
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A DIFFUSION-BASED GENERATIVE APPROACH FOR
MODEL-FREE FINITE-TIME CONTROL OF COMPLEX
SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Complex systems with nonlinear dynamics pose significant challenges for finite-
time optimal control, especially when accurate system models are unavailable.
This paper introduces DIFOCON (DIffusion Finite-time Optimal CONtrol), a
novel data-driven framework for finite-time optimal control that operates with-
out prior knowledge of system parameters or dynamics. DIFOCON reformu-
lates the control problem as a generative task, optimizing control signal trajec-
tories to guide systems to target states within a finite time. Our approach uti-
lizes a diffusion model with a dual-Unet architecture to capture nonlinear system
dynamics and generate entire control sequences in a single step. Additionally,
an inverse dynamics module is integrated to ensure that the generated control
signals are appropriate for complex systems. To further enhance performance,
we propose a retraining strategy that improves out-of-distribution generalization.
Experiments on two nonlinear complex systems demonstrate DIFOCON’s supe-
rior performance, reducing target loss by over 26.9% and control energy by over
15.8% compared to baselines while achieving up to 4 times faster convergence
in practical steering tasks. The implementation of this work can be found at
https://anonymous.4open.science/r/DIFOCON-C019/.

1 INTRODUCTION

Complex systems are composed of interacting components that exhibit emergent behaviors and non-
linear dynamics (Ladyman et al., 2013). Control problems are fundamental in both natural and
engineering systems, where the goal is to direct system behavior toward desired outcomes by de-
termining appropriate inputs. Finite-time control, which requires systems to reach objectives within
a limited time, is particularly critical but challenging, especially when accurate system models are
unavailable.

Existing control methodologies predominantly rely on precise system models to achieve desired out-
comes (Yan et al., 2012; Lindmark & Altafini, 2018; Liu et al., 2011; Gao et al., 2014). However,
in real-world applications, obtaining accurate system equations and parameters is often impractical,
especially for complex systems with nonlinear dynamics. While a few efforts toward model-free
approaches have been made, significant challenges remain. Feedback-based control methods, such
as PID and reinforcement learning (Li et al., 2006; Hwang et al., 2022; Pomerleau, 1988; Haarnoja
et al., 2018), rely on continuous cycles of sensing, processing, and decision-making, which makes
them computationally intensive and often unsuitable for high-dimensional, finite-time control prob-
lems. Baggio et al. (2021) developed an optimal control solution for linear systems by implicitly
estimating system equations and parameters from empirical data, but their approach struggles when
applied to nonlinear systems.

In this paper, we propose a novel framework for finite-time optimal control, DIffusion Finite-time
Optimal CONtrol (DIFOCON), which operates solely based on data, without requiring prior knowl-
edge of system parameters or dynamics. By reframing the control problem as a generative task, our
approach seeks to optimize the trajectory of control signals that guide the system to its target state
within a finite time. Through data-driven generative modeling, DIFOCON learns the distribution
of control signals and observed states, generating complete control sequences in a single step, thus
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eliminating the need for continuous feedback-based interaction with the system. This makes our
approach highly efficient and well-suited for high-dimensional, nonlinear systems.

The core of DIFOCON is built on a diffusion model (Ho et al., 2020) that progressively refines noisy
inputs into high-quality control sequences conditioned on desired system outcomes. To capture non-
linear dynamics, we introduce a dual-Unet architecture with residual connections in the denoising
network, which accounts for both first-order and higher-order expansions, based on optimal con-
trol theory initially developed for linear systems. To ensure the generated signals are well-suited
for complex systems with unknown dynamics, we integrate an inverse dynamics module, which
computes control signals from denoised states, rather than directly sampling both control signals
and intermediate states using the denoising network. Additionally, to enhance the model’s abil-
ity to generate out-of-distribution data from the training data, we propose a retraining method that
fine-tunes the model on its own generated samples, thereby expanding the exploration space and
improving generalization.

