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Abstract

Despite recent success in using the invariance principle for out-of-distribution
(OOD) generalization on Euclidean data (e.g., images), studies on graph data are
still limited. Different from images, the complex nature of graphs poses unique
challenges to adopting the invariance principle. In particular, distribution shifts on
graphs can appear in a variety of forms such as attributes and structures, making it
difficult to identify the invariance. Moreover, domain or environment partitions,
which are often required by OOD methods on Euclidean data, could be highly
expensive to obtain for graphs. To bridge this gap, we propose a new framework,
called Causality Inspired Invariant Graph LeArning (CIGA), to capture the invari-
ance of graphs for guaranteed OOD generalization under various distribution shifts.
Specifically, we characterize potential distribution shifts on graphs with causal
models, concluding that OOD generalization on graphs is achievable when models
focus only on subgraphs containing the most information about the causes of labels.
Accordingly, we propose an information-theoretic objective to extract the desired
subgraphs that maximally preserve the invariant intra-class information. Learning
with these subgraphs is immune to distribution shifts. Extensive experiments on 16
synthetic or real-world datasets, including a challenging setting – DrugOOD,from
AI-aided drug discovery, validate the superior OOD performance of CIGA1.

1 Introduction

Graph representation learning with graph neural networks (GNNs) has gained great success in tasks
involving relational information [45, 35, 99, 106, 107]. However, it assumes that the training and
test graphs are drawn from the same distribution, which is often violated in reality [37, 47, 38, 40].
The mismatch between training and test distributions, i.e., distribution shifts, introduced by some
underlying environmental factors related to data collection or processing, could seriously degrade
the performance of deployed models [7, 24]. Such out-of-distribution (OOD) generalization failures
become the major roadblock for practical applications of graph representation learning [40].

Meanwhile, enabling OOD generalization on regular Euclidean data has received surging attention
and several solutions were proposed [4, 81, 10, 49, 23, 48, 2]. In particular, the invariance principle
from causality is at the heart of those works [76, 74, 79]. The principle leverages the Independent
Causal Mechanism (ICM) assumption [74, 77] and implies that, model predictions that only focus on
the causes of the label can stay invariant to a large class of distribution shifts [76, 4, 2].

∗Work done during an internship at Tencent AI Lab.
1Code is available at https://github.com/LFhase/CIGA.
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Figure 1: (a) Illustration of Causality Inspired Invariant Graph LeArning (CIGA): GNNs need to
classify graphs based on the specific motif (“House” or “Cycle”). The featurizer g will extract an
(orange colored) subgraph Ĝc from each input for the classifier fc to predict the label. The training
objective of g is implemented in a contrastive strategy where the distribution of Ĝc at the latent sphere
will be optimized to maximize the intra-class mutual information, hence predictions will be invariant
to distribution shifts; (b) An overview of potential algorithms for OOD generalization on graphs.

Despite the success of the invariance principle on Euclidean data, the complex nature of graphs raises
several new challenges that prohibit direct adoptions of the principle. First, distribution shifts on
graphs are more complicated. They can happen at both attribute-level and structure-level, and be
observed in multiple forms such as graph sizes, subgraph densities and homophily [113, 11, 102].
On the other hand, each of the shifts can spuriously correlate with labels in different modes [4, 71, 2].
Consequently, the entangled complex distribution shifts make it more difficult to identify and capture
the invariance on graphs. Second, OOD algorithms developed and analyzed on Euclidean data
often require additional environment (or domain) labels for distinguishing the sources of distribution
shifts [4]. However, the environment labels could be highly expensive to obtain and thus often
unavailable for graphs, as collecting the labels usually requires expert knowledge due to the abstraction
of graphs [37]. These challenges render the problem studied in this paper even more challenging:

How could one generalize the invariance principle to enable OOD generalization on graphs?

To solve the above problem, we propose Causality Inspired Invariant Graph LeArning (CIGA), a
new framework for capturing the invariance of graphs to enable guaranteed OOD generalization under
different distribution shifts. Specifically, we build three Structural Causal Models (SCMs) [74] to
characterize the distribution shifts that could happen on graphs: one is to model the graph generation
process, and the other two are to model two possible interactions between invariant and spurious
features during the graph generation, i.e., Fully Informative Invariant Feature (FIIF) and Partially
Informative Invariant Feature (PIIF) (Sec. 2.2). Then, we generalize the invariance principle to
graphs for OOD generalization: GNN models are invariant to distribution shifts if they focus only
on an invariant and critical subgraph Gc that contains the most of the information in G about the
underlying causes of the label. Thus, the problem of achieving OOD generalization on graphs can be
rephrased into two processes: invariant subgraph identification and label prediction. Accordingly,
shown as Fig. 1(a), we introduce a prototypical invariant graph learning algorithm that decomposes
a GNN into: a) a featurizer g for identifying the underlying invariant subgraph Gc from G; b) a
classifier fc for making predictions based on Gc. To extract the desired subgraph Gc, we derive an
information-theoretic objective for the featurizer to identify subgraphs that maximally preserves the
invariant intra-class information across a set of different (unknown) environments. We theoretically
show that this approach can provably identify the underlying Gc under mild assumptions (Sec. 3).

Experiments on 16 synthetic and real-world datasets with various distribution shifts, including a
challenging setting from AI-aided drug discovery [40], show that CIGA can significantly outperform
all of existing methods up to 10%, demonstrating its promising OOD generalization ability (Sec. 4).

Related Work. We review existing methods that might improve the OOD generalization on graphs,
summarize the main differences between our solution and them in Table 1(b), and leave thorough
discussions to Appendix B.2. On Euclidean data, Invariant Learning [4, 23, 2], Group Distributionally
Robust Optimization [49, 81, 124], Domain Adaption and Domain Generalization [31, 93, 52, 27, 61,
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100] are three widely adopted approaches to enable OOD generalization. However, they all have their
own limitations when being applied to graphs. First, previous invariant learning methods are mostly
developed and analyzed for Euclidean data [4, 2, 23], or under specific SCM assumptions [4], making
the theoretical results hardly able to generalize to the complicated graph data [80] that can have
multiple types of distribution shifts [71]. Group Distributionally Robust Optimization that minimizes
the gap between worst group risk and average risk [49, 81, 124], and Domain Adaption/Generalization
methods that aim to learn class-conditional domain invariant representations [31, 93, 52, 27, 100],
cannot guarantee a min-max optimal predictor without additional assumptions [126, 4, 2]. Moreover,
most existing methods require environment labels that are however expensive to obtain in graphs,
which limits their applications to graphs [4, 49, 2, 81, 31, 93, 27, 61]. In contrast, we aim to develop
OOD algorithms for graphs that are provably generalizable under different types of distribution shifts.

Another line of relevant works is about GNN explainability that aims to find a subgraph of the input as
the explanation for a GNN prediction [116, 122]. Although some may leverage causality to justify the
generated explanation [53], they mostly focus on understanding the predictions of GNNs instead of
for OOD generalization. The closest works to ours are two interpretable GNNs that aim to explicitly
extract a subgraph for both predictions and explanations guided by information theory [120] and
causality [104], respectively. However, they focus on graphs and shifts generated under a specific
SCM. Although one of them can provide theoretical guarantee for OOD generalization [120] by using
the information bottleneck criteria [2], they would inevitably fail to generalize to graphs generated
under different SCMs. More discussions about the failure are deferred to Appendix D.4. Besides,
Bevilacqua et al. [11] also discuss OOD generalization on graphs but limited to a specific graph
family and graph size shifts. Wu et al. [103] propose OOD generalization algorithms on graphs for
the task of node classification, also limited to graphs and shifts under a specific SCM.

To the best of our knowledge, there is no existing work that could handle more comprehensive graph
distribution shifts than CIGA, while also achieving provable OOD generalization performance.

2 OOD Generalization on Graphs through the Lens of Causality

2.1 Problem Setup

In this work, we focus on OOD generalization in graph classification. Specifically, we are given a set
of graph datasets D = {De}e collected from multiple environments Eall. Samples (Ge

i , Y
e
i ) ∈ De

from the same environment are considered as drawn independently from an identical distribution Pe. A
GNN ρ◦h generically has an encoder h : G → Rh that learns a meaningful representation hG for each
graph G to help predict the label ŶG = ρ(hG) with a downstream classifier ρ : Rh → Y . The goal of
OOD generalization on graphs is to train a GNN ρ ◦ h with data from training environments Dtr =
{De}e∈Etr⊆Eall that generalizes well to all (unseen) environments, i.e., to minimize maxe∈Eall R

e,
where Re is the empirical risk of ρ ◦ h under environment e [97, 4]. We leave more details about the
background of GNN for graph classification and invariant learning in Appendix B.1.

It is known that OOD generalization is impossible without assumptions on the environments Eall [74,
2]. Thus, we will first formulate the data generation process with structural causal model and latent-
variable model [74, 77, 50], to characterize the distribution shifts that could happen on graphs. Then,
we investigate whether the existing methods are generalizable under these distribution shifts.

2.2 Graph Generation Process

SC

Gc Gs

G

(a) G-Gen. SCM

E

SY G

C

(b) FIIF SCM

E

SY G

C

(c) PIIF SCM

Figure 2: SCMs on graph distribution shifts.

We take a latent-variable model per-
spective on the graph generation pro-
cess and assume that the graph is
generated through a mapping fgen :
Z → G, where Z ⊆ Rn is the la-
tent space and G = ∪∞N=1{0, 1}N ×
RN×d is the graph space. Let E de-
note environments. Following previ-
ous works [50, 2], we partition the la-
tent variable from Z into an invariant
part C ∈ C = Rnc and a varying part
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S ∈ S = Rns , s.t., n = nc + ns, according to whether they are affected by E or not. Similarly in
images, C and S can represent content and style while E can refer to the locations where the images
are taken [7, 125, 50]. Furthermore, C and S control the generation of the observed graphs (Assump-
tion 2.1) and can have multiple types of interactions at the latent space (Assumptions 2.2, 2.3).

Graph generation model. We elaborate the SCM for the graph generation process in Assumption 2.1
and Fig. 2(a), where noises in the structural equations are omitted for simplicity [77].
Assumption 2.1 (Graph Generation Structural Causal Model).

Gc := fGc
gen (C), Gs := fGs

gen (S), G := fG
gen(Gc, Gs).

In Assumption 2.1, fgen is decomposed into fGc
gen , fGs

gen and fG
gen to control the generation of Gc, Gs,

and G, respectively. Among them, Gc inherits the invariant information of C that would not be
affected by the interventions (or changes) of E [74, 77]. For example, certain properties of a molecule
can usually be described by a sub-molecule, or a functional group, which is invariant across different
species or assays [12, 92, 40]. On the contrary, the generation of Gs and G will be affected by the
environment E through S. Thus, graphs collected from different environments (or domains) can have
different distributions of structure-level properties (e.g., graph sizes [11, 102]) as well as feature-level
properties (e.g., homophily [62, 17]). Therefore, the subgraph Gs inherits the spurious feature about
Y [125]. In fact, Assumption 2.1 is compatible with many graph generation models by specifying the
function classes of fGc

gen , fGs
gen and fG

gen [89, 57, 117, 59]. Since our goal is to characterize the potential
distribution shifts in Assumption 2.1, we focus on building a general SCM that is compatible to many
graph families and leave graph family specifications and their implications to OOD generalization in
future works. More discussions are provided in Appendix C.

Interactions at latent space. Following previous works [4, 2], we categorize the latent interactions
between C and S into Fully Informative Invariant Features (FIIF, Fig. 2(b)) and Partially Informative
Invariant Features (PIIF, Fig. 2(c))2, depending on whether the latent invariant part C is fully
informative about label Y , i.e., (S,E) ⊥⊥ Y |C. Formal definitions of the corresponding SCMs are
given as follows, where noises are omitted for simplicity [74, 77].
Assumption 2.2 (FIIF Structural Causal Model). Y := finv(C), S := fspu(C,E), G := fgen(C, S).

Assumption 2.3 (PIIF Structural Causal Model). Y := finv(C), S := fspu(Y,E), G := fgen(C, S).

In the two SCMs above, fgen corresponds to the graph generation process in Assumption 2.1, and fspu
is the mechanism describing how S is affected by C and E at the latent space. By definition, S is
directly controlled by C in FIIF and indirectly controlled by C through Y in PIIF, which can exhibit
different behaviors in the observed distribution shifts. In practice, performances of OOD algorithms
can degrade dramatically if one of FIIF or PIIF is excluded [5, 71]. This issue can be more serious
in graphs, since different distribution shifts can have different interaction modes at the latent space.
Moreover, finv : C → Y indicates the labelling process, which assigns labels Y for the corresponding
G merely based on C. Consequently, C is better clustered than S when given Y [13, 15, 86, 87],
which also serves as the necessary separation assumption for a classification task [69, 16, 65].
Assumption 2.4 (Better Clustered Invariant Features). H(C|Y ) ≤ H(S|Y ).

2.3 Challenges of OOD Generalization on Graphs

Built upon the graph generation process, we can formally derive the desired GNN that is able to
generalize to OOD graphs under different distribution shifts, which implies the invariant GNN below3.
Definition 2.5 (Invariant GNN). Given a set of graph datasets {De}e and environments Eall that
follow the same graph generation process in Sec. 2.2, considering a GNN ρ ◦h that has a permutation
invariant graph encoder h : G → Rh and a downstream classifier ρ : Rh → Y , ρ ◦ h is an invariant
GNN if it minimizes the worst case risk among all environments, i.e., minmaxe∈Eall R

e.

Can existing methods produce a desired invariant GNN model? We find the answers to be negative
unfortunately. Based on the synthetic BAMotif graph classification task [58, 104] shown in Fig. 3,

2Note that FIIF and PIIF can be mixed as Mixed Informative Invariant Features (Appendix 6(d)) in several
ways, while our analysis will focus on the axiom ones for the purpose of generality.

3A discussion on Def. 2.5 and its relation to the SCMs is provided in Appendix E.1.
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(c) Mixed with graph size shifts.

Figure 3: Failures of OOD generalization on graphs: (a) GNNs are required to classify whether
the graph contains a “house” or “cycle” motif, where the colors represent node features. However,
distribution shifts in the training data exist at both structure-level (from left to right: “house” mostly
co-occur with a hexagon), attribute-level (from upper to lower: nodes are mostly colored green if the
graph contains a “house”, or colored blue if the graph contains a “cycle”), and graph sizes, making
GNNs hard to capture the invariance. Consequently, ERM can fail for leveraging the shortcuts and
predicting graphs that have a hexagon or have nodes mostly colored green as “house”. IRM can fail
as the test data are not sufficiently supported by the training data. (b) GCNs optimized with neither
ERM nor IRM can generalize to OOD graphs under structure-level shifts (Struc-) or mixed with
feature shifts (Mixed-). (c) When more complex shifts presented, GNNs can fail more seriously.

we theoretically and empirically analyze whether existing methods could produce an invariant GNN,
through the investigation of the following aspects. More details and results are given in Appendix D.

Can GNNs trained with ERM generalize to OOD graphs? As shown in Fig. 3, we find that GNNs
trained with the standard empirical risk minimization (ERM) algorithm [97] are not able to generalize
to OOD graphs. As the data biases grows stronger, the performances of GNNs drop dramatically.
Furthermore, when graph size shifts are mixed in the data, GNNs can have larger variance at low data
biases, indicating the instability of learning the desired relationships for the task. The reason is that
ERM tends to overfit to the shortcuts or spurious correlations presented in specific substructures or
attributes in the graphs [33]. This phenomenon has also been shown to exist in GNNs equipped with
more sophisticated architectures such as attention mechanisms [99], under graph size shifts [46].

Can OOD objectives improve OOD generalization of GNNs? Meanwhile, as shown in
Fig. 3, OOD objectives primarily developed on Euclidean data such as invariant risk minimiza-
tion (IRM) [4] also cannot alleviate the problem. On the contrary, IRM can fail catastrophi-
cally at non-linear regime if without sufficient support overlap for the test environments, i.e.,
∪e∈Ete supp(Pe) ̸⊆ ∪e∈Etr supp(Pe) [80]. In addition to IRM, the failure would also happen for
alternative objectives [49, 9, 2] as proved by Rosenfeld et al. [80]. Besides, different distribution
shifts on graphs can be nested with each other where each one can have distinct spurious correlation
type, e.g., FIIF or PIIF. OOD objectives will also fail seriously if either of the correlation types is not
supported [5, 71]. Moreover, non-trivial environment partitions or labels are required for performance
guarantee of these OOD objectives [4, 49, 81, 2]. However, collecting meaningful environment
partitions of graphs requires expert knowledge about graph data. Thus, the environment labels can be
expensive to obtain and are usually not available [67, 28, 37]. Alternative options such as random
partitions tend not to alleviate the issue [23, 55], as it can be trivially deemed as mini-batching.

