 21
t=1 t=1
In addition, [29] showed that
T 2
_92 T
a; 4(x < —. 22
; i-1(T11) 1og(1—|—%) 22)

Combining (19), (20), (21) and (22), we arrive at the lemma.

We thus have

2Tyr

R(T:S-GP-TS) < 30a67B, | ———L
( ) < 30abr log(1+ %)

+ (318r + ap)el'B + 15BB + 2B (23)

which can be simplified to
R(T;S-GP-TS) = O (@(1 + )BTt +a2(1 + c2)eTB) . (24)
O
B.2 Proof of Lemma 1
It remains to prove the concentration inequality for the approximate statistics given in Lemma 1.

Proof of Lemma 1. By triangle inequality we have

|f(z) — (@) < |f(z) — ()] + (@) — pe(2)]
< |f(z) — pe(x)| + croe(x) by Assumptions 4.

From Theorem 2 of [3], with probability at least 1 — 4,

f(@) = () < (B + RV2(y + 1+ 10g(1/9)) ) ou(a).

Thus,

|f (@) = ()]

IN

(B +RV2(y +1+ log(l/é))) oi(x) + croi(x)

21In(1/9) n

< @(B+R c)(0:(z) + &),

where the last inequality holds by Assumption 3. O

B.3 Proof of Proposition 1

Here, we use fi; and 7, to specifically denote the approximate posterior mean and the approximate

posterior standard deviations of the decomposed sampling rules (4) and (5) in contrast to Sec. 5.1

where we used the notation more generally for any approximate model. We also use uf) and Ut(s) to

refer to the posterior mean and the posterior standard deviation of SVGP models, and () and ()
to refer to the priors generated from an M —truncated feature vector. For the approximate posterior
mean, we have fi; = u?’. However, the approximate posterior standard deviations o(*) and & are not
the same.
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By the triangle inequality we have
60(2) — o2 @)] < [5e(z) = 0" (@) + [0} (&) — 0 (a)]. (25)
For the first term, following the exact same lines as in the proof of Proposition 7 in [24], we have
62(x) — 01" (1)) < Cumlo®(x) — 0*(a)] (26)

where C; = max;<;<7(1 + || K" z,. |lc(x2)). [24] proceed to upper bound | () — J(w)2($)|

by a constant divided by v/ M. We use a tighter bound based on feature representation of the kernel.
Specifically from definition of §); we have that

o0

2 -
0* (@) = ()] < > gy 27)
i=M+1
= 6M7
which results in the following upper bound
2
|62 () — O',ES) ()] < Cymidpy. (28)

For the standard deviations we have
6u@) — 0@ = e - o @)
V15e(@) - o @)150(z) + 0 (@)

2
= Viste) o ()P
<V Cimydyy, (29)
where the first inequality holds because |54 (z) — o(* ()| < |5, (x) + 0\*) (2)| for positive &, (z) and
()
;7 (x).

We can efficiently bound the error in the SVGP approximation based on the convergence of SVGP
methods. Let us first focus on the inducing features. It was shown that (Lemma 2 in [26]), for the
SVGP with inducing features

IN

KL (GP(ﬂnUt):GP(HgS)akgs))) <

&. (30)
-

where GP(pi;, o) and GP( ,u,gs) , k,gs)) are the true and the SVGP approximate posterior distributions
at time ¢, and KL denotes the Kullback-Leibler divergence between them. On the right hand
side, 6, is the trace of the error in the covariance matrix. Specifically, §; = Tr(F;) where E;, =

Kx,x, — K Z,Xt Kz, z,Kz, x,. Using the Mercer expansion of the kernel matrix, [26] showed
that [Ey]; ; = Y22 A;j®3(x;). Thus

j=m¢+1
t o)
b = D Y Ndj(w) (31)

Thus,
KL ( GP Wiy O GP /L(S) k‘(s) < Ki/2 32
( ty t)? ( t oMt ) = ‘t/ . ( )

where k; = 2tB0,, /T that is determined by the number of current observations. In comparison, [26]
proceed by introducing a prior distribution on z; and bounding [E;]; ; differently.
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For the case of inducing points drawn from an € close k-DPP distribution, similarly following the

exact lines as [26] except for the upper bound on [E}]; ;, with probability at least 1 — ¢, (32) holds

2tB(m+1)6
oT

with xk; = Tt 4 4t£ 0 where ¢q that is determined by the number of current observations.

