
Appendix to:

Parallel Bayesian Optimization of Multiple Noisy
Objectives with Expected Hypervolume Improvement

A Potential Societal Impact

Bayesian Optimization specifically aims to increase sample efficiency for hard optimization algo-
rithms, and consequently can help achieve better solutions without incurring large societal costs.
For instance, as demonstrated in this work, automotive design problems may be solved much faster,
reducing the amount of computationally costly simulations and thus the energy footprint during
development. At the same time, improved solutions mean that high crash safety can be achieved with
lighter cars, resulting in fewer resources required for their production and, importantly, improving fuel
economy of the whole vehicle fleet. Increased robustness to noisy observations further helps reduce
the resources spent on evaluating regions of the search space that are not promising. Improvements
to the optimization performance and practicality of multi-objective Bayesian optimization have the
potential to allow decision makers to better understand and make more informed decisions across
multiple trade-offs. We expect these directions to be particularly important as Bayesian optimization
is increasingly used for applications such as recommender systems [35], where auxiliary goals such
as fairness must be accounted for. Of course, at the end of the day, exactly what objectives decision
makers choose to optimize, and how they balance those trade-offs (and whether that is done in
equitable fashion) is up to the individuals themselves.

B Computing Hypervolume Improvement with Box Decompositions

Definition 3. For a set of objective vectors {f(xi)}qi=1, a reference point r ∈ RM , and a Pareto
frontier P , let ∆({f(xi)}qi=1,P, r) ⊂ RM denote the set of points (1) that are dominated by
{f(xi)}qi=1, (2) that dominate r, and (3) that are not dominated by P .

Let {S1, ..., SK} be a set ofK disjoint axis-aligned rectangles where each Sk is defined by a pair of
lower and upper vertices lk ∈ RM and uk ∈ RM ∪{∞}. Figure 5 shows an example decomposition.
Such a partitioning allows for efficient piece-wise computation of the hypervolume improvement from
a new point f(xi) by computing the volume of the intersection of the region dominated exclusively
by the new point with ∆({f(xi),P, r) (and not dominated by the P ) with each hyperrectangle Sk.
Although ∆(f(xi),P, r) is a non-rectangular polytope, the intersection of ∆(f(xi),P, r) with each
rectangle Sk is a rectangular polytope and the vertices bounding the hyperrectangle corresponding
to ∆(f(xi),P, r) ∩ Sk can be easily computed: the lower bound vertex is lk and the upper bound
vertex is the component-wise minimum of uk and the new point f(x): zk := min

[
uk,f(x)

]
. The

hypervolume improvement can be computed by summing over the volume of ∆(f(xi),P, r) ∩ Sk
over all Sk

HVI
(
f(x),P

)
=

K∑
k=1

HVIk
(
f(x), lk,uk

)
=

K∑
k=1

M∏
m=1

[
z
(m)
k − l(m)

k

]
+
, (7)

where [·]+ denotes the max(·, 0) operation.

15



f(x)

r

l3

S3

u3u2

S2

l2

l4

S4

u4u1

l1

S1

f (2)(x)

f (1)(x)

f(x1)
f(x2)

f(x3)

Figure 5: The hypervolume improvement from a new point f(x) is shown in blue. The current
Pareto frontier P is given by the green points, the green area is the hypervolume of the Pareto frontier
P given reference point r. The white rectangles S1, ..., Sk are a disjoint, box decomposition of the
non-dominated space that can be used to efficiently compute the hypervolume improvement.

C qNEHVI under Different Computational Approaches

C.1 Derivation of IEP formulation of qNEHVI

From (4), the expected noisy joint hypervolume improvement is given by

α̂qNEHVI(Xcand) =
1

N

N∑
t=1

HVI(f̃t(Xcand)|Pt)

Recall that the joint HVI formulation under the IEP derived by Daulton et al. [10] is given by

HVI(f(Xcand)|P) =

K∑
k=1

q∑
j=1

∑
Xj∈Xj

(−1)j+1
M∏
m=1

[
z
(m)
k,Xj
− l(m)

k

]
+

(8)

where Xj := {Xj ⊆ Xcand : |Xj | = j} and z(m)
k,t,Xj

:= min[u
(m)
k,t , f

(m)(xi1), ..., f (m)(xij )] for
Xj = {xi1 , ...,xij}. In qNEHVI, the lower and upper bounds and the number of rectangles in each
box decomposition depend Pt. Hence,

α̂qNEHVI(Xcand) =
1

N

N∑
t=1

Kt∑
k=1

q∑
j=1

∑
Xj∈Xj

(−1)j+1
M∏
m=1

[
z
(m)
k,t,Xj

− l(m)
k,t

]
+

where z(m)
k,t,Xj

:= min[u
(m)
k,t , f̃

(m)
t (xi1), ..., f̃

(m)
t (xij )] for Xj = {xi1 , ...,xij}.