Our experiments on two typical nonlinear complex systems (Acebrón et al., 2005; Susuki et al.,
2011) demonstrate DIFOCON’s superior performance in solving finite-time optimal control prob-
lems. Specifically, we show that DIFOCON achieves the best in-distribution performance, reducing
target loss by over 26.9% and control energy by 15.8% compared to the best-performing baseline
when applied to systems governed by first-order and second-order ordinary differential equations.
Moreover, our method exhibits, at most, around 4 times faster convergence in practical steering tasks
compared to existing model-free approaches. These results validate the efficacy of our diffusion-
based generative model in addressing the challenges of finite-time control in complex, real-world
systems.

2 RELATED WORKS

2.1 MODEL-FREE CONTROL OF COMPLEX SYSTEMS

Model-free control approaches circumvent the need for an exact model by leveraging control data
to capture the system’s dynamics implicitly. These methods can be categorized into closed-loop and
finite-time control strategies.

Closed-loop control methods. Classical closed-loop control methods like Proportional-Integral-
Derivative (PID) (Li et al., 2006) are famous for their steadiness and efficiency but face challenges
in adaptability in high-dimensional complex scenarios. In the realm of deep learning, reinforcement
learning (Pomerleau, 1988; Haarnoja et al., 2018) has recently demonstrated its effectiveness in se-
quential decision making, and supervised learning methods (Hwang et al., 2022) show their adapt-
ability by using neural surrogate models to learn control sequences. However, the above closed-loop
control methods are predominantly employed for stabilization or tracking tasks, yet they fall short
when applied to real-world scenarios where control operations are subject to time constraints.

Finite-time control methods. Finite time control methods (Baggio et al., 2021; Wei et al., 2024),
on the other hand, optimize the control sequence over the entire horizon, thus addressing the myopic
nature of closed-loop approaches and are suitable for tasks that require control of system states
within a finite time. Notably, Baggio et al. (2021) proposed an analytical method that leverages data
to determine the optimal input for steady-state control of complex networks, without knowing the
dynamics. However, its foundation in linear systems theory restricts its generalization to nonlinear
dynamics, impeding its ability to accurately steer the system toward the desired state.

2.2 DIFFUSION MODEL

Denoising diffusion probabilistic models (Ho et al., 2020) have gathered significant attention for
their ability to generate high-quality and consistent samples across various domains such as im-
age, audio, and video, achieving state-of-the-art (SOTA) results (Dhariwal & Nichol, 2021; Kong
et al., 2020; Ho et al., 2022). These models have also demonstrated their capability in traditional
mathematical and engineering problems, including optimization (Krishnamoorthy et al., 2023; Sun
& Yang, 2023), inverse problems (Chung et al., 2022), robotic control (Janner et al., 2022; Ajay
et al., 2022), etc. Wei et al. (2024) introduced DiffPhyCon, a finite time control method that har-
nesses generative diffusion models to directly optimize system trajectories and control sequences
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over the entire horizon. This approach implicitly captures the inherent constraints within the system
dynamics and employs reweighting techniques during the sampling process to guide the generation
of optimal trajectories that deviate from the distribution. However, by implicitly capturing dynam-
ics across the entire trajectory, this method overlooks the Markovian nature of time-invariant sys-
tems, and the control sequences are often non-smooth, making it challenging for diffusion models
to model their distribution accurately. Our proposed method employs a parameterized inverse dy-
namics model to explicitly model the relationship between actions and states, allowing the generated
control sequences to more accurately guide the evolution of system states.