Challenges of OOD generalization on graphs. The aforementioned failure analysis reveals that
existing methods or objectives fail to elicit an invariant GNN primarily due to the following two
challenges: a) Distribution shifts on graphs are more complicated where different types of spurious
correlations can be entangled via different graph properties; b) Environment labels are usually not
available due to the abstraction of graphs. Despite these challenges, we are still highly motivated
to address the following research question: Would it be possible to learn an invariant GNN that is
generalizable under various distribution shifts by lifting the invariance principle to the graph data?

3 Invariance Principle for OOD Generalization on Graphs

We provide affirmative answers to the previous question by proposing a new framework, CIGA:
Causality Inspired Invariant Graph LeArning. Specifically, built upon the SCMs in Sec. 2.2, we
generalize the invariance principle to graphs and instantiate the principle with theoretical guarantees.
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3.1 Invariance for OOD Generalization on Graphs

Towards extending the invariance principle to graphs under SCMs in Sec. 2.2, we need to identify a set
of variables that have stable causal relationship with Y under both FIIF and PIIF (Assumption 2.2, 2.3).
According to the ICM assumption [77], the labeling process C → Y is not informed nor influenced
by other processes, implying that the conditional distribution P (Y |C) remains invariant to the
interventions on the environment latent variable E [74]. Consequently, for a GNN with a permutation
invariant encoder h : G → Rh and a downstream classifier ρ : Rh → Y , if h can recover the
information of C from G in the learned graph representations, then the learning of ρ resembles
traditional ERM [97] and can achieve the desired min-max optimality required by an invariant GNN
(Def. 2.5). However, recovering C from G is particularly difficult, since the generation of G from C
involves two causal mechanisms fGc

gen and fG
gen in Assumption 2.1. The unavailability of E further

adds up the difficulty of enforcing the independence between the learned representations and E.

3.2 Invariant Graph Learning Framework

Causal algorithmic alignment. To enable a GNN to learn to extract the information about C from
G, we propose the CIGA framework that explicitly aligns with the two causal mechanisms fGc

gen and
fG

gen in Assumption 2.1. The idea of alignment in CIGA is motivated by the algorithmic reasoning
results that a neural network can learn a reasoning process better if its computation structure aligns
with the process better [108, 110]. Specifically, we realize the alignment by decomposing a GNN
into two sub-components4: a) a featurizer GNN g : G → Gc aiming to identify the desired Gc; b) a
classifier GNN fc : Gc → Y that predicts the label Y based on the estimated Gc, where Gc refers to
the space of subgraphs of G. Formally, the learning objectives of fc and g can be formulated as:

maxfc, g I(Ĝc;Y ), s.t. Ĝc ⊥⊥ E, Ĝc = g(G), (1)

where maximizing I(Ĝc;Y ) is equivalent to minimizing a variational upper bound of R(fc(Ĝc)) [3,
120] that takes Ĝc as inputs to predict label Y for G through fc and g, and Ĝc is the estimated
subgraph containing the information about C and hence needs to be independent of E. Moreover, the
extracted Gc can either shares the same graph space with input G or has its own space with latent
node and edge features, depending on the specific graph generation process. In practice, architectures
from the literature of interpretable GNNs are compatible with CIGA [122], hence can serve as
practical choices for the implementation of CIGA. More details are given in Appendix F.

Although we can technically align with the two causal mechanisms with g and fc, trivially optimizing
this architecture cannot satisfy Ĝc ⊥⊥ E. Formally, merely maximizing I(Ĝc;Y ) may include a
subgraph from Gs in Ĝc since Gs also shares certain mutual information with Y . Moreover, the
unavailability of E prevents the direct usage of E in enforcing the independence that is often adopted
by previous methods [4, 49, 81, 31, 93], making the identification of Gc more challenging.

Optimization objective. To mitigate this issue, we need to find and translate other properties of Gc

into some differentiable and equivalent objectives to satisfy the independence constraint Ĝc ⊥⊥ E.
The goal of the desired objective. We begin by considering a simplistic setting where all the invariant
subgraphs Gc have the same size sc, i.e., |Gc| = sc

5. When maximizing I(Ĝc;Y ) in Eq. 1, both FIIF
and PIIF can introduce part of Gs into Ĝc. In FIIF (Fig. 2(b)), as Gc already contains the maximal
possible information in G about Y , Gc is a solution to max I(Ĝc;Y ). However, some subgraph of
Gc can be replaced by some subgraph of Gs that is equally informative about Y . In PIIF (Fig. 2(c)),
there also exists some subgraph of Gs that contains additional information about Y than Gc, hence
Ĝc is more likely to involve some subgraph of Gs. Thus, the new objective needs to eliminate the
auxiliary subgraphs of Ĝc from Gs such that the estimated Ĝc can only contain Gc.

An important property of Gc. Under both FIIF and PIIF SCMs (Fig. 2), for Ge1
c , Ge2

c that relate
to the same causal factor c under two environments e1 and e2, the desired Ĝe1

c , Ĝe2
c in e1 and e2

tend to have high mutual information, i.e., (Ge1
c , Ge2

c ) ∈ argmax I(Ĝe1
c ; Ĝe2

c ). While for Ge1
c

4The encoder of the GNN in CIGA can be regarded as the composition of g and the graph encoder in fc.
5Throughout the paper, we use generalized set operators for the ease of understanding. They can have

multiple implementations in terms of nodes, edges or attributes.
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and another Ge1
c′ corresponding to a different c′ ̸= c, under the same environment e1, including any

subgraph from Ge1
s in Ĝe1

c , Ĝe1
c′ will enlarge their mutual information, or in other words, (Ge1

c , Ge1
c′ ) ∈

argmin I(Ĝe1
c ; Ĝe1

c′ ). Thus, we can derive an important property of Gc, that is, ∀e1, e2 ∈ Eall,

Ge1
c ∈ argmaxĜe1

c
I(Ĝe1

c ; Ĝe2
c |C = c)− I(Ĝe1

c ; Ĝe2
c′ |C = c′, c′ ̸= c), (2)

where Ĝe1
c and Ĝe2

c are the estimated invariant subgraphs corresponding to the same causal factor c
under environment e1 and e2, respectively, while Ĝe2

c′ corresponds to a different causal factor c′.

Deriving CIGAv1 based on the identified property of Gc. In practice, C is not given. Nevertheless,
since C and Y shares a stable causal relationship in both FIIF and PIIF SCMs, Y can serve as a
proxy of C in Eq. 2. Moreover, as Eq. 2 holds for any ∀e1, e2 ∈ Eall, the environment superscripts
can be eliminated without affecting Eq. 2. Furthermore, when both I(Ĝe1

c ; Ĝe2
c |C = c) and I(Ĝc;Y )

are maximized, I(Ĝe1
c ; Ĝe1

c′ |C = c′, c′ ̸= c) is automatically minimized, otherwise all classes will
collapse to trivial solutions which is contradictory given I(Ĝc;Y ) being maximized. Therefore, we
can derive an alternative objective to Eq. 1 by leveraging Eq. 2 to replace the independence condition:

(CIGAv1) max
fc,g

I(Ĝc;Y ), s.t. Ĝc ∈ argmax
Ĝc=g(G),|Ĝc|≤sc

I(Ĝc; G̃c|Y ), (3)

where G̃c = g(G̃) and G̃ ∼ P(G|Y ), i.e., G̃ is sampled from training graphs that share the same
label Y as G. In Theorem 3.1, we show how Eq. 3 is equivalent to Eq. 1. Nevertheless, Eq. 3 requires
a strong assumption on the size of Gc. However, the size of Gc is usually unknown or changes for
different Cs. In this circumstance, maximizing Eq. 2 without additional constraints will lead to the
presence of part of Gs in Ĝc. For instance, Ĝc = G is a trivial solution to Eq. 3 when sc =∞.

Deriving CIGAv2 by resolving size constraint on Gc in CIGAv1. To this end, we further resort to
the properties of Gs. In both FIIF and PIIF SCMs (Fig. 2), Gs and Gc can share certain overlapped
information about Y . When maximizing I(Ĝc; G̃c|Y ) and I(Ĝc;Y ), the appearance of partial Gs

in Ĝc will not affect the optimality. However, it can reduce the mutual information between the
left part Ĝs = G− Ĝc and Y , i.e., I(Ĝs;Y ). Therefore, by maximizing I(Ĝs;Y ), we can reduce
including part of Gs into Ĝc. Meanwhile, to avoid trivial solution that Gc ⊆ Ĝs during maximizing
I(Ĝs;Y ), we can leverage the better clustering property of Gc implied by Assumption 2.4 to derive
the constraint I(Ĝs;Y ) ≤ I(Ĝc;Y ). Thus, we can obtain a new objective CIGAv2 as follows:

maxfc,g I(Ĝc;Y ) + I(Ĝs;Y ), s.t. Ĝc ∈ argmaxĜc=g(G)I(Ĝc; G̃c|Y ),

(CIGAv2) I(Ĝs;Y ) ≤ I(Ĝc;Y ), Ĝs = G− g(G),
(4)

where Ĝc = g(G), G̃c = g(G̃) and G̃ ∼ P(G|Y ), i.e., G̃ is sampled from training graphs that share
the same label Y as G. We also prove the equivalence between Eq. 4 and Eq. 1 in Theorem 3.1.

3.3 Theoretical Analysis and Practical Discussions

Theorem 3.1 (CIGA Induces Invariant GNNs). Given a set of graph datasets {De}e and environ-
ments Eall that follow the same graph generation process in Sec. 2.2, assuming that (a) fG

gen and fGc
gen

in Assumption 2.1 are invertible, (b) samples from each training environment are equally distributed,
i.e.,|Dê| = |Dẽ|, ∀ê, ẽ ∈ Etr, then:

(i). If ∀Gc, |Gc| = sc, then each solution to Eq. 3, elicits an invariant GNN (Def. 2.5).
(ii). Each solution to Eq. 4, elicits an invariant GNN (Def. 2.5).

We prove Theorem 3.1 (i) and (ii) in Appendix E.2, E.3, respectively.

Practical implementations of CIGA objectives. After showing the power of CIGA, we introduce
the practical implementations of CIGAv1 and CIGAv2 objectives. Specifically, an exact estimate of
the second term I(Ĝc; G̃c|Y ) could be highly expensive [96, 8]. However, contrastive learning with
supervised sampling provides a practical solution for the approximation [42, 20, 82, 96, 8]:

I(Ĝc; G̃c|Y ) ≈ E{Ĝc,G̃c}∼Pg(G|Y=Y )

{Gi
c}

M
i=1∼Pg(G|Y≠Y )

log
eϕ(hĜc

,hG̃c
)

eϕ(hĜc
,hG̃c

) +
∑M

i=1 e
ϕ(hĜc

,hGi
c
)
, (5)
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Table 1: OOD generalization performance on structure and mixed shifts for synthetic graphs.

SPMOTIF-STRUC† SPMOTIF-MIXED†

BIAS=0.33 BIAS=0.60 BIAS=0.90 BIAS=0.33 BIAS=0.60 BIAS=0.90 AVG

ERM 59.49 (3.50) 55.48 (4.84) 49.64 (4.63) 58.18 (4.30) 49.29 (8.17) 41.36 (3.29) 52.24
ASAP 64.87 (13.8) 64.85 (10.6) 57.29 (14.5) 66.88 (15.0) 59.78 (6.78) 50.45 (4.90) 60.69
DIR 58.73 (11.9) 48.72 (14.8) 41.90 (9.39) 67.28 (4.06) 51.66 (14.1) 38.58 (5.88) 51.14

IRM 57.15 (3.98) 61.74 (1.32) 45.68 (4.88) 58.20 (1.97) 49.29 (3.67) 40.73 (1.93) 52.13
V-REX 54.64 (3.05) 53.60 (3.74) 48.86 (9.69) 57.82 (5.93) 48.25 (2.79) 43.27 (1.32) 51.07
EIIL 56.48 (2.56) 60.07 (4.47) 55.79 (6.54) 53.91 (3.15) 48.41 (5.53) 41.75 (4.97) 52.73
IB-IRM 58.30 (6.37) 54.37 (7.35) 45.14 (4.07) 57.70 (2.11) 50.83 (1.51) 40.27 (3.68) 51.10
CNC 70.44 (2.55) 66.79 (9.42) 50.25 (10.7) 65.75 (4.35) 59.27 (5.29) 41.58 (1.90) 59.01

CIGAV1 71.07 (3.60) 63.23 (9.61) 51.78 (7.29) 74.35 (1.85) 64.54 (8.19) 49.01 (9.92) 62.33
CIGAV2 77.33 (9.13) 69.29 (3.06) 63.41 (7.38) 72.42 (4.80) 70.83 (7.54) 54.25 (5.38) 67.92
ORACLE (IID) 88.70 (0.17) 88.73 (0.25)
†Higher accuracy and lower variance indicate better OOD generalization ability.

where positive samples (Ĝc, G̃c) are the extracted subgraphs of graphs that share the same label as
G, negative samples are those having different labels, Pg(G|Y = Y ) is the push-forward distribution
of P(G|Y = Y ) by featurizer g, P(G|Y = Y ) refers to the distribution of G given the label Y ,
P(G|Y ̸= Y ) refers to the distribution of G given the label that is different from Y , hĜc

, hG̃c
, hGi

c

are the graph presentations of the estimated subgraphs, and ϕ is the similarity metric for graph
representations. As M → ∞, Eq. 5 approximates I(Ĝc; G̃c|Y ), which can be regarded as a non-
parameteric resubstitution entropy estimator via the von Mises-Fisher kernel density [1, 41, 101].
Thus, plugging it into Eq. 3 and Eq. 4 can relieve the issue of approximating I(Ĝc; G̃c|Y ) in practice.

To implement I(Ĝs;Y ) given the constraint I(Ĝs;Y ) ≤ I(Ĝc;Y ) in CIGAv2, a practical choice is
to adopt hinge loss that implement the constrained I(Ĝs;Y ) as 1

NRĜs
· I(RĜc

≤ RĜs
), where N is

the number of samples, I is an indicator function that outputs 1 when the inner condition is satisfied
otherwise 0, and RĜs

and RĜc
are the empirical risk vector of the predictions for each sample based

on the corresponding Ĝs and Ĝc. More implementation details can be found in Appendix F.

Discussions and implications of CIGA. Although using contrastive learning to improve OOD
generalization is not new in the literature [27, 61, 124], previous methods cannot yield OOD guaran-
tees in graph circumstances due to the highly non-linearity and the unavailability of domain labels
E. In particular, CIGA can be reduced to directly applying contrastive learning when without
the decomposition for causal algorithmic alignment. However, in the experiments we found that
merely using the contrastive objective, i.e., CNC [124], yields unsatisfactory OOD generalization
performance, which further implies the necessity of the decomposition in CIGA.

Moreover, the architecture of CIGA can have multiple other implementations for both the featurizer
and classifier, such as identifying Gc at the latent space [86, 87]. Since we cannot enumerate every
possible implementation, in this work we choose interpretable GNN architectures as a prototype
validation for CIGA and leave more sophisticated architectures as future works. In particular, when
optimized with ERM objective, CIGA can be reduced to interpretable GNNs. However, merely
using interpretable GNNs such as ASAP [78], GIB [120] or DIR [104] cannot yield satisfactory OOD
performance. As shown in Table 1(b) and discussed in Appendix. D.4, GIB can only work for FIIF,
while DIR cannot yield OOD guarantees for neither FIIF and PIIF SCMs. These results are also
empirically validated in the experiments. We provide more detailed discussions in Appendix B.

4 Empirical Studies

We conduct extensive experiments with 16 datasets to verify the effectiveness of CIGA.

Datasets. We use the SPMotif datasets from DIR [104] where artificial structural shifts and graph size
shifts are nested (SPMotif-Struc). Besides, we construct a harder version mixed with attribute shifts
(SPMotif-Mixed). To examine CIGA in real-world scenarios with more complicated relationships
and distribution shifts, we also use DrugOOD [40] from AI-aided Drug Discovery with Assay,
Scaffold, and Size splits, convert the ColoredMNIST from IRM [4] using the algorithm from Knyazev
et al. [46] to inject attribute shifts, and split Graph-SST [122] to inject degree biases. To compare with
previous specialized OOD methods for graph size shifts [113, 11], we use the datasets in Bevilacqua
et al. [11] that are converted from TU benchmarks [67]. More details can be found in Appendix G.1.

Baselines and our methods. Besides the ERM, we also compare with SOTA interpretable GNNs,
GIB [120], ASAP Pooling [78], and DIR [104], to validate the effectiveness of the optimization

8



Table 2: OOD generalization performance on complex distribution shifts for real-world graphs.

