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Abstract

Stabilizing an unknown dynamical system is one of the central problems in con-1

trol theory. In this paper, we study the sample complexity of the learn-to-stabilize2

problem in Linear Time-Invariant (LTI) systems on a single trajectory. Current3

state-of-the-art approaches require a sample complexity linear in n, the state di-4

mension, which incurs a state norm that blows up exponentially in n. We propose5

a novel algorithm based on spectral decomposition that only needs to learn “a6

small part” of the dynamical matrix acting on its unstable subspace. We show7

that, under proper assumptions, our algorithm stabilizes an LTI system on a single8

trajectory with Õ(k) samples, where k is the instability index of the system. This9

represents the first sub-linear sample complexity result for the stabilization of LTI10

systems under the regime when k = o(n).11

1 Introduction12

Linear Time-Invariant (LTI) systems, namely xt+1 = Axt + But, where xt ∈ Rn is the state and13

ut ∈ Rm is the control input, are one of the most fundamental dynamical systems in control theory,14

and have wide applications across engineering, economics and societal domains. For systems with15

known dynamical matrices (A,B), there is a well-developed theory for designing feedback con-16

trollers with guaranteed stability, robustness, and performance [1, 2]. However, these tools cannot17

be directly applied when (A,B) is unknown.18

Driven by the success of machine learning [3, 4], there has been significant interest in learning-based19

(adaptive) control, where the learner does not know the underlying system dynamics and learns to20

control the system in an online manner, usually with the goal of achieving low regret [5–13].21

Despite the progress, an important limitation in this line of work is a common assumption that the22

learner has a priori access to a known stabilizing controller. This assumption simplifies the learning23

task, since it ensures a bounded state trajectory in the learning stage, and thus enables the learner to24

learn with low regret. However, assuming a known stabilizing controller is not practical, as stabi-25

lization itself is nontrivial and considered equally important as any other performance guarantee.26

To overcome this limitation, in this paper we consider the learn-to-stabilize problem, i.e., learning27

to stabilize an unknown dynamical system without prior knowledge of any stabilizing controller.28

Understanding the learn-to-stabilize problem is of great importance to the learning-based control29

literature, as it serves as a precursor to any learning-based control algorithms that assume knowledge30

of a stabilizing controller.31

The learn-to-stabilize problem has attracted extensive attention recently. For example, [14] and [15]32

adopt a model-based approach that first excites the open-loop system to learn dynamical matrices33

(A,B), and then designs a stabilizing controller, with a sample complexity scaling linearly in n, the34

state dimension. However, a linearly-scaling sample complexity could be unsatisfactory for some35
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specific instances, since the state trajectory still blows up exponentially when the open-loop system36

is unstable, incurring a 2Θ̃(n) state norm, and hence a 2Θ̃(n) regret (in LQR settings, for example).37

Another recent work [16] proposes a policy-gradient-based discount annealing method that solves38

a series of discounted LQR problems with increasing discount factors, and shows that the control39

policy converges to a near-optimal policy. However, this model-free approach only guarantees a40

poly(n) sample complexity. In fact, to the best of our knowledge, state-of-the-art learn-to-stabilize41

algorithms with theoretical guarantees always incur state norms exponential in n.42

It has been shown in [15] that all general-purpose control algorithms are doomed to suffer a worst-43

case regret of 2Ω(n). This result is intuitive, since from an information-theoretic perspective, a44

complete recovery of A should take Θ(n) samples since A itself involves n2 parameters. However,45

this does not rule out the possibility that we can achieve better regret in specific systems. Our work is46

motivated by the observation that it is not always necessary to learn the whole matrix A to stabilize47

an LTI system. For example, if the system is open-loop stable, we do not need to learn anything to48

stabilize it. For general LTI systems, it is still intuitive that open-loop stable “modes” exist and need49

not be learned for the learn-to-stabilize problem. So, we focus on learning a controller that stabilizes50

only the unstable “modes”, making it possible to learn a stabilizing controller without exponentially51

exploding state norms. The central question of this paper is:52

Can we exploit instance-specific properties of an LTI system to learn to stabilize it53

on a single trajectory, without incurring a state norm exponentially large in n?54

Contribution. In this paper, we answer the above question by designing an algorithm that stabilizes55

an LTI system with only Õ(k) state samples along a single trajectory, where k is the instability index56

of the open-loop system and is defined as the number of unstable “modes” (i.e., eigenvalues with57

moduli larger than 1) of matrix A. Our result is significant in the sense that k can be considerably58

smaller than n for practical systems and, in such cases, our algorithm stabilizes the system using59

asymptotically fewer samples than prior work; specifically, it only incurs a state norm (and regret)60

in the order of 2Õ(k), which is much smaller than 2O(n) of prior state of the art when k ≪ n.61

To formalize the concept of unstable “modes” for the presentation of our algorithm and analysis,62

we formulate a novel framework based on the spectral decomposition of dynamical matrix A. More63

specifically, we focus on the unstable subspace Eu spanned by the eigenvectors corresponding to64

unstable eigenvalues, and consider the system dynamics “restricted” to it — states are orthogonally65

projected onto Eu, and we only have to learn the effective part of A within subspace Eu, which66

takes only O(k) samples. The formulation is explained in detail in Section 3.1 and Appendix A.67

We comment that this idea of decomposition is in stark contrast to prior work, which in one way or68

another seeks to learn the entire A (or other similar quantities).69

Related work. Our work contributes to and builds upon related works described below.70

Learning for control assuming known stabilizing controllers. There has been a large literature on71

learning-based control with known stabilizing controllers. For example, one line of research utilizes72

model-free policy optimization approaches to learn the optimal controller for LTI systems [5–7, 17–73

30]. All of these works require a known stabilizing controller as an initializer for the policy search74

method. Another line of research uses model-based methods, i.e., learning dynamical matrices75

(A,B) first before designing a controller, which also require a known stabilizing controller (e.g.,76

[31–39]). Compared to these works, we focus on the learn-to-stabilize problem without knowledge77

of an initial stabilizing controller, which can serve as a precursor to existing learning-for-control78

works that require a known stabilizing controller.79

Learning to stabilize on a single trajectory. Stabilizing linear systems over infinite horizons with80

asymptotic convergence guarantees is a classical problem that has been studied extensively in a81

wide range of papers such as [40–42]. On the other hand, the problem of system stabilization over82

finite horizons remains partially open and has not seen significant progresses. Algorithms incurring83

a 2O(n)O(
√
T ) regret have been proposed in settings that rely on relatively strong assumptions of84

controllability and strictly stable transition matrices [13, 43], which has recently been improved to85

2Õ(n)+Õ(poly(n)
√
T ) [14, 15]. Another model-based approach that merely assumes stabilizability86

is introduced in [44], though it does not provide guarantees on regret or sample complexity. A more87

recent model-free approach based on policy gradient [16] provides a novel perspective into this88

problem, yet it can only guarantee a sample complexity that is polynomial in n. Compared to these89

previous works, our approach requires only Õ(k) samples, incurring a sub-exponential state norm.90
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Learning to stabilize on multiple trajectories. There are also works [12, 45] that do not assume91

known stabilizing controllers and learn the full dynamics before designing an optimal stabilizing92

controller. While requiring Θ̃(n) samples which is larger than Õ(k) of our work, those approaches93

do not have the exponentially large state norm issue as they allow multiple trajectories; i.e., the state94

can be “reset” to 0 so that it won’t get too large. In contrast, we focus on the more challenging95

single-trajectory scenario where the state cannot be reset.96

System Identification. Our work is also related to the system identification literature, which focuses97

on learning the system parameters of dynamical systems, with early works like [46] focusing on98

asymptotic guarantees, and more recent works such as [47–52] focusing on finite-time guarantees.99

Our approach also identifies the system (partially) before constructing a stabilizing controller, but100

we only identify a part of A rather than the entire A.101

2 Problem Formulation102

We consider a noiseless LTI system xt+1 = Axt +But, where xt ∈ Rn and ut ∈ Rm are the state103

and control input at time step t, respectively. The dynamical matrices A ∈ Rn×n and B ∈ Rn×m104

are unknown to the learner. The learner is allowed to learn about the system by interacting with it105

on a single trajectory — the initial state is sampled uniformly at random from the unit hyper-sphere106

surface in Rn, and then, at each time step t, the learner is allowed to observe xt and freely determine107

ut. The goal of the learner is to learn a stabilizing controller, which is defined as follows.108

Definition 2.1 (Stabilizing Controller). Control rule ut = ft(xt, xt−1, · · · , x0) is called a stabiliz-109

ing controller if and only if the closed-loop system xt+1 = Axt+But is asymptotically stable; i.e.,110

for any x0 ∈ Rn, limt→∞ ∥xt∥ = 0 is guaranteed in the closed-loop system.111

To achieve this goal, a simple strategy is to let the system run in open loop to learn (A,B) via least112

squares, and then design a stabilizing controller based on the learned dynamical matrices. However,113

as has been discussed in the introduction, such a simple strategy inevitably induces an exponentially114

large stage norm that is potentially improvable.1 A possible remedy for this is to learn “a small part”115

of (A,B) that is crucial for stabilization. Driven by such intuition, the core problem of this paper is116

to characterize what is the “small part” and design an algorithm to learn it.117

Note that, although it is common to include an additive disturbance term wt in the LTI dynamics,118

the introduction of stochasticity does not provide additional insights into our decomposition-based119

algorithm, but rather, merely makes the analysis more technically challenging. Therefore, here we120

simply omit the noise in theoretical results for the clarity of exposition, and will show by numerical121

experiments that our algorithm can also handle disturbances (see Appendix H).122

Notation. For z ∈ C, |z| is the modulus of z. For a matrix A ∈ Rp×q , A⊤ denotes the transpose of123

A; ∥A∥ is the induced 2-norm of A (equal to its largest singular value), and σmin(A) is the smallest124

singular value of A; when A is square, ρ(A) denotes the spectral radius of A, and κd(A) denotes125

the condition number of the matrix consisting of A’s eigenvectors as columns. The space spanned126

by {v1, · · · , vp} is denoted by span(v1, · · · , vp), and the column space of A is denoted by col(A).127

For two subspaces U, V of Rn, U⊥ is the orthogonal complement of U , and U ⊕V is the direct sum128

of U and V . The zero matrix and identity matrix are denoted by 0, I , respectively.129

3 Learning to Stabilize from Zero (LTS0)130

The core of this paper is a novel algorithm, Learning to Stabilize from Zero (LTS0), that utilizes a131

decomposition of the state space based on a characterization of the notion of unstable “modes”. The132

decomposition and other preliminaries for the algorithm are first introduced in Section 3.1, and then133

we proceed to describe LTS0 in Section 3.2.134

3.1 Algorithm Preliminaries135

We first introduce the decomposition of the state space in Section 3.1.1, which formally defines the136

“small part” of A mentioned in the introduction. Then, we introduce τ -hop control in Section 3.1.2,137

1More sophisticated exploration strategies might be adopted to learn (A,B) [13, 15, 44], but as long as the
control inputs do not completely cancel out the “dominant part” of the states, the above intuition still holds to
a large extent as the ‘dominant part” of the state is still blowing up exponentially.
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so that we can construct a stabilizing controller based only on the “small part” of A (as opposed to138

the entire A). Together, these two ideas form the basis of LTS0.139

3.1.1 Decomposition of the State Space140

Consider the open-loop system xt+1 = Axt. Suppose A is diagonalizable, and let λ1, · · · , λn141

denote the eigenvalues of A, which are assumed to be distinct and satisfy142

|λ1| ≥ |λ2| ≥ · · · ≥ |λk| > 1 > |λk+1| ≥ · · · ≥ |λn|.
We define the eigenspaces associated to these eigenvalues: for a real eigenvalue λi ∈ R corre-143

sponding to eigenvector vi ∈ Rn, we associate with it a 1-dimensional space Ei = span(vi); for a144

complex eigenvalue λi ∈ C \R corresponding to eigenvector vi ∈ Cn, there must exist some j such145

that λj = λ̄i (corresponding to eigenvector vj = v̄i), and we associate with them a 2-dimensional146

space Ei = Ej = span((vi+ v̄i), i(vi− v̄i)). Further, define the unstable subspace Eu :=
⊕

i≤k Ei147

and stable subspace Es :=
⊕

i>k Ei.148

As discussed earlier, we only need to learn “a small effective part” of A associated with the un-149

stable “modes”, or the unstable eigenvectors of A. For this purpose, in the following we formally150

define a decomposition based on the orthogonal projection onto the unstable subspace Eu. This151

decomposition forms the foundation of our algorithm.152

The Eu ⊕E⊥
u -decomposition. Suppose the unstable subspace Eu and its orthogonal complement153

E⊥
u are given by orthonormal bases P1 ∈ Rn×k and P2 ∈ Rn×(n−k), respectively, namely154

Eu = col(P1), E
⊥
u = col(P2).

Let P = [P1 P2], which is also orthonormal and thus P−1 = P⊤ = [P1 P2]
⊤. For convenience, let155

Π1 := P1P
⊤
1 and Π2 = P2P

⊤
2 be the orthogonal projectors onto Eu and E⊥

u , respectively. With156

the state space decomposition, we proceed to decompose matrix A. Note that Eu is an invariant157

subspace with regard to A (but E⊥
u not necessarily is), there exists M1 ∈ Rk×k, ∆ ∈ Rk×(n−k) and158

M2 ∈ R(n−k)×(n−k), such that159

AP = P

[
M1 ∆

M2

]
⇔ M :=

[
M1 ∆

M2

]
= P−1AP.

