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We thank the Area Chair and the reviewers for their time and detailed feedback on our 
manuscript. While we believe some of the core criticisms stemmed from a misunderstanding of 
our benchmark's primary goal, the feedback was invaluable in helping us clarify our contribution. 
We have substantially revised the manuscript to address these points, and we believe the paper 
is significantly stronger as a result. 

Overview of Major Revisions 

The primary goal of this revision was to clarify that our benchmark, GitChameleon, evaluates 
Version-Conditioned Generation (VCG)—a model's ability to generate code for a specific, 
pinned library version—and to differentiate this from the task of Code Evolution. The major 
changes are as follows: 

1.​ Clarification of Core Contribution: We have reframed the manuscript to explicitly 
define and discuss VCG. This includes adding a new Figure 2 to visually contrast VCG 
(in-distribution) with Code Evolution (out-of-distribution) and using this terminology 
consistently throughout the text. 

2.​ Expanded Related Work: To address concerns about missing literature, we have 
significantly expanded the Extended Related Work discussion in Appendix D. This 
appendix includes Table 14, which provides a point-by-point comparison of 
GitChameleon against other version-aware benchmarks, clearly positioning our work. 

3.​ Strengthened Experimental Rigor: 
○​ We have updated our self-debugging experiments to remove any possibility of 

data leakage. As detailed in the revised Appendix F, the error trace provided to 
the model is now the top-level trace, and the unit test assertion is no longer 
exposed. All relevant results (Table 1, Figures 7, 8, 10, 11) have been updated 
accordingly. 

○​ To ensure the robustness of our findings, we have added standard error bars to 
our main result tables. 

4.​ Additional Experiment: 
○​ We added a new experiment using the Self-Explained Keywords (SEK) 

Prompting method (Table 10) to provide a more comprehensive evaluation. 
5.​ Deeper Analysis: We added Appendix H to analyze the logical complexity of our 

benchmark problems. This analysis, supported by Figure 14, demonstrates that our 
tasks primarily test version-specific knowledge retention rather than complex logical 
reasoning. 

6.​ Refined Limitations: We have updated the Limitations section (Section 5) to more 
accurately reflect the scope of our work, clarifying that it is focused on VCG for Python 
and does not evaluate version-to-version translation or code evolution. 
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Point-by-Point Response to Reviewer Feedback 

Response to Meta-Review (Area Chair yGom) 

Weakness 1: "This benchmark is difficult to evaluate models’ code evolution abilities, 
since it is not up-to-date." 

●​ Response: We thank the Area Chair for this comment, which was central to our revision. 
We have clarified throughout the paper that our goal is not to evaluate "code evolution" 
but rather "Version-Conditioned Generation (VCG)". This distinction is now explicitly 
made in the introduction, defined in detail in its own subsection ("Code Evolution vs. 
Version Conditioned Generation"), and visually represented in the new Figure 2. We 
make it clear that testing on "not up-to-date" versions is an intentional design choice to 
evaluate a model's ability to handle legacy requirements. 

Weakness 2: "The current version of this benchmark cannot avoid data contamination in 
the training data, since the sources are all public." 

●​ Response: We directly address this concern in Section 2.3. We argue that this is not a 
weakness but a core feature of the benchmark's design. We state: "The challenge is 
therefore not one of data contamination, but of control and disambiguation: when a 
model has been exposed to multiple library versions, can it correctly generate code for 
the specific version required by the prompt?" This reframes the problem as a test of 
precision and control, which is the primary contribution of our work. 

 

Response to Reviewer dqT7 

Weakness 1: "Limited Benchmark Size." 

●​ Response: We have clarified the difficulty and manual effort involved in constructing the 
benchmark in Section 2: Benchmark, noting the "roughly 350 human hours" required. 
This context helps justify the current size of the dataset while highlighting the quality and 
complexity of each hand-crafted problem. 

Weakness 2: "Risk of test-set leakage or bias baked into the unit tests." 

●​ Response: We have addressed this in two ways. First, we clarify the test construction 
process in Appendix A.4. Second, we argue that this is a non-issue, as rhe fundamental 
challenge in GitChameleon is not about passing a test with a particular structure, but 
about knowing and correctly applying a specific, historical API. If a model—even 
GPT-4.1—does not know the correct function name or argument signature for library 
v1.5, it will fail the execution-based test regardless of how "friendly" the test's 
implementation style is. The primary hurdle is the version-knowledge and control 
problem, which is much more difficult than any secondary stylistic bias in the test suite. 



Weakness 3: "Benchmark hence largely measures memorisation of seen APIs rather than 
true generalisation to future changes." 

●​ Response: This is correct, and it is the intended purpose of our benchmark. We have 
clarified this framing throughout the paper, particularly in Section 1 (Introduction) and 
Section 2.3 (Statistics). We now clearly state that the benchmark is designed to test 
in-distribution knowledge retention and control, not out-of-distribution generalization to 
future changes. We further analyze this aspect in the new Appendix H, which shows 
that the problems are low on logical complexity and high on knowledge retention. 

 

Response to Reviewer 4T5p 

Weakness 1: "How to make sure the benchmark is up-to-date? ... make this benchmark 
not that practical." 

●​ Response: As in our response to the meta-review, we have extensively revised the 
paper to clarify that the goal is not to be "up-to-date" but to test a model's ability to 
handle any specified version, which is a highly practical scenario in real-world 
development with pinned dependencies. This is addressed in Section 1 and Figure 2. 

Weakness 2: "How the version is controlled or required in the problems." 

●​ Response: We have clarified this in Section 3.1, which now states: "To ensure version 
compliance, we use a dual control mechanism: the target version is explicitly included in 
the model's prompt, and the validation environment is configured with that exact library 
version". We had also updated Figure 1 to include the library version in the prompt. 

Weakness 3: "The reason of using greedy decoding instead of sampling is not clear." 

●​ Response: While we maintain greedy decoding as our primary setting for reproducibility 
(a standard practice), we have added a new experiment using temperature sampling 
(Table 9 in Appendix B). The results show that performance is largely similar, 
supporting our use of a deterministic baseline while providing a more complete picture 
for the reviewer. 

 

Response to Reviewer KtRy 

Weakness 1: "Lacking critical related work." 

●​ Response: We thank the reviewer for this crucial feedback. We have thoroughly 
addressed this by an extensive revision of Appendix D. Appendix D includes Table 14, 
which explicitly compares GitChameleon 2.0 to the benchmarks mentioned by the 



reviewer (CodeUpdateEval, JavaVersionGenBench, RustEvo2, etc.) across key 
dimensions, clearly articulating our unique contribution. 

Weakness 2: "Positioning dataset as version aware code generation + execution based 
eval." 

●​ Response: Our revised Appendix D now clearly positions the work. We differentiate 
GitChameleon 2.0 by highlighting its unique focus on instruction-based generation for 
static versions, in contrast to other benchmarks that focus on code repair, updates, or 
completion. 

Weakness 3: "Questions about Selection protocol and data leakage" / "RAG using API 
documentation." 

●​ Response: We have clarified the RAG experimental design in Section 3.1.4. 
Furthermore, we address concerns about what the benchmark truly tests by adding 
Appendix H. This new section analyzes the logical complexity of the problems, showing 
that they are designed to test version-specific knowledge over complex reasoning, which 
is a form of "leakage" or knowledge recall that we are intentionally trying to measure. 
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