3 BACKGROUND

3.1 PROBLEM FORMULATION OF MODEL-FREE FINITE TIME OPTIMAL CONTROL

The dynamics of a controlled system can be written as ẏt = D(yt,ut), where yt ∈ RN is the
observed system state and ut ∈ RM is the control function. Assuming that the system is controllable
in a finite time T , that is, the system state can be controlled to a desired state yf starting from y0.
In most cases, there is also a need to optimize the cost of energy from the control input, i.e., J(u) =∫ T

0
|u(t′)|2dt′. The formulation of Model-free (data-driven) Optimal control is as follows: when

the non-optimal control trajectory dataset D = {u(i),y(i)}, i ∈ {1, 2, . . . , P} (P is the number of
data) is collected from observation of the system, the goal is to find the control signal that minimizes
the cost function and the final distance to target state:

u∗ = argmin
u

(J(u) + L(y(T ),yf )) subject to Ψ(u,y) = 0 (1)

where L(yT ,yf ) denote the distance between the target and final state, and Ψ(u,y) = 0 is the
system dynamic constraint that explicitly provides the starting state y0 and is implicitly specified by
the dataset D. The complex dynamics of systems pose a great challenge for solving the problem in
this setting.

3.2 DIFFUSION MODELS

Diffusion models have emerged as a powerful class of generative models in recent years, demonstrat-
ing remarkable capabilities in image synthesis, audio generation, and other domains (Ho et al., 2020;
Dhariwal & Nichol, 2021). These models are based on the principle of gradually adding noise to
data and then learning to reverse this process. In the forward process, a data point x0 is progressively
corrupted through T timesteps, resulting in a sequence of increasingly noisy versions x1, x2, ..., xK .
Each step applies a small amount of Gaussian noise:q(xk|xk−1) = N (xk;

√
1− βkxk−1, βkI),

where βk is a variance schedule that controls the noise level. In the reverse process, the model learns
to gradually denoise the data, starting from pure noise xK and working backward to reconstruct the
original data point x0. This is modeled as:pθ(xk−1|xk) = N (xk−1;µθ(x

k, k),Σθ(x
k, k)), where

θ represents the learnable parameters of the model. The training objective for diffusion models
typically involves minimizing the variational lower bound (VLB) on the negative log-likelihood
(Sohl-Dickstein et al., 2015). In practice, this often reduces to a form of denoising score matching
(Song & Ermon, 2019).

3.3 CLASSIFIER-FREE GUIDANCE

Classifier-free guidance is a technique introduced by Ho & Salimans (2022) to enhance the sam-
ple quality and controllability of diffusion models without requiring a separate classifier. During
training, randomly set the conditioning y to a null token (e.g., empty string or zero vector) with
probability p. This allows the model to learn both conditional and unconditional generation. The
model is trained using a weighted combination of conditional and unconditional losses:

L = Ex0,ϵ,k,y

[
(1− p)∥ϵ− ϵθ(x

k, t, y)∥2 + p∥ϵ− ϵθ(x
k, k, ∅)∥2

]
(2)
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Figure 1: Illustration of the proposed conditional diffusion model-based controller.

where ϵ is the noise added to the clean data x0 to obtain xk, and ∥ · ∥ denotes the L2 norm. At
inference time, it introduces a guidance scale w and sample using:

ϵ̃θ(x
k, k, y) = (1 + w)ϵθ(x

k, k, y)− wϵθ(x
k, k, ∅) (3)

where ϵ̃θ is the guided noise prediction. This formulation allows for controlled generation without
needing a separate classifier, offering a more streamlined and efficient method for guided synthesis.
The guidance scale w controls the trade-off between sample quality and adherence to the condi-
tioning information. Higher values of w typically result in samples that more closely match the
conditioning but may sacrifice some diversity or realism.

4 METHOD

4.1 CONTROLLING USING CONDITIONAL DIFFUSION MODEL

We formulate the control problem as a conditional generative modeling task. Providing control data
τ := [u,y], which is composed of control sequences u ∈ RT×M and corresponding observation
states y ∈ RT×N of the system, the objective of finding optimal control can be formulated as con-
ditional generative modeling where we obtain a distribution pθ to generate high-likelihood control
given target and optimization goal:

max
θ

Eτ=[u,y]∼data log pθ(τ |J,y0,yT ) (4)

where the dynamics constraint Ψ(u,y) = 0 is implicitly learned from the data.