DATASETS DRUG-ASSAY DRUG-SCA DRUG-SIZE CMNIST-SP GRAPH-SST5 TWITTER AVG (RANK)†

ERM 71.79 (0.27) 68.85 (0.62) 66.70 (1.08) 13.96 (5.48) 43.89 (1.73) 60.81 (2.05) 54.33 (6.00)
ASAP 70.51 (1.93) 66.19 (0.94) 64.12 (0.67) 10.23 (0.51) 44.16 (1.36) 60.68 (2.10) 52.65 (8.33)
GIB 63.01 (1.16) 62.01 (1.41) 55.50 (1.42) 15.40 (3.91) 38.64 (4.52) 48.08 (2.27) 47.11 (10.0)
DIR 68.25 (1.40) 63.91 (1.36) 60.40 (1.42) 15.50 (8.65) 41.12 (1.96) 59.85 (2.98) 51.51 (9.33)

IRM 72.12 (0.49) 68.69 (0.65) 66.54 (0.42) 31.58 (9.52) 43.69 (1.26) 63.50 (1.23) 57.69 (4.50)
V-REX 72.05 (1.25) 68.92 (0.98) 66.33 (0.74) 10.29 (0.46) 43.28 (0.52) 63.21 (1.57) 54.01 (6.17)
EIIL 72.60 (0.47) 68.45 (0.53) 66.38 (0.66) 30.04 (10.9) 42.98 (1.03) 62.76 (1.72) 57.20 (5.33)
IB-IRM 72.50 (0.49) 68.50 (0.40) 66.64 (0.28) 39.86 (10.5) 40.85 (2.08) 61.26 (1.20) 58.27 (5.33)
CNC 72.40 (0.46) 67.24 (0.90) 65.79 (0.80) 12.21 (3.85) 42.78 (1.53) 61.03 (2.49) 53.56 (7.50)

CIGAV1 72.71 (0.52) 69.04 (0.86) 67.24 (0.88) 19.77 (17.1) 44.71 (1.14) 63.66 (0.84) 56.19 (2.50)
CIGAV2 73.17 (0.39) 69.70 (0.27) 67.78 (0.76) 44.91 (4.31) 45.25 (1.27) 64.45 (1.99) 60.88 (1.00)
ORACLE (IID) 85.56 (1.44) 84.71 (1.60) 85.83 (1.31) 62.13 (0.43) 48.18 (1.00) 64.21 (1.77)
†Averaged rank is also reported in the blankets because of dataset heterogeneity. Lower rank is better.

objective in CIGA. We use the same selection ratio (i.e., sc) for all models. Moreover, to validate
the effectiveness of the decomposition in CIGA, we compare CIGA with SOTA OOD objectives
including IRM [4], v-Rex [49] and IB-IRM [2], for which we apply random environment partitions
following [23]. We also compare CIGA with EIIL [23] and CNC [124] that do not require environ-
ment labels, where CNC [124] has a more sophisticated contrastive sampling strategy for combating
subpopulation shifts. More implementation and comparison details are deferred to Appendix G.2.

Evaluation. We report the classification accuracy for all datasets, except for DrugOOD datasets
where we use ROC-AUC following [40], and for TU datasets where we use Matthews correlation
coefficient following [11]. We repeat the evaluation multiple times, select models based on the
validation performances, and report the mean and standard deviation of the corresponding metric. For
each dataset, we also report the “Oracle” performances that run ERM on the randomly shuffled data.

OOD generalization performance on structure and mixed shifts. In Table 1, we report the
test accuracy of each method, where we omit GIB due to its poor convergence. Different biases
indicate different strengths of the distribution shifts. Although the training accuracy of most methods
converges to more than 99%, the test accuracy decreases dramatically as the bias increases and as
more distribution shifts are mixed, which concurs with our discussions in Sec. 2.3 and Appendix D.
Due to the simplicity of the task as well as the relatively high support overlap between training and
test distributions, interpretable GNNs and OOD objectives can improve certain OOD performance,
while they can have high variance since they donot have OOD generalization guarantees. In contrast,
CIGAv1 and CIGAv2 outperform all of the baselines by a significant margin up to 10% with lower
variance, which demonstrates the effectiveness and excellent OOD generalization ability of CIGA.

Table 3: OOD generalization performance on graph size shifts for
real-world graphs in terms of Matthews correlation coefficient.

DATASETS NCI1 NCI109 PROTEINS DD AVG

ERM 0.15 (0.05) 0.16 (0.02) 0.22 (0.09) 0.27 (0.09) 0.20
ASAP 0.16 (0.10) 0.15 (0.07) 0.22 (0.16) 0.21 (0.08) 0.19
GIB 0.13 (0.10) 0.16 (0.02) 0.19 (0.08) 0.01 (0.18) 0.12
DIR 0.21 (0.06) 0.13 (0.05) 0.25 (0.14) 0.20 (0.10) 0.20

IRM 0.17 (0.02) 0.14 (0.01) 0.21 (0.09) 0.22 (0.08) 0.19
V-REX 0.15 (0.04) 0.15 (0.04) 0.22 (0.06) 0.21 (0.07) 0.18
EIIL 0.14 (0.03) 0.16 (0.02) 0.20 (0.05) 0.23 (0.10) 0.19
IB-IRM 0.12 (0.04) 0.15 (0.06) 0.21 (0.06) 0.15 (0.13) 0.16
CNC 0.16 (0.04) 0.16 (0.04) 0.19 (0.08) 0.27 (0.13) 0.20

WL KERNEL 0.39 (0.00) 0.21 (0.00) 0.00 (0.00) 0.00 (0.00) 0.15
GC KERNEL 0.02 (0.00) 0.00 (0.00) 0.29 (0.00) 0.00 (0.00) 0.08
Γ1-HOT 0.17 (0.08) 0.25 (0.06) 0.12 (0.09) 0.23 (0.08) 0.19
ΓGIN 0.24 (0.04) 0.18 (0.04) 0.29 (0.11) 0.28 (0.06) 0.25
ΓRPGIN 0.26 (0.05) 0.20 (0.04) 0.25 (0.12) 0.20 (0.05) 0.23

CIGAV1 0.22 (0.07) 0.23 (0.09) 0.40 (0.06) 0.29 (0.08) 0.29
CIGAV2 0.27 (0.07) 0.22 (0.05) 0.31 (0.12) 0.26 (0.08) 0.27
ORACLE (IID) 0.32 (0.05) 0.37 (0.06) 0.39 (0.09) 0.33 (0.05)

OOD generalization perfor-
mance on realistic shifts. In
Table 2 and Table 3, we exam-
ine the effectiveness of CIGA in
real-world data and more com-
plicated distribution shifts. Both
averaged accuracy and ranks are
reported because of the dataset
heterogeneity. Since the tasks are
harder than synthetic ones, inter-
pretable GNNs and OOD objec-
tives perform similar to or even
under-perform the ERM base-
lines, which is also consistent
to the observations in non-linear
benchmarks [34, 40]. However,
both CIGAv1 and CIGAv2 con-
sistently and significantly outperform previous methods, including previous specialized methods Γ
GNNs [11] for combating graph size shifts, demonstrating the generality and superiority of CIGA.

Comparisons with advanced ablation variants. As discussed in Sec. 3.3, CIGA can be reduced to
interpretable GNNs and contrastive learning approaches. However, across all experiments, we can
observe that neither the advanced interpretable GNNs (DIR) nor sophisticated contrastive objectives
with specialized sampling strategy (CNC) can yield satisfactory OOD performance, which serves
as strong evidence for the necessities of the decomposition as well as the objective in CIGA.
Furthermore, although CIGAv1 can outperform CIGAv2 when we may have a relatively accurate
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Figure 4: Hyperparameter sensitivity analysis on the coefficient of contrastive loss (α).
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Figure 5: Hyperparameter sensitivity analysis on the coefficient of hinge loss (β).

sc, the improvements in CIGAv1 are not as stable as CIGAv2 or even unsatisfactory when the
assumption is violated. This phenomenon also reveals the superiority of CIGAv2 in practice.

Hyperparameter sensitivity analysis. To examine how sensitive CIGA is to the hyperparamters
α and β for contrastive loss and hinge loss, respectively. We conduct experiments based on the
hardest datasets from each table (i.e., SPMotif-Mixed with the bias of 0.9, DrugOOD-Scaffold and
the NCI109 datasets from Table 1, Table 2, and Table 3, respectively.) with different α and β. When
changing the value of β, we fix the α to a specific value under which the model has a relatively good
performance (but not the best, to fully examine the robustness of CIGA in practice).

The results are shown in Fig. 4 and Fig. 5. It can be found that both CIGAv1 and CIGAv2 are robust
to different values of α and β, respectively, across different datasets and distribution shifts. Besides,
the results also reflect the effects of the additional penalty terms in CIGA. For example, in Fig. 16,
when α is too small, the invariance of the identified invariant subgraphs Ĝc may not be guaranteed,
resulting worse performances. Similarly, as shown in Fig. 17, when β becomes too small, some part
of the spurious subgraph may still appear in the estimated invariant subgraphs, which yields worse
performances. Besides, when α and β become too large, the optimization of CIGA can be affected
due to their intrinsic conflicts with ERM, hence a better optimization scheme for CIGA can be a
promising future direction [18]. We provide more details and additional analysis on the efficiency of
CIGA and single environment OOD generalization performance of CIGA in Appendix G.4, as well
as the visualization examples of the identified invariant subgraph in Appendix G.5.

5 Conclusions

We studied the OOD generalization on graphs via graph classification, and propose a new solution
CIGA through the lens of causality. By modeling potential distribution shifts on graphs with SCMs,
we generalized and instantiated the invariance principle to graphs, which was shown to have promising
theoretical and empirical OOD generalization ability under a variety of distribution shifts.
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A Broader Impacts

Considering the wide applications and high sensitivity of GNNs to distribution shifts and spurious
correlations, it is important to develop GNNs that are able to generalize to OOD data, especially for
realistic scenarios such as AI-aided Drug Discovery where OOD data are ubiquitous. By formulating
OOD generalization problem on graphs using causality, our work can serve as an initiate step towards
tackling OOD generalization problem on graphs, with the hope to empower GNNs for broader applica-
tions and social benefits. Besides, this paper does not raise any ethical concerns. This study does not
involve any human subjects, practices to data set releases, potentially harmful insights, methodologies
and applications, potential conflicts of interest and sponsorship, discrimination/bias/fairness concerns,
privacy and security issues, legal compliance, and research integrity issues.

B More Discussions on Related Work and Future Directions

B.1 More backgrounds

We give more background introduction about GNNs and Invariant Learning in this section.

Graph Neural Networks. Let G = (A,X) denote a graph with n nodes and m edges, where
A ∈ {0, 1}n×n is the adjacency matrix, and X ∈ Rn×d is the node feature matrix with a node feature
dimension of d. In graph classification, we are given a set of N graphs {Gi}Ni=1 ⊆ G and their labels
{Yi}Ni=1 ⊆ Y = Rc from c classes. Then, we train a GNN ρ ◦ h with an encoder h : G → Rh that
learns a meaningful representation hG for each graph G to help predict their labels yG = ρ(hG) with
a downstream classifier ρ : Rh → Y . The representation hG is typically obtained by performing
pooling with a READOUT function on the learned node representations:

hG = READOUT({h(K)
u |u ∈ V }), (6)

where the READOUT is a permutation invariant function (e.g., SUM, MEAN) [107, 115, 70, 107,
19, 68], and h

(K)
u stands for the node representation of u ∈ V at K-th layer that is obtained by

neighbor aggregation:

h(K)
u = σ(WK · a({h(K−1)

v }|v ∈ N (u) ∪ {u})), (7)

where N (u) is the set of neighbors of node u, σ(·) is an activation function, e.g., ReLU, and a(·) is
an aggregation function over neighbors, e.g., MEAN.

Invariant Learning. Invariant learning typically considers a supervised learning setting based on the
dataD = {De}e collected from multiple environments Eall, whereDe = {Ge

i , y
e
i } is the dataset from

environment e ∈ Eall. (Ge
i , y

e
i ) from a single environment e are considered as drawn independently

from an identical distribution Pe. The goal of OOD generalization is to train a GNN ρ ◦ h : G → Y
with data from training environments Dtr = {De}e∈Etr⊆Eall , and generalize well to all (unseen)
environments, i.e., to minimize:

min
ρ,h

max
e∈Eall

Re(ρ ◦ h), (8)

where Re is the empirical risk under environment e [97, 76, 4]. More details can be referred in [2].

B.2 Detailed related work

GNN Explainability. Works in GNN explainability aim to find a subgraph of the input graph
as the explanation for the prediction of a GNN model [116, 122]. Although some may leverage
causality in explanation generation [53], they mostly focus on understanding the predictions of
GNNs in a post-hoc manner instead of OOD generalization. Recently there are two works aiming to
provide robust explanations under distribution shifts, i.e., GIB [120] and DIR [104], and both of them
focus on tackling FIIF spurious correlations (Assumption C.2). The theoretical guarantees of GIB
follows the theory of information bottleneck [95], while GIB can not solve PIIF spurious correlations
(Assumption C.3). As both FIIF and PIIF widely exist in realistic scenarios, failing to solve either of
them could result in severe performance degradation in practice [4, 2, 5, 71]. While for DIR, though
as a generalization of Chang et al. [14] to graphs, can not provide any theoretical guarantees under
FIIF spurious correlations as shown in Appendix D.4, nor under PIIF spurious correlations.

20



GNN Extrapolation. Recently there is a surge of attention in improving the extrapolation abil-
ity of GNNs and apply them to various applications, such as mathematical reasoning [84, 85],
physics [6, 83], and graph algorithms [94, 98, 108, 105]. Xu et al. [110] study the neural network
extrapolation ability from a geometrical perspective. Han et al. [36] improve OOD drug discovery
by mitigating the overconfident misprediction issue. Knyazev et al. [46], Yehudai et al. [113] focus
on the extrapolation of GNNs in terms of graph sizes, while making additional assumptions on
the knowledge about ground truth attentions and access to test inputs. Bevilacqua et al. [11] study
the graph size extrapolation problem of GNNs through a causal lens, while the induced invariance
principle is built upon assumptions on the specific family of graphs. Different from these works, we
consider the GNN extrapolation as a causal problem, establish generic SCMs that are compatible
with several graph generation models, as well as, more importantly, different types of distribution
shifts. Hence, the induced the invariance principle and provable algorithms built upon the SCMs in
our work can generalize to multiple graph families and distribution shifts.

Additionally, Wu et al. [103] propose causal models as well as specialized objectives to extrapolate
nodes with different neighbors. However, their formulation is limited to node classification task and
specific spurious correlation type. In contrast, the induced invariance principle in Wu et al. [103],
can be seen as a extension of CIGA for node classification, where we cab identify an invariant
subgraph from the K-hop neighbor graph of each node, and making predictions based on it, i.e.,
Y ⊥⊥ E|Gego

c ⊆ Gego
u for node u. We leave specific formulation and implementation to future works.

Causality and OOD Generalization. Causality comes to the stage for demystifying and improving
the huge success of machine learning algorithms to further advances [75, 86, 87]. One of the most
widely applied concept from causality is the Independent Causal Mechanism (ICM) that assumes
conditional distribution of each variable given its causes (i.e., its mechanism) does not inform or
influence the other conditional distributions [74, 77]. The invariance principle is also induced from
the ICM assumption. Once proper assumptions about the underlying data generation process via
Structural Causal Models (SCM) are established, it is promising to apply the invariance principle
to machine learning models for finding an invariant representation about the causal relationship
between the underlying causes and the label [76, 4]. Consequently, models built upon the invariant
representation can generalize to unseen environments or domains with guaranteed performance [76,
79, 4, 81, 10, 48, 34, 49, 23, 2]. The arguably first formulation of invariance principle was introduced
by Peters et al. [76]. Arjovsky et al. [4] propose a novel formulation of learning causal invariance in
representation learning, i.e., IRM, show how it connects with existing areas such as distributional
robust optimization [72] and generalization [123], and prove its effectiveness in addressing PIIF
spurious correlations (Assumption C.3). However, in practice, both PIIF and FIIF (Assumption C.2)
can appear in data, while IRM can fail in these cases [5, 71]. Ahuja et al. [2] then propose to add
information bottleneck criteria into the IRM formulation to address the issue. However, their results
are restricted to linear regime and also require environment partitions to distinguish the sources of
distribution shifts. Recently, Creager et al. [23] and Lin et al. [55] propose new OOD objectives to
relieve the needs for environment partitions, but limited to PIIF spurious types and linear regime.
Besides, Lin et al. [54] identify the overfitting problem as a key challenge when applying IRM on
large neural networks. Zhou et al. [127] propose to alleviate this problem by imposing sparsity
constrain.

In parallel invariant learning approaches, Sagawa* et al. [81] propose to regularize the worst group
in group distributionally robust optimization (GroupDro). Zhang et al. [124] propose a contrastive
approach to tackle GroupDro when the group partitions are not available. However, minimizing the
gap between worst group risk and averaged risk can not yield a OOD generalizable predictors in our
circumstances. Besides, traditional approaches to tackle OOD generalization also include Domain
Adaption, Transfer Learning and Domain Generalization[79, 21, 31, 93, 52, 27, 61, 100], which
aim to learn the class conditional invariant representation shared across source domain and target
domain. However, they all require a stronger assumption on the availability of target domain data or
the ground truth predictors [34, 2], hence are not able to yield predictors with OOD generalization
guarantees. We refer interested readers to Pearl [75], Schölkopf [86], Schölkopf et al. [87] for an
in-depth understanding, and Gulrajani and Lopez-Paz [34], Ahuja et al. [2] for a thorough overview.
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B.3 More discussions on connections of CIGA with existing work

Although primarily serving for graph OOD generalization problem, our theory complements the
identifiability study on graphs through contrastive learning, and aligns with the discoveries in the
image domain that contrastive learning learns to isolate the content (C) and style (S) [128, 50].
Moreover, our results also partially explain the success of graph contrastive learning [118, 60, 119],
where GNNs may implicitly learn to identify the underlying invariant subgraphs for prediction.

