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A IMPLEMENTATION DETAILS AND ADDITIONAL RESULTS

We organize additional supporting experimental findings as follows:

• Appendix B provides details on the datasets used in this paper.
• Appendix C provides additional implementation and training details for all of the methods.
• Appendix D includes experimental results on IID CL and demonstrates that RSGM’s effi-

cacy is not specific to CIL.
• Appendix E provides additional CIL experiments and results with rehearsal, including an

analysis of learning curves, studying alternative sampling strategies for rehearsal, using
a non-self-supervised backbone CNN, using a vision transformer, and using a balanced
dataset. We find that RSGM works well across these experiments and analysis compared
to vanilla rehearsal.

• Appendix F includes findings on memory constrained learning from scratch experiments.
In this setting, RSGM outperforms vanilla rehearsal in all criteria.

• Appendix G studies RSGM in memory constrained online CL setting using a state-of-the-
art online learning method, REMIND. We observe that RSGM combined with REMIND
enhances performance in all metrics under various memory constraints.

• Appendix H studies the behavior of our stability gap mitigation method when used with
Learning without Forgetting (LwF), a popular regularization method used in CL. We find
that our method greatly improves results, illustrating that the mitigation strategy is not
specific to rehearsal.

• Appendix I studies both CIL and IID CL on a long-tailed dataset when the memory buffer
is constrained to only 100K samples. We find that RSGM’s performance is almost entirely
unaffected with this memory constraint, whereas vanilla rehearsal’s performance decreases
across all metrics.

B DATASET DETAILS

This paper uses five benchmark datasets e.g., ImageNet-1K, Places365-LT, Places365-Standard,
CUB-200, and CIFAR-10. ImageNet-1K (Russakovsky et al., 2015) has 1.2 million images from
1000 categories, each with 732�1300 training images and 50 validation images. Places365-LT (Liu
et al., 2019) is a long-tailed dataset with an imbalanced class distribution. It is a long-tailed variant
of the Places-2 dataset (Zhou et al., 2017). Places365-LT has 365 classes and 62500 training images
with 5 to 4980 images per class. For its test set, we use the Places365-LT validation set from (Liu
et al., 2019) which consists of a total of 7300 images with a balanced distribution of 20 images per
class. Places365-Standard (Zhou et al., 2017) has over 1.8 million training images from 365 classes
with 3068� 5000 images per class. We use the validation set consisting of 100 images per class to
test the models. CUB-200 (Wah et al., 2011) has RGB images of 200 bird species with 5994 training
images and 5794 test images. CIFAR-10 (Krizhevsky et al., 2009) consists of 10 classes with 50000
training images and 10000 test images.

C ADDITIONAL IMPLEMENTATION DETAILS

In this section we provide additional implementation details for the models presented in the main
text.

Main Experiments. For both CIL and IID experiments, we train RSGM, vanilla and head using
cross-entropy loss for 600 iterations per rehearsal cycle. During each iteration model is updated
on 128 samples. All methods use the same ConvNextV2 backbone 1, use AdamW optimizer with
weight decay of 0.05 and initial learning rates of 10�3 (RSGM and vanilla) and 10�2 (head). LR is
reduced in earlier layers by a layer-wise decay factor of 0.9. LR scheduler is not applied for vanilla
and head due to poor performance. On the other hand, RSGM uses OneCycle LR scheduler (Smith
& Topin, 2017). The offline model is trained for 12500 iterations on all data i.e., ImageNet-1K and
Places365-LT combined using initial LR of 10�4 without LR scheduler. For all experiments, we set

1Pre-trained weights are available here: https://github.com/facebookresearch/
ConvNeXt-V2
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the rank of the LoRA weight matrices to 48. In all cases, all metrics are based on Top-1 accuracy
(%). In general, most CL experiments including those in Sec. 6.1 adhere to the aforementioned
settings unless otherwise noted.