C.2 Derivation of CBD formulation of qNEHVI

Using Definition 2, we rewrite (4) as

α̂qNEHVI(Xcand) =
1

N

N∑
t=1

HVI(f̃t(Xcand)|Pt)

=
1

N

N∑
t=1

[
HV(f̃(Xcand) ∪ Pt)− HV(Pt)

]
Adding and subtracting HV(f̃({x1), ..., f̃(xq−1)}) ∪ Pt) yields

α̂qNEHVI(Xcand) =
1

N

N∑
t=1

[
HV(f̃(Xcand) ∪ Pt)− HV(f̃({x1), ..., f̃(xq−1)}) ∪ Pt)

+ HV({f̃(x1), ..., f̃(xq−1)} ∪ Pt)− HV(Pt)

]
.
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Applying Definition 2 again leads to (6):

α̂qNEHVI(Xcand) =
1

N

N∑
t=1

HVI(f̃(xq)|{f̃(x1), ..., f̃(xq−1)} ∪ Pt)

+
1

N

N∑
t=1

HVI({f̃(x1), ..., f̃(xq−1)})|Pt).

Note that using the method of common random numbers, the CBD formulation is mathematically
equivalent to IEP formulation, but the computing qNEHVI with the CBD trick is much more
efficient.

D Complexity Analysis

D.1 Complexity of Computing qNEHVI

In this section we study the complexity of computing the acquisition function. For brevity, we omit
the cost of posterior sampling, which is the same for the CBD and IEP approaches.6

The CBD approach requires recomputing box decompositions when generating each new candidate.
In the worst case, each new candidate is Pareto optimal under the fixed posterior samples, which leads
to a time complexity of O

(
N(n + i)M

)
for computing the box decompositions in iteration i [58].

Note that there are O
(
(n+ i)M

)
rectangles in each box decomposition. Given box decompositions

and posterior samples at the new point, the complexity of computing the acquisition function on a
single-threaded machine is O

(
MN(n + i)M

)
. Hence, the total time complexity for generating q

candidates (ignoring potentially additional time complexity for automated gradient computations) is

O

(
N

q∑
i=1

(n+ i)M
)

+O

(
NoptMN

q∑
i=1

(n+ i)M
)

= O
(
NoptNM(n+ q)Mq

)
, (9)

O
(
NnM

)
+O

(
NoptMNnM

q∑
i=1

2i−1
)

= O
(
NoptNMnM2qq

)
. (10)

The second term on the left hand side in both (9) and (10) is the acquisition optimization complexity,
which boils down to O(Nopt) given infinite computing cores because the acquisition computation is
completely parallelizable. However, as shown in Figure 2, even for relatively small values of q, CPU
cores become saturated and GPU memory limits are reached.

Everything else fixed, the asymptotic relative time complexity of using CBD over IEP is therefore
q−M2q →∞ as q →∞.

Similarly, the space complexity under the CBD formulation, O
(
MN(n+ q)M

)
, is also polynomial

in q, whereas the space complexity is exponential in q under the IEP formulation: O
(
MNnMq2q

)
.

Everything else fixed, the asymptotic relative complexity (both in terms of time and space) of using
CBD over IEP is therefore qM2−q → 0 as q →∞.

D.2 Efficient Batched Computation

As noted above, using either the IEP or CBD approach, the acquisition computation given the box
decompositions is highly parallelizable. However, since the number of hyperrectangles Kt in the box
decompoosition can be different under each posterior sample f̃t, stacking the box decompositions
does not result in a rectangular matrix; the matrix is ragged. In order to leverage modern batched

6Sampling from p(f(Xn)|Dn) incurs a one-time cost of O(Mn3) if each of the M outcomes is modeled
by an independent GP, as it involves computing a Cholesky decomposition of the n × n posterior covari-
ance (at the n observed points) for each. Using low-rank updates of the Cholesky factor to sample from
p(f(Xn,x0, ...,xi)|Dn) has a time complexity of O(M(n + i − 1)2) for 1 ≤ i ≤ q since each triangular
solve has quadratic complexity. Sampling is more costly when using a multi-task GP model, as it requires a root
decomposition of the Mn×Mn posterior covariance across data points and tasks.
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tensor computational paradigms, we pad the box decompositions with empty hyperrectangles (e.g.
l = 0,u = 0) such that the box decomposition under every posterior sample contains exactly
K = maxtKt hyperrectangles, which allows us to define a t × K dimensional matrix of box
decompositions for use in batched tensor computation.