On expressivity of graph encoder in CIGA. The expressivity of CIGA is essentially constrained
by the encoders embedded for learning graph representations. During isolating Gc from G, if the
encoder can not differentiate two isomorphic graphs Gc and Gc ∪ Gp

s where Gp
s ⊆ Gs, then the

featurizer will fail to identify the underlying invariant subgraph. Moreover, the classifier will also fail
if the encoder can not differentiate two non-isomorphic Gcs from different classes. Thus, adopting
more powerful graph representation encoders into CIGA can improve the OOD generalization.

On CIGA and graph information bottleneck. Under the FIIF assumption on latent interaction, the
independence condition derived from causal model can also be rewritten as Y ⊥⊥ S|C (similar to that
in DIR [104] as they also focus on FIIF), which further implies Y ⊥⊥ S|Ĝc. Hence it is natural to use
Information Bottleneck (IB) objective [95] to solve for Gc:

min
fc,g

RGc
(fc(Ĝc)),

s.t. Gc = argmax
Ĝc=g(G)⊆G

I(Ĝc, Y )− I(Ĝc,G),
(9)

which explains the success of many existing works in finding predictive subgraph through IB [120].
However, the estimation of I(Ĝc, G) is notoriously difficult due to the complexity of graph, which
can lead to unstable convergence as observed in our experiments. In contrast, optimization with
contrastive objective in CIGA as Eq. 5 induces more stable convergence.

On CIGA for node classifications. As the task of node classification can be viewed as graph
classification based on the ego-graphs of a node, our analysis and discoveries can generalize to node
classification. More specifically, the invariance principle for node classification can be implemented
by identifying an invariant subgraph from the K-hop neighbor graph of each node, and making
predictions based on it, i.e., Y ⊥⊥ E|Gego

c ⊆ Gego
u for node u [103].

B.4 Discussions on limitations of CIGA and future directions

Better graph generation modeling. Compared to Bevilacqua et al. [11], we do not specify a specific
graph family in the SCM for graph generation process. Since our focus is to describe the potential
distribution shifts with SCMs, in Assumption 2.1, we aim to build a SCM that is compatible to many
graph generation processes [89, 57, 117, 59]. However, it is often the case that practitioners have
certain inductive knowledge about the graph generation process, which may imply useful leads and
invariance in modeling the generation process [111, 30, 56]. In Appendix C.1, we provide an example
about incorporating the graphon [57] knowledge into the SCMs, which derives similar solutions as in
the literature [113, 11]. Therefore, we believe it is promising to leverage more additional knowledge
for more precise graph generation modeling and better OOD generalization on graphs.

Better contrastive sampling. Typical contrastive or graph contrastive learning approaches leverage
augmentation techniques as well as sophisticated sampling strategies during the positive or negative
pairs selection [20, 82, 96, 118, 119]. A better augmentation or sampling strategy can benefit the
OOD generalization in general as shown by Kügelgen et al. [50] and Zhang et al. [124]. Since our
implementation of CIGA in this work aims to verify the theoretical findings, we do not apply sophis-
ticated augmentation or sampling during the sampling while simply using the supervised contrastive
approach [42]. Nevertheless, it is promising to leverage better augmentation and contrastive strategy
to improve the generalization ability in CIGA [121].

More sophisticated architectures/parameter tunning. The CIGA framework introduced in Sec. 3
can have multiple implementations. We choose interpretable architectures in our experiments for the
purpose of concept verification. Essentially, different architectures can have different advantages and
limitations. For the interpretable GNNs used in our experiments, it can provide interpretability for the
results (as shown in Appendix G.5), but still requires more training time (as shown in Appendix G.4).
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Therefore, it may not be applicable to some resource-limited scenarios such as Edge-AI. Besides,
the approximation may also be limited to the chosen architectures. More sophisticated architectures
can be incorporated, such as identifying and disentangling Gc at the latent space [86, 87]. Moreover,
as shown in Appendix G.4, CIGA still requires certain additional tunning efforts for the objectives.
Hence we believe it is also a promising future direction to reduce the parameter tunning by leveraging
better optimization techiniques [88, 18]

C Full Structural Causal Models on Graph Generation

Due to the space constraints in the main paper, we make some simplifications when giving the SCMs
on the graph generation process. Hence in this section, supplementary to the graph generation process
in Sec. 2.2, we provide full SCMs on the graph generation process in this section as shown in Fig. 6.
Formal descriptions are given as Assumptions C.1, C.2, C.3, C.4.

To begin with, we take a latent-variable model perspective on the graph generation process and
assume that the graph is generated through a mapping fgen : Z → G, where Z ⊆ Rn is the latent
space and G = ∪∞N=1{0, 1}N × RN×d is the graph space. Let E denote environments. Following
previous works [50, 2], we partition the latent variable from Z into an invariant part C ∈ C = Rnc

and a varying part S ∈ S = Rns , s.t., n = nc + ns, according to whether they are affected by E.
Similarly in images, C and S can represent content and style while E can refer to the locations
where the images are taken [7, 125, 50]. While in graphs, C can be the latent variable that controls
the generation of functional groups in a molecule, which can not be affected by the changes of
environments, such as species (or scaffolds), experimental environment for examining the chemical
property (or assays) [40]. On the contrary, the other latent variable S inherits environment-specific
information thus can further affect the finally generated graphs. Besides, C and S can have multiple
types of interactions at the latent space with environments E and labels Y , which will generate
different types of spurious correlations [2].

Assumption C.1 (Graph generation SCM).

(Zc
A, Z

c
X) := f (A,X)c

gen (C), Gc := fGc
gen (Z

c
A, Z

c
X),

(Zs
A, Z

s
X) := f (A,X)s

gen (S), Gs := fGs
gen (Z

s
A, Z

s
X),

G := fG
gen(Gc, Gs).

Specifically, the graph generation process is shown as Fig. 6(a). The generation mapping fgen is
decomposed into f

(A,X)c

gen ,fGc
gen , f (A,X)s

gen ,fGs
gen and fG

gen to control the generation of (Zc
A, Z

c
X), Gc,

(Zs
A, Z

s
X), Gs, and G, respectively. Given the variable partitions C and S at the latent space Z , they

control the generation of the adjacency matrix and features for the invariant subgraph Gc and spurious
subgraph Gs through two pairs of latent variables (Zc

A, Z
c
X) and (Zs

A, Z
s
X), respectively. Zc

A and
Zs
A will control the structure-level properties in the generated graphs, such as degrees, sizes, and

subgraph densities. While Zc
X and Zs

X mainly control the attribute-level properties in the generated
graphs, such as homophily. Then, Gc and Gs are entangled into the observed graph G through fG

gen.
It can be a simply JOIN of a Gc with one or multiple Gs, or more complex generation processes
controlled by the latent variables [89, 57, 117, 59, 11]. Note that since our focus is to describe the
potential distribution shifts with SCMs, in Assumption 2.1, we aim to build a SCM that is compatible
to many graph generation processes [89, 57, 117, 59]. In fact, in Appendix C.1, we showcase how our
SCMs can generalize to specific graph families studied in the literature [11, 104, 103], when given
more additional knowledge about the graph generation process. Nevertheless, we believe integrating
specific graph generation processes and their implications to improving OOD generalization on
graphs would be a promising future direction, as discussed in Appendix B.4.

Due to the correlation between E and G, graphs collected from different environments can have
different structure-level properties such as degrees, graph sizes, and subgraph densities, as well as
feature-level properties such as homophily [46, 113, 11, 17]. Meanwhile, all of them can spuriously
correlated with the labels depending on how the underlying latent variables are interacted with each
others. The interaction types can be further divided into two axiom types FIIF and PIIF, as well
as the mixed one MIIF. Previous OOD methods such as GIB [120] and DIR [104] mainly focus
on FIIF case, while others such as IRM [4] mainly focuses on the PIIF case. Evidences show that
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Figure 6: Full SCMs on Graph Distribution Shifts.

failing to model either of them when developing the OOD objectives can have serious performance
degenerations in practice [5, 71]. That is why we aim to model both of them in our solution.

Assumption C.2 (FIIF SCM).

Y := finv(C), S := fspu(C,E), G := fgen(C, S).

Assumption C.3 (PIIF SCM).

Y := finv(C), S := fspu(Y,E), G := fgen(C, S).

Assumption C.4 (MIIF SCM).

Y := finv(C), S1 := fspu(C,E), S2 := fspu(Y,E), G := fgen(C, S1, S2).

As for the interactions between C and S at the latent space, we categorize the interaction modes into
Fully Informative Invariant Features (FIIF, Fig. 6(b)), and Partially Informative Invariant Features
(PIIF, Fig. 6(c)), depending on whether the latent invariant part C is fully informative about label
Y , i.e., (S,E) ⊥⊥ Y |C. It is also possible that FIIF and PIIF are entangled into a Mixed Informative
Invariant Features (MIIF,Fig. 6(d)). We follow Arjovsky et al. [4], Ahuja et al. [2] to formulate the
SCMs for FIIF and PIIF, where we omit noises for simplicity [74, 77]. Since MIIF is built upon FIIF
and PIIF, we will focus on the axiom interaction modes (FIIF and PIIF) in this paper, while most of
our discussions can be extended to MIIF or more complex interactions built upon FIIF and PIIF.

Among all of the interaction modes, fgen corresponds to the graph generation process in Assump-
tion C.1. fspu is the mechanism describing how S is affected by C and E at the latent space. In
FIIF, S is directly controlled by C while in PIIF, indirectly controlled by C through Y , which can
exhibit different behaviors in practice [2, 71]. Additionally, in MIIF, S is further partitioned into S1

and S2 depending on whether it is directly or indirectly controlled by C, respectively. Moreover,
finv : C → Y indicates the labeling process, which assigns labels Y for the corresponding G merely
based on C. Consequently, C is better clustered than S when given Y [13, 15, 86, 87], which also
serves as the necessary separation assumption for a classification task [69, 16, 65].

Assumption C.5 (Latent Separability). H(C|Y ) ≤ H(S|Y ).

C.1 Discussions on specific cases of the SCMs

Although our primary focus in this work is to characterize general graph distribution shifts that could
happen in practice without any additional knowledge about the underlying graph family, and derive
the corresponding solutions, our SCMs (Fig. 6) can generalize to specific cases studied in previous
works, when incorporating more inductive biases about the underlying graph family [11, 104, 103].
Specifically, we illustrate the specialized SCMs in Fig. 7 for the SCM studied in [11] which assumes
the graphs are generated following a graphon model [57].

When with the additional knowledge about the underlying graph generative model, the graph genera-
tion SCM (Fig. 6(a)) and the FIIF SCM (Fig. 6(b)) together generalizes to the graphon SCM studied
in [11]. We now give a brief description in the below.
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Figure 7: Specialized graph generation SCMs when incorporating additional knowledge.

Specifically, shown as in Fig. 7(a), C now is instantiated as a graphon model CW ∼ P(CW ), where
CW : [0, 1]2 → [0, 1] is a random symmetric measurable function sampled from the set of all
symmetric measurable functions [57]. Besides, the label Y is determined according to CW . Then,
CW will further control the generation of the adjcency matrix Gc = Ac through graphon generative
process:

Ac
u,v := I(Zu,v > CW (Uu, Uv)), ∀u, v ∈ V,

where Zu,v is an independent uniform noises on [0, 1] for each possible edge (u, v) in the graph.
Bascially, Z and U are inherited from the graphon SCM as Fig. 7(c).

On the other hand, as S does not imply any information about Y in this case, it resembles the FIIF
SCM (Fig. 6(b)). In other words, (S,E) ⊥⊥ Y |C still holds. Moreover, the node attributes Gs = Xs

are generated jointly influenced by the environment E and the graphon CW through S:

Xv := fs
gen(S), S := fspu(E,CW ),

which resembles the attribute generation in Fig. 7(c).

Then, both Gc and Gs are concatenated together. In a simplistic case intuitively, we can regard Gc

only contains the edges in G and Gs only contains the node attributes. Since the graphon model
mainly controls the edge connection, the edge connection patterns, e.g., motif appearance frequency
or subgraph densities, acts as a informative indicator for the label Y . In contrast, the node attributes
and its numbers would be affected by the environments. A GNN model is prone to the changes
of the environments if it overfits to some spurious patterns about the graph sizes or the attributes.
While if the GNN model can leverage the connection patterns to make predictions, it remain invariant
to the changes of environments, or the spurious patterns such as graph sizes and node attributes,
which resembles the solutions derived in [113, 11]. Besides, it also partially explains why CIGA can
generalize to OOD graphs studied in these works [113, 11].

In addition to the graphon SCM, essentially, the SCM studied in [104] resembles the FIIF SCM, and
that of [103] resembles PIIF SCM, which also serves as partial evidence for the superiority OOD
generalization performances of CIGA.

D More Details about Failure Case Studies in Sec. 2.3

In this section, we provide details on failure case studies in Sec. 2.3. We first elaborate the empirical
evaluation setting where we construct a synthetic graph datasets to probe the behaviors of existing
methods in OOD generalization on graphs.

D.1 More empirical details about failure case study in Sec. 2.3

To begin with, we construct 3-class synthetic datasets based on BAMotif [58] and follow Wu et al.
[104] to inject spurious correlations between motif graph and base graph during the generation. In
this graph classification task, the model needs to tell which motif the graph contains, e.g., “House”
or “Cycle” motif, as shown in Fig. 8. We inject the distribution shifts in the training data while
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keeping the test data and validation data without the biases. For structure-level shifts, we introduce
the artificial bias based on FIIF, where the motif and the base graph are spuriously correlated with a
probability of various bias. For mixed shifts, we additionally introduced attribute-level shifts based
on FIIF, where all of the node features are spuriously correlated with a probability of various bias.
The number of training graphs is 600 for each class and the number of graphs in validation and test
set is 200 for each class. More construction details are given in Appendix G.

For the GNN encoders, by default, we use 3-layer GCN [45] with mean readout, a hidden dimension
of 64, and JK jump connections [106] at the last layer. During training, we use a batch size of 32,
learning rate of 1e−3 with Adam optimizer [43], and batch normalization between hidden layers [39].
Meanwhile, to stabilize the training, we also use dropout [91] of 0.1 and early stop the training when
the validation accuracy does not increase till 5 epoch after first 20 epochs. All of the experiments are
repeated 5 times, and the mean accuracy as well as variance are reported and plotted. When using
IRM objective [4], as the environment partitions are not available, we generate 2 environments with
random partitions.

D.2 More discussions about failure case study in Sec. 2.3

Training Data Testing Data

“House”

“House”

“Cycle”

Figure 8: Failure cases of existing methods. GNNs
are required to classify whether the graph contains
a “house” or “cycle”, where the colors represent
node features. However, distribution shifts in the
training exists at both structure level (From left to
right: “house” mostly co-occur with a hexagon),
attribute level (From upper to lower: graphs nodes
are mostly green colored if they contain “house”,
or blued colored if they contain “cycle”), and graph
sizes, making GNNs hard to capture the invariance.
ERM can fail for leveraging the shortcuts and pre-
dict graphs that have a hexagon or have mostly
green nodes as “house”. IRM can fail when test
data is not sufficiently supported by the training
data.

In Fig. 9, 10, 11, 12, we investigate whether
existing training objectives (ERM and IRM),
adding more message passing, as well as using
expressive GNNs, can improve the OOD gener-
alization ability on graphs. Here we also provide
a additional discussion in complementary to the
discussions on OOD generalization performance
of ERM and IRM objectives in Sec. 2.3.

Can better architectures improve OOD gen-
eralization of GNNs?

Adding more message passing turns. It is a
common practice in GNNs to denoise the signals
by aggregating more neighbors with higher lay-
ers, or enhance the expressive power with more
powerful readout functions [106, 107, 112]. Ag-
gregating neighbor information with more layers
to denoise the input signal, or enhancing the ex-
pressivity with more powerful readout functions,
are two common choices in GNNs to improve
the generalization ability [106, 51, 107, 112].
However, in the experiments next, we empir-
ically found that GCNs with more layers and
more powerful readout operations are still sensi-
tive to distribution shifts. In particular, stacking
more layers helps denoising certain shifts, while
the OOD performance would drop more sharply when the bias increases. Intuitively, if the spurious
features from nodes cannot be eliminated by the denoising property of a deeper GNN, they would
spread among the whole graph more widely, which in turn leads to stronger spurious correlations.
Besides, the spurious correlations would be more difficult to be disentangled if there are distribution
shifts at both structure-level and attribute-level. Since the node representations from hidden layers
can also encode graph topology features [107], distribution shifts introduced through Zs

A and Zs
X

will doubly mix at the learned features. In the worst case, the information about Zc
A and Zc

X could
be partially covered by or even replaced by Zs

A and Zs
X . This will make OOD generalization of

message passing GNNs trained through ERM much more difficult or even impossible. Besides, as
the node representations of 1 ≤ i ≤ k-th layer can also encode graph topology features [107], which,
if spuriously correlated with labels through Zs

A and entangled with part of invariant node features,
i.e., Zc

X , in the worst case, can greatly improve the difficulty or even make the OOD generalization
impossible for neighbor aggregation GNNs trained with ERM.