In the decomposition, the top-left block M1 ∈ Rk×k represents the action of A on the unstable160

subspace. Matrix M1, together with P1, is the “small part” we discussed in the introduction. Note161

that M1 (P1) is only k-by-k (n-by-k) and thus takes much fewer samples to learn compared to the162

entire A. It is also evident that M1 inherits all unstable eigenvalues of A, while M2 inherits all163

stable eigenvalues. Finally, we provide the system dynamics in the transformed coordinates. Let164

y = [y⊤1 y⊤2 ]
⊤ be the coordinate representation of x in the basis formed by column vectors of P165

(i.e., x = Py). The system dynamics in y-coordinates is166 [
y1,t+1

y2,t+1

]
= P−1AP

[
y1,t
y2,t

]
+ P−1But =

[
M1 ∆

M2

] [
y1,t
y2,t

]
+

[
P⊤
1 B

P⊤
2 B

]
ut. (1)

The Eu ⊕ Es-decomposition. In the above Eu ⊕ E⊥
u -decomposition, E⊥

u is in general not an167

invariant subspace with respect to A. This can be seen from the top-right ∆ block in M , which168

represents how much of the state is “moved” by A from E⊥
u into Eu in one step. The absence of169

invariant properties in E⊥
u is sometimes inconvenient in the analysis. Hence, we introduce another170

invariant decomposition that is used in the proof as follows. Specifically, Rn can be naturally decom-171

posed into Eu ⊕ Es, and further both Eu and Es are invariant with respect to A. We also represent172

Eu = col(Q1) and Es = col(Q2) by their orthonormal bases, and define Q = [Q1 Q2]. Note that,173

these two subspaces are generally not orthogonal, so we additionally define Q−1 =: [R⊤
1 R

⊤
2 ]

⊤.174

Details are deferred to Appendix A.1.175

Lastly, we comment that when A is symmetric, the Eu ⊕ E⊥
u - and Eu ⊕ Es-decompositions are176

identical because E⊥
u = Es in such symmetric cases. While E⊥

u ̸= Es in general cases, the “close-177

ness” between E⊥
u and Es also contributes to the sample complexity bound in Section 4. For that178

reason, we formally define such “closeness” between subspaces in Definition 3.1. We point out that179

the definition has clear geometric interpretations and leads to connections between the bases of Es180

and E⊥
u , which is technical and thus deferred to Appendix A.2.181
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Definition 3.1 (ξ-close subspaces). For ξ ∈ (0, 1], the subspaces E⊥
u = col(P2), Es = col(Q2) are182

called ξ-close to each other, if and only if σmin(P
⊤
2 Q2) > 1− ξ.183

3.1.2 τ -hop Control184

This section discusses the design of controller based only on the “small part” of A, i.e., the P1185

and M1 matrices discussed in Section 3.1.1, as opposed to the entire A matrix. Note that the main186

objective of this subsection is to introduce the idea of our controller design when M1 and P1 are187

known without errors, whereas in Section 3.2 we fully introduce Algorithm 1 that learns M1 and P1188

before constructing the stabilizing controller.189

As discussed in Section 3.1.1, we can view M1 as the “restriction” of A onto the unstable subspace190

Eu (spanned by the basis in P1) and it captures all the unstable eigenvalues of A. Since only M1191

and P1 are known while M2 and P2 are unknown, a simple idea is to “restrict” the system trajectory192

entirely to Eu such that the effect of A is fully captured by M1, the part of A that is known. However,193

such a restriction is not possible because, even if the current state xt is in Eu (so Axt is also in Eu),194

xt+1 = Axt + But is generally not in Eu for non-zero ut. To address this issue, recall that a195

desirable property of the stable component is that it spontaneously dies out in open loop. Therefore,196

we propose the following τ -hop controller design, where the control input is only injected every197

τ steps — in this way, we let the stable component die out exponentially between two consecutive198

control injections. Consequently, when we examine the states every τ steps, we could expect that199

the trajectory appears approximately “restricted to” the unstable subspace Eu.200

More formally, a τ -hop controller only injects non-zero ut for t = sτ , s ∈ N. Let x̃s := xsτ and201

ũs := usτ to be the state and input every τ time steps. We can write the dynamics of the τ -hop202

control system as x̃s+1 = Aτ x̃s + Aτ−1Bũs. We also let ỹs to denote the state under Eu ⊕ E⊥
u -203

decomposition, i.e. ỹs = P⊤x̃s. Then the state evolution can be written as204 [
ỹ1,s+1

ỹ2,s+1

]
= P−1AτP

[
ỹ1,s
ỹ2,s

]
+ P−1Aτ−1Bũs = Mτ

[
ỹ1,s
ỹ2,s

]
+

[
P⊤
1 Aτ−1B

P⊤
2 Aτ−1B

]
ũs, (2)

where we define Bτ := P⊤
1 Aτ−1B for simplicity, and205

Mτ =

([
M1

M2

]
+

[
0 ∆

0

])τ

=

[
Mτ

1

∑τ−1
i=0 M i

1∆Mτ−1−i
2

Mτ
2

]
=:

[
Mτ

1 ∆τ

Mτ
2

]
.

Now we consider a state feedback controller ũs = K1ỹ1,s in the τ -hop control system that only acts206

on the unstable component ỹ1,s, the closed-loop dynamics of which can then be written as207

ỹs+1 =

[
Mτ

1 + P⊤
1 Aτ−1BK1 ∆τ

P⊤
2 Aτ−1BK1 Mτ

2

]
ỹs. (3)

In (3), the bottom-left block becomes P⊤
2 Aτ−1BK1, which is exponentially small in τ . Therefore,208

with a properly chosen τ , the closed-loop dynamical matrix in (3) is almost block-upper-triangular209

with the bottom-right block very close to 0 (recall that M2 is a stable matrix). As a result, if we210

select K1 such that Mτ
1 + P⊤

1 Aτ−1BK1 is stable, then (3) will become stable as well. There are211

different ways to select such K1, and in this paper, we focus on the simple case that B is an n-by-k212

matrix and P⊤
1 Aτ−1B is an invertible square matrix (see Assumption 4.3), in which case selecting213

K1 = −(P⊤
1 Aτ−1B)−1Mτ

1 (4)

will suffice. Note that such a controller design will also need the knowledge of P⊤
1 Aτ−1B, which214

has the same dimension as M1 (a k-by-k matrix) and takes only O(k) additional samples to learn.215

For the case that B is not n-by-k, similar controller design can be done (but in a slightly more216

involved way), and we defer the discussion to Appendix C.217

Finally, we end this section by pointing out that for the case of symmetric A, selecting τ = 1 should218

work well. This is because ∆τ = 0 in (3) for the symmetric case, and therefore, the matrix in (3)219

will be triangular even for τ = 1. This will result in a simpler algorithm and controller design, and220

hence a better sample complexity bound, which we will present as Theorem 4.2 in Section 4.221

3.2 Algorithm222

Our algorithm, LTS0, is divided into 4 stages: (i) learn an orthonormal basis P1 of the unstable223

subspace Eu (Stage 1); (ii) learn M1, the restriction of A onto the subspace Eu (Stage 2); (iii) learn224
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Bτ = P⊤
1 Aτ−1B (Stage 3); and (iv) design a controller that seeks to cancel out the “unstable” M1225

matrix (Stage 4). This is formally described as Algorithm 1 below.226

Algorithm 1 LTS0: learning a τ -hop stabilizing controller.

1: Stage 1: learn the unstable subspace of A.
2: Run the system in open loop for t0 steps for initialization.
3: Run the system in open loop for k more steps and let D ← [xt0+1 · · · xt0+k].
4: Calculate Π̂1 ← D(D⊤D)−1D⊤.
5: Calculate the top k (normalized) eigenvectors v̂1, · · · v̂k of Π̂1, and let P̂1 ← [v̂1 · · · v̂k].
6: Stage 2: approximate M1 on the unstable subspace.
7: Solve the least squares M̂1 ← argminM1∈Rk×k L(M1) :=

∑t0+k
t=t0+1 ∥P̂⊤

1 xt+1 − M̂1P̂
⊤
1 xt∥2.

8: Stage 3: restore Bτ for τ -hop control.
9: for i = 1, · · · , k do

10: Let the system run in open loop for ω time steps.
11: Run for τ more steps with initial uti = α∥xti∥ei, where ti = t0 + k + iω + (i− 1)τ .
12: Let B̂τ ← [b̂1 · · · b̂k], where the ith column b̂i ← 1

α∥xti
∥
(
P̂⊤
1 xti+τ − M̂τ

1 P̂
⊤
1 xti

)
.

13: Stage 4: construct a τ -hop stabilizing controller K.
14: Construct the τ -hop stabilizing controller K̂ ← −B̂−1

τ M̂τ
1 P̂

⊤
1 .

In the remainder of this section we provide detailed descriptions of the four stages in LTS0.227

Stage 1: Learn the unstable subspace of A. It suffices to learn an orthonormal basis of Eu. We228

notice that, when A is applied recursively, it will push the state closer to Eu. Therefore, when we229

let the system run in open loop (with control input ut ≡ 0) for t0 time steps, the ratio between230

the norms of unstable and stable components will be magnified exponentially, and the state lies231

“almost” in Eu. As a result, the subspace spanned by the next k states, i.e. the column space of232

D := [xt0+1 · · · xt0+k], is very close to Eu. This motivates us to use the orthogonal projector233

onto col(D), namely Π̂1 = D(D⊤D)−1D⊤, as an estimation of the projector Π1 = P1P
⊤
1 onto234

Eu. Finally, the columns of P̂1 are restored by taking the top k eigenvectors of Π̂1 with largest235

eigenvalues (they should be very close to 1), which form a basis of the estimated unstable subspace.236

Stage 2: Learn M1 on the unstable subspace. Recall that M1 is the “dynamical matrix” for the237

Eu-component under the Eu⊕E⊥
u -decomposition. Therefore, to estimate M1, we first calculate the238

coordinates of the states xt0+1:t0+k under basis P1; that is, ŷ1,t = P̂⊤
1 xt, for t = t0 +1, . . . , t0 + k.239

Then, we use least squares to estimate M1, which minimizes the square loss over M̂1240

L(M̂1) :=

t0+k∑
t=t0+1

∥ŷ1,t+1 − M̂1ŷ1,t∥2 =

t0+k∑
t=t0+1

∥P̂⊤
1 xt+1 − M̂1P̂

⊤
1 xt∥2. (5)

It can be shown that the unique solution to (5) is M̂1 = P̂⊤
1 AP̂1 (see Appendix B).241

Stage 3: Restore Bτ for τ -hop control. In this step, we restore the Bτ that quantifies the “effective242

component” of control inputs restricted to Eu (see Section 3.1.2 for detailed discussion). Note that243

equation (2) shows244

y1,ti+τ = Mτy1,ti +∆τy2,ti +Bτuti .

Hence, for the purpose of estimation, we simply ignore the ∆τ term, and take the ith column as245

b̂i ←
1

∥uti∥
(
P̂⊤
1 xti+τ − M̂τ

1 P̂
⊤
1 xti

)
,

where uti is parallel to ei with magnitude α∥xti∥ for normalization. Here we introduce an adjustable246

constant α to guarantee that the Eu-component still constitutes a non-negligible proportion of the247

state after injecting uti , so that the iterative restoration of columns could continue.248

It is evident that the ignored ∆τP
⊤
2 xti term will introduce an extra estimation error. Since ∆τ249

contains a factor of Mτ−1
1 ∆ that explodes with respect to τ , this part can only be bounded if ∥P⊤

2 xti
∥

∥xti
∥250

is sufficiently small. For this purpose, we introduce ω heat-up steps (running in open loop with 0251

control input) to reduce the ratio to an acceptable level, during which time the projection of state252

onto E⊥
u automatically diminishes over time since ρ(M2) = |λk+1| < 1.253
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Stage 4: Construct a τ -hop stabilizing controller K. Finally, we can design a controller that254

cancels out Mτ
1 in the τ -hop system. As mentioned in Section 3.1.2, we shall focus on the case255

where B is an n-by-k matrix for the sake of exposition (the case for general B will be discussed in256

Appendix C). The invertibility of Bτ can be guaranteed under certain conditions (Assumption 4.3);257

further, B̂τ is also invertible as long as it is close enough to Bτ . In this case, the τ -hop stabilizing258

controller can be simpliy designed as K̂1 = −B̂−1
τ M̂τ

1 in y-coordinates where we replace Bτ and259

M1 in (4) with their estimates. When we return to the original x-coordinates, the controller becomes260

K̂ = −B̂−1
τ M̂τ

1 P̂
⊤
1 . Note that K̂ (and K̂1) appears with a hat to emphasize the use of estimated261

projector P̂1, which introduces an extra estimation error to the final closed-loop dynamics.262

It is evident that the algorithm terminates in t0 + k(1 + ω + τ) time steps. In the next section, we263

show how to choose the parameters to guarantee both stability and sub-linear sample complexity.264

4 Stability Guarantee265

In this section, we formally state the assumptions and show the sample complexity for the proposed266

algorithm to find a stabilizing controller. Our first assumption is regarding the spectral properties267

of A, where we require all eigenvalues to appear without multiplicity (so that we can learn a com-268

plete basis of each eigenspace), and marginally stable eigenvalues (i.e., those with moduli 1) are269

eliminated (so that eigenspaces are either stable or unstable). We would like to point out that it is270

common practice (e.g., [49]) to discuss marginally stable eigenvalues separately, since it obscures271

the distinction between stable and unstable components and is thus technically challenging.272

Assumption 4.1 (Spectral Property). A is diagonalizable with instability index k, with distinct273

eigenvalues λ1, · · · , λn satisfying |λ1| ≥ |λ2| ≥ · · · ≥ |λk| > 1 > |λk+1| ≥ · · · ≥ |λn|.274

The assumption is mild in the sense that matrices satisfying Assumption 4.1 are dense in Rn×n, and275

our final complexity bound only depends logarithmically on the diagonalization condition number276

κd(A) and the eigen-gap λk/λk+1 (see Theorem 4.1 and the discussion below). Thus any matrix A277

that violates Assumption 4.1 can be handled via small perturbations.278

Our second assumption is regarding how to choose the initial state, which again is standard. The ini-279

tialization must be randomized to eliminate the coincidence where x0 has zero (oblique) projection280

onto some eigenvector vi, in which case we cannot learn about vi and thus D is not invertible.281

Assumption 4.2 (Initialization). The initial state of the system is sampled uniformly at random on282

the unit hyper-sphere surface in Rn.283

Lastly, we impose an assumption regarding controllability within the unstable subspace Eu.284

Assumption 4.3 (c-Effective Control within Unstable Subspace). B ∈ Rn×k, σmin(R1B) > c∥B∥.285

As mentioned in Section 3.1.2, we assume B has k columns for the ease of exposition, and the case286

for general B is discussed in Appendix C. In Assumption 4.3, recall matrix R1 that was defined in287

the Eu ⊕ Es-decomposition in Section 3.1.1. Intuitively, Assumption 4.3 characterizes “effective288

controllability in Eu” in the following sense: every direction in the unstable subspace receives at289

least a proportion of c from the influence of any control input. This assumption is reasonable in290

that, if σmin(R1B) ≈ 0, the control input u has to be very large to push the state along the direction291

corresponding to the smallest singular value, which could induce excessively large control cost.292

In the following we present the main performance guarantees for our algorithm.293

Theorem 4.1 (Main Theorem). Given a noiseless LTI system xt+1 = Axt + But subject to As-294

sumptions 4.1, 4.2 and 4.3, and additionally |λ1|2|λk+1| < |λk|, by running LTS0 with parameters295

τ = O(1), ω = O(ℓ log k), α = O(1), t0 = O(k log n)

that terminates within t0+k(1+ω+τ) = O (k log n) time steps, the closed-loop system is exponen-296

tially stable with probability 1−O(k−ℓ) over the initialization of x0 for any ℓ ∈ N. Here the big-O297

notation only shows dependence on k and n, while hiding parameters like |λ1|, |λk|, |λk+1|, ∥A∥,298

∥B∥, c, α, ξ (recall that E⊥
u and Es are ξ-close), χ(L̂τ ) (see Lemma D.1), and ζε(·) (see Lemma299

G.1), and details can be found in equations (41) through (46).300

Theorem 4.1 shows the proposed LTS0 can find a stabilizing controller in Õ(k) steps, which incurs301

a state norm of 2Õ(k), significantly smaller than the state-of-the-art 2Θ(n) in the k ≪ n regime. We302
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would like to point out that this does not violate the lower bound shown in [15], since the state norm303

degenerates to 2Θ(n) when k = Θ(n), and might degrade arbitrarily for systems with adversarially304

designed parameters. Still, for a large proportion of systems with k ≪ n and favorable constants,305

our algorithm achieves better performance than the naive ones. The theoretical result is also verified306

by numerical experiments, the details of which can be found in Appendix H.307

Discussion on constants. Curious readers can refer to Appendix G (equations (41) through (46)) for308

detailed expressions of the constants hidden behind the big-O notation in the theorem; Table 1 also309

summarizes all instance-specific constants appearing in the bound. Here we provide a brief overview310

how the bound depends on the system parameters. It is evident that, for a system with larger ξ (i.e.,311

when Eu and Es are “less orthogonal” to each other) or smaller c (i.e., when it costs more to control312

the unstable subspace), we see a larger τ in (41), a smaller α in (43), and larger t0 and ω in (45) and313

(46), respectively, which altogether incur a larger constant term in the sample complexity. This is in314

accordance with our intuition of the state space decomposition and Assumption 4.3, respectively.315

The bound also relies heavily on the spectral properties of A. The constraint |λ1|2|λk+1| < |λk|316

ensures validity of (41), which is necessary for cancelling out the combined effect of non-orthogonal317

subspaces Eu and Es (resulting in ∆τ in the top-right block) and inaccurate basis P̂1 (resulting in318

projection error in the bottom-left block) — a system with larger ratio |λ1|2|λk+1|/|λk| suffers from319

more severe side-effects, and thus requires a larger τ and a higher sample complexity. Nevertheless,320

we believe that this assumption is not essential, and we leave it as future work to relax it.321