In the 2-objective case, instead of padding the box decomposition, the Pareto frontier under each
posterior sample can be padded instead by repeating a point on the Pareto Frontier such that the
padded Pareto frontier under every posterior sample has exactly maxt |Pt| points. This enables
computing the box decompositions analytically for all posterior samples in parallel using efficient
batched computation. The resulting box decompositions all have K = maxt |Pt|+ 1 hyperrectangles
(some of which may be empty).

E Theoretical Results

Let xprev ∈ Rnd denote the stacked set of previously evaluated points in Xn: xprev := [xT1 , ...,x
T
n ]T .

Similarly, let xcand ∈ Rqd denote the stacked set of candidates in Xcand: xcand := [xTn+1, ...,x
T
n+q]

T .
Let f̃t(xprev,xcand) := [f̃t(x1)T , ..., f̃t(xn+q)

T ]T denote the tth sample of the corresponding objec-
tives, which we write using the parameterization trick as

ft(xprev,xcand) = µ(xprev,xcand) + L(xprev,xcand)ζt,

where µ(xprev,xcand) : R(n+q)d → R(n+q)M is the multi-output GP’s posterior mean and
L(xcand,xprev) ∈ R(n+q)M×(n+q)M is a root decomposition (often a Cholesky decomposition) of
the multi-output GP’s posterior covariance Σ(xcand,xprev) ∈ R(n+q)M×(n+q)M , and ζt ∈ R(n+q)M

with ζt ∼ N (0, I(n+q)M ).7

Proof of Theorem 1. Since the sequential NEHVI is equivalent to the qNEHVI with q = 1, we
prove Theorem 1 for the general q > 1 case. Recall from Section C.2, that using the method of
common random numbers to fix the base samples, the IEP and CBD formulations are equivalent.
Therefore, we proceed only with the IEP formulation for this proof.

We closely follow the proof of Theorem 2 in Daulton et al. [10]. We consider the setting from Balandat
et al. [2, Section D.5]. Let f (m)

t (xi, ζt) = S{i,m}(µ(xcand,xprev) + L(xcand,xprev)ζt) denote the
posterior distribution over the mth outcome at xi as a random variable, where S{i,m} denotes the
selection matrix (‖S{i,m}‖∞ ≤ 1 for all i = 1, ..., n+ q and m = 1, ...,M ), to extract the element
corresponding to outcome m for the point xi. The HVI under a single posterior sample is given by

A(xcand, ζt;xprev) =

Kt∑
k=1

q∑
j=1

∑
Xj∈Xj

(−1)j+1
M∏
m=1

[
z
(m)
k,Xj

(ζt)− l(m)
k

]
+

where Xj := {Xj = {xi1 , ...xij} ⊆ Xcand : |Xj | = j, n + 1 ≤ i1 ≤ ij ≤ n + q} and
z
(m)
k,Xj

(ζt) = min
[
u
(m)
k , f (m)(xi1 , ζt), . . . , f

(m)(xij , ζt)
]
. Note that the box decomposition of

the non-dominated space {S1, ..., SKt
} and the number of rectangles in the box decomposition

depend on ζt. Importantly, the number of hyperrectangles Kt in the decomposition is a finite and
bounded by O(|Pt|b

M
2 c+1) [33, 58], where |Pt| ≤ n.

To satisfy the conditions of [2, Theorem 3], we need to show that there exists an integrable function
` : Rq×M 7→ R such that for almost every ζt and all xcand,ycand ⊆ X ,

|A(xcand, ζt;xprev)−A(ycand, ζt;xprev)| ≤ `(ζt)‖xcand − ycand‖. (11)

We note that xprev is fixed and omit xprev for brevity, except where necessary.