Memory Constrained CL with DERpp and GDumb. We describe settings used in Sec. 6.2 where
we combine RSGM with DERpp and GDumb while using identical settings e.g., same ImageNet-
1K pre-trained ConvNeXt V2 Femto network and same optimizer settings. Each model pre-trained
on ImageNet-1K learns Places365-Standard in 5 batches subsequently (73 categories per batch).
Each rehearsal cycle contains total 1200 iterations with 256 samples per iteration. DERpp employs
distillation and regularization along with rehearsal to prevent catastrophic forgetting. It regularizes
loss on old samples and uses an additional distillation loss on logits of old samples for promoting
consistency. We set coefficients ↵ = 0.1 and � = 0.9 for distillation and regularization respectively.
GDumb randomly removes a sample from the largest class when buffer reaches its maximum capac-
ity and maintains a class-balanced memory buffer. For all methods, memory buffer is bounded by
maximum number of samples (80% ImageNet-1K + 20% Places365-Standard). DERpp, GDumb,
and RSGM use initial LR of 1 ⇥ 10�3, 1 ⇥ 10�3, and 1.5 ⇥ 10�3 respectively for batch size 256.
The offline model uses initial LR of 10�2 and 12K iterations with 256 samples per iteration. We
assess performance during rehearsal every 100 minibatches to compute the metrics.

Class-balanced Rehearsal. For class balanced rehearsal experiments in Appendix E.3, RSGM and
vanilla use initial LR of 10�3 and 10�4 respectively.

Non-SSL Backbone CNN. For non-SSL backbone experiments with ConvNeXt V1-Tiny (Liu et al.,
2022) in Appendix E.4, initial learning rates for RSGM, vanilla, and offline model are 4 ⇥ 10�3,
3 ⇥ 10�3, and 10�4 respectively. ConvNeXt V1-Tiny has been pre-trained on ImageNet-1K using
supervised learning 2.

ViT Backbone. For ViT backbone experiments in Appendix E.5, we select MobileViT-
Small (Mehta & Rastegari) (5.6M) pretrained on ImageNet-1K using supervised learning 3. We
freeze first four MobileNetv2 blokcs and one MobileViT block for extracting universal features and
keep the remaining blocks i.e., one MobileNetv2 block and two MobileViT blocks along with head
plastic which consists of total 5.4M parameters. We apply LoRA (rank=48) to query, key and value
projection matrices in the self-attention module of MobileViT transformer blocks. All methods use
AdamW optimizer with weight decay of 0.01. Vanilla and RSGM use initial LR of 3 ⇥ 10�3 and
4 ⇥ 10�3 respectively. Initial LR for offline model is 10�2. Places365-LT data is learned over 5
rehearsal cycles (73 classes per cycle) where each cycle includes 1200 iterations with 32 samples
per iteration. Offline model is trained for 25K iterations with 64 samples per iteration. All other
settings follow above mentioned settings for main experiments.

Balanced (Non-LT) Dataset. For experiments with balanced dataset in Appendix E.6, RSGM and
vanilla use initial LR of 1.5 ⇥ 10�3 and 10�3 respectively. Each continual learner pretrained on
ImageNet-1K learns Places365-Standard in 5 batches subsequently (73 categories per batch). Each
rehearsal cycle contains total 1200 iterations with 256 samples per iteration. At the end of CL,
total number of samples seen by a network is 50% of entire dataset (ImageNet and Places-Standard
combined). We assess performance during rehearsal every 100 minibatches to measure the stability
gap, plasticity gap, and continual knowledge gap. The offline model uses initial LR of 10�2 and
12K iterations with 256 samples per iteration.

Memory Constrained Learning from Scratch. In Appendix F, both RSGM and vanilla use
AdamW optimizer with initial LR of 0.005 and weight decay of 0.05 for batch size 64. We re-
duce LR for old class units in output layer by a factor of 0.9. We create Femto version of ConvNeXt
V1 following ConvNext V2 Femto configuration and modify stem layer with 3⇥3 kernels and stride
1 for 32 ⇥ 32 image resolution of CIFAR-10. Following ConvNeXt V1 (Liu et al., 2022), we use
cosine scheduler for LR decay and weight decay. For learning from scratch, we do not use any pre-
trained weights or backbone. Each model learns CIFAR-10 in 5 incremental batches with 2 classes
per batch. We use 50 epochs for each batch and 10 linear warmup epochs for the first batch only. We
assess performance during rehearsal every 5 epochs to measure the stability gap, plasticity gap, and

2The pre-trained weights are available here: https://github.com/facebookresearch/
ConvNeXt

3The pre-trained weights are available here: https://github.com/apple/ml-cvnets

14



Under review as a conference paper at ICLR 2024

Table 4: IID Continual Learning. Results after learning ImageNet-1K followed by Places365-LT
over 5 batches with 12500 samples per batch. Here µ and ↵ denote average accuracy and final
accuracy respectively. #P denotes trainable parameters in Millions. Reported value is the average
of 5 runs with standard deviation (SD) placed in parentheses as (±SD).