In addition, if the KL divergence between two Gaussian distributions is bounded by «;/2, we have
the following bound on the means and variances of the marginals [Proposition 1 in [26]]

i (@) — ()] < oul(@)y/re,
(s)2
70}—(1’)| ,/3,%’ (33)

o)

IA

which by algebraic manipulation gives

1 — Brioy(z) < o' () < \/1 + Brioy(a) (34)

Combining the bounds on Ut(s) with (29), we get

V1 —=V3Bro(z) — VCrmudyr < 6i(x) < A/ 14+ V3ko(z) + / Cimydum

Comparing this bound with Assumption 3, we have g, = ﬁ, at = \/1++/3K¢, and

€ = /C1my0ps. Also, since u?) = [i;, comparing (33) with Assumption 4, we have ¢; = /K.
O

B.4 Proof of Theorem 2

In Theorem 1, we proved that

R(T, B; f) = O (aaBR\/ 1 (v +10g(T) T log(T) + acT BR/d(775 + log(T)) log(T))

We thus need to show that aa is a constant independent of 1" and ae is small so that the second term
is dominated by the first term.

In the case of Matérn kernel, A; = O(j~ %) implies that 8,, = O(m™~ "¢ ). Under sampling rule (4),
we select § = 7 and €g = 7oy, o7y in Proposition 1. We thus need #7 = O(T%mrd,,,.) and
eT\/T = O(vmrdpT) be sufficiently small constants. That is achieved by selecting mp = T#id
and M = T3Go-v,

Under sampling rule (5), we need kp = O(T0yy,,.) and erV/T = O(v/m7dpnT) be sufficiently small
constants. That is achieved by selecting mr =T’ 3 and M = 2rEdd

42

In the case of SE kernel, \; = O(exp(—j#)) implies that §,, = O(exp(—m)). Under sampling
rule (4), we select § = = and €y = #g(T) in Proposition 1. We thus need k7 = O(T?m76,,,.)

and eT\/T = O(v/m7dpT) be sufficiently small constants. That is achieved by selecting mr =
(log(T))% and M = (log(T))?. We obtain the same results under sampling rule (5) where we need
kr = O(T0p,,.) and erVT = O(v/mr0pT) be sufficiently small constants.

0

C Additional Experiments and Experimental Details

In Section 6, we tested S-GP-TS across popular synthetic benchmarks from the BO literature. We
considered the Shekel, Hartmann and Ackley (see Figure 3) functions, each contaminated by Gaussian
noise with variance 0.1, 0.5 and 0.5, respectively. Note that for Hartmann and Ackley, we chose
our observation noise to be an order of magnitude larger than usually considered for these problems
in order to demonstrate the suitability of S-GP-TS for controlling large optimization budgets (as
required to optimize these highly noisy functions). We now provide explicit forms for these synthetic
functions and list additional experimental details left out from the main paper.
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Shekel function. A four-dimensional function with ten local and one global minima defined on
X € [0,10)%:

-1

10 [ 4
f(x) = —Z Z(% — A + 6 )
i=1 \j=1

where

4 1 8 6 3 25 8 6 7
and A — 4 1 8 6 79 3 1 2 36
4 1 8 6 3 25 8 6 7
4 1 8 6 79 3 1 2 36

=
Il
ST AT ~J o O i s NN =

Ackley function. A five-dimensional function with many local minima surrounding a single global
minima defined on X' € [-2,1]%:

f(x) = —20exp [ —0.2 %

d

1

ZZ z? | —exp ( Zcos (27x;) ) + 20 + exp(1).
i—1

Hartmann 6 function. A six-dimensional function with six local minima and a single global minima
defined on X € [0, 1]5:

6

4
_—Z%‘GXP _ZAz‘}j(xj_Pi,j)Q ,
i=1

j=1
where
0 3 17 35 1.7 8 1
A [005 10 17 01 8 14 (1.2
=1 3 35 17 10 17 8| “a=113)
17 8 005 10 0.1 14 3.2
1312 1696 5569 124 8283 5886
p_ o4 | 2320 4135 8307 3736 1004 9991