Another important parameter is the eigen-gap |λk|/|λk+1| around 1 that determines how fast the322

stable and unstable components become separable in magnitude when the system runs in open loop,323

which is utilized in the t0 initialization steps of Stage 1 and ω heat-up steps of Stage 3. Consequently,324

a system with smaller eigen-gap |λk|/|λk+1| requires a larger t0 (see (10)) and ω (see (46)) and325

therefore a higher sample complexity.326

The diagonalization condition number κd(A) of A also contributes to the bound of t0, the number327

of initialization steps. It is intuitive that, a large κd(A) indicates less orthogonal eigenspaces, which328

in turn requires a more distinct separation among the magnitudes of different eigen-components of329

xt0 , so that the stable components does not interfere with the unstable ones.330

Finally, we would like to point out that all these quantities appear in the bound as logarithmic terms,331

indicating that the sample complexity only degrades mildly when the constants become worse.332

A warm-up case. Despite the generality of Theorem 4.1, its proof involves technical difficulties.333

In Theorem 4.2, we include results for the special case where A is real symmetric, which leads to a334

simpler choice of algorithm parameters and a cleaner sample complexity bound.335

Theorem 4.2. Given a noiseless LTI system xt+1 = Axt+But subject to Assumptions 4.1, 4.2 and336

4.3 with symmetric A, by running LTS0 with parameters τ = 1, ω = 0, α = 1, t0 = O(k log n)337

that terminates within t0 + k(1 + ω + τ) = O (k log n) time steps, the closed-loop system is expo-338

nentially stable with probability 1 over the initialization of x0. Here the big-O notation only shows339

dependence on k and n, while hiding parameters like |λ1|, |λk|, |λk+1|, ∥A∥, ∥B∥, c, and χ(L̂1)340

(see Lemma D.1), and details can be found in equation (18).341

Although Theorem 4.2 takes a simpler form, its proof still captures the main insight of our analysis.342

For this reason, we use the proof of Theorem 4.2 as a warm-up example in Appendix F before we343

present the proof ideas of the main Theorem 4.1.344

5 Proof Outline345

In this section we will give a high-level overview of the key proof ideas for the main theorems. The346

full proof details can be found in Appendices E, F and G as indicated below.347

Proof Structure. The proof is largely divided into two steps. In Step 1, we examine how accurate348

the learner estimates the unstable subspace Eu in Stage 1 and 2. We will show that Π1, P1 and M1349

can be estimated up to an error of δ within t0 = O(k log n− log δ) steps. In Step 2, we examine the350

estimation error of M1 and Bτ in Stage 2 and 3 (and thus K̂1), based on which we will eventually351

show that the τ -hop controller output by Algorithm 1 makes the system asymptotically stable. The352

proof is based on a detailed spectral analysis of the dynamical matrix of the closed-loop system.353
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Overview of Step 1. To upper bound the estimation errors in Stage 1 and 2, we only have to notice354

that the estimation error of Π1 completely captures how well the unstable subspace is estimated, and355

all other bounds should follow directly from it. The bound on ∥Π1− Π̂1∥ is shown in Theorem 5.1,356

together with a bound on ∥P1 − P̂1∥ as in Corollary 5.2.357

Theorem 5.1. For a noiseless linear dynamical system xt+1 = Axt, let Eu be the unstable subspace358

of A, k = dimEu be the instability index of the system, and Π1 be the orthogonal projector onto359

subspace Eu. Then for any ε > 0, by running Stage 1 of Algorithm 1 with an arbitrary initial state360

that terminates in (t0 + k) time steps, where361

t0 = O

k log n− log ε+ log κd(A)

2 log |λk|
|λk+1|

 ,

the matrix D⊤D is invertible with probability 1 (where D = [xt0+1 · · · xt0+k]), and in such cases362

we shall obtain an estimated Π̂1 = D(D⊤D)−1D⊤ with error ∥Π̂1 −Π1∥ < ε.363

Corollary 5.2. Under the premises of Theorem 5.1, for any orthonormal basis P̂1 of col(Π̂1) (where364

Π̂1 is obtained by Algorithm 1), there exists a corresponding orthonormal basis P1 of col(Π1), such365

that ∥P̂1 − P1∥ <
√
2kε =: δ, ∥M̂1 −M1∥ < 2∥A∥δ.366

The proofs are deferred to Appendix E due to limited length.367

Overview of Step 2. To analyze the stability of the closed-loop system, we shall first write out the368

closed-loop dynamics under the τ -hop controller. Recall in Section 3.1.2 we have defined ũs, x̃s, ỹs369

to be the control input, state in x-coordinates, and state in y-coordinates in the τ -hop control system,370

respectively. Using these notations, the learned controller can be written as371

ũs = K̂x̃s = K̂1P̂
⊤
1 P ỹs =

[
K̂1P̂

⊤
1 P1

K̂1P̂
⊤
1 P2

]
ỹs

in y-coordinates (as opposed to K̂1ỹs). Therefore, the closed-loop τ -hop dynamics should be372

ỹs+1 =

[
Mτ

1 + P⊤
1 Aτ−1BK̂1P̂

⊤
1 P1 ∆τ + P⊤

1 Aτ−1BK̂1P̂
⊤
1 P2

P⊤
2 Aτ−1BK̂1P̂

⊤
1 P1 Mτ

2 + P⊤
2 Aτ−1BK̂1P̂

⊤
1 P2

] [
ỹ1,s
ỹ2,s

]
=: L̂τ ỹs, (6)

and we will show it to be asymptotically stable (i.e., ρ(L̂τ ) < 1). Note that L̂τ is given by a 2-by-2373

block form, we can utilize the following lemma to assist the spectral analysis of block matrices, the374

proof of which is deferred to Appendix D.375

Lemma 5.3 (block perturbation bound). For 2-by-2 block matrices A =
[
A1 0
0 A2

]
, E =

[
0 E12

E21 0

]
,376

the spectral radii of A and A+ E differ by at most |ρ(A+ E)− ρ(A)| ≤ χ(A+ E)∥E12∥∥E21∥,377

where χ(A+ E) is a constant (see Appendix D).378

The above lemma shows a clear roadmap for proving ρ(L̂τ ) < 1. First, we need to guarantee stabil-379

ity of the diagonal blocks — the top-left block is stable because K̂1 is designed to (approximately)380

eliminate it to zero (which requires the estimation error bound on Bτ ), and the bottom-right block381

is stable because it is almost Mτ
2 with a negligible error induced by inaccurate projection. Then, we382

need to upper-bound the norms of off-diagonal blocks via careful estimation of factors appearing in383

these blocks. Complete proofs for both cases can be found in Appendices F and G, respectively.384

6 Conclusions385

This paper provides a new perspective into the learn-to-stabilize problem. We design a novel al-386

gorithm that exploits instance-specific properties to learn to stabilize an unknown LTI system on a387

single trajectory. We show that, under certain assumptions, the sample complexity of the algorithm388

is upper bounded by Õ(k), which avoids the 2Θ(n) state norm blow-up in the literature in the k ≪ n389

regime. This work initiates a new direction in the learn-to-stabilize literature, and many interesting390

and challenging questions remain open, including handling additive disturbances, eliminating the391

assumptions on spectral properties, and developing better ways to learn the unstable subspace.392
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Appendix572

A Decomposition of the State Space573

A.1 The Eu ⊕Es-decomposition574

It is evident that the following two subspaces of Rn are invariant with respect to A, namely575

Eu :=
⊕
i≤k

Ei, Es :=
⊕
i>k

Ei

which we refer to as the unstable subspace and the stable subspace of A, respectively. Since the576

eigenspaces Ei sum to the whole Rn space, one natural decomposition is Rn = Eu ⊕ Es; accord-577

ingly, each state can be uniquely decomposed as x = xu +xs, where xu ∈ Eu is called the unstable578

component, and xs ∈ Es is called the stable component.579

We also decompose A based on the Eu ⊕ Es-decomposition. Suppose Eu and Es are represented580

by their orthonormal bases Q1 ∈ Rn×k and Q2 ∈ Rn×(n−k), respectively, namely581

Eu = col(Q1), Es = col(Q2).

Let Q = [Q1 Q2] (which is invertible as long as A is diagonalizable), and let R = [R⊤
1 R⊤

2 ]
⊤ :=582

Q−1. Further, let Πu := Q1R1 and Πs = Q2R2 be the oblique projectors onto Eu and Es (along583

the other subspace), respectively. Since Eu and Es are both invariant with regard to A, we know584

there exists N1 ∈ Rk×k, N2 ∈ R(n−k)×(n−k), such that585

AQ = Q

[
N1

N2

]
⇔ N :=

[
N1

N2

]
= RAQ.

Let z = [z⊤1 z⊤2 ]⊤ be the coordinate representation of x in the basis Q (i.e., x = Qz). The system586

dynamics in z-coordinates can be expressed as587 [
z1,t+1

z2,t+1

]
= RAQ

[
z1,t
z2,t

]
+RBut =

[
N1

N2

] [
z1,t
z2,t

]
+

[
R1B
R2B

]
ut.

The major advantage of this decomposition is that the dynamical matrix in z-coordinate is block588

diagonal, so it would be simpler to study the behavior of the open-loop system.589

A.2 Geometric Interpretation: Principle Angles590

E⊥
u

Es

Eu

α1 β1

α2

(β2)

θ1

Before going any further, we emphasize that Definition 3.1591

is well-defined by itself, since singular values are preserved592

under orthonormal transformations.593

It might seem unintuitive to interpret σmin(P
⊤
2 Q2) in Defini-594

tion 3.1 as a measure of “closeness”. However, this is closely595

related to the principle angles between subspaces that gener-596

alize the standard angle measures in lower dimensional cases.597

More specifically, we can recursively define the ith principle598

angle θi (i = 1, · · · , n− k)as599

θi := min

{
arccos

(
⟨x, y⟩
∥x∥∥y∥

) ∣∣∣∣ x ∈ E⊥
u , x ⊥ span(x1, · · · , xi−1);

y ∈ Es, y ⊥ span(y1, · · · , yi−1).

}
=: ∠(xi, yi), (7)

where xi and yi (i = 1, · · · , n−k)are referred to as the ith principle vectors accordingly. Meanwhile,600

let P⊤
2 Q2 = UΣV ⊤ be the singular value decomposition (SVD), where Σ = diag(σ1, · · · , σn−k)601

and σ1 ≥ · · · ≥ σn−k. Then by an equivalent recursive characterization of singular values, we have602

σi = max
∥x∥=∥y∥=1

∀j<i: x⊥xj , y⊥yj

x⊤P⊤
2 Q2y =: x̄⊤

i P
⊤
2 Q2ȳi.

Since P2 and Q2 are orthonormal, x̄i and ȳi can be regarded as coordinate representations of xi =603

P2x̄i and yi = Q2ȳi, and it can be easily verified that xi and yi defined in this way are exactly604

the minimizers in (7). Hence we conclude that σi = cos θi. Therefore, E⊥
u and Es are ξ-close if605

and only if the all principle angles between E⊥
u and Es lie in the interval [0, arccos(1 − ξ)]; the606

above argument also shows that we can find orthonormal bases for E⊥
u and Es so that corresponding607

vectors form exactly the principle angles.608
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A.3 Characterization of ξ-close Subspaces609

It is naturally expected that the geometric interpretation should inspire more relationships among610

P1 = Q1, P2, Q2, R1, R2 and N2. We would like to emphasize that P1, P2 and Q1 are not confined611

to bases consisting of eigenvectors (since they are even not necessarily orthonormal). Meanwhile,612

since they are only used in the stability guarantee proof, we are granted the freedom to select any613

orthonormal bases. For simplicity, we will stick to the convention that P1 = Q1 (and thus M1 =614

N1). Further, in Lemma A.1, such freedom is utilized to establish fundamental relationships between615

the bases in the above two decompositions. The results are concluded as follows.616

Lemma A.1. Suppose E⊥
u and Es are ξ-close. Then we shall select P2 and Q2 such that617

(1) σmin(P
⊤
2 Q2) ≥ 1− ξ, ∥P⊤

1 Q2∥ ≤
√
2ξ, ∥P2 −Q2∥ ≤

√
2ξ.618

(2) ∥R2∥ ≤ 1
1−ξ , ∥N2∥ ≤ 1

1−ξ∥A∥.619

(3) ∥P⊤
1 −R1∥ ≤

√
2ξ

1−ξ , ∥R1∥ ≤
√
2ξ

1−ξ + 1.620

(4) ∥∆∥ ≤ 2−ξ
1−ξ

√
2ξ∥A∥.621

Proof. (1) Following the above interpretation, take arbitrary orthonormal bases P̄2 and Q̄2 of E⊥
u622

and Es, respectively, and let P̄⊤
2 Q̄2 = UΣV ⊤ be the SVD, which translates to623

(P̄2U)⊤(Q̄2V ) = Σ =: diag(σ1, · · · , σn−k).

Since U and V are orthonormal matrices, the columns of P̄2U and Q̄2V also form orthonormal bases624

of E⊥
u and Es, respectively. Then ξ-closeness basically says that there exist a basis {α1, · · · , αn−k}625

for E⊥
u , and a basis {β1, · · · , βn−k} for Es (both are assumed to be orthonormal), such that626

⟨αi, βj⟩ = δijσi =

{
σi ≥ 1− ξ for any i = j

0 for any i ̸= j
,

and we also have Π2βi = σiαi and Π1αi = σiβi (recall that Π1, Π2 are orthogonal projectors627

onto subspaces Eu, E
⊥
u , respectively). Therefore, without loss of generality, we shall always select628

P2 = [α1 · · · αn−k] and Q2 = [β1 · · · βn−k], such that P⊤
2 Q2 = diag(σ1, · · · , σn−k), and629

σmin(P
⊤
2 Q2) = min

i
|σi| ≥ 1− ξ.

Equivalently speaking, for any β = Q2η ∈ Es, we have (note that ∥η∥ = ∥β∥)630

∥P⊤
2 β∥ = ∥P⊤

2 Q2η∥ ≥ σmin(P
⊤
2 Q2)∥η∥ ≥ (1− ξ)∥β∥,

and consequently,631

∥P⊤
1 Q2η∥ = ∥P⊤

1 β∥ =
√
∥β∥2 − ∥P⊤

2 β∥2 ≤
√

2ξ∥β∥ =
√

2ξ∥η∥,

which further shows ∥P⊤
1 Q2∥ ≤

√
2ξ. To bound ∥P2 −Q2∥, by definition we have632

∥P2 −Q2∥ = max
∥η∥=1

∥(P2 −Q2)η∥ = max
∥η∥=1

∥∥∥∥∥∑
i

ηi(αi − βi)

∥∥∥∥∥
= max

∥η∥=1

√∑
i,j

ηiηj(αi − βi)⊤(αj − βj)

= max
∥η∥=1

√∑
i

2(1− µi)η2i

≤ max
∥η∥=1

√
2ξ
∑
i

η2i =
√

2ξ.

Here η = [η1, · · · , ηn−k] is an arbitrary vector in Rn−k.633

(2) By definition, I = QR = Q1R1 +Q2R2. Also recall that P1 = Q1, so we have P⊤
1 Q1 = I and634

P⊤
2 Q1 = 0. Then by left-multiplying P⊤

2 to the equality, we have635

P⊤
2 = P⊤

2 Q1R1 + P⊤
2 Q2R2 = P⊤

2 Q2R2,
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which further shows636

∥R2∥ = ∥(P⊤
2 Q2)

−1P⊤
2 ∥ ≤ ∥(P⊤

2 Q2)
−1∥ = 1

σmin(P⊤
2 Q2)

≤ 1

1− ξ
.