Method #P (#) S�(#) P�(#) CK�(#) µ(") ↵(")
Offline 5.08 — — — — 70.69
Vanilla 5.08 0.014 0.173 0.034 68.45 68.77

(±0.0004) (±0.0056) (±0.0005) (±0.0470) (±0.0517)
RSGM 1.45 �0.004 0.131 0.003 70.81 71.23

(±0.0005) (±0.0017) (±0.0004) (±0.0151) (±0.0664)

continual knowledge gap. The offline model is trained on entire CIFAR-10 dataset for 100 epochs
with 20 linear warmup epochs. It uses same settings as used by CL models.

Memory Constrained Online CL. In Appendix G, we use identical settings and hyperparameters
for both REMIND and REMIND + RSGM methods. We use ImageNet-1K pre-trained ConvNeXt
V2 Femto with similar network configurations and LoRA configurations as used in main experi-
ments. We use AdamW optimizer and REMIND’s default per-class learning rate scheduler. We
set initial LR to 1 ⇥ 10�3, final LR to 1 ⇥ 10�5, and weight decay to 0.05. Following REMIND,
we perform rehearsal with a mini-batch of 51 samples including 50 old samples and 1 new sample.
Each method learns CUB-200 dataset in sample-by-sample manner. For all methods, memory buffer
is bounded by maximum number of samples (75%� 93% ImageNet).

Regularization Methods. In Appendix H, LwF has similar configurations as vanilla except initial
LR (6 ⇥ 10�5). LwF + SGM has similar configurations as RSGM except initial LR (2 ⇥ 10�4).
During each iteration model is updated on 64 new samples without any rehearsal of old samples.

All other settings adhere to above mentioned general settings for main experiments unless otherwise
mentioned. Hyperparameters are tuned to maximize performance for each method. We run all
experiments on same hardware with a single GPU (NVIDIA RTX A5000).

D IID CONTINUAL LEARNING

To understand if RSGM would be useful for other CL data distributions, we examine its behavior in
an IID ordering where each of the 5 CL batch contains randomly sampled classes from Places365-
LT. During IID CL, the model sequentially learns 5 incremental batches of data from Places365-LT
where each incremental batch contains 12500 examples. Our results are summarized in Table 4.
In terms of final accuracy, RSGM achieves a final accuracy of 71.23%, outperforming vanilla re-
hearsal’s 68.77% accuracy, and surprisingly even the offline model’s 70.69% accuracy. RSGM
achieves a negative stability gap, which indicates knowledge transfer from new classes to old classes.
In contrast, we found there was a small stability gap in class-incremental learning, likely due to the
dissimilarity among subsequent batches.

E ADDITIONAL CIL ANALYSIS & EXPERIMENTS

In this section we conduct additional analysis of the CIL experiments in the main text as well as
present additional experiments.

E.1 LEARNING CURVES

In our main text, our figures are averaged across rehearsal cycles. In Fig. 4, we instead present all
of the learning curves in sequence, where we denote when the next batch containing new classes is
received.

When rehearsal begins, accuracy on ImageNet-1k for vanilla rehearsal drops dramatically and grad-
ually decreases throughout the rehearsal cycles. At the end, vanilla fails to recover the original
performance using total 3K iterations. In contrast, RSGM shows better performance throughout
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rehearsal cycles with reduced stability gap and full recovery compared to the offline model. Mod-
els are evaluated every 10 iterations. After each rehearsal cycle, RSGM outperforms vanilla and
matches or exceeds offline accuracy.

Figure 4: Stability gap in all rehearsal cycles. After pretraining on ImageNet-1K, the model learns
365 new classes from Places365-LT over five rehearsal cycles (73 new classes and 600 iterations per
rehearsal cycle). RSGM quickly recovers old performance in the beginning of CL whereas vanilla
fails to obtain full recovery. After each rehearsal cycle (vertical dotted gray line), final accuracy is
highlighted by diamond (RSGM), star (offline), and circle (vanilla).