2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

For all our synthetic experiments (both for S-GP-TS and the baseline BO methods), we follow the
implementation advice of [66] regarding constraining length-scales (to stabilize model fitting) and
by maximizing acquisition functions (and Thompson samples) using L-BFGS [67] starting from the
best location found across a random sample of 500 * d locations (where d is the problem dimension).
Our SVGP models are fit with an ADAM optimizer [65] with an initial learning rate of 0.1, ran for
at most 10,000 iterations but with an early stopping criteria (if 100 successive steps lead to a loss
less that 0.1). We also implemented a learning rate reduction factor of 0.5 with a patience of 10. Our
implementation of the GIBBON acquisition function follows [10] and is built on 10 Gumbel samples
built across a grid of 10,000 *d query points. For BO’s initialization step, our S-GP-TS models are
given a single random sample of the same size as the considered batches and standard BO routines
are given d + 4 initial samples (again following the advice of [66]). The function evaluations required
for these initialization are included in our Figures.
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C.1 S-GP-TS on the Ackley Function

To supplement the synthetic examples included in the main body of the paper, we now consider the
performance of S-GP-TS when used to optimize the challenging Ackley function, defined over 5
dimensions and under very high levels of observation noise (Gaussian with variance 0.5). The Ackley
function (in 5D) has thousands of local minima and a single global optima in the centre. As this
global optima has a very small volume, achieving high precision optimization on this benchmark
requires high levels of exploration (akin to an active learning task). Figure 3 demonstrates the
performance of S-GP-TS on the Ackley benchmark, where we see that S-GP-TS is once again able
to find solutions with lower regret than the sequential benchmarks and effectively allocate batch
resources. In contrast to our other experiments, where the K-means inducing point selection routine
significantly outperforms greedy variance reduction, our Ackley experiment shows little difference
between the different inducing point selection routines. In fact, greedy variance selection slightly
outperforms selection by k-means. We hypothesize that the strong repulsion properties of DPPs (as
approximated by greedy variance selection) are advantageous for optimization problems requiring
high levels of exploration.

SGP-TS
Greedy
M=250
5GP-TS
— = Greedy
M=500

10°

5GP-TS

0 1000 2000 3000 4000 5000 6000 7ooO  --+ Kemeans

# Objective Function Evaluations M=250
5GP-TS

- = [-means
M=500
— H
AE|
o = GIBEOM

o 100 200 300 400 500 600 70O
# BO Iterations

Figure 3: Simple regret on 5D Ackley function. The best S-GP-TS approaches are able to efficiently
allocate additional optimization budgets to achieve lower final regret than the sequential baselines.
When considering regret with respect to the BO iteration (bottom panels,idealised parallel setting),
S-GP-TS achieves low regret in a fraction of the iterations required by standard BO routines. For
this task, the choice of inducing point selection strategy (and number of inducing points) is not as
crucial as for our other synthetic benchmarks, however, greedy variance selection provides a small
improvement over selection by k-means.

C.2 A Comparison of S-GP-TS with other batch BO routines

To accompany Figures 1 and 3 (our comparison of S-GP-TS with sequential BO routines), we also
now compare S-GP-TS with popular batch BO routines. Once again, we stress that these existing
BO routines do not scale to the large batch sizes that we consider for S-GP-TS, and so we plot their
performance for B = 25 (a batch size considered large in the context of these exiting BO methods).
We consider two well-known batch extensions of EI: Locally Penalized EI [LP, 8] and the multi-point
EI (known as qEI) of [7]. We also consider with a recently proposed batch information-theoretic
approach known as General-purpose Information-Based Bayesian OptimizatioN [GIBBON, 10]. The
large optimization budgets considered in these problems prevent our use of batch extensions of other
popular but high-cost acquisition functions such as those based on knowledge gradients [9] or entropy
search [13]. Figure 4 compares our S-GP-TS methods (B=100) with the popular batch routines
(B=25), where we see that S-GP-TS achieves lower regret than existing batch BO methods for our
most noisy synthetic function (Hartmann).
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Figure 4: Simple regret on Shekel (4D, left) and Hartmann (6D, right) as a function of either
the number of evaluations (top) or BO iterations (bottom). S-GP-TS methods are ran for batches
of size B = 100 and the batch BO methods for batches of size B = 25. We see that S-GP-TS
is particularly effective when performing the batch optimization of particularly noisy functions
(Hartmann), exceeding the regret of the batch baselines. In our synthetic benchmark with low
observation noise (Shekel), S-GP-TS is less efficient in terms of individual function evaluations,
however, S-GP-TS ’s ability to control larger batches means that it can match the performance of the
highly perfomant LP with respect to the number of BO iterations (the idealised parallel setting).
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