Therefore, since N2 = R2AQ2, we have637

∥N2∥ = ∥R2AQ2∥ ≤ ∥R2∥∥A∥∥Q2∥ ≤
1

1− ξ
∥A∥.

(3) Similarly, by left-multiplying P⊤
1 to the equality, we have638

P⊤
1 = P⊤

1 Q1R1 + P⊤
1 Q2R2 = R1 + P⊤

1 Q2R2,

which further shows639

∥P⊤
1 −R1∥ = ∥P⊤

1 Q2R2∥ ≤ ∥P⊤
1 Q2∥∥R2∥ ≤

√
2ξ

1− ξ
,

and therefore ∥R1∥ ≤ ∥P⊤
1 −R1∥+ ∥P⊤

1 ∥ = 1 +
√
2ξ

1−ξ .640

(4) A combination of the above results gives641

∥∆∥ = ∥P⊤
1 AP2∥ = ∥P⊤

1 AP2 −R1AQ2∥
≤ ∥P⊤

1 A(P2 −Q2)∥+ ∥(P⊤
1 −R1)AQ2∥

≤ ∥P⊤
1 ∥∥A∥∥P2 −Q2∥+ ∥P⊤

1 −R1∥∥A∥∥Q2∥

≤ ∥A∥
√
2ξ +

√
2ξ

1− ξ
∥A∥ = 2− ξ

1− ξ

√
2ξ∥A∥.

This completes the proof.642

B Solution to the Least Squares Problem in Stage 2643

Lemma B.1 gives the explicit form for the solution to the least squares problem (see Algorithm 1).644

Lemma B.1. Given D := [xt0+1 · · · xt0+k] and P̂1P̂
⊤
1 = Π̂1 = D(D⊤D)−1D⊤, the solution645

M̂1 = argmin
M1

t0+k∑
t=t0+1

∥P̂⊤
1 xt+1 −M1P̂

⊤
1 xt∥2

is uniquely given by M̂1 = P̂⊤
1 AP̂1.646

Proof. Here we assume by default that the summation over t sums from t0 + 1 to t0 + k. Since M1647

is a stationary point of L, for any ∆ in the neighbourhood of O, we have648

0 ≤ L(M1 +∆)− L(M1) =
∑
t

∥ŷ1,t+1 −M1ŷ1,t −∆ŷ1,t∥2 −
∑
t

∥ŷ1,t+1 −M1ŷ1,t∥2

=
∑
t

⟨∆ŷ1,t, ŷ1,t+1 −M1ŷ1,t⟩+O(∥∆∥2)

=
∑
t

tr
(
ŷ⊤1,t∆

⊤(ŷ1,t+1 −Aŷ1,t)
)
+O(∥∆∥2)

=
∑
t

tr
(
∆⊤(ŷ1,t+1 −M1ŷ1,t)ŷ

⊤
1,t

)
+O(∥∆∥2)

= tr

(
∆⊤

∑
t

(ŷ1,t+1 −M1ŷ1,t)ŷ
⊤
1,t

)
+O(∥∆∥2).

Since it always holds for any ∆, we must have649 ∑
t

(ŷ1,t+1 −M1ŷ1,t)ŷ
⊤
1,t ⇔ M1

∑
t

ŷ1,tŷ
⊤
1,t =

∑
t

ŷ1,t+1ŷ
⊤
1,t.
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Plugging in ŷ1,t = P̂⊤
1 xt and ŷ1,t+1 = P̂⊤

1 Axt, we further have650

M1P̂
⊤
1 XP̂1 = M1

∑
t

P̂⊤
1 xtx

⊤
t P̂1 =

∑
t

P̂⊤
1 Axtx

⊤
t P̂1 = P̂⊤

1 AXP̂1,

where X :=
∑

t xtx
⊤
t = DD⊤. Since the columns of P̂1 form an orthonormal basis of Êu, for any651

x ∈ Êu, P̂⊤
1 x is the coordinate of x under that basis. The columns of D are linearly independent,652

so the columns of P̂⊤
1 D are also linearly independent, which further yields653

rank(P̂⊤
1 XP̂1) = rank

(
(P̂⊤

1 D)(P̂⊤
1 D)⊤

)
= rank(P̂⊤

1 D) = k.

Therefore, P̂⊤
1 XP̂1 is invertible, and M1 is explicitly given by654

M1 = (P̂⊤
1 AXP̂1)(P̂

⊤
1 XP̂1)

−1.

Note that Π̂1 = P̂1P̂
⊤
1 is the projector onto subspace col(D), we must have655

P̂1P̂
⊤
1 X = (Π̂1D)D⊤ = DD⊤ = X,

which yields656

M1 = (P̂⊤
1 A(P̂1P̂

⊤
1 X)P̂1)(P̂

⊤
1 XP̂1)

−1 = (P̂⊤
1 AP̂1)(P̂

⊤
1 XP̂1)(P̂

⊤
1 XP̂1)

−1 = P̂⊤
1 AP̂1.

This completes the proof of Lemma B.1.657

It might help understanding to note that, when P̂1 = P1, for any xt, xt+1 ∈ Eu we have658

P⊤
1 Axt = yt+1 = M1yt = M1P

⊤
1 xt,

which requires P⊤
1 A = M1P

⊤
1 , or equivalently M1 = P⊤

1 AP1 (recall P⊤
1 P1 = I).659

C Transformation of B with Arbitrary Columns660

In the remaining sections of this paper, we have always regarded B as an n-by-k matrix (i.e., m =661

k). In this section, we will show that other cases can be handled in a similar way under proper662

transformations. This is trivial for the case where m > k, since we can simply select k linearly663

independent columns from B, and pad 0’s in ut for all unselected entries.664

For the case where m < k, let d = ⌈k/m⌉. Intuitively, we can “pack” every d consecutive steps to665

obtain a system with sufficient number of control inputs. More specifically, let666

x̃t =


xtd

xtd+1

...
x(t+1)d−1

 , ũt =


utd−1

utd

...
u(t+1)d−2

 ,

Ã =


0 A

. . .
...

0 Ad−1

Ad

 , B̃ =


B
AB B

...
...

. . .
Ad−1B Ad−2B · · · B

 ,

and consider the transformed system with dynamics667

x̃t+1 = Ãx̃t + B̃ũt.

The instability index of Ã is still k, with |λ̃i| = |λi|d (i = 1, · · · , n). Norms of Ã and B̃ satisfy668

∥Ã∥ ≤

√√√√ d∑
i=1

∥Ai∥2 = ∥Ad∥O(d), ∥B̃∥ ≤ ∥B∥

√√√√ d∑
i=1

(d− i)∥Ai∥2 = ∥Ad∥∥B∥O(d).

Since d ≤ k ≪ n, the above transformation only multiplies the bounds by a small constant.669
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D Proof of Lemma 5.3670

Lemma 5.3 is actually a direct corollary of the following lemma, for which we first need to define671

gapi(A), the (bipartite)spectral gap around λi with respect to A, namely672

gapi(A) :=

{
minλj∈λ(A2) |λi − λj | λi ∈ λ(A1)

minλj∈λ(A1) |λi − λj | λi ∈ λ(A2)
,

where λ(A) denotes the spectrum of A.673

Lemma D.1. For 2-by-2 block matrices A and E in the form674

A =

[
A1 0
0 A2

]
, E =

[
0 E12

E21 0

]
,

we have675

|λi(A+ E)− λi(A)| ≤ κd(A)κd(A+ E)

gapi(A)
∥E12∥∥E21∥.

Here κd(A) is the condition number of the matrix consisting of A’s eigenvectors as columns.676

Proof. The proof of the lemma can be found in existing literature like [53].677

Proof of Lemma 5.3. Lemma D.1 basically guarantees that every eigenvalue of A + E is within678

a distance of O(∥E12∥∥E21∥) from some eigenvalue of A. Hence, by defining χ(A + E) as the679

maximum coefficient, namely680

χ(A+ E) :=
κd(A)κd(A+ E)

mini{gapi(A)}
,

we shall guarantee |ρ(A+ E)− ρ(A)| ≤ χ(A+ E)∥E12∥∥E21∥.681

E Proof of Theorem 5.1 and its Corollary682

The main idea of this proof is to diagonalize A and write the open-loop system dynamics using the683

basis formed by the eigenvectors of A. Then, we provide an explicit expression for Π̂1 and Π1,684

based on which we can bound the error. To further derive a bound for ∥P̂1 − P1∥, one only needs685

to notice that norms are preserved under orthonormal coordinate transformations, so it only suffices686

to find a specific pair of bases of E⊥
u and Es that are close to each other — and the pair of bases687

formed by principle vectors (see Appendix A) is exactly what we want. This leads to Corollary 5.2688

that is repeatedly used in subsequent proofs.689

Without loss of generality, we shall write all matrices in the basis formed by unit eigenvectors690

{w1, · · · , wn} of A. Otherwise, let W = [w1 · · · wn], and perform change-of-coordinate by setting691

D̃ := W−1DW , Π̃1 := W−1Π1W , which further gives692

˜̂
Π1 = D̃(D̃⊤D̃)−1D̃⊤ = (W−1DW )(W−1D⊤DW )−1(W−1D⊤W ) = W−1Π̂1W.

Note that ∥W−1Π̂1W −W−1Π1W∥ ≤ ∥W∥∥W−1∥∥Π̂1 − Π1∥, where the upper bound is only693

magnified by a constant factor of κd(A) = ∥W∥∥W−1∥ that is completely determined by A. There-694

fore, it is largely equivalent to consider (D̃, Π̃1,
˜̂
Π1) instead of (D,Π1, Π̂1).695

Note that the matrix D = [xt0+1 · · · xt0+k] can be written as696

D =


d1 λ1d1 · · · λk−1

1 d1
d2 λ2d2 · · · λk−1

2 d2
...

...
. . .

...
dn λndn · · · λk−1

n dn

 ,

where xt0+1 =: [d1, · · · , dn]⊤. We first present a lemma characterizing some well-known properties697

of Vandermonde matrices that we need in the proof.698
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Lemma E.1. Given a Vandermonde matrix in variables x1, · · · , xn of order n699

V := Vn(x1, · · · , xn) =


1 1 · · · 1
x1 x2 · · · xn

...
...

. . .
...

xn−1
1 xn−1

2 · · · xn−1
n

 ,

its determinant is given by700

det(V ) =
∑
π

(−1)sgn(π)x0
π(i1)

x1
π(i2)

· · ·xn−1
π(in)

=
∏
j<ℓ

(xℓ − xj), (8)

and its (u, v)-cofactor is given by701

cofu,v(V ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1 1 · · · 1
...

. . .
...

...
. . .

...
xu−2
1 · · · xu−2

v−1 xu−2
v+1 · · · xu−2

n
xu
1 · · · xu

v−1 xu
v+1 · · · xu

n
...

. . .
...

...
. . .

...
xn−1
1 · · · xn−1

v−1 xn−1
v+1 · · · xn−1

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= σu,v

∏
j<ℓ̸=v

(xℓ − xj). (9)

Here coefficients σu,v are given by σu,v := sn−u(x1, · · · , xv−1, xv+1, · · · , xn), where function sm702

is defined by sm(y1, · · · , yn) :=
∑

i1<···<im
yi1 · · · yim .703

Proof of Lemma E.1. The proof of (8) can be found in any standard linear algebra textbook, and that704

of (9) can be found in [54].705

It is evident that the entries in D display a similar pattern as those of a Vandermonde matrix. Based706

on this observation, we shall further derive the explicit form of Π̂1 as in the next lemma.707

Lemma E.2. The projector Π̂1 = D(D⊤D)−1D⊤ has explicit form708

(Π̂1)uv =

∑
i2<···<ik
∀j:ij ̸=u,v

αu,i2,··· ,ikαv,i2,··· ,ik

∑
i1<···<ik

α2
i1,··· ,ik

,

where the summand αi1,··· ,ik (with ordered subscript) is defined as709

αi1,··· ,ik :=
∏
j

dij
∏
j<ℓ

(λiℓ − λij ).

Proof of Lemma E.2. We start by deriving the explicit form of (D⊤D)−1. Note that the determinant710

(which is also the denominator in the lemma) is given by711

det(D⊤D) =
∑

i1,··· ,ik

∣∣∣∣∣∣∣∣∣
λ0
i1
d2i1 λ1

i2
d2i2 · · · λk−1

ik
d2ik

λ1
i1
d2i1 λ2

i2
d2i2 · · · λk

ik
d2ik

...
...

. . .
...

λk−1
i1

d2i1 λk
i2
d2i2 · · · λ2k−2

ik
d2ik

∣∣∣∣∣∣∣∣∣
=

∑
i1,··· ,ik

d2i1 · · · d
2
ik
λ0
i1λ

1
i2 · · ·λ

k−1
ik

∏
j<ℓ

(λiℓ − λij )

=
∑

i1<···<ik

d2i1 · · · d
2
ik

∏
j<ℓ

(λiℓ − λij )
∑
π

(−1)sgn(π)λ0
π(j1)

λ1
π(j2)

· · ·λk−1
π(jk)

=
∑

i1<···<ik

d2i1 · · · d
2
ik

∏
j<ℓ

(λiℓ − λij )
2

=
∑

i1<···<ik

α2
i1,··· ,ik ,
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and the (u, v)-cofactor cofu,v(D⊤D) is given by712

cofu,v(D
⊤D) = (−1)u+v

∑
i1,··· ,ik−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ0
i1
d2i1 · · · λv−2

iv−1
d2iv−1

λv
iv
d2iv · · · λk−1

ik−1
d2ik−1

...
. . .

...
...

. . .
...

λu−2
i1

d2i1 · · · λu+v−4
iv−1

d2iv−1
λu+v−2
iv

d2iv · · · λu+k−3
ik−1

d2ik−1

λu
i1
d2i1 · · · λu+v−2

iv−1
d2iv−1

λu+v
iv

d2iv · · · λu+k−1
ik−1

d2ik−1

...
. . .

...
...

. . .
...

λk−1
i1

d2i1 · · · λk+v−3
iu+v−2

d2iv−1
λk+v−1
iv

d2iv · · · λ2k−2
ik−1

d2ik−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)u+v

∑
i1,··· ,ik−1

d2i1 · · · d
2
ik−1

λ0
i1 · · ·λ

v−2
iv−1

λv
iv · · ·λ

k−1
ik−1

sk−u

∏
j<ℓ

(λiℓ − λij )

= (−1)u+v
∑

i1<···<ik−1

sk−u · d2i1 · · · d
2
ik−1

∏
j<ℓ

(λiℓ − λij )·∑
π

(−1)sgn(π)λ0
π(i1)

· · ·λv−2
π(iv−1)

λv
π(iv)

· · ·λk−1
π(ik−1)

= (−1)u+v
∑

i1<···<ik−1

sk−usk−v · d2i1 · · · d
2
ik−1

∏
j<ℓ

(λiℓ − λij )
2,

where sk−u(λi1 , · · · , λik−1
) is abbreviated to sk−u.713

Note that symmetry of D⊤D guarantees cofv,u(D⊤D) = cofu,v(D
⊤D), so we have714

(D⊤D)−1
u,v =

cofv,u(D
⊤D)

det(D⊤D)
=

cofu,v(D
⊤D)

det(D⊤D)
.