We construct the aforementioned generative model pθ using a conditional diffusion process:

q(τ k|τ k−1), pθ(τ
k−1|τ k, [J,y0,yT ]) (5)

Conditional Optimization Using Classifier-Free Guidance: During training, we input condition-
ing values indicating the optimization goal J , enabling the model to discern the quality of trajectories
while learning control trajectory dynamics constraints. For each training trajectory, we calculate and
normalize a label r(τ ) ∈ [0, 1] proportional to the optimization objective J . To generate optimal
trajectories that deviate from the random training dataset, we input the label r(τ ) = 0 into the con-
ditional generative model and employ classifier-free guidance with weighted sampling, sacrificing
diversity for optimality.

4
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Targeting Using Inpainting: Given the initial state and desired target state in our problem, mod-
eling whether the generated trajectory accurately reaches the endpoint within the aforementioned
optimization objective and including it in the condition label is approachable. However, for such
explicit and discrete targets, we adopt a more direct method: we not only input it as an additional
condition to the diffusion denoising network but also treat it as an inpainting problem similar to im-
age generation, utilizing repaint techniques to ensure generation quality (Lugmayr et al., 2022). The
repaint technique improves the consistency of generated content through a resampling denoising
strategy.

4.2 DENOISING NETWORK DESIGN AND INVERSE DYNAMICS

Denoising Network Design: We parameterize the denoiser using a dual-Unet framework consisting
of two consecutive 1-D U-nets. 1-D Unet is a combination of multiple 1-D convolutional layers. The
dimension of τ (M +N ) corresponds to the channel dimension of the CNN. The U-Net effectively
captures the relationship between control signals and system observation states along physical time
dimention, thus better modeling the complete trajectory distribution (Janner et al., 2022). Condition
labels r and diffusion time steps k are encoded through MLPs as remb and kemb, respectively, and
concatenated as input to the U-Net. For initial and target states y0 and yf condition, we found they
significantly decide the optimal trajectory/control signal distribution. Therefore, we use them to
explicitly adapt the network’s output at positions close to the output.

Yan et al. (2012) suggests that for linear systems, the optimal control signal has a linear relationship
with yc = yf − Ay0 (a linear combination of initial and target states, A is related to the network’s
parameter). We consider this linear operation in our model as the first-order expansion of optimal
control with respect to yc for nonlinear systems, with coefficients learned through the first U-Net.
Correspondingly, we attempt to add another Unet to learn the coefficients of higher-order (second-
order) expansions at the back end, fine-tuning the first-order results through residual connections.
We first learn yc by inputting y0 and yf through a single linear layer without bias. The network
formula is expressed as follows:

C1 = Unet1(τ k, [kemb, remb]), RB×T×C1 ,RB×C2 → RB×T×(C1×N), (6)

O1 = reshape(C1) · yc, RB×T×(C1×N),RB×N → RB×T×C1 , (7)

C2 = Unet2([τ k,C1], [kemb, remb]), RB×T×2C1 ,RB×C2 → RB×T×(N×C1×N), (8)

O2 = yT
c · reshape(C2) · yc, RB×N ,RB×T×(N×C1×N),RB×N → RB×T×C1 , (9)

τ̂ 0 = O1 +O2, (10)

where B is the batch size, T is the state sequence length, C1 and C2 are feature dimensions, and
N is the learned yc’s dimension. We illustrate the structural framework of the denoising network in
Figure 1 and discuss its role in the experiments.