In Fig. 5, we also illustrate model’s accuracy on new, old, and all classes in all rehearsal cycles where
RSGM achieves higher accuracy than vanilla. This indicates that RSGM consistently improves
model’s plasticity (Fig. 5a), stability (Fig. 5b), and knowledge accumulation (Fig. 5c).

(a) Accuracy on new classes (b) Accuracy on old classes (c) Accuracy on all classes

Figure 5: Stability-plasticity. After pre-training on ImageNet-1K, the model learns 365 new classes
from Places365-LT over five batches (73 new classes per batch) in class incremental setting. The
accuracy is averaged over 6 runs and shaded region indicates standard deviation.

E.2 REPEATED CIL EXPERIMENTS

The results in Table 1 are for a single ordering of the CL batches. While it was not computationally
feasible to use all CL batch orderings for every method, we repeated this experiment for 6 orderings
for RSGM and vanilla rehearsal. We also included head for comparison where we froze all layers
except the final layer and trained final layer during rehearsal. The averaged results across runs are
given in Table 5, and we find that RSGM consistently mitigates the stability gap achieving an S� of
0.001 compared to 0.019 for vanilla rehearsal. Besides that RSGM achieves outperforming scores in
every other criteria compared to vanilla. RSGM also outperforms head in all criteria. This indicates
that updating representations in earlier layers besides head using RSGM is critical for learning new
knowledge and retaining old knowledge.
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Table 5: Results averaged over 6 runs (CIL). Experimental results are based on ImageNet-1K
and Places365-LT datasets. A continual learner pre-trained on ImageNet learns Places in 5 batches
subsequently (73 categories per batch). Here µ denotes average accuracy over batches and ↵ is
final accuracy. #P denotes total number of trainable parameters in Millions. Reported value is the
average of 6 runs with standard deviation (SD) placed in parentheses as (±SD). The (") and (#)
indicate high and low values to reflect optimum performance respectively.

Method #P (#) S�(#) P�(#) CK�(#) µ(") ↵(")
Offline 5.08 — — — — 70.69
Vanilla 5.08 0.020 0.385 0.031 71.68 67.94

(±0.0017) (±0.0091) (±0.0015) (±0.1236) (±0.1721)
Head 0.53 0.021 0.473 0.032 71.28 67.68

(±0.0011) (±0.0250) (±0.0009) (±0.1410) (±0.2710)
RSGM 1.45 0.001 0.087 0.002 73.71 70.31

(±0.0012) (±0.0082) (±0.0007) (±0.0763) (±0.0682)

E.3 CLASS BALANCED UNIFORM SAMPLING FOR REHEARSAL

In our main results, we sampled randomly during rehearsal without balancing for each class. How-
ever, prior work has shown that class balanced random sampling works significantly better than
unbalanced uniform sampling for long-tailed datasets (Harun et al., 2023b). We conducted a CIL
experiment to examine this in our memory unconstrained rehearsal setup where we learn ImageNet-
1K followed by Places365-LT.

Table 6 shows that using class balanced rehearsal, RSGM improves performance in most criteria
compared to previous results without class balance (Table 1). When both vanilla and RSGM use
class balanced rehearsal, RSGM outperforms vanilla by 7.3⇥ in stability gap, 3.6⇥ in plasticity gap
and provides continual knowledge transfer (CK� < 0).

Table 6: Class Balanced Rehearsal. Experimental results are based on ImageNet-1K and
Places365-LT datasets. A continual learner pre-trained on ImageNet learns Places in 5 batches
subsequently (73 categories per batch). Here µ denotes average accuracy over batches and ↵ is final
accuracy. #P denotes total number of trainable parameters in Millions. The (") and (#) indicate
high and low values to reflect optimum performance respectively.