And eventually we shall derive that715

P̂u,v =
∑
p,q

Du,p(D
⊤D)−1

p,qD
⊤
q,v

=
1

det(D⊤D)

∑
p,q

Du,pDv,q cofu,v(D
⊤D)

=
1

det(D⊤D)

∑
p,q

λp−1
u duλ

q−1
v dv · (−1)p+q

∑
i1<···<ik−1

sk−psk−q · d2i1 · · · d
2
ik−1

∏
j<ℓ

(λiℓ − λij )
2

=
1

det(D⊤D)

∑
i1<···<ik−1

dudvd
2
i1 · · · d

2
ik−1

∏
j<ℓ

(λiℓ − λij )
2

k∑
p=1

(−1)pλp−1
u sk−p

k∑
q=1

(−1)qλq−1
v sk−q

=
1

det(D⊤D)

∑
i1<···<ik−1

dudi1 · · · dik−1

∏
j<ℓ

(λiℓ − λij )
∏
ℓ

(λiℓ − λu)·

dvdi1 · · · dik−1

∏
j<ℓ

(λiℓ − λij )
∏
ℓ

(λiℓ − λv)

=
1

det(D⊤D)

∑
i2<···<ik
∀j:ij ̸=u,v

αu,i2,··· ,ikαv,i2,··· ,ik ,

which is in exact the same form as stated in the lemma.716

Now we shall go back to the proof of the main result of this section.717

Proof of Theorem 5.1. Recall that di = λt0+1
i x0,i. For the clarity of notations, let718

θi1,i2,··· ,ik :=
αi1,i2,··· ,ik
α1,2,··· ,k

,
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and it is evident that |θi1,i2,··· ,ik | = 1 only if (i1, i2, · · · , ik) is a permutation of (1, 2, · · · , k). For719

any other (i1, i2, · · · , ik), by the definition in Lemma E.2 we have720

|θi1,i2,··· ,ik | ≤ ci1,i2,··· ,ik · r
∑

j 1ij>kt0 ≤ c · rt0 ,

where r = |λk+1|
|λk| and c := max

i1,··· ,ik
{ci1,i2,··· ,ik}. Therefore, since there are

(
n
k

)
different k-tuples721

(i1, · · · , ik) such that i1 < · · · < ik, we have722 ∑
i1<···<ik

θ2i1,··· ,ik − θ21,··· ,k < c
(
n
k

)
r2t0 .

Now we can bound the entries in Π̂1. For any ε > 0, we shall select t0 such that c
(
n
k

)
r2t0 < ε

n2 ,723

where the denominator is always bounded by724

1 ≤
∑

i1<···<ik

θ2i1,··· ,ik ≤ 1 +
ε

n2
.

For the nominator, note that for each δ there are fewer entries with exponent δ in the nominator than725

in the denominator, so we can bound the denominator as726 ∣∣∣∣∣∣∣∣
∑

i2<···<ik
∀j:ij ̸=u,v

θu,i2,··· ,ikθv,i2,··· ,ik

∣∣∣∣∣∣∣∣ ≤
{
c
(
n
k

)
r2t0 + 1 u = v ≤ k

c
(
n
k

)
r2t0 otherwise

.

Therefore, when u = v ≤ k, we have
∑

i2<···<ik
∀j:ij ̸=u

θ2u,i2,··· ,ik ≥ 1, which shows727

(Π̂1)uv ≥
(
1 +

ε

n2

)−1

≥ 1− ε

n2

(Π̂1)uv ≤ 1 +
ε

n2

 ⇒
∣∣∣(Π̂1)uv − (Π1)uv

∣∣∣ ≤ ε

n2
;

for all other cases, the nominator cannot sum over a permutation of (1, · · · , k), which gives728 ∣∣∣(Π̂1)uv − (Π1)uv

∣∣∣ = ∣∣∣(Π̂1)uv

∣∣∣ ≤ ε

n2
.

Therefore, the overall estimation error is bounded by729

∥Π̂1 −Π1∥ ≤
∑
u,v

∣∣∣(Π̂1)uv − (Π1)uv

∣∣∣ ≤ ε.

Recall that the bound is subject to a change-of-basis transformation, and in the general scenario730

where the eigenvectors of A are not mutually orthogonal, the original prediction error bound should731

be multiplied by κd(A). Therefore, to achieve error threshold ε for predictions on Πi, it is required732

that c
(
n
k

)
r2t0 < ε

κd(A)n2 , or equivalently, by Stirling’s Formula,733

t0 >
log κd(A) + log cn2

ε + log
(
n
k

)
2 log 1

r

= O

k log n− log ε+ log κd(A)

2 log |λk|
|λk+1|

 . (10)

This completes the proof.734

Proof of Corollary 5.2. We first construct a specific pair of orthonormal bases (P ∗
1 , P̂

∗
1 ) that satisfy735

the corollary. To start with, take an arbitrary initial pair of orthonormal basis (P ◦
1 , P̂

◦
1 ), and consider736

the SVD (P ◦
1 )

⊤P̂ ◦
1 = UΣV ⊤, which is equivalent to (P ◦

1U)⊤(P̂ ◦
1 V ) = Σ. Note that the columns737

of P ◦
1U = [w1 · · ·wk] and P̂ ◦

1 V = [ŵ1 · · · ŵk] form orthonormal bases of col(Π1) and col(Π̂1),738

respectively; furthermore, these bases project onto each other accordingly by subscripts, namely739

Π1ŵi = σiwi, Π̂1wi = σiŵi.

Now we set P ∗
1 := P ◦

1U and P̂ ∗
1 := P̂ ◦

1 V . Note that740

|1− σi| = ∥(Π̂1 −Π1)ŵi∥ < ε,
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which shows, by properties of projection matrix Π1,741

∥wi − ŵi∥ =
√
∥wi −Π1ŵi∥2 + ∥Π1ŵi − ŵi∥2 =

√
|1− σi|2 + ∥(Π̂1 −Π1)ŵi∥2 <

√
2ε,

and thus742

∥P ∗
1 − P̂ ∗

1 ∥ = max
∥z∥=1

∥(P ∗
1 − P̂ ∗

1 )z∥ = max
∥z∥=1

∥∥∥∥∥∑
i

zi(wi − ŵi)

∥∥∥∥∥ ≤ √k · √2ε.
To further generalize the proposition to any arbitrary P̂1, we only have to note that there exists an743

orthonormal matrix T that maps the basis P̂ ∗
1 to P̂1 = P̂ ∗

1 T . Now take P1 = P ∗
1 T , and we have744

∥P̂1 − P1∥ = ∥(P̂ ∗
1 − P ∗

1 )T∥ = ∥P̂ ∗
1 − P ∗

1 ∥ <
√
2kε.

As for the estimation error bound for M1, we can directly write745

∥P⊤
1 AP1 − P̂⊤

1 AP̂1∥ ≤ ∥P⊤
1 AP1 − P⊤

1 AP̂1∥+ ∥P⊤
1 AP̂1 − P̂⊤

1 AP̂1∥
≤ ∥A∥∥P1 − P̂1∥+ ∥A∥∥P1 − P̂1∥
< 2∥A∥δ,

This completes the proof of the corollary.746

Recall that we are allowed to take any orthonormal basis P1 for Eu. Hence we shall always assume747

by default that P1 in the proofs are selected as shown in the proof above.748

We finish this section with simple but frequently-used bounds on ∥P̂⊤
1 P1∥ and ∥P̂⊤

1 P2∥. These749

factors represent an additional error introduced by using the inaccurate projector P̂1.750

Proposition E.1. Under the premises of Corollary 5.2, ∥Ik − P̂⊤
1 P1∥ < δ, ∥P̂⊤

1 P2∥ < δ.751

Proof. Note that P⊤
1 P1 = Ik and P⊤

1 P2 = O, it is evident that752

∥Ik − P̂⊤
1 P1∥ = ∥(P1 − P̂1)

⊤P1∥ < δ,

∥P̂⊤
1 P2∥ = ∥(P̂1 − P1)

⊤P2∥ = ∥P̂1 − P1∥ < δ.

This finishes the proof.753

F Proof of Theorem 4.2754

We first consider a warm-up case where A is symmetric, which provides some intuition for the755

general case. In this case, the eigenvectors of A are mutually orthogonal, which guarantees E⊥
u = Es756

(i.e., they are 0-close to each other) and thus ∆ = 0. This allows us to select τ = 1, ω = 0 and757

α = 1, and the closed-loop dynamical matrix simplifies to758

L̂1 =

[
M1 + P⊤

1 BK̂1P̂
⊤
1 P1 P⊤

1 BK̂1P̂
⊤
1 P2

P⊤
2 BK̂1P̂

⊤
1 P1 M2 + P⊤

2 BK̂1P̂
⊤
1 P2

]
. (11)

The norm of the top-left block is in the order of O(δ) based on the estimation error bound (see759

Theorem F.1) ∥B̂1−B1∥ = O(
√
kδ), which characterizes how well the controller can eliminate the760

unstable component. The spectrum of the bottom-right block can be viewed as a perturbation (note761

that ∥P̂⊤
1 P2∥ = O(δ) is small by Proposition E.1) to a stable matrix M2 (recall ρ(M2) = |λk+1|),762

which should also be stable as long as δ is small enough. Meanwhile, the top-right block is also763

approximately zero, since only projection error contributes to the top-right block (again ∥P̂⊤
1 P2∥ =764

O(δ)). The above observations together show that L̂1 is in the order of765

L̂1 =

[
O(δ) O(δ)
O(1) |λk+1|+O(δ)

]
, (12)

which is almost lower-triangular. Therefore, we can apply the block perturbation bound to bound766

the spectrum of L̂1.767

We start by showing the estimation error bound for B1, which is straight-forward since ∆ = 0. Note768

that the upper bound of the norm of our controller K̂1 appears as a natural corollary of it.769
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Proposition F.1. Under the premises of Theorem 4.2, ∥B̂1 −B1∥ < 4∥A∥
√
kδ.770

Proof. Note that the column vector bi has estimation error bound771

∥bi − b̂i∥ =
1

∥xti∥

∥∥∥(P⊤
1 xti+1 −M1P

⊤
1 xti

)
−
(
P̂⊤
1 xti+1 − M̂1P̂

⊤
1 xti

)∥∥∥
≤ 1

∥xti∥

(
∥(P⊤

1 − P̂⊤
1 )Axti∥+ ∥(M1P

⊤
1 − M̂1P̂

⊤
1 )xti∥

)
≤ ∥P⊤

1 − P̂⊤
1 ∥∥A∥+ ∥M1P

⊤
1 −M1P̂

⊤
1 ∥+ ∥M1P̂

⊤
1 − M̂1P̂

⊤
1 ∥

< ∥A∥δ + ∥M1∥∥P⊤
1 − P̂⊤

1 ∥+ ∥M1 − M̂1∥
< ∥A∥δ + ∥A∥δ + 2∥A∥δ = 4∥A∥δ,

where we repeatedly apply Corollary 5.2 and the fact that ∥M1∥ ≤ ∥A∥. Then, to bound the error772

of the whole matrix, we simply apply the definition773

∥B̂1 −B1∥ = max
∥u∥=1

∥(B̂1 −B1)u∥ ≤ max
∥u∥=1

k∑
i=1

|ui|∥b̂i − bi∥ < 4∥A∥
√
kδ.

This completes the proof.774

Corollary F.1. Under the premises of Theorem 4.2, when (13) holds, ∥K̂1∥ < 2∥A∥
c∥B∥ .775

Proof. By Proposition F.1, it is evident that776

σmin(B̂1) ≥ σmin(B1)− ∥B̂1 −B1∥ > (c− 4∥A∥
√
kδ)∥B∥ > c

2
∥B∥,

where the last inequality requires777

δ <
c

8∥A∥
√
k
. (13)

Recall that K̂1 = B̂−1
1 M̂1, and note that ∥B̂−1

1 ∥ ≤ 1
σmin(B̂1)

, so we have778

∥K̂1∥ = ∥B̂−1
1 M̂1∥ ≤

∥P̂⊤
1 AP̂1∥

σmin(B̂1)
<

2∥A∥
c∥B∥

.

This completes the proof.779

Recall that to apply Lemma 5.3, we need a bound on the spectral radii of diagonal blocks. The780

top-left block has already been eliminated to approximately 0 by the design of K̂1, but the bottom-781

right block needs some extra work — although M2 is known to be stable, the inaccurate projection782

introduces an extra error that perturbs the spectrum. To bound the perturbed spectral radius, we will783

apply the following perturbation bound known as Bauer-Fike Theorem.784

Lemma F.2 (Bauer-Fike). Suppose A ∈ Rn×n is diagonalizable, then for any E ∈ Rn×n, we have785

|ρ(A)− ρ(A+ E)| ≤ max
λ̂∈λ(A+E)

min
λ∈λ(A)

|λ− λ̂| ≤ κd(A)∥E∥,

where κd(A) is the condition number of the matrix consisting of A’s eigenvectors as columns (i.e.,786

if A = SΛS−1 with diagonal Λ, then κd(A) = cond(S)), and λ(A) denotes the spectrum of A.787

Proof. The proof is well-known and can be found in, e.g., [55].788

Now we are ready to prove the main theorem for any symmetric dynamical matrix A.789

Proof of Theorem 4.2. With τ = 1, the controlled dynamics under estimated controller K̂1 becomes790

L̂1 =

[
M1 + P⊤

1 BK̂1P̂
⊤
1 P1 P⊤

1 BK̂1P̂
⊤
1 P2

P⊤
2 BK̂1P̂

⊤
1 P1 M2 + P⊤

2 BK̂1P̂
⊤
1 P2

]
.
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We first guarantee that the diagonal blocks are stable. For the top-left block,791

∥M1 + P⊤
1 BK̂1∥ = ∥M1 −B1B̂

−1
1 M̂1P̂

⊤
1 P1∥

≤ ∥M1 − M̂1∥+ ∥M̂1 −B1B̂
−1
1 M̂1∥+ ∥B1B̂

−1
1 M̂1(Ik − P̂⊤

1 P1)∥
≤ ∥M1 − M̂1∥+ ∥B̂1 −B1∥∥K̂1∥+ ∥B∥∥K̂1∥∥Ik − P̂⊤

1 P1∥

< 2∥A∥δ + 8∥A∥2
√
k

c∥B∥
δ +

2∥A∥
c

δ (14)

=
2
(
4
√
k∥A∥+ (c+ 1)∥B∥

)
∥A∥

c∥B∥
δ,

where in (14) we apply Corollary 5.2, Corollary F.1, and Proposition E.1. Meanwhile, for the792

bottom-right block, note that the norm of the error term is bounded by793

∥P⊤
2 BK̂1P̂

⊤
1 P2∥ ≤ ∥B∥∥B̂−1

1 ∥∥M̂1∥∥P̂⊤
1 P2∥ ≤

2∥A∥
c

δ.

Hence, by Lemma F.2, the spectral radius of the bottom-right block is bounded by794

ρ(M2 + P⊤
2 BK̂1P̂

⊤
1 P2) ≤ ρ(M2) +

2
cκd(M2)∥A∥δ < 1,

where we require (recall that ρ(M2) = |λk+1|)795

δ <
c(1− |λk+1|)
2κd(M2)∥A∥

. (15)

To apply the lemma, it only suffices to bound the spectral norms of off-diagonal blocks. Note that796

the top-right block is bounded by797

∥P⊤
1 BK̂1P̂

⊤
1 P2∥ ≤ ∥B∥∥K̂1∥∥P̂⊤

1 P2∥ <
2∥A∥
c

δ,

and the bottom-left block is bounded by798

∥P⊤
2 BK̂1P̂

⊤
1 P1∥ ≤ ∥B∥∥K̂1∥ ≤

2∥A∥
c

.