Inverse Dynamics: The diffusion model is used to capture the deep connections behind states, con-
trols, and constraints, considering both the relationship between control and state and learning the
dynamics behind state evolution. However, in real-world scenarios, most control and observed state
associations are relatively simple. For common time-invariant systems, control linearly intervenes in
state evolution, and only the current time-adjacent state and current action are relevant. However, the
complex diffusion model with a global perspective may overfit this relationship, complicating sim-
ple associations and ultimately making state prediction difficult to generalize. Additionally, actions
are less smooth than states, making their distribution more challenging to model. Therefore, inspired
by Agrawal et al. (2016); Ajay et al. (2022), rather than directly sampling both control signals and in-
termediate states using the denoising network, we update the prediction of control (action) sequence
by inputting the generated state trajectory to an inverse dynamic model fϕ: u0

t,update = fϕ(y
0
t ,y

0
t+1).

We use an Autoregressive MLP as the model and optimize it simultaneously with the denoiser via
training data. Our final optimization loss function is:

L(θ, ϕ) := Ek,τ∈data,β∼Bern(p)[||τ − τθ(τ
k, (1− β)r(τ ) + β∅, k,y0,yf )||2] (11)

+ E(yt,ut,yt+1)∈data[||ut − fϕ(yt,yt+1)||2] (12)

where Bern(p) is a binary distribution used for unconditional training.

5
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4.3 RETRAINING

Randomly generated training data cannot guarantee coverage of optimal scenarios. To generate
near-optimal controls that may deviate significantly from the training distribution, we need to guide
the model in generating out-of-distribution data. On one hand, classifier-free guidance can make the
generated distribution deviate from the original distribution. Therefore, we can use the data initially
generated by the model, which has already deviated from the training distribution and tends towards
the optimal distribution, to retrain the model and expand its exploration space. This approach is
predicated on ensuring the quality of generated data, at least guaranteeing that the samples generated
by the model conform to the underlying dynamics.

Consequently, we extract the control sequence part from the generated samples (i.e., the output of
inverse dynamics u0

update) and reintroduce it into the system to interact and generate corresponding
observation sequences y0

update. Together we add the renewed τ̃ 0 = [u0
update,y

0
update] to the retrain data

pool used for fine-tuning. Note that we still do not need to obtain system parameters here. We also
discuss the effect of this method in our experiments.

5 EXPERIMENTS

Our experimental design aims to address three key research questions: (1) Can DiffCon demonstrate
superiority over current finite-time optimal control methods for complex systems control? (2) Can
DiffCon be generalized to practical cases where the task could be more challenging and out-of-
distribution of training data? (3) Do the proposed designs help DiffCon achieve better performance?

5.1 DATASETS

For our experiments, we prepared two complex system datasets. The data in both sets were collected
by randomly initializing the system states and injecting control sequences to observe the resulting
system behavior. Our main experiments were conducted in two representative scenarios: a ring
system governed by the Kuramoto dynamics model (Acebrón et al., 2005), described by first-order
ordinary differential equations, and the New England power-grid network system, governed by the
Swing dynamics model, described by second-order ordinary differential equations (Susuki et al.,
2011).

The Kuramoto model, as an abstract and classical model, is widely applied to various synchroniza-
tion phenomena, such as biological rhythms and brain networks (Tang et al., 2014). It is known
for its ability to capture the essence of synchronization in coupled oscillators, making it suitable for
studying emergent collective behavior. The Swing model, on the other hand, is a fundamental rep-
resentation of power system dynamics, crucial for understanding stability and control in electrical
grids. It incorporates more physical constraints and interactions typical in power systems, including
inertia and damping effects (Susuki et al., 2011). These two models exhibit different characteristics
in terms of complexity and nonlinearity. The Kuramoto model offers insights into abstract synchro-
nization problems, while the Swing model provides a more concrete, application-oriented scenario.
Both models present a balance of challenge and representativeness, making them ideal for our study.

We collected data by randomly generating initial states and control signals from Gaussian distri-
butions. The resulting dataset was then partitioned into training and test sets for the experiments
presented in Table 2, thus evaluating the in-distribution performance of each method. Note that
these data points are not necessarily optimal. For a detailed description of the experimental setup,
please refer to the appendix.