Method #P (#) S�(#) P�(#) CK�(#) µ(") ↵(")
Offline 5.08 — — — — 70.69
Vanilla 5.08 0.022 0.316 0.021 72.24 69.03
RSGM 1.45 0.003 0.089 �0.003 74.00 70.61

E.4 ANALYSIS WITH A NON-SELF-SUPERVISED BACKBONE CNN

Much of deep learning has moved toward self-supervised pretraining prior to supervised fine-tuning,
especially in foundation models (Devlin et al., 2018; Brown et al., 2020; Ramesh et al., 2021), since
this has been shown to reduce overfitting on the pretext dataset used for self-supervised learning and
to generalize better to downstream tasks. In the main text, we used the self-supervised ConvNextV2
architecture. This may have enabled our system to achieve higher results on Places365-LT than if
the CNN was initialized from ImageNet-1K with supervised learning. To determine if our general
trends for the methods hold, we conducted another experiment with ConvNeXt V1 Tiny (29M),
which is pre-trained on ImageNet-1K without self-supervision.

Experimental results in Table 7 demonstrate that RSGM with supervised backbone mitigates stability
gap and enhances performance in all criteria. Therefore efficacy of RSGM does not depend upon
self-supervised pre-training.
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Table 7: CIL without Self-Supervised Pre-Training. This table shows results from ConvNeXt V1-
Tiny pre-trained on ImageNet-1K using supervised learning, which then learns Places365-LT in 5
batches subsequently (73 categories per batch) in class-incremental setting. Here µ denotes average
accuracy over batches and ↵ is final accuracy. #P denotes total trainable parameters in Millions.
The (") and (#) indicate high and low values to reflect optimum performance respectively.

Method #P (#) S�(#) P�(#) CK�(#) µ(") ↵(")
Offline 27.00 — — — — 74.16
Vanilla 27.00 0.030 0.396 0.035 74.73 70.67
RSGM 3.53 0.005 0.102 0.001 77.48 73.92

E.5 ANALYSIS WITH USING A VISION TRANSFORMER BACKBONE

In this section we study the behavior of the system for a ViT model pretrained with supervised
learning. For this, we select a light-weight transformer, MobileViT small (Mehta & Rastegari).
MobileViT learns local and global representations using convolutions and transformers, respectively.
It has total 5.6 million parameters and top-1 accuracy of 78.4% on ImageNet-1K.

Table 8 shows the comparison between vanilla and RSGM when they have same MobileViT back-
bone. RSGM shows better performance in all criteria using 3.8⇥ fewer parameters than vanilla.

Table 8: Vision Transformer Backbone. Experimental results are based on ImageNet-1K and
Places365-LT datasets. A continual learner pre-trained on ImageNet learns Places in 5 batches
subsequently (73 categories per batch). Here µ denotes average accuracy over batches and ↵ is final
accuracy. #P denotes total number of trainable parameters in Millions. The (") and (#) indicate
high and low values to reflect optimum performance respectively.

Method #P (#) S�(#) P�(#) CK�(#) µ(") ↵(")
Offline 4.97 — — — — 69.10
Vanilla 4.97 0.039 0.434 0.046 70.18 66.35
RSGM 1.30 0.016 0.140 0.016 72.09 67.96

E.6 BALANCED (NON-LT) DATASET

In real-world setting, data distribution is commonly long-tailed and imbalanced, hence we used
Places365-LT dataset in the main results. However, our analysis holds for balanced and non-LT
dataset as well. We study this using Places365-Standard. Results in Table 9 show that RSGM
outperforms vanilla rehearsal in all criteria.

Table 9: Non-LT Dataset. Experimental results are based on ImageNet-1K and Places365-Standard
datasets. A continual learner pre-trained on ImageNet learns Places in 5 batches subsequently (73
categories per batch). Here µ denotes average accuracy over batches and ↵ is final accuracy. #P
denotes total number of trainable parameters in Millions. The (") and (#) indicate high and low
values to reflect optimum performance respectively.

Method #P (#) S�(#) P�(#) CK�(#) µ(") ↵(")
Offline 5.08 — — — — 65.37
Vanilla 5.08 0.078 0.201 0.082 66.37 56.63
RSGM 1.45 0.054 0.091 0.047 68.47 59.21

F MEMORY CONSTRAINED LEARNING FROM SCRATCH

In the main text, we define our problem setting with a base initialization phase where a model
acquires base knowledge using a pre-train dataset. Here we also test another problem setting without
the base initialization phase where a model learns from scratch. We study stability gap and efficacy
of RSGM when a model is trained from scratch on CIFAR-10 dataset in 5 rehearsal cycles (2 classes
per rehearsal cycle). Since the model is trained on small number of training data, it learns less
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transferable representations. Therefore, instead of using LoRA and freezing old class units in output
layer, we train all layers and update old class units with lower learning rate. Whereas we use dynamic
soft targets and data-driven weight initialization as used in our main experiments. We summarize
our findings in Table 10 where RSGM achieves higher scores than vanilla rehearsal in all metrics.
RSGM outperforms vanilla rehearsal by 3.43% (50K samples in buffer) and 3.45% (5K samples in
buffer) in final accuracy.