Now, by Lemma 5.3, we can guarantee that799

ρ(L̂1) ≤ max

{
2
(
4
√
k∥A∥+ 2(c+ 1)∥B∥

)
∥A∥

c∥B∥
δ, |λk+1|+ ∥B∥∥K̂1∥δ

}
+

4∥A∥2χ(L̂1)

c2
δ < 1,

where we require800

δ < min

 1

2
(
4
√
k∥A∥+2(c+1)∥B∥

)
∥A∥

c∥B∥ + 4∥A∥2χ(L̂1)
c2

,
1− |λk+1|

2∥A∥
c + 4∥A∥2χ(L̂1)

c2

 . (16)

So far, it is still left to recollect all the constraints we need on δ (see (13), (15) and (16)), i.e.,801

δ < min

 c

8∥A∥
√
k
,
c(1− |λk+1|)
2κd(M2)∥A∥

,
1− |λk+1|

2∥A∥
c + 4∥A∥2χ(L̂1)

c2

,
1

2
(
4
√
k∥A∥+2(c+1)∥B∥

)
∥A∥

c∥B∥ + 4∥A∥2χ(L̂1)
c2

 ,

which can be simplified (but weakened) to802

δ <
c2(1− |λk+1|)

16
√
kκd(M2)∥A∥(∥A∥+ ∥B∥)χ(L̂1)

= O(k−1/2). (17)

We shall rewrite the bound equivalently in terms of t0 (recall (10) in Appendix E) as803

t0 >
log(cn2

(
n
k

)
)− log c2(1−|λk+1|)

16
√
2kκd(M2)∥A∥(∥A∥+∥B∥)χ(L̂1)

2 log |λk|
|λk+1|

= O

 k log n

log |λk|
|λk+1|

 , (18)

since κd(A) = 1. This completes the proof of Theorem 4.2.804
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G Proof of the Main Theorem805

For the general case, the analysis becomes more challenging for two reasons: on the one hand, we806

have to apply τ -hop control with τ possibly larger than 1, which potentially increases the norm of807

Bτ and K̂1; on the other hand, the top-right corner will no longer be O(δ) with a non-zero ∆ (in808

fact, ∆τ is in the order of |λ1|τ that grows exponentially with respect to τ ). To settle these issues,809

we first introduce two key observations on bounds of major factors:810

(1) For an arbitrary matrix X , although ∥X∥ might be significantly larger than ρ(X), we always811

have ∥Xt∥ = O(ρ(X)t) when t is large enough. This is formally proven as Gelfand’s Formula812

(see Lemma G.1), and helps to establish bounds like ∥M1∥ = O(|λ1|τ ), ∥M2∥ = O(|λk+1|τ ),813

∥∆τ∥ = O(|λ1|τ ), ∥P⊤
2 Aτ−1∥ = O(|λk+1|τ ), and ∥M̂τ

1 −Mτ
1 ∥ = O(|λ1|τδ).814

(2) When the system runs with 0 control inputs for a long period (specifically, for ω time steps),815

eventually we will see the unstable component expanding and the stable component shrinking,816

and consequently ∥P⊤
2 Aωx∥
∥Aωx∥ = O(|λk|−ω). This cancels out the exponentially exploding ∥∆τ∥,817

and helps to establish the estimation bound ∥B̂τ −Bτ∥ = O(|λ1|τδ).818

With these in hand, we are ready to upper bound the norms of the blocks in L̂τ :819

(1) The top-left and bottom-right blocks: similar to the warm-up case, only to note that dynamical820

matrices are lifted to their τ th power, and thus ∥B̂τ −Bτ∥ carries an additional factor of |λ1|τ .821

(2) The bottom-left block: P⊤
2 Aτ−1 contributes an O(|λk+1|τ ) factor that decays exponentially,822

while K̂1 contributes an O(|λ1|τ ) factor that explodes exponentially. The overall bound is in823

the order of O(|λ1λk+1/λk|τ ), and decays with respect to τ if |λ1λk+1| < 1.824

(3) The top-right block: the first term is in the order of O(|λ1|τ ), and the second term is in the825

order of O(|λ1λk+1/λk|τδ). This block is in the order of O(|λ1|τ ) when δ is small enough.826

Therefore, the closed-loop dynamical matrix is actually in the order of827

L̂τ =

[
O(|λ1|2τδ) O

(
|λ1|τ + |λ1λk+1/λk|τδ

)
O(|λ1λk+1/λk|τ ) O

(
|λk+1|τ + |λ1λk+1|τδ

) ] . (19)

Finally, by Lemma 5.3, asymptotic stability is guaranteed when |λ1|2|λk+1| < |λk| (i.e., the norm828

of the bottom-left block decays faster than the norm of the top-right block grows), in which case we829

can set τ to be some constant determined by A and B, and δ in the order of O(|λ1|−2τ ).830

Technically, we would like to bound the spectral radius of the matrix831

L̂τ =

[
Mτ

1 + P⊤
1 Aτ−1BK̂1P̂

⊤
1 P1 ∆τ + P⊤

1 Aτ−1BK̂1P̂
⊤
1 P2

P⊤
2 Aτ−1BK̂1P̂

⊤
1 P1 Mτ

2 + P⊤
2 Aτ−1BK̂1P̂

⊤
1 P2.

]
using Lemma 5.3. The proof is split into two major building blocks: on the one hand, we introduce832

the well-known Gelfand’s Formula to bound matrices appearing with exponents; on the other hand,833

we establish the estimation error bound for Bτ (parallel to Lemma F.1) and proceed to bound ∥K̂1∥,834

for which we rely on the instability results shown in Section G.2. Finally, a combination of these835

building blocks naturally establishes the main theorem.836

G.1 Gelfand’s Formula837

In this section, we will show norm bounds for factors that contain matrix exponents. It is natural to838

apply the well-known Gelfand’s formula as stated below.839

Lemma G.1 (Gelfand’s formula). For any square matrix X , we have840

ρ(X) = lim
t→∞

∥Xt∥1/t. (20)

In other words, for any ε > 0, there exists a constant ζε(X) such that841

σmax(X
t) = ∥Xt∥ ≤ ζε(X)(ρ(X) + ε)t. (21)

Further, if X is invertible, let λmin(X) denote the eigenvalue of X with minimum modulus, then842

σmin(X
t) ≥ 1

ζε(X−1)

(
|λmin(X)|

1 + ε|λmin(X)|

)t

. (22)
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Proof. The proof of (20) can be easily found in existing literature (e.g., [56], Corollary 5.6.14), and843

(21) follows by the definition of limits. For (22), note that844

σmin(X
t) =

1

σmax((X−1)t)
≥ 1

ζε(X−1)(ρ(X−1) + ε)t
=

1

ζε(X−1)

(
|λmin(X)|

1 + ε|λmin(X)|

)t

,

where we apply σmin(X
t) = σmax((X

−1)t)−1 and ρ(X−1) = |λmin(X)|−1.845

It is evident that ρ(A) = ρ(M1) = ρ(N1) = |λ1|, λmin(M1) = λmin(N1) = |λk| and ρ(M2) =846

ρ(N2) = |λk+1| (recall that M1 and M2 inherits the unstable and stable eigenvalues, respectively).847

Therefore, we can use Gelfand’s formula to bound the relevant factors appearing in L̂τ .848

Proposition G.1. Under the premises of Theorem 4.1, the following results hold for any t ∈ N:849

(1) ∥Bt∥ ≤ ζε1(A)(|λ1|+ ε1)
t−1∥B∥;850

(2) ∥P⊤
2 At∥ ≤ ζε2(M2)(|λk+1|+ ε2)

t;851

(3) ∥∆t∥ ≤ C∆(|λ1|+ ε1)
t, where C∆ = ζε1(M1)ζε2(M2)

(2−ξ)
√
2ξ∥A∥

1−ξ
2|λk+1|

|λ1|+ε1−|λk+1|−ε2
.852

Here (and below) ε1 and ε2 are selected to be sufficiently small constants (see (47)).853

Proof. (1) This is a direct corollary of Gelfand’s Formula, since854

∥Bt∥ = ∥P⊤
1 At−1B∥ ≤ ∥At−1∥∥B∥ ≤ ζε1(A)(|λ1|+ ε1)

t−1∥B∥.

(2) It only suffices to recall ρ(M2) = |λk+1|, and note that855

P⊤
2 At = P⊤

2 PM tP−1 = [0 In−k]M
tP⊤ = M t

2P
⊤
2 .

Hence by Gelfand’s formula we have ∥P⊤
2 At∥ = ∥M t

2∥ ≤ ζε2(M2)(|λk+1|+ ε2)
t.856

(3) This is a direct corollary of Lemma A.1(4) and Gelfand’s formula, since857

∥∆t∥ =

∥∥∥∥∥∑
i

M i
1∆M t−1−i

2

∥∥∥∥∥ ≤ ∥∆∥∑
i

∥M i
1∥∥M t−1−i

2 ∥

≤ ζε1(M1)ζε2(M2)
(2− ξ)

√
2ξ∥A∥

1− ξ

∑
i

(ε1 + |λ1|)i(|λk+1|+ ε2)
t−1−i

= C∆(|λ1|+ ε1)
t.

This finishes the proof of the proposition.858

Proposition G.2. Under the premises of Theorem 4.1,859

∥M̂τ
1 −Mτ

1 ∥ < 2τ∥A∥ζε1(A)2(|λ1|+ ε1)
τ−1δ.

Proof. Recall that Corollary 5.2 gives ∥M1 − M̂1∥ < 2∥A∥δ. Meanwhile, by Gelfand’s Formula,860

∥M t
1∥ = ∥P⊤AtP∥ ≤ ∥At∥ ≤ ζε1(A)(|λ1|+ ε1)

t,

∥M̂ t
1∥ = ∥P̂⊤AtP̂∥ ≤ ∥At∥ ≤ ζε1(A)(|λ1|+ ε1)

t.

Then we have the following bound by telescoping861

∥Mτ
1 − M̂τ

1 ∥ =

∥∥∥∥∥
τ∑

i=1

(
M i

1M̂
τ−i
1 −M i−1

1 M̂τ−i+1
1

)∥∥∥∥∥
≤

τ∑
i=1

∥M i−1
1 ∥∥M̂τ−i

1 ∥∥M1 − M̂1∥

< τ · ζε1(A)2(|λ1|+ ε1)
τ−1 · 2∥A∥δ

= 2τ∥A∥ζε1(A)2(|λ1|+ ε1)
τ−1δ.

This finishes the proof.862
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Corollary G.2. Under the premises of Theorem 4.1, when δ < 1
τ ,863

∥M̂τ
1 ∥ <

(
ζε1(M1)(|λ1|+ ε1) + 2∥A∥ζε1(A)

)
(|λ1|+ ε1)

τ−1.

Proof. A combination of Gelfand’s Formula and Proposition G.2 yields864

∥M̂τ
1 ∥ ≤ ∥Mτ

1 ∥+ ∥M̂τ
1 −Mτ

1 ∥
≤ ζε1(M1)(|λ1|+ ε1)

τ + 2τ∥A∥ζε1(A)2(|λ1|+ ε1)
τ−1δ

<
(
ζε1(M1)(|λ1|+ ε1) + 2τ∥A∥ζε1(A)δ

)
(|λ1|+ ε1)

τ−1,

where the last inequality requires δ < 1
τ . This completes the proof.865

G.2 Instability of the Unstable Component866

We have been referring to Es (and approximately, E⊥
u ) as “stable”, and Eu as “unstable”. This leads867

us to think that the unstable component will constitute an increasing proportion of the state as the868

system evolves with zero control input. However, in some cases it might happen that the proportion869

of unstable component does not increase within the first few time steps, although eventually it will870

explode. This motivates us to formally characterize such instability of the unstable component.871

In this section, we aim to establish a fundamental property of Aω (for large enough ω, of course)872

that it “almost surely” increases the norm of the state. By “almost surely” we mean that the initial873

state should have non-negligible unstable component, which happens with probability 1 − ε when874

we uniformly sample the initial state from the surface of unit hyper-sphere in Rn.875

Throughout this section, we use γ to denote the ratio of the unstable component over the stable876

component within some state x (i.e., ∥R1x∥
∥R2x∥ ). Note that877

x = Πux+Πsx = Q1R1x+Q2R2x,

where Q1, Q2 are orthonormal. Hence878

∥R1x∥ − ∥R2x∥ ≤ ∥x∥ ≤ ∥R1x∥+ ∥R2x∥.

As a consequence, when ∥R1x∥
∥R2x∥ > γ > 1, we also know that879

∥R1x∥
∥x∥

≥ ∥R1x∥
∥R1x∥+ ∥R2x∥

>
γ

γ + 1
,
∥R2x∥
∥x∥

≤ ∥R2x∥
∥R1x∥ − ∥R2x∥

<
1

γ − 1
.

The following results are presented to fit in the framework of an inductive proof. We first establish880

the inductive step, where Proposition G.3 shows that the unstable component eventually becomes881

dominant with a non-negligible initial γ, and Proposition G.4 shows that the unstable component will882

still constitute a non-negligible part after a control input of mild magnitude is injected. Meanwhile,883

Proposition G.5 shows that the initial unstable component is non-negligible with large probability.884

Proposition G.3. Given a dynamical matrix A and some constant γ > 0, for any state x such that885
∥R1x∥
∥R2x∥ > γ, for any ω ∈ N, we have886

∥R1A
ωx∥

∥R2Aωx∥
> γω := Cγ

(
|λk|

(1 + ε3|λk|)(|λk+1|+ ε2)

)ω

,

where Cγ := 1
(1+ 1

γ )ζε3 (N
−1
1 )ζε2 (N2)∥R2∥

is a constant related to γ. Specifically, for any γ+ > 0,887

there exists a constant ω0(γ, γ+) = O(log γ+

γ ), such that for any ω > ω0(γ, γ+),
∥R1x∥
∥R2x∥ > γ+.888

Proof. Recall that R1A
ω = Nω

1 R1 and R2A
ω = Nω

2 R2. By Gelfand’s Formula we have889

∥R1A
ωx∥

∥R2Aωx∥
=
∥Nω

1 R1x∥
∥Nω

2 R2x∥
≥ σmin(N

ω
1 )∥R1x∥

∥Nω
2 ∥∥R2∥∥x∥

>
σmin(N

ω
1 )

(1 + 1
γ )∥N

ω
2 ∥∥R2∥

≥
(
|λk|/(1 + ε3|λk|)

)ω
(1 + 1

γ )ζε3(N
−1
1 )ζε2(N2)(|λk+1|+ ε2)ω∥R2∥
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=
1

(1 + 1
γ )ζε3(N

−1
1 )ζε2(N2)∥R2∥

(
|λk|

(1 + ε3|λk|)(|λk+1|+ ε2)

)ω

.

Therefore, we shall take890

ω0(γ, γ+) =
log γ+/Cγ

log(|λk|)/
(
(1 + ε3|λk|)(|λk+1|+ ε2)

) = O

(
log

γ+
γ

)
,

and the proof is completed.891

Corollary G.3. Under the premises of Proposition G.3, for any ω > ω0(γ, γ+),892

∥P⊤
1 Aωx∥
∥Aωx∥

> 1− 2

γω − 1
,
∥P⊤

2 Aωx∥
∥Aωx∥

<
1

γω − 1
.

Proof. Note that we have decomposition x = Πux +Π1Πsx +Π2Πsx, where ∥Πux∥ = ∥R1x∥893

and ∥Πsx∥ = ∥R2x∥. Hence, for any ω > ω0(γ, γ+), we can show that894

∥P⊤
1 Aωx∥
∥Aωx∥

=
∥ΠuA

ωx+Π1ΠsA
ωx∥

∥Aωx∥

≥ ∥ΠuA
ωx∥ − ∥Π1ΠsA

ωx∥
∥Aωx∥

≥ ∥R1A
ωx∥ − ∥R2A

ωx∥
∥Aωx∥

>
γω

γω + 1
− 1

γω − 1
> 1− 2

γω − 1
,

and similarly,895

∥P⊤
2 Aωx∥
∥Aωx∥

=
∥Π2ΠsA

ωx∥
∥Aωx∥

≤ ∥ΠsA
ωx∥

∥Aωx∥
<

1

γω − 1
.