Using more expressive GNNs. Previous results on the expressivity of GNNs show that GNNs are
limited to distinguish isomorphic graphs at most as 1-WL/2-WL test can distinguish [107]. After
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that, many follow-up variants are proposed to improve the expressivity of GNNs [68]. However,
if the labels are spuriously correlated with certain subgraphs, even the GNN has high expressivity
can still be prone to distribution shifts. In a idealistic case, when classifying a graph with a highly
expressive GNN, it reduces to the linear or discrete feature case on the Euclidean regime. In this case,
there exists many evidences showing that neural networks can fail to generalize to OOD data without
a proper objective [7, 24, 4, 81, 10, 49, 23, 48, 2]. Empirically, we use k-GNNs [66] to verify the
intuition and observe similar failures for this provably more expressive GNN as basic GNN variants.

D.3 More empirical results about failure case study in Sec. 2.3
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Figure 9: Failure of existing methods on SPMotif with FIIF attribute shifts.

0.4 0.5 0.6 0.7 0.8 0.9
Data Biases

35

40

45

50

55

60

65

Ac
cu

ra
cy

Struc-ERM
Mixed-ERM
Struc-IRM
Mixed-IRM

(a) Failures of training objectives.

0.4 0.5 0.6 0.7 0.8 0.9
Data Biases

30

35

40

45

50

55

60

65

Ac
cu

ra
cy

1-Layer
3-Layer
5-Layer
7-Layer

(b) Failures of deeper GNNs.

0.4 0.5 0.6 0.7 0.8 0.9
Data Biases

30

35

40

45

50

55

60

65

70

Ac
cu

ra
cy

Struc-GCN
Mixed-GCN
Struc-kGNN
Mixed-kGNN

(c) Failures of expressive GNNs.

Figure 10: Failure of existing methods on SPMotif with FIIF attribute shifts and graph size shifts.
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Figure 11: Failure of existing methods on SPMotif with PIIF attribute shifts.
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Figure 12: Failure of existing methods on SPMotif PIIF attribute shifts with graph size shifts.

To explore the behaviors of aforementioned methods against complicated distribution shifts on graphs,
we first modify construction method in Wu et al. [104] to construct dataset for Fig. 9, where only
FIIF structure-level spurious correlations are injected. Then we also inject FIIF attribute-level shifts,
by setting the node attributes to constant vectors which is spuriously correlated with the labels.
Furthermore, in Fig. 10, graph size shifts are added, which is exactly the SPMotif datasets used in
DIR [104]. Besides, in Fig. 11, we can also change the FIIF attribute-level shifts to PIIF attribute-
level shifts, where we flip the labels by a probability of 5% and let the flipped label to be spuriously
correlated with the node features, following the PIIF SCM in Fig. 6. Graph size shifts can also be
injected in this case, shown as Fig. 12. Next, we summarize our findings from the experiments.

Observation I: All existing methods are sensitive to distribution shifts. From the Fig. 9, 10, 11, 12,
we can observe that all GNNs are sensitive to distribution shifts. As the intensity of spurious
correlation grows, GNNs are more likely to overfit to shortcuts presented either in the structure-level
or attribute-level, which is similar to general deep learning models [33].

Observation II: Higher variance also indicates unstable OOD performance. Although GNNs
show certain robustness against single distribution shifts, e.g., performances do not decrease sharply
at the beginning in Fig. 9, when the spurious correlation grows stronger, the OOD performance
become more unstable, e.g., higher variance. The reason is that, GNNs sometimes can directly
learn about the desired information at some random initializations, since the task is relatively simple
compared to reality. Hence the performance will be highly sensitive to the quality of initialized points
at the beginning. Consequently, the performances from multiple runs would exhibit high variance.
However, when the task becomes more difficult, GNNs will consistently be prone to distribution
shifts, and the variance will be smaller, as shown in experiments (Sec. 4).

Observation III: Entangling more distribution shifts can degenerate more GNN performance.
As implied by the graph generation SCMs in Fig. 6, distribution shifts can happen at both structure-
level and attribute-level, and each of them can have different type of spurious correlation with the label.
In Fig. 9, we can find that, when the attribute-level distribution shifts are mixed, the performance
will be worse and more unstable. When the graph size shifts are mixed, this phenomenon will be
more obvious, as shown in Fig. 10. This phenomenon also verifies the observations in Knyazev et al.
[46] that attention mechanism in GNN is also sensitive to graph size shifts and can hardly learn the
desired attention distributions without further guidance. Moreover, when the structure-level and
attribute-level shifts have different spurious correlation types, i.e., when FIIF structure-level shifts
and PIIF attribute-level shifts are both presented, the performance drop will be more serious, by
comparing Fig. 9 to Fig. 11, as well as Fig. 10 to Fig. 12.

Observation IV: Using more powerful architectures can not improve the OOD performance.
From the sub-figures (b) and (c) in Fig. 9, 10, 11, 12, we can also observe that neither adding more
message passing turns nor using more expressive GNN architectures can be immune to distribution
shifts. On the contrary, they also exhibit similar behaviors like basic GNN architectures. Specifically,
adding more message passing runs show certain robustness against distribution shifts since they
are more likely to learn the desired information during the optimization [109]. However, when the
intensity of spurious correlation grows stronger, deeper GNNs are more likely to overfit to shortcuts
hence their performances will drop more sharply. On the other hand, using provably more expressive
GNN architectures can not improve the OOD performance, either. In Fig. 9, 10, 11, 12 we use 1-2-3-
GNN following the algorithm of k-GNNs which is provably more expressive than 2-WL test [66].
When there are no graph size shifts, k-GNNs will have higher performance at the beginning. When
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there are graph size shifts, k-GNNs will have a lower initial performance at the beginning. Then, as
the spurious strength grows, k-GNNs can suddenly become seriously unstable, though k-GNNs can
have higher averaged performance, which reflects unsatisfactory OOD performance as Observation II
implies. When the intensity of spurious correlations grows even stronger, similar to deeper GNNs,
OOD performances of k-GNNs will be more unstable and go down to similar level as that of normal
GNN architectures. Hence, it calls for better optimization objectives as well as a suitable architectures
to help improve the OOD generalization performance.

Beyond the empirical studies in previous section, we aim to accompany more formal discussions for
explaining the failures of existing optimization objectives and architectures in the next sections.

D.4 Theoretical discussions for failure case study in Sec. 2.3

A motivating example. To begin with, we follow Ahuja et al. [2] to introduce a formal example on
the failures of GNNs optimized with ERM or IRM [97, 4] via a linear binary classification problem:
Definition D.1 (Linear classification structural equation model (FIIF)).

Y := (w∗
inv · C)⊕N, N ∼ Ber(q), N ⊥⊥ (C, S),

X ← S(C, S),

where w∗
inv ∈ Rnc with ∥w∗

inv∥ = 1 is the labeling hyperplane, C ∈ Rnc , S ∈ Rns are the
corresponding invariant and varying latent variables, N is Bernoulli binary noise with a parameter of
q and identical across all environments, ⊕ is the XOR operator, S is invertible.

Given data generation process as Assumption C.1, and latent space interaction as Assumption C.2 or
C.3, and strictly separable invariant features 2.4, consider a k-layer linearized GNN ρ ◦ h using mean
as READOUT for binary graph classification, if ∪e∈Ete supp(Pe) ̸⊆ ∪e∈Etr supp(Pe):

(i) For graphs features generated as Definition D.1, ρ ◦ h optimized with ERM or IRM will fail
to generalize OOD (Eq. 8) almost surely;

(ii) For graphs with more than two nodes, globally same node features generated as Defini-
tion D.1, and graph labels that are the same as global node labels, ρ ◦h optimized with ERM
or IRM will fail to generalize OOD (Eq. 8) almost surely;

For graph classification, if the number of nodes is fixed to one, it covers the linear classification as
above. When ∪e∈Ete supp(Pe) ̸⊆ ∪e∈Etr supp(Pe), it implies the S from training environments Etr does
not cover S from testing environments, while C can be covered. Moreover, the condition of strictly
separable training data now can be formulated as minC∈∪e∈Etr (C⊆Ge) sgn(w∗

inv · C)(w∗
inv · C) > 0.

Recall that ERM trains the model by minimizing the empirical risk (e.g., 0-1 loss) over all training
data, and IRM formulates OOD generalization as:

min
θ,fc

1

|Etr|
∑
e∈Etr

Re(ρ ◦ h)

s.t. ρ ∈ argmin
ρ̂

Re(ρ̂ ◦ h), ∀e ∈ Etr.
(10)

However, both ERM and IRM can not enable OOD generalization, i.e., finding the ground truth w∗
inv,

following the Theorem 3 from Ahuja et al. [2]:
Theorem D.2 (Insufficiency of ERM and IRM). Suppose each e ∈ Eall follows Definition. D.1, C are
strictly separable, bounded and satisfy the support overlap between Etr and Ete, and S are bounded,
if S does not support the overlap, then both ERM and IRM fail at solving the OOD generalization
problem.

The reason is that, when C from all environments are strictly separable, there can be infinite many
Bayes optimal solutions given training data {Ge, ye}e∈Etr , while there is only one optimal solution
that does not rely on S. Hence, the probability of generalization to OOD (finding the optimal solution)
tends to be 0 in probability.

As for case (ii), when the GNN uses mean readout to classify more than one node graphs, assuming
the graph label is determined by the node label and all of the nodes have the same label that are
determined as Definition D.1, then GNN optimized with ERM and IRM will also fail because of the
same reasons as case (i).
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Discussions on the failures of previous OOD related solutions. First of all, for IRM or similar
objectives [81, 49, 2, 9] that require environment information or non-trivial data partitions, they can
hardly be applied to graphs due to the lack of such information. The reason is that obtaining such
information can be expensive due to the abstraction of graphs. Moreover, as proved in Theorem 5.1
of Rosenfeld et al. [80], when there is not sufficient support overlap between training environments
and testing environments, the IRM or similar objectives can fail catastrophically when being applied
to non-linear regime. The only OOD objective EIIL [23] that does not require environment labels,
also rely on similar assumptions on the support overlap. We also empirically verify their failing
behaviors in our experiments.

Moreover, since part of explainability works also try to find a subset of the inputs for interpretable
prediction robustly against distribution shifts. Here we also provide a discussion for these works. The
first work following this line is INVRAT [14], which develops an information-theoretic objective (we
re-formulate it to suit with OOD generalization problem on graphs):

min
g,fc

max
fs

R(fc ◦ g, Y ) + λh(R(fc ◦ g, Y )−Re(fs ◦ g, Y,E)). (11)

However, it also requires extra environment labels for optimization that are often unavailable in
graphs. Besides, the corresponding assumption on the data generation for guaranteed performance is
essentially PIIF if applied to our case, while it can not provide any theoretical guarantee on FIIF.

We also notice a recent work, DIR [104], as a generalization of INVRAT to graphs while studying
FIIF spurious correlations, that proposes an alternative objective which does not require environment
label:

minEs[R(h, Y |do(S = s))] + λVars({R(h, Y |do(S = s))}). (12)
However, the theoretical justification established for DIR (Theorem 1 to Corollary 1 in Wu et al. [104])
essentially depends on the quality of the generator g which can be prone to spurious correlations.
Thus, DIR can hardly provide any theoretical guarantees when applied to our case, neither for FIIF
nor PIIF. In experiments, we empirically find the unstable and relatively high sensitivity of DIR to
spurious correlations, which verifies our finding. More details about empirical behaviors of DIR can
be found in Appendix G.

In contrast to DIR, GIB [120] that focuses on discovering a informative subgraph for explanation,
essentially can provide theoretical guarantees for FIIF spurious correlations. Theoretically, (we
copy the discussion in Appendix F here to provide an overview of relationships between GIB and
DIR.) Under the FIIF assumption on latent interaction, the independence condition derived from
causal model can also be rewritten as Y ⊥⊥ S|C (similar to that in DIR [104] as they also focus
on FIIF), which further implies Y ⊥⊥ S|Ĝc. Hence it is natural to use Information Bottleneck (IB)
objective [95] to solve for Gc:

min
fc,g

RGc
(fc(Ĝc)),

s.t. Gc = argmax
Ĝc=g(G)⊆G

I(Ĝc, Y )− I(Ĝc,G),
(13)

which explains the success of many existing works in finding predictive subgraph through IB [120].
However, the estimation of I(Ĝc, G) is notoriously difficult due to the complexity of graph, which
can lead to unstable convergence as observed in our experiments. In contrast, optimization with
contrastive objective in CIGA as Eq. 5 induces more stable convergence.

D.5 Challenges of OOD generalization on graphs.

From the aforementioned analysis, we can summarize some key challenges revealed by the failures
of both existing optimization objectives and GNN architectures. In particular, we are facing two main
challenges a) Distribution shifts on graphs are more complicated where different types of spurious
correlations can be entangled via different graph properties; b) Environment labels are usually not
available due to the abstract graph data structure.

E Theory and Discussions

In this section, we provide proofs for propositions and theorems mentioned in the main paper.
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E.1 More discussions on Definition 2.5 for Invariant GNNs

Definition 2.5 is motivated by applying the invariance principle to the established SCMs in Sec. 2.2,
following the literature of invariant learning [76]. In this section, we will present Proposition E.2 and
Proposition E.3 to illustrate how satisfying the minmax objective in Definition E.1 is equivalent to
identifying the underlying invariant subgraph Gc that contains all of the information about causal
factor C in G, under both FIIF and PIIF SCMs (Fig. 2(b) and Fig. 2(c)).

Definition E.1 (Invariant GNN). Given a set of graph datasets {De}e and environments Eall that
follow the same graph generation process in Sec. 2.2, considering a GNN ρ ◦h that has a permutation
invariant graph encoder h : G → Rh and a downstream classifier ρ : Rh → Y , ρ ◦ h is an invariant
GNN if it minimizes the worst case risk among all environments, i.e., minmaxe∈Eall R

e.

First, we show that using the invariant subgraphs Gc to predict Y can satisfy the minmax objective
minmaxe∈Eall R

e in Proposition E.2.

Proposition E.2. Let Gc denote the subgraph space for Gc, given a set of graphs with their labels
D = {G(i), y(i)}Ni=1 and Eall that follow the graph generation process in Sec. 2.2 (or Sec. C), a GNN
ρ ◦ h : Gc → Y that takes Gc of G as the input to predict Y , and solves the following objective can
generalize to OOD graphs, i.e., solving the minmax objective in Def. E.1:

min
θ

RGc(ρ ◦ h),

where RGc
is the empirical risk over {G(i)

c , y(i)}Ni=1 and G
(i)
c is the underlying invariant subgraph

Gc for G(i).

Proof. We establish the proof with independent causal mechanism (ICM) assumption in SCM [74, 77].
In particular, given the data generation assumption, i.e., for both FIIF (Assumption 2.2) and PIIF
(Assumption 2.3), we have: ∀e,

P (Y |C) = P (Y |C,E = e)

P (Y |Gc)
∑
Gc

P (Gc|C) = P (Y |Gc)
∑
Gc

P (Gc|C,E = e)

P (Y |Gc)
∑
Gc

P (Gc|C) = P (Y |Gc, E = e)
∑
Gc

P (Gc|C)

P (Y |Gc) = P (Y |Gc, E = e),

(14)

where we use ICM for the first three equalities. From Eq. 14, it suffices to know P (Y |Gc) is
invariant across different environments. Hence, a GNN predictor ρ ◦ h : Gc → Y optimized
with empirical risk given Gc, essentially minimizes the empirical risk across all environments, i.e.,
minRGc

= minmaxRe. Thus, if ρ ◦ h solves minRGc
, it also solves minmaxRe, hence it elicits a

invariant GNN predictor according to Definition. E.1.

Besides, we show in Proposition E.3 that only using the underlying invariant subgraphs Gc to make
predictions can satisfy the minmax objectives. Or equivalently, a GNN predictor solving the minmax
objective can only rely on the underlying invariant subgraph Gc to predict Y .