Table 10: Learning from scratch. A model learns CIFAR-10 from scratch in 5 incremental batches
(2 classes per batch). Memory buffer is bounded by max number of samples. Here µ, ↵, and #P
denote average accuracy over batches, final accuracy, and parameters (Millions) respectively.

Method Buffer #P (#) S�(#) P�(#) CK�(#) µ(") ↵(")
Vanilla 50K 4.83 0.217 0.047 0.166 77.60 66.91
RSGM 50K 4.83 0.192 0.046 0.147 78.64 70.34
Vanilla 5K 4.83 0.445 0.061 0.331 70.33 53.63
RSGM 5K 4.83 0.422 0.058 0.318 71.06 57.08

G MEMORY CONSTRAINED ONLINE CONTINUAL LEARNING

In the main text, we study stability gap in incremental batch learning setting. Here we study sta-
bility gap in online continual learning setting using a state-of-the-art online learning method, RE-
MIND (Hayes et al., 2020). We conduct memory constrained CL experiments with CIL data order-
ing, where we combine RSGM with REMIND while using identical configurations. We summarize
the results in Table 11. We observe that RSGM combined with REMIND (REMIND + RSGM)
outperforms REMIND (without RSGM) by large margins in all metrics and shows effectiveness in
online learning setting. We also observe that RSGM maintains similar effectiveness across various
memory constraints.

Table 11: Online Continual Learning. A model pre-trained on ImageNet-1K learns CUB-200
sample-by-sample with a replay mini-batch of 51 samples (50 old + 1 new). Here µ, ↵, and #P
denote average accuracy over batches, final accuracy, and parameters (Millions) respectively.

Method Buffer #P (#) S�(#) P�(#) CK�(#) µ(") ↵(")
Offline model — 5.08 — — — — 75.99
REMIND 80994 5.08 0.146 0.837 0.162 64.15 62.35
REMIND + RSGM 80994 1.45 0.034 0.675 0.049 72.81 69.67
REMIND 44394 5.08 0.156 0.834 0.172 63.37 60.94
REMIND + RSGM 44394 1.45 0.034 0.661 0.049 72.80 69.63
REMIND 24594 5.08 0.173 0.834 0.189 62.10 59.06
REMIND + RSGM 24594 1.45 0.036 0.672 0.051 72.69 69.55

H USING OUR STABILITY GAP MITIGATION METHOD WITH
REGULARIZATION METHODS

In the main text, we restrict our analysis to rehearsal methods. We hypothesized that our combined
mitigation strategy would be helpful for non-rehearsal methods as well. We therefore study stability
gap mitigation (SGM), which combines soft targets, weight initialization, OOCF, and LoRA, without
rehearsal using Learning without Forgetting (LwF) (Li & Hoiem, 2017), which pioneered using
knowledge distillation in CL (Zhou et al., 2023). Instead of rehearsal, LwF stores a copy of the
model before learning the new CL batch to update the model with distillation. LwF has been shown
to reduce catastrophic forgetting in a range of CL scenarios, although it and other regularization-
based methods have not been shown to be effective in the CIL setting (Zhou et al., 2023).

We conducted an experiment to compare vanilla LwF with a version of LwF that uses SGM without
rehearsal during CIL of ImageNet and Places365-LT. Overall results are given in Table 12 and a
learning curve is given in Fig. 6. As expected based on prior results, rehearsal methods vastly
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Figure 6: Comparison with regularization method. Y axis shows average accuracy of 6 runs with
standard deviation (shaded region). The network is trained on ImageNet-1K and then learns 365
new classes from Places-LT over five batches (73 new classes and 600 iterations per batch). When
new batch arrives, accuracy on ImageNet-1k for LwF plummets. LwF fails to recover performance
and ends up with large stability gap. In contrast, LwF with SGM does not plummet like LwF and
shows better performance throughout CL phase with significantly reduced stability gap.

outperform LwF; however, we find that SGM provides an enormous benefit to LwF in terms of
reducing the stability gap, resulting in increased accuracy.