The proof is completed.896

Proposition G.4. Given dynamical matrices A,B and constants γ > 0, γ+ > 1, for any state x897

such that ∥R1x∥
∥R2x∥ > γ+, suppose we feed a control input ∥u∥ ≤ α∥x∥ and observe the next state898

x′ = Ax+Bu, where α satisfies899

α <

γ+

γ++1σmin(M1)− γ
γ+−1

1
1−ξ∥A∥

(1 +
√
2ξ

1−ξ + γ
1−ξ )∥B∥

. (23)

Then we can guarantee that ∥R1x
′∥

∥R2x′∥ > γ.900

Proof. The proposition can be shown by direct calculation. Let z = Rx = [z⊤1 , z⊤2 ]⊤. Recall that901

Rx′ = z′ =

[
N1z1 +R1Bu
N2z2 +R2Bu

]
,

and note that ∥z1∥
∥x∥ > γ+

γ++1 , ∥z2∥
∥x∥ < 1

γ+−1 under the assumptions, so we have902

∥R1x
′∥

∥R2x′∥
=
∥N1z1 +R1Bu∥
∥N2z2 +R2Bu∥

≥ ∥N1z1∥ − ∥R1Bu∥
∥N2z2∥+ ∥R2Bu∥

≥ σmin(N1)∥z1∥ − ∥R1B∥∥u∥
∥N2∥∥z2∥+ ∥R2B∥∥u∥

≥
σmin(N1)

γ+

γ++1∥x∥ − α∥R1∥∥B∥∥x∥
∥N2∥ 1

γ+−1∥x∥+ α∥R2∥∥B∥∥x∥

≥
σmin(M1)

γ+

γ++1∥x∥ − α(1 +
√
2ξ

1−ξ )∥B∥∥x∥
1

1−ξ∥A∥
1

γ+−1∥x∥+ α 1
1−ξ∥B∥∥x∥

> γ,

where we apply Lemma A.1 and the convention of taking N1 = M1.903
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Proposition G.5. Suppose a state x is sampled uniformly randomly from the unit hyper-sphere904

surface Bn ⊂ Rn, then for any constant γ < min
{

1
2 ,

1√
2/(σmin(R1)k)+1

}
, we have905

Prx∼U(Bn)

[
∥R1x∥
∥R2x∥

> γ

]
> 1− θ(γ),

where θ(γ) = 8
√
2

B( 1
2 ,

n−1
2 )
√

σmin(R1)
γ = O(γ) is a constant bounded linearly by γ.906

Proof. Note that907

∥R1x∥ >
γ

1− γ
∥x∥ ⇒ ∥R2x∥ < ∥x∥+ ∥R1x∥ <

1

1− γ
∥x∥ ⇒ ∥R1x∥

∥R2x∥
> γ.

so we only have to show that Prx∼U(Bn)

[
∥R1x∥ ≤ γ

1−γ

]
< θ(γ). Now let R⊤

1 R1 = S⊤DS be the908

eigen-decomposition of R⊤
1 R1, where S is selected to be orthonormal such that909

D = diag(d1, · · · , dk, 0, · · · , 0).

Note that the vector y = Sx =: [y1, · · · , yn] also obeys a uniform distribution over Bn, so we have910

Pr
[
∥R1x∥ ≤ γ

1−γ

]
= Pr

[
x⊤R⊤

1 R1x ≤ ( γ
1−γ )

2
]
= Pr

[
y⊤Dy ≤ ( γ

1−γ )
2
]

≤ Pr
[
diy

2
i ≤ 1

k (
γ

1−γ )
2, ∀i = 1, . . . , k

]
≤

k∑
i=1

Pr
[
y2i ≤ 1

dik
( γ
1−γ )

2
]
.

It suffices to bound the probability Pry∼U(B)

[
y2i ≤ η

]
. Note that y can be obtained by first sampling911

a Gaussian random vector z ∼ N (0, In), and then normalize it to get y = z
∥z∥ . Hence912

Pry∼U(Bn)

[
y2i ≤ η

]
= Prz∼N (0,In)

[
z2i ≤ η∥z∥2

]
= Prz∼N (0,In)

[
z2i∑
j ̸=i z

2
j

≤ η

1− η

]
,

where w :=
z2
i∑

j ̸=i z
2
j

is known to obey an F-distribution w ∼ F(1, n− 1). The c.d.f. of w is known913

to be Iw/(w+n−1)(
1
2 ,

n−1
2 ), where I denotes the regularized incomplete Beta function. Note that914

Iw/(w+n−1)

(
1

2
,
n− 1

2

)
=

2w1/2

(n− 1)1/2B( 12 ,
n−1
2 )
− nw3/2

3(n− 1)3/2B( 12 ,
n−1
2 )

+O(n5/2),

it can be shown that Iw/(w+n−1)

(
1
2 ,

n−1
2

)
< 4

√
w√

n−1B( 1
2 ,

n−1
2 )

. Hence915

Pry∼U(Bn)

[
y2i ≤ η

]
= Prz∼N (0,In)

[
z2i∑
j ̸=i z

2
j

≤ η

1− η

]
<

4
√

η
1−η

√
n− 1B( 12 ,

n−1
2 )

,

which further gives916

Pr
[
∥R1x∥ ≤ γ

1−γ

]
<

k∑
i=1

4
√

2
dik

( γ
1−γ )

2

√
n− 1B( 12 ,

n−1
2 )

<
8
√
2

B( 12 ,
n−1
2 )
√

σmin(R1)
γ = O(γ)

where we require γ < min
{

1
2 ,

1√
2/(σmin(R1)k)+1

}
.917

Combining the previous three propositions, we have shown in an inductive way that the algorithm918

guarantees ∥P⊤
2 xti

∥
∥xti

∥ is constantly upper bounded at each time step ti (i = 1, · · · , k), which is critical919

to the estimation error bound of Bτ . This is concluded as the following lemma.920
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Lemma G.4. Under the premises of Theorem 4.1, for any constants ω, γ such that ω < t0 and921

γ < min
{

1
2 ,

1√
2/(σmin(R1)k)+1

}
, the algorithm guarantees922

∥P⊤
2 xti∥
∥xti∥

<
1

γω − 1
, ∀i = 1, · · · , k

with probability 1− θ(γ) over the initialization of x0 on the unit hyper-sphere surface Bn, where923

γω := Cγ

(
|λk|

(1 + ε3|λk|)(|λk+1|+ ε2)

)ω

.

Proof. We proceed by showing that ∥R1xti
∥

∥R2xti
∥ > γω for i = 1, · · · , k in an inductive way.924

For the base case, it is guaranteed by Proposition G.5 that x0 satisfies ∥R1x0∥
∥R2x0∥ > γ with probability925

1− θ(γ), and Proposition G.3 further guarantees ∥R1xt1
∥

∥R2xt1∥
> γω . Here we require t0 > ω.926

For the inductive step, suppose we have shown ∥R1xti
∥

∥R2xti
∥ > γω . Since ∥uti∥ = α∥xti∥, we have927

∥R1xti+1∥
∥R2xti+1∥ > γ by Proposition G.4, and again Proposition G.3 guarantees

∥R1xti+1
∥

∥R2xti+1
∥ > γω .928

Now it only suffices to apply Corollary G.3 to complete the proof.929

G.3 Estimation Error of Bτ930

Proposition G.6. Under the premises of Theorem 4.1 and Lemma G.4, when (29) holds,931

∥B̂τ −Bτ∥ < CB(|λ1|+ ε1)
τ−1δ,

where CB :=
2
√
kζε1 (A)2

(
(2τ+2)∥A∥+∥B∥

)
α .932

Proof. This is parallel to Lemma F.1. Note that we have to subtract an additional term (induced by933

non-zero ∆τ in Mτ ) to calculate the actual bi, so we have934

∥bi − b̂i∥ =
1

α∥xti∥

∥∥∥(P⊤
1 xti+τ −Mτ

1 P
⊤
1 xti −∆τP

⊤
2 xti

)
−
(
P̂⊤
1 xti+τ − M̂τ

1 P̂
⊤
1 xti

)∥∥∥
≤ 1

α∥xti∥

(
∥(P1 − P̂1)

⊤(Aτxti +Bτuti)∥+ ∥Mτ
1 P

⊤
1 xti − M̂τ

1 P̂
⊤
1 xti∥+ ∥∆τP

⊤
2 xti∥

)
<

1

α

(
ζε1(A)2(|λ1|+ ε1)

τ−1
(
(2τ + 2)∥A∥+ ∥B∥

)
δ + δ

)
.

Here the first term is bounded by935

∥(P1 − P̂1)
⊤(Aτxti +Bτuti)∥ ≤ ∥P1 − P̂1∥(∥Aτ∥+ ∥Aτ−1B∥)∥xti∥

< ∥xti∥ζε1(A)(|λ1|+ ε1)
τ−1(∥A∥+ ∥B∥)δ,

where in the last inequality we apply Corollary 5.2; the second term is bounded by936

∥Mτ
1 P

⊤
1 xti − M̂τ

1 P̂
⊤
1 xti∥ ≤ (∥Mτ

1 (P
⊤
1 − P̂⊤

1 )∥+ ∥(Mτ
1 − M̂τ

1 )P̂
⊤
1 ∥)∥xti∥

<
(
ζε1(A)(|λ1|+ ε1)

τ−1∥A∥δ
+ 2τ∥A∥ζε1(A)2(|λ1|+ ε1)

τ−1δ
)
∥xti∥ (24)

≤ ∥xti∥ζε1(A)2(|λ1|+ ε1)
τ−1(2τ + 1)∥A∥δ, (25)

where in (24) we apply Proposition G.2, and in (25) we apply a simple fact that ζε1(A) ≥ 1; the937

third term is bounded by938

∥∆τ∥∥P⊤
2 xti∥

∥xti∥
≤ C∆(|λ1|+ ε1)

τ[
Cγ

(
|λk|

(1+ε3|λk|)(|λk+1|+ε2)

)ω
− 1
] (26)

<
2C∆(|λ1|+ ε1)

τ

Cγ

(
|λk|

(1+ε3|λk|)(|λk+1|+ε2)

)ω (27)
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< δ, (28)

where in (26) we apply Lemma G.4, while in (27) and (28) we require939

ω > max

{
log 2/Cγ

log
(
|λk|/(1 + ε3|λk|)(|λk+1|+ ε2)

) , log(2C∆)/(Cγδ) + τ log(|λ1|+ ε1)

log
(
|λk|/(1 + ε3|λk|)(|λk+1|+ ε2)

)} .

(29)

Finally, to bound the error of the whole matrix, we simply apply the definition940

∥B̂τ −Bτ∥ = max
∥u∥=1

∥(B̂τ −Bτ )u∥ ≤ max
∥u∥=1

k∑
i=1

|ui|∥b̂i − bi∥

<

√
k

α

(
ζε1(A)2(|λ1|+ ε1)

τ−1
(
(2τ + 2)∥A∥+ ∥B∥

)
+ 1
)
δ

<
2
√
kζε1(A)2

(
(2τ + 2)∥A∥+ ∥B∥

)
α

(|λ1|+ ε1)
τ−1δ.

This completes the proof.941

Corollary G.5. Under the premises of Theorem 4.1 and Lemma G.4, when (29), (30) and (31) hold,942

σmin(B̂τ ) >
c∥B∥

4ζε3(N
−1
1 )

(
|λk|

1 + ε3|λk|

)τ−1

.

Proof. We apply the Eu ⊕ Es-decomposition. Note that943

Bτ = P⊤
1 Aτ−1B = P⊤

1 (Q1N
τ−1
1 R1 +Q2N

τ−1
2 R2)B = Nτ−1

1 R1B + P⊤
1 Q2N

τ−1
2 R2B,

so by Gelfand’s Formula and Lemma A.1 we have944

σmin(Bτ ) = σmin(N
τ−1
1 R1B + P⊤

1 Q2N
τ−1
2 R2B)

≥ σmin(N
τ−1
1 )σmin(R1B)− ∥P⊤

1 Q2∥∥Nτ−1
2 ∥∥R2∥∥B∥

≥ c∥B∥
ζε3(N

−1
1 )

(
|λk|

1 + ε3|λk|

)τ−1

−
√
2ξζε2(N2)∥B∥

1− ξ
(|λk+1|+ ε2)

τ−1

>
c∥B∥

2ζε3(N
−1
1 )

(
|λk|

1 + ε3|λk|

)τ−1

where the last inequality requires945

√
2ξζε2(N2)ζε3(N

−1
1 )

c(1− ξ)

(
(|λk+1|+ ε2)(1 + ε3|λk|)

|λk|

)τ−1

<
1

2
,

or equivalently,946

τ >
log c(1−ξ)

2
√
2ξζε2 (N2)ζε3 (N

−1
1 )

log (|λk+1|+ε2)(1+ε3|λk|)
|λk|

+ 1. (30)

Therefore, using Proposition G.6, σmin(B̂τ ) is lower bounded by947

σmin(B̂τ ) ≥ σmin(Bτ )− ∥B̂τ −Bτ∥

>
c∥B∥

2ζε3(N
−1
1 )

(
|λk|

1 + ε3|λk|

)τ−1

− CB(|λ1|+ ε1)
τ−1δ

>
c∥B∥

4ζε3(N
−1
1 )

(
|λk|

1 + ε3|λk|

)τ−1

,

where the last inequality requires948

δ <
c∥B∥

4ζε3(N
−1
1 )CB

(
|λk|

(1 + ε3|λk|)(|λ1|+ ε1)

)τ−1

. (31)

This completes the proof.949
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Finally, using the above bounds, we can easily upper bound the norm of our controller K̂1.950

Proposition G.7. Under the premises of Theorem 4.1, when (29), (30), (31) and δ < 1
τ hold,951

∥K̂1∥ < CK

(
(|λ1|+ ε1)(1 + ε3|λk|)

|λk|

)τ−1

,

where CK :=
4ζε3 (N

−1
1 )
(
ζε1 (M1)(|λ1|+ε1)+2∥A∥ζε1 (A)

)
c∥B∥ .952

Proof. Recall that the controller is constructed as K̂1 = B̂−1
τ M̂τ

1 P̂
⊤
1 , so we have953

∥K̂1∥ ≤ ∥B̂−1
τ ∥∥M̂τ

1 ∥ =
∥M̂τ

1 ∥
σmin(B̂τ )

,

and the bound is merely a combination of Corollary G.2 and Corollary G.5 whenever δ < 1
τ .954

G.4 Proof of Theorem 4.1955

Now we are ready to combine the above building blocks and present the complete proof of Theorem956

4.1. Note that, with all the bounds established above, the proof structure parallels that of Theorem957

4.2, the special case with a symmetric dynamical matrix A.958

Proof of Theorem 4.1. The proof is again based on Lemma 5.3. We first guarantee that the diagonal959

blocks are stable. For the top-left block,960

∥Mτ
1 + P⊤

1 Aτ−1BK̂1∥ = ∥Mτ
1 −Bτ B̂

−1
τ M̂τ

1 P̂
⊤
1 P1∥

≤ ∥Mτ
1 − M̂τ

1 ∥+ ∥(Bτ − B̂τ )B̂
−1
τ M̂τ

1 ∥+ ∥Bτ B̂
−1
τ M̂τ

1 (I − P̂⊤
1 P1)∥

≤ ∥Mτ
1 − M̂τ

1 ∥+ ∥Bτ − B̂τ∥∥K̂1∥+ ∥Bτ∥∥K̂1∥∥I − P̂⊤
1 P1∥

≤ 2τ∥A∥ζε1(A)2(|λ1|+ ε1)
τ−1δ

+ CBCK

(
(|λ1|+ ε1)