Proposition E.3. Given a set of graph datasets {De}e and environments Eall that follow the same
graph generation process in Sec. 2.2, considering a GNN ρ ◦ h that has a permutation invariant
graph encoder h : G → Rh and a downstream classifier ρ : Rh → Y , ρ ◦ h that minimizes the
worst case risk among all environments, i.e., minmaxe∈Eall R

e, can not rely on any part of Gs, i.e.,
ρ ◦ h(G) ⊥⊥ Gs.
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Proof. The proof for Proposition E.3 is straightforward. Assuming that ρ ◦ h(G) ̸⊥⊥ Gs, as E is
influenced by the changes of E through S in both FIIF and PIIF SCMs (Fig. 2(b) and Fig. 2(c)),
then ρ ◦ h(G) ̸⊥⊥ E as well. Consequently, there exists some graph G corresponding to Gc, G

e
s and

ρ◦h(G) = Y under an environment e, such that we can always find a proper e′ to make ρ◦h(G) ̸= Y .
In contrast, the prediction of a GNN that satisfies ρ ◦ h(G) ⊥⊥ Gs remains invariant against arbitrary
changes of environments. Thus, it leads to a contradiction to the condition that minmaxe′∈Eall R

e′ .
Therefore, a GNN that solves minmaxe∈Eall R

e must satisfy ρ ◦ h(G) ⊥⊥ Gs.

Combining Proposition E.2 and Proposition E.3, we are highly motivated to find the underlying
invariant subgraphs to make predictions about the original graphs, which converges to Eq. 1. Tackling
Eq. 1 under the unavailability of E brings us two variants of CIGA solutions, as illustrated in
Section 3.

E.2 Proof for theorem 3.1 (i)

Theorem E.4 (CIGAv1 Induces Invariant GNNs). Given a set of graph datasets {De}e and environ-
ments Eall that follow the same graph generation process in Sec. 2.2, assuming that (a) fG

gen and fGc
gen

in Assumption 2.1 are invertible, (b) samples from each training environment are equally distributed,
i.e.,|Dê| = |Dẽ|, ∀ê, ẽ ∈ Etr, if ∀Gc, |Gc| = sc, then a GNN fc ◦ g solves Eq. 4, is an invariant GNN
(Def. 2.5).

Proof. We re-write the objective as follows:

max
fc,g

I(Ĝc;Y ), s.t. Ĝc ∈ argmax
Ĝc=g(G),|Ĝc|≤sc

I(Ĝc; G̃c|Y ), (15)

where Ĝc = g(G), G̃c = g(G̃) and G̃ ∼ P(G|Y ), i.e., G̃ and G have the same label.

The proof of Theorem E.4 is essentially to show the estimated Ĝc through Eq. 15 is the underlying
Gc, then the maximizer of I(Ĝc;Y ) in Eq. 15 can produce most informative and stable predictions
about Y based on G, hence is an invariant GNN (Definition. E.1).

In the next, we are going to take an information-theoretic view of the first term I(Ĝc;Y ) and the
second term I(Ĝc; G̃c|Y ) to conclude the proof. We begin by introducing the following lemma:

Lemma E.5. Given the same conditions as Thm. E.4, I(Ĝc;Y ) is maximized if and only if
I(Ĝc;Y |E = e) is maximized, ∀e ∈ Etr.

The proof for Lemma E.5 is straightforward, given the condition that samples from each training
environment are equally distributed, i.e.,|Dê| = |Dẽ|, ∀ê, ẽ ∈ Etr. Obviously, Ĝc = Gc is a
maximizer of I(Ĝc;Y ) = I(C;Y ) = H(Y ), since f c

gen : C → Gc is invertible and C causes
Y . However, there might be some subset Gp

s ⊆ Gs from the underlying Gs that entail the same
information about label, i.e., I(Gp

c ∪Gp
s ;Y ) = I(Gc;Y ) where Ĝc = Gp

c ∪Gp
s and Gp

c = Gc ∩ Ĝc.
For FIIF (Assumption 6(b)), it can not happen, otherwise, let Gl

c = Gc −Gp
c , then we have:

I(Ĝc;Y ) = I(Gp
c ∪Gp

s ;Y ) = I(Gp
c ∪Gl

c;Y ) = I(Gc;Y )

I(Gp
c ;Y ) + I(Gp

s ;Y |Gp
c) = I(Gp

c ;Y ) + I(Gl
c;Y |Gp

c)

I(Gp
s ;Y |Gp

c) = I(Gl
c;Y |Gp

c)

H(Y |Gp
c)−H(Y |Gp

c , G
p
s) = H(Y |Gp

c)−H(Y |Gp
c , G

l
c)

H(Y |Gp
c)−H(Y |Gp

c , G
p
s) = H(Y |Gp

c),

H(Y |Gl
c, G

p
s) = 0,

(16)

where the second last equality is due to C → Y and the invertibility of f c
gen : C → Gc in FIIF, i.e.,

H(Y |C) = H(Y |Gc) = H(Y |Gp
c , G

l
c) = 0. However, in PIIF, it can hold since conditioning on

Gp
c , G

p
s can not determine Y , as S ̸⊥⊥ Y |C. In other words, Gs ̸⊥⊥ Y |Gc, which means Gs can imply

some information about Y that is equivalent to I(Gl
c;Y |Gp

c).
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To avoid the presence of spuriously correlated Gs in Ĝc, we will use the second term to eliminate it:

max
fc,g

I(Ĝc; G̃c|Y ),

= H(Ĝc|Y )−H(Ĝc|G̃c, Y ),
(17)

where Ĝc = g(G), G̃c = g(G̃) are two positive samples drawn from the same class (i.e., condition
on the same Y ). Since the all of the training environments are equally distributed, maximizing
I(Ĝc; G̃c|Y ) is essentially maximizing I(Ĝc, E = ê; G̃c, E = ẽ|Y ), ∀ê, ẽ ∈ Etr. Hence, we have:

max
fc,g

I(Ĝc; G̃c|Y ),

= I(Ĝc, E = ê; G̃c, E = ẽ|Y )

= H(Ĝc, E = ê|Y )−H(Ĝc, E = ê|G̃c, E = ẽ, Y ).

(18)

We claim Eq. 18 can eliminate any potential subsets from Gs in the estimated Ĝc.

Gc

Ĝc

Gs

Ĝl
c Ĝp

c
Ĝp

s
Ĝl

s

Figure 13: Illustration of the notation. Gc and
Gs are two disjoint sets. Ĝc may contain certain
subsets from Gc and Gs. The subsets from Gc

and Gs contained in Ĝc are denoted as Ĝp
c and Ĝp

s ,
respectively. While the left subsets in Gc and Gs

are denoted as Ĝl
c and Ĝl

s, respectively.

Otherwise, suppose there are some subsets
Ĝp

s ⊆ Ĝs and G̃p
s ⊆ G̃s contained in the esti-

mated Ĝc, G̃c, where Ĝs, G̃s be the correspond-
ing underlying Gss for Ĝc, G̃c. Let Ĝ∗

c and G̃∗
c

be the ground truth invariant subgraph Gcs of Ĝ
and G̃, Ĝl

c = Ĝ∗
c − Ĝc and G̃l

c = G̃∗
c − G̃c be

the left (un-estimated) subsets from correspond-
ing ground truth Gcs, and Ĝp

c = Ĝ∗
c − Ĝl

c and
G̃p

c = G̃∗
c − G̃l

c be the complement, or equiva-
lently, the partial Ĝ∗

c , G̃
∗
c that are estimated in

Ĝc, G̃c, respectively. We can also define sim-
ilar counterparts for Gs: Ĝp

s , G̃
p
s are the par-

tial Ĝs, G̃ss contained in the estimated Ĝc, G̃c

while Ĝl
s, G̃

l
s are the left subsets Ĝs, G̃s, respec-

tively.

Recall the constraint that |Gc| = sc, hence if Ĝp
c ⊆ Ĝc, then a corresponding Ĝl

c = Ĝ∗
c − Ĝp

c will be
replaced by Ĝp

s in Ĝc. In this case, we have:

H(Ĝc, E = ê|Y ) = H(E = ê|Ĝc, Y ) +H(Ĝc|E = ê, Y )

= H(Ĝp
c ∪ Ĝp

s |E = ê, Y )

= H(Ĝp
c |E = ê, Y ) +H(Ĝp

s |Ĝp
c , E = ê, Y )

(19)

where the second equality is due to E = ê is determined so that H(E = ê|Ĝc, Y ) = 0. Compared
Eq. 19 to that when Ĝc = Ĝ∗

c , we have the entropy change as:

∆H(Ĝc, E = ê|Y ) = H(Ĝc, E = ê|Y )−H(Ĝ∗
c , E = ê|Y ),

= H(Ĝp
s |Ĝp

c , E = ê, Y )−H(Ĝl
c|Ĝp

c , E = ê, Y ).
(20)

Let ϵ = H(Ĝp
s |Ĝp

c , E = ê, Y ). In a idealistic setting, when the noise of the generation process S :=
fspu(Y,E) in PIIF tends to be 0, i.e., ϵ→ 0, S is determined conditioned on E, Y , hence Gs and any
subsets of Gs are all determined. Then, it suffices to know that in Eq. 20, H(Ĝp

s |Ĝp
c , E = ê, Y ) = 0

while H(Ĝl
c|Ĝp

c , E = ê, Y ) > 0 since Ĝl
c can not be determined when given Ĝp

c , E = ê, Y . Thus,
when some subset from Gs is included in Ĝc, it will minimize H(Ĝc, E = ê|Y ).

However in practice, it is usual that ϵ > 0. Therefore, in the next, we will show how ϵ =

H(Ĝp
s |Ĝp

c , E = ê, Y ) can be cancelled thus leading to a smaller H(Ĝc, E = ê|Y ), by consid-
ering the second term H(Ĝc, E = ê|G̃c, E = ẽ, Y ).
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As for H(Ĝc, E = ê|G̃c, E = ẽ, Y ), without loss of generality, we can divide all of the possible
cases into two:

(i) One of Ĝc and G̃c contains some subset of Gs, i.e., Ĝc contains some Ĝp
s ⊆ Ĝs;

(ii) Both Ĝc and G̃c contain some Ĝp
s ⊆ Ĝs and G̃p

s ⊆ G̃s, respectively.

For (i), we have:

H(Ĝc, E = ê|G̃c, E = ẽ, Y ) = H(Ĝp
c , Ĝ

p
s , E = ê|G̃c, E = ẽ, Y )

= H(Ĝp
s |G̃c, E = ẽ, Y, Ĝp

c , E = ê) +H(Ĝp
c , E = ê|G̃c, E = ẽ, Y ),

(21)
Thus, we can write the change of H(Ĝc, E = ê|G̃c, E = ẽ, Y ) between Ĝc = Ĝp

c∪Ĝp
s and Ĝc = Ĝ∗

c
as:

∆H(Ĝc, E = ê|G̃c, E = ẽ, Y ) = H(Ĝc, E = ê|G̃c, E = ẽ, Y )−H(Ĝ∗
c , E = ê|G̃c, E = ẽ, Y ),

= H(Ĝp
s |G̃c, E = ẽ, Y, Ĝp

c , E = ê)

−H(Ĝl
c|G̃c, E = ẽ, Y, Ĝp

c , E = ê).
(22)

Combing ∆H(Ĝc, E = ê|Y ), we have:

∆I(Ĝc, E = ê; G̃c, E = ẽ|Y ) = ∆H(Ĝc, E = ê|Y )−∆H(Ĝc, E = ê|G̃c, E = ẽ, Y )

=
{
H(Ĝp

s |Ĝp
c , E = ê, Y )−H(Ĝp

s |G̃c, E = ẽ, Y, Ĝp
c , E = ê)

}
+

{
−H(Ĝl

c|Ĝp
c , E = ê, Y ) +H(Ĝl

c|G̃c, E = ẽ, Y, Ĝp
c , E = ê)

}
,

= −H(Ĝl
c|Ĝp

c , E = ê, Y ) +H(Ĝl
c|G̃c, E = ẽ, Y, Ĝp

c , E = ê),
(23)

where the last equality is because of the independence of Ĝp
s between G̃c, E = ẽ conditioned on

Y,E = ê. Since conditioning will lower the entropy for both discrete and continuous variables [22,
114], we have:

∆I(Ĝc, E = ê; G̃c, E = ẽ|Y ) < 0, (24)

which implies the existence of Ĝp
s in Ĝc will lower down the second term in Eq. 15 for the case (i).

For (ii), we have:

H(Ĝc, E = ê|G̃c, E = ẽ, Y ) = H(Ĝp
c , Ĝ

p
s , E = ê|G̃p

c , G̃
p
s , E = ẽ, Y )

= H(Ĝp
s |G̃p

c , G̃
p
s , E = ẽ, Y, Ĝp

c , E = ê)

+H(Ĝp
c , E = ê|G̃p

c , G̃
p
s , E = ẽ, Y ),

(25)

Similar to (i), H(Ĝp
s |G̃p

c , G̃
p
s , E = ẽ, Y, Ĝp

c , E = ê) can be cancelled out with H(Ĝp
s |Ĝp

c , E = ê, Y ).
Then, we have:

∆I(Ĝc, E = ê; G̃c, E = ẽ|Y ) = ∆H(Ĝc, E = ê|Y )−∆H(Ĝc, E = ê|G̃c, E = ẽ, Y )

= −H(Ĝl
c|Ĝp

c , E = ê, Y ) +H(Ĝl
c|G̃p

c , G̃
p
s , E = ẽ, Ĝp

c , Y, E = ê).
(26)

Since additionally conditioning on Ĝp
s in H(Ĝl

c, E = ê|G̃p
c , G̃

p
s , E = ẽ, Y ) can not lead to new

information about Ĝl
c, we have:

H(Ĝl
c|G̃p

c , G̃
p
s , E = ẽ, Ĝp

c , Y, E = ê) = H(Ĝl
c|G̃p

c , E = ẽ, Ĝp
c , Y, E = ê)

< H(Ĝl
c|Ĝp

c , Y, E = ê),
(27)

which follows that ∆I(Ĝc, E = ê; G̃c, E = ẽ|Y ) < 0.

To summarize, the ground truth Gc is the only maximizer of the objective (Eq. 15), hence solving for
the objective (Eq. 15) can elicit an invariant GNN.
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E.3 Proof for theorem 3.1 (ii)

Theorem E.6 (CIGAv2 Induces Invariant GNNs). Given a set of graph datasets {De}e and environ-
ments Eall that follow the same graph generation process in Sec. 2.2, assuming that (a) fG

gen and fGc
gen

in Assumption 2.1 are invertible, (b) samples from each training environment are equally distributed,
i.e.,|Dê| = |Dẽ|, ∀ê, ẽ ∈ Etr, a GNN fc ◦ g solves Eq. 4, is an invariant GNN (Def. 2.5).

Proof. We re-write the objective as follows:

max
fc,g

I(Ĝc;Y ) + I(Ĝs;Y ), s.t. Ĝc ∈ argmax
Ĝc=g(G),G̃c=g(G̃)

I(Ĝc; G̃c|Y ),

I(Ĝs;Y ) ≤ I(Ĝc;Y ), Ĝs = G− g(G).

(28)

where Ĝc = g(G), G̃c = g(G̃) and G̃ ∼ P(G|Y ), i.e., G̃ and G have the same label.

Similar to the proof for Theorem E.4, to prove Theorem E.6 is essentially to show the estimated
Ĝc through Eq. 28 is the underlying Gc, hence the minimizer of Eq. 28 elicits an invariant GNN
predictor (Definition. E.1).

In the next, we also begin with a lemma:

Lemma E.7. Given data generation process as Theorem E.6, for both FIIF and PIIF, we have:

I(C;Y ) ≥ I(S;Y ),

hence I(Gc;Y ) ≥ I(Gs;Y ).

Proof for Lemma E.7. For both FIIF and PIIF, Assumption 2.4 implies that H(C|Y ) ≤ H(S|Y ). It
follows that I(C;Y ) = H(Y )−H(C|Y ) ≥ H(Y )−H(S|Y ) = I(S;Y ). Then, since fGc

gen : C → Gc
is invertible, we have I(Gc;Y ) = I(C;Y ) ≥ I(S;Y ) ≥ I(Gs;Y ).

Given Lemma E.7, we know Ĝc at least contains some subset of the underlying Gc, otherwise the
constraint I(Ĝs;Y ) ≤ I(Ĝc;Y ) will be violated since Gc ⊆ Ĝs in this case.

Assuming there are some subset of Gs contained in Ĝc, without loss of generality, we can divide all
of the possible cases about Ĝc into two:

(i) Ĝc only contains a subset of the underlying Gc;

(ii) Ĝc contains a subset of the underlying Gc as well as part of the underlying Gs;

Gc

Ĝc

Gs

Ĝl
c Ĝp

c
Ĝp

s
Ĝl

s

Figure 14: Illustration of the notation for estimated
Ĝc from G. Gc and Gs are two disjoint sets. Ĝc

may contain certain subsets from Gc and Gs. The
subsets from Gc and Gs contained in Ĝc are de-
noted as Ĝp

c and Ĝp
s , respectively. While the left

subsets in Gc and Gs are denoted as Ĝl
c and Ĝl

s,
respectively. Similar notations are also applicable
for the estimated G̃c from G̃.