5.2 BASELINE METHODS

We compared our approach with two state-of-the-art model-free finite-time optimal control methods.
The first is proposed by Baggio et al. (2021), an analytical approach that leverages data to determine
the optimal input for steady-state control of complex networks, without requiring knowledge of the
underlying dynamics. The second is DiffPhyCon, introduced by Wei et al. (2024), which harnesses
generative diffusion models to directly optimize system trajectories and control sequences over the
entire horizon.

6
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Figure 2: 8-point ring
network

Dataset Kuramoto Swing

Target Loss Energy Target Loss Energy

DiffPhyCon 1.79E-02 1.108 0.110 0.167
Baggio et al. (2021) 1.56E-05 1.016 0.034 0.095
Ours 1.14E-05 0.737 0.006 0.080

Table 1: Performance comparison on the case study of the Kuramoto
dynamics. m1 and m2 denote the winding number of the starting and
ending states, respectively. Here we investigate two different cases.

Case (m1,m2)=(4,2) (m1,m2)=(2,0)

Target Loss Stable Time Target Loss Stable Time

DiffPhyCon 8.55 – 3.39 –
Baggio et al. (2021) 1.25 870 1.10 830
Ours 0.0872 210 0.0244 509

Table 2: Comparison of Target Loss and Energy across different
datasets and models

These model-free baselines
not only represent the cur-
rent state-of-the-art in this
problem setting but also
share a crucial characteris-
tic with our method: they
do not rely on environment
interaction during testing.
Instead, they can generate
optimal control strategies
directly given the specified
conditions. Detailed descriptions of these baseline methods can be found in the related works sec-
tion.

5.3 MAIN PERFORMANCE AND CASE STUDY

Kuramoto Dynamics. For the Kuramoto model, we consider a simple but insightful example of a
ring network of N=8 Kuramoto oscillators. The dynamic of the phases (states) of oscillators can be
expressed by:

θ̇i,t = ω + sin(θi−1,t−1 − θi,t−1) + sin(θi+1,t−1 − θi,t−1) + ui,t−1, i = 1, 2, ..., N. (13)

The network system can to two kinds of stable equilibria, namely synchronous state θ̃i,t = ωt and
splay state θ̂m,i,t = ωt+ 2πm∗i

N + c, where c is a constant and m is an integer denoting the winding
number. Such a case is representative of the ring network structure, and the sinusoidal coupling
function is fundamental in studying synchronization phenomena across various disciplines, from
neuroscience to power systems. The presence of both synchronous and splay states demonstrates
the rich dynamical behavior of even simple Kuramoto networks.

In the main experiment presented in Table 2, we report the performance of our method and baselines
on the test set after applying the training data. We evaluate two objectives from the optimization
function in Equation 1: Target Loss L(y(T ),yf ) and Energy J(u). The results demonstrate that
our proposed method outperforms the baselines, achieving reductions of 26.9% and 27.4% in the
two metrics, respectively, compared to the second-best method. This indicates that our approach
effectively captures the control and state dynamics constraints within the data. Furthermore, our
method exhibits superior performance for nonlinear systems compared to the approach proposed by
Baggio et al. (2021), probably due to our design of the denoising network for nonlinear systems and
the introduction of inverse dynamics. DiffPhyCon appears to be the worst, showing that it faces
more challenges in modeling complex non-linearity and control distribution than our method.