2(1 + ε3|λk|)
|λk|

)τ−1

δ (32)

+ ζε1(A)∥B∥CK

(
(|λ1|+ ε1)

2(1 + ε3|λk|)
|λk|

)τ−1

δ

< (CBCK + ζε1(A)∥B∥CK + 1)

(
(|λ1|+ ε1)

2(1 + ε3|λk|)
|λk|

)τ−1

δ

(33)

<
1

2
, (34)

where in (32) we apply Propositions G.2, G.6, G.7, and E.1; in (33) we require961

1

τ

(
(|λ1|+ ε1)

2(1 + ε3|λk|)
|λk|

)τ−1

> 2∥A∥ζε1(A)2; (35)

and in (34) we require962

δ <
1

2(CBCK + ζε1(A)∥B∥CK + 1)

(
(|λ1|+ ε1)

2(1 + ε3|λk|)
|λk|

)−(τ−1)

. (36)

For the bottom-right block, it is straight-forward to see that963

∥Mτ
2 + P⊤

2 Aτ−1BK̂1P̂
⊤
1 P2∥ ≤ ∥Mτ

2 ∥+ ∥P⊤
2 Aτ−1∥∥B∥∥K̂1∥∥P̂⊤

1 P2∥
≤ ζε2(M2)(|λk+1|+ ε2)

τ

+ ζε2(M2)∥B∥CK

(
(|λ1|+ ε1)(|λk+1|+ ε2)(1 + ε3|λk|)

|λk|

)τ−1

δ

< 1
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where the last inequality requires964

τ >
log 1/(4ζε2(M2))

log(|λk+1|+ ε2)
, (37)

δ <
1

4ζε2(M2)∥B∥CK

(
(|λ1|+ ε1)(|λk+1|+ ε2)(1 + ε3|λk|)

|λk|

)−(τ−1)

. (38)

Now it only suffices to bound the spectral norms of off-diagonal blocks. Note that, by applying965

Proposition G.7 and Proposition G.1, the top-right block is bounded as966

∥∆τ + P⊤
1 Aτ−1BK̂1P̂

⊤
1 P2∥ ≤ ∥∆τ∥+ ∥Bτ∥∥K̂1∥∥P̂⊤

1 P2∥
< C∆(|λ1|+ ε1)

τ

+ ζε1(A)∥B∥CK

(
(|λ1|+ ε1)

2(1 + ε3|λk|)
|λk|

)τ−1

δ

< (C∆ + 1)(|λ1|+ ε1)
τ

where the last inequality requires967

δ <
(|λ1|+ ε1)

2

ζε1(A)∥B∥CK

(
(|λ1|+ ε1)

2(1 + ε3|λk|)
|λk|

)−τ

; (39)

and the bottom-left block is bounded as968

∥P⊤
2 Aτ−1BK̂1P̂

⊤
1 P1∥ ≤ ∥P⊤

2 Aτ−1∥∥B∥∥K̂1∥

< ζε2(M2)∥B∥CK

(
(|λ1|+ ε1)(|λk+1|+ ε2)(1 + ε3|λk|)

|λk|

)τ−1

.

Now, by Lemma 5.3, we can guarantee that969

ρ(L̂τ ) ≤
1

2
+χ(L̂τ )

(C∆ + 1)ζε2(M2)∥B∥CK

|λ1|+ ε1

(
(|λ1|+ ε1)

2(|λk+1|+ ε2)(1 + ε3|λk|)
|λk|

)τ−1

< 1,

which requires970

τ >
log 2(|λ1|+ε1)

χ(L̂τ )(C∆+1)ζε2 (M2)∥B∥CK

log (|λ1|+ε1)2(|λk+1|+ε2)(1+ε3|λk|)
|λk|

. (40)

Note that the above constraint makes sense only if |λ1|2|λk+1| < |λk|.971

So far, it is still left to recollect all the constraints we need on the parameters τ, α, δ, γ and ω. To972

start with, all constraints on τ (see (30), (35), (37) and (40)) can be summarized as973

τ > max

 log c(1−ξ)

2
√
2ξζε2 (N2)ζε3 (N

−1
1 )

log (|λk+1|+ε2)(1+ε3|λk|)
|λk|

+ 1,
log 1/(4ζε2(M2))

log(|λk+1|+ ε2)
,

log 2(|λ1|+ε1)

χ(L̂τ )(C∆+1)ζε2 (M2)∥B∥CK

log (|λ1|+ε1)2(|λk+1|+ε2)(1+ε3|λk|)
|λk|

,

− 1

log (|λ1|+ε1)2(1+ε3|λk|)
|λk|

W−1

− log (|λ1|+ε1)
2(1+ε3|λk|)
|λk|

2∥A∥ζε1(A)2 (|λ1|+ε1)2(1+ε3|λk|)
|λk|

 ,

where W−1 denotes the non-principle branch of the Lambert-W function. Here we utilize the fact974

that, for x > 1
log a , y = ax

x is monotone increasing with inverse function x = − 1
log aW−1

(
− log a

y

)
,975

which can be upper bounded by Theorem 1 in [57] as976

− 1

log a
W−1

(
− log a

y

)
<

log y − log log a+
√
2(log y − log log a)

log a
<

3(log y − log log a)

log a
.

By gathering different constants, we have977

τ >
log

√
ξ

1−ξ + log 1
c + logχ(L̂τ ) + 5 log ζ̄ + log ∥A∥

|λ1|−|λk+1| + Cτ

log |λk|
|λ1|2|λk+1|

= O(1), (41)
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where we define ζ̄ := max{ζε1(A), ζε2(M2), ζε2(N2), ζε3(N
−1
1 )}, and Cτ is a numerical constant.978

Note that we have to guarantee the denominator to be positive, which gives rise to the additional979

assumption |λ1|2|λk+1| < |λk|. Meanwhile, for any ℓ ∈ N, we shall select γ such that980

γ = O(k−ℓ), γ < min

{
1

2
,

1√
2/(σmin(R1)k) + 1

}
, (42)

and select α such that (see (23), and we have already guaranteed γω > 2 in (29))981

α <

2
3σmin(M1)− γ

1−ξ∥A∥

(1 +
√
2ξ

1−ξ + γ
1−ξ )∥B∥

= O(1). (43)

Now constraints on δ (see (31), (36), (38) and (39)) can be summarized as982

δ < min

{
c∥B∥

4ζε3(N
−1
1 )CB

(
|λk|

(1 + ε3|λk|)(|λ1|+ ε1)

)τ−1

,

1

2(CBCK + ζε1(A)∥B∥CK + 1)

(
(|λ1|+ ε1)

2(1 + ε3|λk|)
|λk|

)−(τ−1)

,

1

4ζε2(M2)∥B∥CK

(
(|λ1|+ ε1)(|λk+1|+ ε2)(1 + ε3|λk|)

|λk|

)−(τ−1)

,

(|λ1|+ ε1)
2

ζε1(A)∥B∥CK

(
(|λ1|+ ε1)

2(1 + ε3|λk|)
|λk|

)−τ
}
,

which can be simplified to (Cδ is a constant collecting minor factors)983

δ <
Cδαc√

kζ̄3(∥A∥+ ∥B∥)
|λ1|−2τ = O(k−1/2|λ1|−2τ ), (44)

or we can rewrite the bound equivalently in terms of t0 (recall (10) in Appendix E) as984

t0 >
log(n2

(
n
k

)
) + log k + log κd(A) + 2τ log |λ1|+ 3 log ζ̄ + log(∥A∥+ ∥B∥) + log

√
2

Cδα

2 log |λk|
|λk+1|

= O

2τ log |λ1|+ k log n+ log κd(A)

log |λk|
|λk+1|

 , (45)

Finally, we select ω such that (see (29), and note that Cγ = O(γ) = O(k−ℓ))985

ω > max

 log 2
Cγ

log |λk|
(1+ε3|λk|)(|λk+1|+ε2)

,
log 2C∆

Cγδ
+ τ log(|λ1|+ ε1)

log |λk|
(1+ε3|λk|)(|λk+1|+ε2)

 ,

which can be reorganized as986

ω >
log 1

Cγ
+ log

√
ξ

1−ξ + 2 log ζ̄ + log ∥A∥
|λ1|−|λk+1| + log 1

δ + Cω

log |λk|
|λk+1|

= O(ℓ log k). (46)

Note that here ε1, ε2, ε3 are taken to be small enough, so that987

|λk+1|+ ε2 < 1, |λ1|+ ε1)
2(|λk+1|+ ε2) <

|λk|
1 + ε3|λk|

, ε3|λk| < 1. (47)

Also, the probability of sampling an admissible x0 is 1− θ(γ) = 1−O(k−ℓ) by the union bound.988

Finally, by (41), (45) and (46), we conclude that Algorithm 1 terminates within989

t0 + k(1 + ω + τ) >
1

2 log |λk|
|λk+1|

(
log(n2

(
n
k

)
)︸ ︷︷ ︸

O(k logn)

+2k log 1
Cγ︸ ︷︷ ︸

O(k log k)

+ log k

)
+ k
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+
log κd(A) + 2τ log |λ1|+ 3 log ζ̄ + log(∥A∥+ ∥B∥) + log

√
2

Cδα

2 log |λk|
|λk+1|

+
k
(
log

√
ξ

1−ξ + 2 log ζ̄ + log ∥A∥
|λ1|−|λk+1| + log 1

δ + Cω

)
log |λk|

|λk+1|

+
k
(
log

√
ξ

1−ξ + log 1
c + logχ(L̂τ ) + 5 log ζ̄ + log ∥A∥

|λ1|−|λk+1| + Cτ

)
log |λk|

|λ1|2|λk+1|

= O(k log n),

time steps, which completes the proof.990

For the convenience of readers, we provide a table summarizing all constants appearing in the bound.991

Table 1: Lists of parameters and constants appearing in the bound.

(a) Algorithmic parameters (introduced in Algorithm algorithm 1).
Constant Appearance Explanation

t0 Stage 1 t0 initialization steps to separate unstable components
ω Stage 3 ω heat-up steps in each iteration of learning Bτ

α Stage 3 ∥uti∥ = α∥xti∥ to keep non-negligible unstable component
τ Stage 4 τ steps between consecutive control inputs are injected

(b) System parameters (as functions of dynamical matrices).
Constant Definition Explanation

λi Assumption 4.1 (complex) eigenvalue of A with ith largest modulus
∥A∥, ∥B∥ Notation 2-norm of dynamical matrices A and B

c Assumption 4.3 c effective controllability over the unstable subspace Eu, i.e.,
σmin(R1B) > c∥B∥

ξ Definition 3.1 E⊥
u and Es are ξ-close subspaces, i.e., σmin(P

⊤
2 Q2) > 1− ξ

χ(·) Lemma D.1 perturbation constant for 2-by-2 block diagonal matrices
ζε(·) Lemma G.1 Gelfand constant for the norm of matrix exponents

κd(·) Notation the diagonalization condition number, i.e., condition number of
the matrix formed by eigenvectors as columns

(c) Shorthand notations (introduced in proofs).
Constant Definition Explanation

C∆ Proposition G.1 C∆ := ζε1(M1)ζε2(M2)
(2−ξ)

√
2ξ∥A∥

1−ξ
2|λk+1|

|λ1|+ε1−|λk+1|−ε2

Cγ Proposition G.3 Cγ := 1
(1+ 1

γ )ζε3 (N
−1
1 )ζε2 (N2)∥R2∥

(γ is taken according to (42))

CB Proposition G.6 CB :=
2
√
kζε1 (A)2

(
(2τ+2)∥A∥+∥B∥

)
α

CK Proposition G.7 CK :=
4ζε3 (N

−1
1 )
(
ζε1 (M1)(|λ1|+ε1)+2∥A∥ζε1 (A)

)
c∥B∥

ζ̄ below (41) ζ̄ := max{ζε1(A), ζε2(M2), ζε2(N2), ζε3(N
−1
1 )}

Cτ , Cδ , Cω (41), (44), (46) collection of numerical constants in (41), (44), (46)

H An Illustrative Example with Additive Noise992

Finally, we include an illustrative experiment that shows the performance of our LTS0 algorithm.993

Settings. We evaluate the algorithm in LTI systems with additive noise994

xt+1 = Axt +But + wt, where wt
i.i.d.∼ N (0, σ2

wI).

Here σw characterizes the variance (and thus the magnitude) of the noise. The dynamical matrices995

are randomly generated: A is generated based on its eigen-decomposition A = V ΛV −1, where the996
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eigenvalues Λ = diag(λ1, · · · , λn) are randomly generated by selecting λ1:k ∼ U(1, λmax) and997

λk+1:n ∼ |λk|
|λ1|2 · U(−1, 1) (to ensure |λ1|2|λk+1| < |λk|), and the eigenvectors V = [v1, · · · , vn]998

are generated by random perturbation to a random orthogonal matrix (to avoid tiny ξ); meanwhile, B999

is generated by random sampling i.i.d. entries from U(0, 1). For comparability and reproducibility,1000

throughout the experiment we set k = 3 and use 0 as the initial random seed.1001

To compare the performance in different settings, 30 data points are collected for each pair of σw1002

and n. It is observed that our algorithm might cause numerical instability issues (e.g., cond(D⊤D)1003

could be large), so we simply ignore such cases and repeat until 30 data points are collected. The1004

parameters of the algorithm are determined in an adaptive way that minimizes the number of running1005

steps: we search for the minimum t0 that yields estimation error smaller than δ, search for the1006

minimum τ such that K = B−1
τ Mτ

1 P
⊤
1 stabilizes the system, and the ω heat-up steps in Stage 31007

could be ended earlier if we already observe ∥P̂⊤
1 x∥/∥x∥ larger than a certain threshold.1008

Our experimental results are presented in Figure 1 below.1009

(a) Running steps of LTS0 (b) State norms along one trajectory

Figure 1: Experimental results. In (a), the line shows the median of running steps, and the shadow
marks the range between upper and lower quartiles (the horizontal axis is in log scale). In (b), the
trajectories of our algorithm and the naive approach are compared in a randomly-generated system
with n = 128 and σw = 0 (the vertical axis is in log scale).

Performance under different n and σw. Figure 1a shows the number of running steps of LTS01010

that is needed to learn a stabilizing controller. It is evident that the number of running steps grow1011

almost linearly with regard to log n, which is in accordance with Theorem 4.1.1012

As for the effect of noise, it is observed that the algorithm needs more steps in systems with noise1013

than in those without noise; nevertheless, the magnitude of noise does not have much influence on1014

the number of running steps. This is also reasonable since the increase is mainly attributed to t0 —1015

it takes more initial steps to push the state close enough to Eu, such that the estimation error of P11016

drops to acceptable level; however, as the Eu-component grows exponentially fast over time while1017

wt is i.i.d., the magnitude of noise only plays a minor role in the increase. Noise becomes negligible1018

in later stages due to the disproportionate magnitudes of states and noise.1019

Analysis of comparison of trajectories. In Figure 1b we study an exemplary trajectory of our LTS01020

algorithm, and compare it against that of the naive approach, which first identifies the system and1021

then designs a controller to nullify the unstable eigenvalues by standard pole-placement method.1022

It is evident that our algorithm needs significantly fewer steps, and thus induces far smaller state1023

norms, to learn a controller that effectively stabilizes the system. It is also observed that our con-1024

troller decreases state norm in a zig-zag manner, which is due to the τ -hop design our algorithm1025

adopts. Nevertheless, a potential drawback of our controller design is that the spectral radius of the1026

controlled system is larger (since we cannot precisely nullify all unstable eigenvalues), resulting in1027

a slower stabilizing rate than the naive approach (compare the decreasing parts of the curves).1028
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