Before the discussion, let us inherit the notations
of subsets of Gc, Gs from the proof for Theo-
rem E.4: Let Ĝ∗

c and G̃∗
c be the ground truth

invariant subgraph Gcs of Ĝ and G̃, Ĝl
c = Ĝ∗

c−
Ĝc and G̃l

c = G̃∗
c−G̃c be the left (un-estimated)

subsets from corresponding ground truth Gcs,
and Ĝp

c = Ĝ∗
c − Ĝl

c and G̃p
c = G̃∗

c − G̃l
c be the

complement, or equivalently, the partial Ĝ∗
c , G̃

∗
c

that are estimated in Ĝc, G̃c, respectively. Sim-
ilarly, Ĝp

s , G̃
p
s are the partial Ĝs, G̃ss contained

in the estimated Ĝc, G̃c while Ĝl
s, G̃

l
s are the

left subsets Ĝs, G̃s, respectively.

First of all, case (i) cannot hold because, when
maximizing I(Ĝc; G̃c|Y ), if ∃Ĝl

c = Ĝ∗
c − Ĝc,

as shown in the proof for Theorem E.4, includ-
ing Ĝl

c into Ĝc can always enlarge I(Ĝc; G̃c|Y ),
while not affecting the optimality of I(Ĝs;Y ) +
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I(Ĝc;Y ) by re-distributing Ĝl
c from Ĝs to Ĝc. Consequently, Ĝ∗

c must be included in Ĝc, i.e.,
Ĝ∗

c ⊆ Ĝc.

As for case (ii), recall that, by the condition of equally distributed training samples from each training
environment, maximizing I(Ĝc; G̃c|Y ) is essentially maximizing I(Ĝc, E = ê; G̃c, E = ẽ|Y ),
∀ê, ẽ ∈ Etr, hence, we have:

max
g,fc

I(Ĝc; G̃c|Y ),

= I(Ĝc, E = ê; G̃c, E = ẽ|Y )

= H(Ĝc, E = ê|Y )−H(Ĝc, E = ê|G̃c, E = ẽ, Y ).

(29)

We claim Eq. 29 can eliminate any potential subsets in the estimated Ĝc. Similarly, we have:

H(Ĝc, E = ê|Y ) = H(E = ê|Ĝc, Y ) +H(Ĝc|E = ê, Y )

= H(Ĝ∗
c ∪ Ĝp

s |E = ê, Y )

= H(Ĝ∗
c |E = ê, Y ) +H(Ĝp

s |Ĝ∗
c , E = ê, Y )

= H(Ĝ∗
c |Y ) +H(Ĝp

s |Ĝ∗
c , E = ê, Y )

(30)

where the second equality is due to E = ê is determined. Compared to the case that Ĝc = Ĝ∗
c , we

have:
∆H(Ĝc, E = ê|Y ) = H(Ĝc, E = ê|Y )−H(Ĝ∗

c , E = ê|Y ),

= H(Ĝp
s |Ĝ∗

c , E = ê, Y ).
(31)

Then, as for H(Ĝc, E = ê|G̃c, E = ẽ, Y ), without loss of generality, we can divide all of the possible
cases into two:

(a) Ĝc contains some Ĝp
s ⊆ Ĝs;

(b) Both Ĝc and G̃c contain some Ĝp
s ⊆ Ĝs and G̃p

s ⊆ G̃s, respectively.

For (a), we have:

H(Ĝc, E = ê|G̃c, E = ẽ, Y ) = H(Ĝ∗
c , Ĝ

p
s , E = ê|G̃c, E = ẽ, Y )

= H(Ĝp
s |G̃c, E = ẽ, Y, Ĝ∗

c , E = ê) +H(Ĝ∗
c , E = ê|G̃c, E = ẽ, Y ),

(32)
Similarly to the proof for Theorem E.4, when considering ∆I(Ĝc; G̃c|Y ), the effects of
H(Ĝp

s |G̃c, E = ẽ, Y, Ĝ∗
c , E = ê) is cancelled out by H(Ĝp

s |Ĝ∗
c , E = ê, Y ). Hence, we have:

∆I(Ĝc; G̃c|Y ) = 0.

For (b), we have:

H(Ĝc, E = ê|G̃c, E = ẽ, Y ) = H(G̃∗
c , G̃

p
s , E = ê|G̃∗

c , G̃
p
s , E = ẽ, Y )

= H(Ĝp
s |G̃∗

c , G̃
p
s , E = ẽ, Y, Ĝ∗

c , E = ê)

+H(Ĝ∗
c |G̃∗

c , G̃
p
s , E = ẽ, Y, E = ê),

(33)

Similarly, H(Ĝp
s |G̃∗

c , G̃
p
s , E = ẽ, Y, Ĝ∗

c , E = ê) = 0 can also be cancelled out by H(Ĝp
s |Ĝ∗

c , E =

ê, Y ). Moreover, for H(Ĝ∗
c |G̃∗

c , G̃
p
s , E = ẽ, Y, E = ê), G̃p

s can not bring no additional information
about Ĝ∗

c , when conditioning on G̃∗
c , Y, E = ẽ. Hence, we also have:

∆I(Ĝc; G̃c|Y ) = 0.

To summarize, when maximizing I(Ĝc; G̃c|Y ), including any Ĝp
s ⊆ Ĝ∗

s can not bring additional
benefit while affecting the optimality of I(Ĝs;Y ) + I(Ĝc;Y ). More specifically, when considering
the changes to I(Ĝs;Y ) + I(Ĝc;Y ), ∀Gp

s ⊆ Gs, we have

I(G− Ĝ∗
c −Gp

s ;Y ) ≤ I(G− Ĝ∗
c ;Y ), ∀Gp

s ⊆ Gs,
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while I(Y ; Ĝ∗
c , G

p
s) = I(Y ; Ĝ∗

c) + I(Y ; Ĝp
s |Ĝ∗

c), ∀e ∈ Etr. Consequently,

∆I(Ĝs;Y ) + I(Ĝc;Y ) = −I(Ĝp
s ;Y |Ĝl

s) + I(Ĝp
s ;Y |Ĝ∗

c)

= −I(Ĝp
s ;Y ) + I(Ĝp

s ;Y |Ĝ∗
c) ≤ 0.

(34)

Hence, only the underlying Gc is the solution to Eq. 28, which implies that solving for the objective
(Eq. 28) can elicit an invariant GNN.

F Details of Prototypical CIGA Implementation

In fact, the CIGA framework introduced in Sec. 3 can have multiple implementations. We choose
interpretable architectures in our experiments for the purpose of concept verification. More sophisti-
cated architectures can be incorporated. Experimental results in Sec. 4 also demonstrates that, even
equipped with basic GNN architectures, CIGA already has the excellent OOD generalization ability,
hence it is promising to incorporate more advanced architectures from the prosperous GNN literature.

We now introduce the details of the architectures used in our experiments. Recall that CIGA
decomposes a GNN model for graph classification into two modules, i.e., a featurizer: g : G → Gc
and a classifier fc : Gc → Y . Specifically, for the implementation of Featurizer, we choose one of the
common practices GAE [44] for calculating the sampled weights for each edge. More formally, the
soft mask is predicted through the following equation:

Z = GNN(G) ∈ Rn×h, M = a(Z,A) ∈ Rn×n,

where a calculates the sampling weights for each edge using a MLP: Mij = MLP([Zi, Zj ]).

“Cycle”

“House”

ClassificationInvariant Subgraph Identification

Cycle

House
Ĝc

fcg

Figure 15: Illustration of
Causality Inspired Invariant Graph LeArning
(CIGA): GNNs need to classify graphs based
on the specific motif (“House” or “Cycle”). The
featurizer g will extract an (orange colored)
subgraph Ĝc from each input for the classifier
fc to predict the label. The training objective
of g is implemented in a contrastive strategy
where the distribution of Ĝc at the latent sphere
will be optimized to maximize the intra-class
mutual information. With the identified invariant
subgraph Gc, the predictions made by classifier fc
based on Gc are invariant to distribution shifts;

If a sampling ratio sc is predetermined, we sam-
ple sc of total edges with the largest predicted
weights as a soft estimation of Ĝc. Then, the
estimated Ĝc will be forwarded to the classifier
fc for predicting the labels of the original graph.
Although Theorem E.4 assumes sc is known, in
real applications we do not know the specific sc.
Hence, in experiments, we select sc according to
the validation performance. To thoroughly study
the effects of I(Ĝs;Y ) comparing to CIGAv1,
we stick to using the same sc and sampling pro-
cess for CIGAv2, while CIGAv2 essentially
requires less specific knowledge about ground
truth rc hence achieving better empirical per-
formance. Moreover, once the sampled edges
are determined, the classifier GNN can take ei-
ther the original feature of the input graph or
the learned feature from the featurizer as the
new node attributes for Ĝc. We select the archi-
tecture according to the validation performance
from some random runs.

For the implementation of the information theo-
retic objectives, we will use CIGAv2 for elabo-
ration while the implementation of CIGAv1 can
be obtained via removing the third term from
CIGAv2. Recall that CIGAv2 has the follow-
ing formulation:

max
fc,g

I(Ĝc;Y ) + I(Ĝs;Y ), s.t. Ĝc ∈ argmax
Ĝc=g(G),G̃c=g(G̃)

I(Ĝc; G̃c|Y ),

I(Ĝs;Y ) ≤ I(Ĝc;Y ), Ĝs = G− g(G).

(35)
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where Ĝc = g(G), G̃c = g(G̃) and G̃ ∼ P (G|Y ), i.e., G̃ and G have the same label. In Sec. 3.3, we
introduce a contrastive approximation for I(Ĝc; G̃c|Y ):

I(Ĝc; G̃c|Y ) ≈ E{Ĝc,G̃c}∼Pg(G|Y=Y )

{Gi
c}

M
i=1∼Pg(G|Y≠Y )

log
eϕ(hĜc

,hG̃c
)

eϕ(hĜc
,hG̃c

) +
∑M

i e
ϕ(hĜc

hGi
c
)
, (36)

where positive samples (Ĝc, G̃c) are the extracted subgraphs of graphs that have the same label of
G, negative samples are those with different labels, Pg(G|Y = Y ) is the pushforward distribution
of P(G|Y = Y ) by featurizer g, P(G|Y = Y ) refers to the distribution of G given the label
Y , hĜc

, hG̃c
, hGi

c
are the graph presentations of the estimated subgraphs, and ϕ is the similarity

metric for the graph presentations. As M → ∞, Eq. 36 approximates I(Ĝc; G̃c|Y ) which can
be regarded as a non-parameteric resubstitution entropy estimator via the von Mises-Fisher kernel
density [1, 41, 101].

While for the third term I(Ĝs;Y ) given the constraint I(Ĝs;Y ) ≤ I(Ĝc;Y ), a straightforward
implementation is to imitate the hinge loss:

1

N
RĜs

· I(RĜs
≤ RĜc

), (37)

where N is the number of samples, I is a indicator function that outputs 1 when the interior condition
is satisfied otherwise 0, and RĜs

and RĜc
are the empirical risk vector of the predictions for each

sample based on Ĝs and Ĝc respectively. One can also formulate Eq. 35 from game-theoretic
perspective [14].

Finally, we can derive the specific loss for the optimization of CIGAv2 combining Eq. 36 and Eq. 37:

RĜc
+ αE{Ĝc,G̃c}∼Pg(G|Y=Y )

{Gi
c}

M
i=1∼Pg(G|Y≠Y )

log
eϕ(hĜc

,hG̃c
)

eϕ(hĜc
,hG̃c

) +
∑M

i e
ϕ(hĜc

hGi
c
)

+ β
1

N
RĜs

· I(RĜc
≤ RĜs

),

(38)

where RĜc
, RĜs

are the empirical risk when using Ĝc, Ĝs to predict Y through the classifier.

Typically, we use a additional MLP downstream classifier ρs for Ĝs in the classifier GNN. hĜc
is the

graph representation of Ĝc which can be induced from the GNN encoder either in the featurizer or in
the classifier. α, β are the weights for I(Ĝc; G̃c|Y ) and I(Ĝs;Y ), and ϕ is implemented as cosine
similarity. The optimization loss for CIGAv1 merely contains the first two terms in Eq. 38.

The detailed algorithm for CIGA is given in the Algorithm 1, assuming the hĜc
is obtained via the

graph encoder in fc. Fig. 15 also shows a illustration of the working procedure of CIGA.

G Detailed Experimental Settings

In this section, we provide more details about our experimental settings in Sec. 4, including the dataset
preparation, dataset statistics, implementations of baselines, selection of models and hyperparameters
as well as evaluation protocols.

G.1 Details about the datasets

We provide more details about the motivation and construction method of the datasets that are used in
our experiments. Statistics of the datasets are presented in Table 4.

SPMotif datasets. We construct 3-class synthetic datasets based on BAMotif [116, 58] follow-
ing [104], where the model needs to tell which one of three motifs (House, Cycle, Crane) that the
graph contains. For each dataset, we generate 3000 graphs for each class at the training set, 1000
graphs for each class at the validation set and testing set, respectively. During the construction, we
merely inject the distribution shifts in the training data while keep the testing data and validation
data without the biases. For structure-level shifts (SPMotif-Struc), we introduce the bias based
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Algorithm 1 Pseudo code for the CIGA framework.
Input: Training graphs and labels Dtr = {Gi, Yi}Ni=1; learning rate l; loss weights α, β required
by Eq. 38; number of training epochs e; batch size b;
Randomly initialize parameters of g, fc, ρs;
for i = 1 to e do

Sample a batch of graphs {Gj , Y j}bj=1;
Estimate the invariant subgraph for the batch: {Ĝj

c}bj=1 = g({Gj , Y j}bj=1);
Make predictions based the estimated invariant subgraph: {Ŷ j}bj=1 = fc({Ĝj

c}bj=1);
Calculate the empirical loss RĜc

with {Ŷ j}bj=1;
Fetch the graph representations of invariant subgraphs from fc as {hĜj

c
}bj=1;

Calculate the contrastive loss Rc with Eq. 36, where positive samples and negative samples are
constructed from the batch;
Obtain Ĝs for the batch: {Ĝj

s}bj=1 = {Gj − Ĝj
c}bj=1;

Make predictions based on the Ĝs: {Ŷ j
s }bj=1 = ρs({Ĝj

s}bj=1);
Calculate the empirical loss RĜs

with {Ŷ j
s }bj=1, and weighted as Eq. 37;

Update parameters of g, fc, ρs with respect to RĜc
+ αRc + βRĜs

as Eq. 38;
end for

Table 4: Information about the datasets used in experiments. The number of nodes and edges are
taking average among all graphs. MCC indicates the Matthews correlation coefficient.

DATASETS # TRAINING # VALIDATION # TESTING # CLASSES # NODES # EDGES METRICS

SPMOTIF 9, 000 3, 000 3, 000 3 44.96 65.67 ACC
PROTEINS 511 56 112 2 39.06 145.63 MCC
DD 533 59 118 2 284.32 1, 431.32 MCC
NCI1 1, 942 215 412 2 29.87 64.6 MCC
NCI109 1, 872 207 421 2 29.68 64.26 MCC
SST5 6, 090 1, 186 2, 240 5 19.85 37.70 ACC
TWITTER 3, 238 694 1, 509 3 21.10 40.20 ACC
CMNIST-SP 40, 000 5, 000 15, 000 2 56.90 373.85 ACC
DRUGOOD-ASSAY 34, 179 19, 028 19, 032 2 32.27 70.25 ROC-AUC
DRUGOOD-SCAFFOLD 21, 519 19, 041 19, 048 2 29.95 64.86 ROC-AUC
DRUGOOD-SIZE 36, 597 17, 660 16, 415 2 30.73 66.90 ROC-AUC

on FIIF, where the motif and one of the three base graphs (Tree, Ladder, Wheel) are artificially
(spuriously) correlated with a probability of various biases, and equally correlated with the other
two. Specifically, given a predefined bias b, the probability of a specific motif (e.g., House) and a
specific base graph (Tree) will co-occur is b while for the others is (1− b)/2 (e.g., House-Ladder,
House-Wheel). We use random node features for SPMotif-Struc, in order to study the influences
of structure level shifts. Moreover, to simulate more realistic scenarios where both structure level
and topology level have distribution shifts, we also construct SPMotif-Mixed for mixed distribution
shifts. We additionally introduced FIIF attribute-level shifts based on SPMotif-Struc, where all of the
node features are spuriously correlated with a probability of various biases by setting to the same
number of corresponding labels. Specifically, given a predefined bias b, the probability that all of the
node features of a graph has label y (e.g., y = 0) being set to y (e.g., X = 0) is b while for the others
is (1− b)/2 (e.g., P (X = 1) = P (X = 2) = (1− b)/2). More complex distribution shift mixes
can be studied following our construction approach, which we will leave for future works.

TU datasets. To study the effects of graph sizes shifts, we follow Yehudai et al. [113], Bevilacqua
et al. [11] to study the OOD generalization abilities of various methods on four of TU datasets [67],
i.e., PROTEINS, DD, NCI1, NCI109. Specifically, we use the data splits generated by Yehudai et al.
[113] and use the Matthews correlation coefficient as evaluation metric following [11] due to the
class imbalance in the splits. The splits are generated as follows: Graphs with sizes smaller than the
50-th percentile are assigned to training, while graphs with sizes larger than the 90-th percentile are
assigned to test. A validation set for hyperparameters tuning consists of 10% held out examples from
training. We also provide a detailed statistics about these datasets in table 5.
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Table 5: Detailed statistics of selected TU datasets. Table from Yehudai et al. [113], Bevilacqua et al.
[11].