We also conducted case studies of steering tasks to explore the effectiveness of steering the system
from a splay state (m = 2) to a synchronous state (m = 0), and from one splay state (m = 4) to
another (m = 2). These tasks fall outside the distribution of the training set generated by random
perturbations, allowing us to investigate the out-of-distribution generalization capabilities of various
methods. To assess whether each method accurately guides the state to the target, we evaluate not
only the Target Loss but also introduce a Stable Time metric. This metric is defined as the time
at which the norm of the state change between consecutive time steps falls below 1e-8, with the
control start time set as 0 and the control time step set to T = 16. The Kuramoto dynamics and

7
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Figure 3: Visualization of the steering performance of our method and Baggio et al. for the two
cases

ring network system ensure that when the final state can be controlled within the attraction range
of the desired equilibrium, the network will gradually achieve the required synchronization pattern.
Table 1 presents the results of our method compared to the best-performing method from Baggio
et al. (2021) in the main experiment. Figure 3 visualizes the control effects of each method. Both
the metrics and visualizations demonstrate that our method can most accurately transfer the state
within a finite time, requiring only 24% and 61% of the duration needed by the second-best method
to guide the state into a steady state for the two cases, respectively. Compared to Baggio et al.
(2021), we achieve better performance because of the superior modeling capabilities of our model
for non-linear dynamics. DiffPhyCon fails to steer the states, reflecting our method’s stronger out-of-
distribution generalization ability and practical value. These are likely attributable to our denoising
network’s ability to adapt its output to conditional inputs in real-time, and the retraining method that
helps guide the model to explore out-of-distribution solutions.

Swing Dynamics.We also tested the control performance of various methods in the context of swing
dynamics governed by second-order ordinary differential equations. The background of the system
is the New England power grid network, which comprises 29 load nodes and 10 generator nodes.
Using the first generator as a reference, the electromechanical behavior of the other 9 generators can
be modeled by the swing equations, which reveal the dynamic constraints of generator phase and
frequency. In this setup, the state is defined to include both the phase and frequency states of the 9
generators, resulting in a more complex state distribution. Our control signals are directly applied to
the right-hand side of the phase differential equation, directly influencing the change in phase state.
We provide a detailed description of the dynamics and experimental setup in the appendix.

Table 1 presents the performance of each method on the test set. Our method continues to demon-
strate superior performance, achieving reductions of 82.4% and 15.8% in the two metrics, respec-
tively, compared to the second-best method. The ranking of methods regarding energy consumption
and control accuracy remains consistent with the Kuramoto scenario. Therefore, we can draw sim-
ilar conclusions, namely that our method can better model complex relationships even when faced
with nonlinear dynamics involving higher-order time derivatives.

This consistent performance across different dynamic systems underscores the robustness and ver-
satility of our approach. The significant improvements observed in both the Kuramoto and swing
dynamics scenarios suggest that our method’s architecture, particularly the adaptive denoising net-
work and the incorporation of inverse dynamics, provides a more comprehensive framework for
capturing and controlling complex nonlinear systems.

5.4 ABLATION STUDY

To elucidate the contributions of different components in our proposed method, we conducted an
ablation study on both the Kuramoto and Swing dynamics systems. Figure 4 presents the results of
this study, comparing the Target Loss and Energy consumption for four variants of our model: our
full model(Ours), without resampling (w/o sampling), without second-order adaption mentioned
in section 4.2 (w/o 2nd order), and without both first and second-order adaption (w/o 1st&2nd
order).

The results reveal consistent patterns across both systems, with our full model achieving the lowest
Target Loss and Energy consumption. Removing the resampling component led to noticeable per-
formance degradation, particularly in the more complex Swing system, underscoring its crucial role
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Figure 4: Ablation study on both the Kuramoto and Swing dynamics systems.

in handling intricate dynamics. The absence of second-order adaption has a moderate impact on
performance, with its effect being more pronounced in the Swing system for Target Loss. Notably,
removing both first and second-order adaptions results in the most significant performance drop in
both systems, highlighting the synergistic effect of these components. The varying impacts observed
between the Kuramoto and Swing systems indicate that our method adapts differently to systems of
varying complexity. These findings emphasize the importance of each component in our method:
resampling is vital for maintaining low Target Loss and Energy consumption, and the combination
of first and second-order dynamics is essential for achieving optimal performance across different
dynamical systems.