Table 12: Comparison with regularizaton method. A continual learner pre-trained on ImageNet-
1K learns Places365-LT in 5 batches subsequently (73 categories per batch) in CIL setting. Results
are averaged over 6 runs. Here µ denotes average accuracy over batches and ↵ is final accuracy. #P
denotes total trainable parameters in Millions. The (") and (#) indicate high and low values to re-
flect optimum performance respectively. For regularization baseline, we select LwF that regularizes
model based on knowledge distillation.

Method #P (#) S�(#) P�(#) CK�(#) µ(") ↵(")
Offline 5.08 — — — — 70.69
Vanilla Rehearsal 5.08 0.019 0.384 0.030 71.71 68.01
RSGM 1.45 0.001 0.087 0.002 73.71 70.31
LwF 5.08 0.605 0.450 0.607 24.04 4.76
LwF + SGM 1.45 0.236 0.072 0.235 54.87 40.00

I MEMORY CONSTRAINED EXPERIMENTS WITH LT DATASET

Since, memory constraint was relaxed in the main results for LT dataset (Places365-LT), here we
study the stability gap under memory constraints when learning ImageNet-1K followed by CL of
Places365-LT. In memory restricted CL for both class-incremental and IID settings, the learner can
store and access only 7.5% of entire dataset (ImageNet and Places combined). Now learner has
access to 100K samples (old and current data combined) compared to unconstrained setup where
learner had access to 1.34M samples.

Following the common practice of storing 120K instances for ImageNet-1K with rehearsal (Rebuffi
et al., 2017), we set memory upper bound to 100K instances where 38K instances are randomly
sampled from the ImageNet-1K dataset and stored in the memory buffer and remaining 62K are
incrementally added to the buffer as Places365-LT is learned continually.

Our results for memory constrained rehearsal for CIL are summarized in Table 13. And the results
for memory constrained rehearsal in the IID setting are summarized in Table 14. Our observations
and conclusions about RSGM and vanilla rehearsal made in unconstrained CL still hold for con-
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Table 13: Memory constrained CL (CIL). A continual learner pre-trained on ImageNet-1K learns
Places365-LT in 5 batches subsequently (73 categories per batch). Here µ denotes average accuracy
over batches and ↵ is final accuracy. #P denotes total trainable parameters in Millions. The (")
and (#) indicate high and low values to reflect optimum performance respectively. First two rows
are memory unconstrained methods for comparison. Memory is constrained in terms of maximum
number of instances (2nd column) a model can store in the buffer.

Method Max instances #P (#) S�(#) P�(#) CK�(#) µ(") ↵(")
Offline 1343667 5.08 — — — — 70.69
Vanilla 1343667 5.08 0.028 0.393 0.033 71.52 67.67
RSGM 1343667 1.45 0.006 0.082 0.002 73.70 70.30
Vanilla 100900 5.08 0.040 0.388 0.044 70.62 65.99
RSGM 100900 1.45 0.006 0.081 0.002 73.67 70.23

Table 14: Memory constrained CL (IID). A continual learner pre-trained on ImageNet-1K learns
Places365-LT in 5 batches subsequently (12500 samples per batch). Here µ denotes average accu-
racy over batches and ↵ is final accuracy. #P denotes total trainable parameters in Millions. The
(") and (#) indicate high and low values to reflect optimum performance respectively. First two rows
are memory unconstrained methods for comparison. Memory is constrained in terms of maximum
number of instances (2nd column) a model can store in the buffer.

Method Max instances #P (#) S�(#) P�(#) CK�(#) µ(") ↵(")
Offline 1343667 5.08 — — — — 70.69
Vanilla 1343667 5.08 0.014 0.177 0.033 68.45 68.68
RSGM 1343667 1.45 �0.004 0.129 0.003 70.80 71.14
Vanilla 100900 5.08 0.027 0.173 0.045 67.50 66.90
RSGM 100900 1.45 �0.004 0.128 0.003 70.81 71.07

strained CL. In constrained setup, overall accuracy drops and the stability gap worsens for vanilla
rehearsal, whereas RSGM is largely unaffected.
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