A Theoretical Derivations

Lemma 1 (Ensemble Sample Diversity Decomposition) Given the state-action visit distribution of the
ensemble policy p. The entropy of this distribution is #(p). Notice that this term can be decomposed

into two parts:

Proof.
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Lemma 2(Equivalent optimization target)

Proof. By definition,
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By randomly selecting the latent variable z, we consider that 7(z) is a constant depending on the
number of z. Thus, we have,
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Lemma 3 Let X1, X5, ..., Xy be an infinite sequence of i.i.d. random variables with a probability
density function (PDF) of f(z) and a cumulative distribution function (CDF) of F'(z). Let X1.y <
Xo.n < X3.n... < Xn.n be the order statistics corresponding to { X} 5. Denote PDF and CDF of
the k-th order statistic Xj. as fx.n and Fy.y respectively. The following statements hold.
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(i) o — DD <B[X1.n] < 1, N > 1 E[X1v 4] < E[X1.n]

(iv) Let X = L3N X, then, E[X] = p, Var[X] = L o2

Proof. (i) We start from the CDF of X .. By definition, Fy.y(2) = P(Xy.ny < 2) = P(X; <
z,Xo9 < z,...,Xn < ). Under the assumption of iid. P(X; < z, X5 < z,.... Xy < ) =
P(X; < 7)P(X2 < 7)..P(Xy < ) = (F(x))". The PDF of X . can be derived by taking the
derivative of PDF. fx.n = CWNd‘i]zV(I) = Nf(z)(F(x))N 1L

(ii) Similar to (i), Fr.y(z) = P(X1.x < 2) =1 — P(z < X1.n) = P(z < X)P(z < X1,
Xo, ...,z < Xp). Under the assumption of iid. P(z < Xj,z < Xo, ..,z <
2)P(Xs > z)..P(Xy > x). Satisfying the normalization, we have P(X
z).PXy>2)=(1-P(X; <2))1-P(X3 <x))..1-P(Xny <2x)) =(
Fi.n(z) =1— (1 — F(z))". By taking the derivative of PDF, fi.x(z) = N f(z)(1 — F(z))N 1.

(iii) The detailed proof can be found in [54]. An brief proof is provided as follows. By definition,
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To obtain the lower bound on E[X].y], we consider the extremum of E[X7. x| and constrains of
mean and variance. For simplification, we consider zero-mean distribution with ;2 = 0 and 2. The
lower bound can be obtained by applying Cauchy-Buniakowsky-Schwarz inequality,

1 2
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Thus, we have E[X1.n] > p — WU for distribution with mean and variance of ;1 and o
respectively. By definition, E[X1.x4+1] = E[min(X1.x, Xnv+1)] < E[X1.N]

(iv) By definition,
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B Experimental Details

B.1 Experimental Setup

To validate the generalization, we evaluate our proposed algorithm on environments from MuJoCo
Control Suite [25] and DMControl Suite [26]. We use the publicly available environments without
any modification. We present screenshots in Figure [T

(a) Ant-v3 (b) HalfCheetah-v3 (c) Walker2d-v3 (d) Hopper-v3

Figure 1: Screenshots of MuJoCo environments.

B.2 Implementation and Hyper-parameters

Here, we describe certain implementation details of TEEN. For our implementation of TEEN, we use
a combination of TD3 [14] and TEEN, where we construct N TD3 agents based on the released code
by the autor (https://github.com/sfujim/TD3). We implement a total of N = 10 TD3 agents through
out our entire experiments. For recurrent optimization mentioned in section[d.2} we set the period of
recurrent training to be 50k. We provide explicit parameters used in our algorithm in Table [T}

B.3 Reproducing Baselines

For reproduction of TD3, we use the official implementation ( https://github.com/sfujim/TD3). For
implementation of SAC, we use the code the author provided and use the parameters the author
recommended. We use a single Gaussian distribution and use the environment-dependent reward
scaling as described by the authors. For a fair comparison, we apply the version of soft target update
and train one iteration per time step.

Table 1: TEEN Parameters settings

Parameter Value
Exploration policy N(0,0.1)
Weight o 0.2
Number of sub-policies NV 10
Number of target values M 2
Variance of exploration noise 0.2
Random starting exploration time steps | 2.5 x 10*
Optimizer Adam[52]]
Learning rate for actor 3x107*
Learning rate for critic 3x 10714
Replay buffer size 1 x 108
Batch size 256
Discount () 0.99
Number of hidden layers 2
Number of hidden units per layer 256
Activation function ReLU
Iterations per time step 1
Target smoothing coefficient (7)) 5x 1073
Variance of target policy smoothing 0.2
Noise clip range [—0.5,0.5]
Target critic update interval 2
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C Additional Experimental Results

C.1 Additional Evaluation

To convince our evaluation, we conduct our algorithm in a challenging environment Humanoid-v3 in
the MuJoCo suite, which is shown in Figure@ The state dimension of Humaniod is 376, which is
exceptionally difficult to solve. We compared our algorithm TEEN with sample-efficient algorithms
TD3 and SAC. We follow the standard evaluation settings, carrying out experiments over five million
(5e6) steps and running all baselines with 5 random seeds.
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Figure 2: Learning curves for MuJoCo complex task Humanoid-v3. For better visualization,the
curves are smoothed uniformly. The bolded line represents the average evaluation over 5 seeds. The
shaded region represents a standard deviation of the average evaluation over 5 seeds.

C.2 Additional Ablation Studies

We perform ablation studies on other environments in the MuJoCo suite and show the learning cuives
in Figure[3] All the experiments are performed over 5 random seeds with one million (1e6) steps.
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Figure 3: TEEN ablation results for MuJoCo environments (From top to bottom are HalfCheetah-v3,
Hopper-v3, Walker2d-v3.). The first column shows the effect of ensemble size NV on performance. The
second column shows the effect of ensemble size N on estimation bias. The third and fourth columns
show the effect of target value number M on both performance and estimation bias respectively. The
fifth column shows the effect of weight parameter a on performance.
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