NCI1 NCI109
ALL SMALLEST 50% LARGEST 10% ALL SMALLEST 50% LARGEST 10%

CLASS A 49.95% 62.30% 19.17% 49.62% 62.04% 21.37%
CLASS B 50.04% 37.69% 80.82% 50.37% 37.95% 78.62%
NUM OF GRAPHS 4110 2157 412 4127 2079 421
AVG GRAPH SIZE 29 20 61 29 20 61

PROTEINS DD
ALL SMALLEST 50% LARGEST 10% ALL SMALLEST 50% LARGEST 10%

CLASS A 59.56% 41.97% 90.17% 58.65% 35.47% 79.66%
CLASS B 40.43% 58.02% 9.82% 41.34% 64.52% 20.33%
NUM OF GRAPHS 1113 567 112 1178 592 118
AVG GRAPH SIZE 39 15 138 284 144 746

Graph-SST datasets. Inspired by the data splits generation for studying distribution shifts on graph
sizes, we split the data curated from sentiment graph data [122], that converts sentiment sentence
classification datasets SST5 and SST-Twitter [90, 26] into graphs, where node features are generated
using BERT [25] and the edges are parsed by a Biaffine parser [32]. Our splits are created according
to the averaged degrees of each graph. Specifically, we assign the graphs as follows: Those that
have smaller or equal than 50-th percentile averaged degree are assigned into training, those that
have averaged degree large than 50-th percentile while smaller than 80-th percentile are assigned to
validation set, and the left are assigned to test set. For SST5 we follow the above process while for
Twitter we conduct the above split in an inversed order to study the OOD generalization ability of
GNNs trained on large degree graphs to small degree graphs.

CMNIST-sp. To study the effects of PIIF shifts, we select the ColoredMnist dataset created in IRM [4].
We convert the ColoredMnist into graphs using super pixel algorithm introduced by Knyazev et al.
[46]. Specifically, the original Mnist dataset are assigned to binary labels where images with digits
0− 4 are assigned to y = 0 and those with digits 5− 9 are assigned to y = 1. Then, y will be flipped
with a probability of 0.25. Thirdly, green and red colors will be respectively assigned to images
with labels 0 and 1 an averaged probability of 0.15 (since we do not have environment splits) for the
training data. While for the validation and testing data the probability is flipped to 0.9.

DrugOOD datasets. To evaluate the OOD performance in realistic scenarios with realistic dis-
tribution shifts, we also include three datasets from DrugOOD benchmark. DrugOOD is a sys-
tematic OOD benchmark for AI-aided drug discovery, focusing on the task of drug target binding
affinity prediction for both macromolecule (protein target) and small-molecule (drug compound).
The molecule data and the notations are curated from realistic ChEMBL database [63]. Compli-
cated distribution shifts can happen on different assays, scaffolds and molecule sizes. In partic-
ular, we select DrugOOD-lbap-core-ic50-assay, DrugOOD-lbap-core-ic50-scaffold, and
DrugOOD-lbap-core-ic50-size, from the task of Ligand Based Affinity Prediction which uses
ic50 measurement type and contains core level annotation noises. For more details, we refer
interested readers to Ji et al. [40].

G.2 Training and Optimization in Experiments

During the experiments, we do not tune the hyperparameters exhaustively while following the
common recipes for optimizing GNNs. Details are as follows.

GNN encoder. For fair comparison, we use the same GNN architecture as graph encoders for all
methods. By default, we use 3-layer GNN with Batch Normalization [39] between layers and JK
residual connections at last layer [106]. For the architectures we use the GCN with mean readout [45]
for all datasets except Proteins where we empirically observe better validation performance with a
GIN and max readout [107], and for DrugOOD datasets where we follow the backbone used in the
paper [40], i.e., 4-layer GIN with sum readout. The hidden dimensions are fixed as 32 for SPMotif,
TU datasets, CMNIST-sp, and 128 for SST5, Twitter and DrugOOD datasets.

Optimization and model selection. By default, we use Adam optimizer [43] with a learning rate of
1e− 3 and a batch size of 32 for all models at all datasets. Except for DrugOOD datasets, we use a

40



batch size of 128 following the original paper [40]. To avoid underfitting, we pretrain models for 20
epochs for all datasets, except for CMNIST and Twitter where we pretrain 5 epochs and for SST5
we pretrain 10 epochs, because of the dataset size and the difficulty of the task. To avoid overfitting,
we also employ an early stopping of 5 epochs according to the validation performance. Meanwhile,
dropout [91] is also adopted for some datasets. Specifically, we use a dropout rate of 0.5 for CMNIST,
SST5, Twitter, DrugOOD-Assay and DurgOOD-Scaffold, 0.1 for DrugOOD-Size according to the
validation performance, and 0.3 for TU datasets following the practice of Bevilacqua et al. [11].

Implementations of baselines. For implementations of the interpretable GNNs, we use the author
released codes [120, 78], where we use the codes provided by the authors6 for DIR c[104] which
is the same as the author released codes. During the implementation, we use the same sc for all
interpretable GNN baselines, chosen from {0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} according
to the validation performances, and set to 0.25 for SPMotif following Wu et al. [104], 0.3 for Proteins
and DD, 0.6 for NCI1, 0.7 for NCI109, 0.8 for CMNIST-sp, 0.5 for SST5 and Twitter, and 0.8 for
DrugOOD datasets, respectively. Empirically, we observe that the optimization process in GIB can
be unstable during its nested optimization for approximating the mutual information of the predicted
subgraph and the input graph. We use a larger batch size of 128 or reduce the nested optimization steps
to be lower than 20 for stabilizing the performance. If the optimization failed due to the instability
during training, we will select the results with best validation accuracy as the final outcomes. Although
SPMotif-Struc is also evaluated in DIR, we find the results are inconsistent to the results reported by
the author, because DIR adopts Last Epoch Model Selection which is different from the claim
that they select models according to the validation performance, i.e., line 264 to line 278
in train/spmotif dir.py from the commit 4b975f9b3962e7820d8449eb4abbb4cc30c1025d
of https://github.com/Wuyxin/DIR-GNN. We select the hyperparamter for the proposed DIR
regularization from {0.01, 0.1, 1, 10} according to the validation performances at the datasets, while
we stick to the authors claimed hyperparameters for the datasets they also experimented with.

For invariant learning, we refer to the implementations in DomainBed [34] for IRM [4], V-Rex [49]
and IB-IRM [2]. Since the environment information is not available, we perform random partitions on
the training data to obtain two equally large environments for these objectives. Moreover, we select
the weights for the corresponding regularization from {0.01, 0.1, 1, 10, 100} for these objectives
according to the validation performances of IRM and stick to it for others, since we empirically
observe that they perform similarly with respect to the regularization weight choice. For EIIL [23],
we use the author released implementations about assigning different samples the weights for being
put in each environment and calculating the IRM loss.

Besides, for CNC [124], we follow the algorithm description to modify the sampling strategy in
supervised contrastive loss [42] based on a pretrained GNN optimized with ERM, and choose the
weight for contrastive loss using the same grid search as for CIGA.

Implementations of CIGA. For fair comparison, CIGA uses the same GNN architecture for GNN
encoders as the baseline methods. We did not do exhaustive hyperparameters tuning for the loss
Eq. 38. By default, we fix the temperature to be 1 in the contrastive loss, and merely search α
from {0.5, 1, 2, 4, 8, 16, 32} and β from {0.5, 1, 2, 4} according to the validation performances. For
CMNIST-sp, we find larger β are required to get rid of intense spurious node features hence we
expand the search range for β to {0.5, 1, 2, 4, 16, 32}, For Graph-SST datasets, we search α from
{0.5, 1, 2, 4} as we empirically find that increasing α does not help increase the performance with
few random runs. Besides, we also have various implementation options for obtaining the features
in Ĝc, for obtaining hĜc

, as well as for obtaining predictions based on Ĝs. By default, we feed the
graph representations of featurizer GNN to the classifier GNN, as well as to the contrastive loss. For
classifying G based on Ĝs, we use a separate MLP downstream classifier in the classifier GNN fc.
The only exception is for the CMNIST-sp dataset where the spurious correlation is stronger than
the invariant signal. Directly feeding the graph representations from the featurizer GNN can easily
overfit to the shortcuts hence we instead feed the original features to the downstream classifier GNN.
There can be more other options, such as using separate graph convolutions on Ĝs or Ĝc, which we
leave for future work.

Evaluation protocol. We run each experiment 10 on TU datasets and 5 times for others where the
random seeds start from 1 to the number of total repeated times. During each run, we select the

6https://anonymous.4open.science/r/DIR/
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model according to the validation performance and report the mean and standard deviation of the
corresponding metrics.

G.3 Software and Hardware

We implement our methods with PyTorch [73] and PyTorch Geometric [29]. We ran our experiments
on Linux Servers with 40 cores Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz, 256 GB Memory,
and Ubuntu 18.04 LTS installed. GPU environments are varied from 4 NVIDIA RTX 2080Ti graphics
cards with CUDA 10.2, 2 NVIDIA RTX 2080Ti and 2 NVIDIA RTX 3090Ti graphics cards with
CUDA 11.3, and NVIDIA TITAN series with CUDA 11.3.

G.4 Additional Analysis

Hyperparameter sensitivity analysis. To examine how sensitive CIGA is to the hyperparamters
α and β for contrastive loss and hinge loss, respectively, under different distribution shifts. We
conduct experiments based on the hardest datasets from each table (i.e., SPMotif-Mixed with the
bias of 0.9, DrugOOD-Scaffold and the NCI109 datasets from Table 1, Table 2, and Table 3,
respectively.) To increase the difficulty, we search for more fine-grained spaces for both parameters,
i.e., {0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8}. During changing the value of β, we will fix the α to a specific
value under which the model has a relatively good performance (but not the best, to fully examine the
robustness of CIGA in practice). During the sensitivity tests, we follow the evaluation protocol as
that used for the main experiments. The results are shown in Fig. 16 and Fig. 17.
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Figure 16: Hyperparameter sensitivity analysis on the coefficient of contrastive loss (α).
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(a) SPMotif-Mixed under bias= 0.9
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(b) DrugOOD-Scaffold with α = 1
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(c) NCI109 with α = 1

Figure 17: Hyperparameter sensitivity analysis on the coefficient of hinge loss (β).

From the results above, we can see that both CIGAv1 and CIGAv2 are robust to different values
of α and β, respectively, across different datasets and distribution shifts. Notably, in Fig. 16, when
the coefficient α for the contrastive loss become too small, the invariance of the identified invariant
subgraphs Ĝc may not be guaranteed, resulting worse performances. Moreover, when α becomes
too large, it may affect the optimization and yield worse performances. In SPMotif datasets, the
worse performances can be observed via the large variances as well. Similarly for β, as shown in
Fig. 17, when β becomes too small, some part from the spurious subgraph may still be contained in
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the estimated invariant subgraphs. While if β becomes too large, there might be part of Ĝc being
eliminated. Although both CIGAv1 and CIGAv2 are robust to the changes of α and β, the intrinsic
difficult optimization in OOD generalization algorithms including the proposed CIGA in our work,
still require a more proper and smooth optimization process [18].

Table 6: Averaged training time (sec.) per epoch of various methods on DrugOOD-Scaffold.

METHODS ERM ASAP GIB DIR IRM EIIL CNC CIGAV1 CIGAV2

RUNNING TIME 8.055 15.578 300.304 106.919 8.73 69.664 9.795 40.065 46.181
OOD PERFORMANCE 68.85 66.19 62.01 63.91 68.69 68.45 67.24 69.04 69.7
AVG. RANK 2 5.5 9 8 3 6 4.5 3.5 3.5

Running time analysis. To examine how much computational overhead is induced by the architecture
and the additional objectives in CIGA, we analyze and compare the averaged training time of different
methods on DrugOOD-Scaffold. Factors that could affect the running time such as GNN backbone,
batch size, and the running devices (NVIDIA RTX 2080Ti, Linux Servers with 40 cores Intel(R)
Xeon(R) Silver 4114 CPU @ 2.20GHz, 256 GB Memory, and Ubuntu 18.04 LTS), are fixed the same
during the testing. The results are shown as in Table. 6. It can be found that CIGA is the only OOD
method that outperforms ERM by a non-trivial margin with a relatively low additional computational
overhead.

Table 7: Performances of different methods on Drug-Assay under single environment OOD general-
ization (i).

METHODS ERM ASAP GIB DIR CIGAV1 CIGAV2 ORACLE (IID)

OOD PERFORMANCE 63.29(2.67) 63.41(0.70) 62.72(0.59) 62.56(0.79) 63.86 (0.57) 64.31 (0.92) 84.71 (1.60)
RANK 5 4 8 9 2 1

Table 8: Performances of different methods on Drug-Assay under single environment OOD general-
ization (ii).

METHODS ERM IRM V-REX EIIL IB-IRM CNC CIGAV1 CIGAV2 ORACLE (IID)

OOD PERFORMANCE 63.29(2.67) 63.25(1.45) 62.18(1.71) 62.95(1.37) 61.95(1.72) 63.61(0.96) 63.86 (0.57) 64.31 (0.92) 84.71 (1.60)
RANK 5 6 10 7 11 3 2 1

Single environment OOD generalization. The theory of invariant learning fundamentally assume
the presence of multiple environments [76, 4]. However in practice, it does not always hold, which
would inevitably fail all of the invariant learning solutions [4, 49, 23, 2], including CIGA.

Nevertheless, to examine how CIGA performs under various realistic scenarios, we conduct an
additional experiment based on DrugOOD-Assay. We select samples that are from the largest assay
group (i.e., the biochemical functionalities of these molecules are tested and reported under the same
experimental setup in the lab) [40]. The results are separated and shown in Table 7 and Table 8.
Besides the baselines, we also show the “Oracle” performances from the main table, to demonstrate
the performance gaps.

From the Table 7 and Table 8, we can see that, both CIGAv1 and CIGAv2 maintain their state-of-the-
art performances even in the single training environment setting. We hypothesize that enforcing the
mutual information between the estimated Ĝc also helps to retain the invariance even under the single
training environment setting. That may partially explain why CNC can bring some improvements.
We believe it is an interesting and promising future direction to develop in-depth understanding and
better solutions under this circumstance.

G.5 Interpretation Visualization

Since we use the interpretable GNN architecture to implement CIGA7, it brings an additional benefit
that provides certain interpretation for the predictions automatically, which may facilitate human
understanding in practice.

7We use the code provided by [64].
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First, we provide some interpretation visualizations in SPMotif-Struc and SPMotif-Mixed datasets,
under the biases of 0.6 and 0.9. Shown in Fig. 18 to Fig. 21, we use pink to color the ground truth
nodes in Gc, and denote the relative attention strength with edge color intensities.

Besides, we also provide some interpretation visualization examples in DrugOOD datasets. Shown in
Fig. 22 to Fig. 27, we use the edge color intensities to denote the attentions of models that pay to
the corresponding edge. Some interesting patterns can be found in the molecules shared with the
same label, which could provide insights to the domain experts when developing new drugs. We
believe that, because of its superior OOD generalization performance on graphs, CIGA can have
high potential to push forward the developments of AI-Assisted Drug Discovery, and enrich the AI
tools for facilitating the fundamental practice of science in the future.
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Figure 18: Interpretation visualization of examples from SPMotif-Struc under bias= 0.6.
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Figure 19: Interpretation visualization of examples from SPMotif-Struc under bias= 0.9.
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Figure 20: Interpretation visualization of examples from SPMotif-Mixed under bias= 0.6.

44



SPMotif: y=0

(a)

SPMotif: y=1

(b)

SPMotif: y=2

(c)

Figure 21: Interpretation visualization of examples from SPMotif-Mixed under bias= 0.9.
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Figure 22: Interpretation visualization of activate examples (y = 1) from DrugOOD-Assay.
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Figure 23: Interpretation visualization of inactivate examples (y = 0) from DrugOOD-Assay.

N
C

C
C

C
CNS

OO

N
C

C
C

C
CC

C C

CO
N

C
C
C

C
C

C
C

C
O

O

drugood_lbap_core_ic50_scaffold: y=1

(a)

C
C

C
C

C

C

N
C

C
C

CC

C
C

O

N

C

C

C
C C

C C
C

C
C

C C
C

C
O

C
C

drugood_lbap_core_ic50_scaffold: y=1

(b)

CC
O

NC
C

CC
C
C

O
CC

C
N

CC
C
C C

NC
C
C

C C

N

C

C
C

drugood_lbap_core_ic50_scaffold: y=1

(c)

Figure 24: Interpretation visualization of activate examples (y = 1) from DrugOOD-Scaffold.
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Figure 25: Interpretation visualization of inactivate examples (y = 0) from DrugOOD-Scaffold.
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Figure 26: Interpretation visualization of activate examples (y = 1) from DrugOOD-Size.
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Figure 27: Interpretation visualization of inactivate examples (y = 0) from DrugOOD-Size.
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