6 CONCLUSION

In this paper, we proposed DIFOCON, a novel diffusion model-based framework for finite-time
optimal control in complex systems with nonlinear dynamics. By reformulating the control problem
as a generative task, DIFOCON leverages a dual-Unet architecture to capture nonlinear dynamics
and generate complete control sequences without relying on system models or parameters. Our
approach integrates an inverse dynamics module and a retraining method to enhance performance
on complex systems and improve out-of-distribution generalization. Experiments on two typical
nonlinear complex systems demonstrate DIFOCON’s superior performance, achieving significant
reductions in target loss and control energy while exhibiting faster convergence than existing model-
free approaches. These results underscore DIFOCON’s effectiveness as a data-driven solution for
finite-time optimal control in complex, nonlinear systems where traditional model-based methods
fall short. This work shows the potential of data-driven generative models in addressing finite-time
optimal control challenges in complex systems where accurate models are unavailable.
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works. nature, 473(7346):167–173, 2011.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 11461–11471, 2022.

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural
information processing systems, 1, 1988.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. International Conference on Machine Learning,
pp. 2256–2265, 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in Neural Information Processing Systems, 32, 2019.

Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimiza-
tion. Advances in Neural Information Processing Systems, 36:3706–3731, 2023.
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A EXPERIMENT SETUP

To evaluate the performance of DIFOCON, we conducted experiments on two representative com-
plex systems: the Kuramoto model and the Swing dynamics model. These systems were chosen
for their ability to demonstrate rich dynamical behaviors and their relevance to various real-world
applications.

A.1 KURAMOTO DYNAMICS

The Kuramoto model is a paradigmatic system for studying synchronization phenomena. We con-
sidered a ring network of N = 8 Kuramoto oscillators. The dynamics of the phases (states) of
oscillators are expressed by:

θ̇i,t = ω + sin(θi−1,t−1 − θi,t−1) + sin(θi+1,t−1 − θi,t−1) + ui,t−1, i = 1, 2, ..., N. (14)

This system can converge to two kinds of stable equilibria:

1. Synchronous state: θ̃i,t = ωt

2. Splay state: θ̂m,i,t = ωt + 2πm∗i
N + c, where c is a constant and m is an integer denoting

the winding number.

For the Kuramoto model, we generated 20,000 samples for training and 1,000 samples for testing.
The initial phases were sampled from a Gaussian distribution N (0, I), and the random intervention
control signals were sampled from N (0, 0.1I). The system was simulated for T = 16 time steps
with ω = 0. The resulting phase observations and control signals were used as the training and test
datasets.
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A.2 SWING DYNAMICS

The Swing dynamics model, which is crucial for power system stability analysis, is described by the
following equations:

δ̇i = ωi,+ui (15)

Hi

πfb
ω̇i = −Diωi + Pmi −GiiE

2
i +

10∑
j=1,j ̸=i

EiEj(Gij cos(δi − δj) +Bij sin(δi − δj)). (16)

Here, δi is the angular position or phase of the rotor in generator i with respect to generator 1, and
ωi is the deviation of the rotor speed or frequency in generator i relative to the nominal angular
frequency 2πfb. The parameters Hi and Di are the inertia constant and damping coefficient, respec-
tively, of generator i. Gii is the internal conductance of generator i, and Gij + iBij (where i is the
imaginary unit) is the transfer impedance between generators i and j. Pmi denotes the mechanical
input power of generator i, and Ei denotes its internal voltage.

For the Swing dynamics model, we generated 20,000 samples for training and 1,000 samples for
testing. The initial phases were sampled from a Gaussian distribution N (0, 0.5I), and the random
intervention control signals were sampled from N (0, 0.01I). The system was simulated for T = 32
time steps with ω = 0. The resulting phase observations and control signals were used as the training
and test datasets.

Both datasets provide a diverse range of initial conditions and control inputs, allowing for a compre-
hensive evaluation of DIFOCON’s performance in handling complex, nonlinear dynamical systems.
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