Let
ãk,m,j,Xj

(xcand, ζt) :=
[
min

[
u
(m)
k,t , f

(m)(xi1 , ζt), . . . , f
(m)(xij , ζt)

]
− l(m)

k,t

]
+
.

7Theorem 1 can be extended to handle non-iid base samples from a family of quasi-Monte Carlo methods
as in Balandat et al. [2].
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Because of linearity, it suffices to show that this condition holds for

Ã(xcand, ζt) :=

M∏
m=1

ãk,m,j,Xj (xcand, ζt) =

M∏
m=1

[
min

[
u
(m)
k,t , f

(m)(xi1 , ζt), . . . , f
(m)(xij , ζt)

]
− l(m)

k,t

]
+

(12)

for all k, j, and Xj . Note that we can bound ãk,m,j,Xj (xcand, ζt) by

ãk,m,j,Xj
(xcand, ζt) ≤

∣∣∣min
[
u
(m)
k,t , f

(m)(xi1 , ζt), . . . , f
(m)(xij , ζt)

]
− l(m)

k,t

∣∣∣
≤ |l(m)

k,t |+
∣∣∣min

[
u
(m)
k,t , f

(m)(xi1 , ζt), . . . , f
(m)(xij , ζt)

]∣∣∣. (13)

Consider the case where u(m)
k,t =∞. Then

min[u
(m)
k,t , f(xi1 , ζt)

(m), ..., f (m)(xij , ζt)] = min[f (m)(xi1 , ζt), ..., f
(m)(xij , ζt)].

Now suppose u(m)
k,t <∞. Then

min[u
(m)
k,t , f

(m)(xi1 , ζt), ...f
(m)(xij , ζt)] <

∣∣min[f (m)(xi1 , ζt), ...f
(m)(xij , ζt)]

∣∣+
∣∣u(m)
k,t

∣∣.
Let

w
(m)
k,t =

{
u
(m)
k,t , if u(m)

k,t <∞
0, otherwise.

Note that l(m)
k,t is finite and bounded from above and below by r(m) ≤ l

(m)
k,t < u

(m)
k,t for all k, t,m,

where r(m) is the mth dimension of the reference point.

Hence, we can express the bound in (13) as

ãk,m,j,Xj (xcand, ζt) ≤ |l(m)
k,t |+ |w

(m)
k,t |+

∣∣min
[
f (m)(xi1 , ζt), . . . , f

(m)(xij , ζt)
]∣∣

≤ |l(m)
k,t |+ |w

(m)
k,t |+

∑
i1,...,ij

∣∣f (m)(xij , ζt)
∣∣. (14)

Note that we can bound
∑
i1,...,ij

∣∣f (m)(xij , ζt)
∣∣ by∑

i1,...,ij

∣∣f (m)(xij , ζt)
∣∣ ≤ |Xj |

(
‖µ(m)(xcand,xprev)‖+ ‖L(m)(xcand,xprev)‖‖ζt‖

)
.

Substituting this into (14) yields

|ãk,m,j,Xj
(xcand, ζt)| ≤ |l(m)

k,t |+ |w
(m)
k,t |+ |Xj |

(
‖µ(m)(xcand,xprev)‖+ ‖L(m)(xcand,xprev)‖‖ζt‖

)
(15)

for all k,m, j,Xj .

Because of our assumptions of that X is compact and that the mean and covariance func-
tions are continuously differentiable, µ(xcand,xprev), L(xcand,xprev),∇xcandµ(xcand,xprev), and
∇xcandL(xcand,xprev) are uniformly bounded. Hence, there exist C1, C2 <∞ such that

|ãk,m,j,Xj
(xcand, ζt)| ≤ C1 + C2‖ζt‖

for all k,m, j,Xj .

Consider the M = 2 case. Omitting the indices k, t, j,Xj for brevity, we have∣∣Ã(xcand, ζt)−Ã(ycand, ζt)
∣∣

=
∣∣ã1(xcand, ζt)ã2(xcand, ζt)− ã1(ycand, ζt)ã2(ycand, ζt)

∣∣
=
∣∣ã1(xcand, ζt)

(
ã2(xcand, ζt)− ã2(ycand, ζt)

)
+ ã2(ycand, ζt)

(
ã1(xcand, ζt)− ã1(ycand, ζt)

)∣∣
≤ |ã1(xcand, ζt)|

∣∣ã2(xcand, ζt)− ã2(ycand, ζt)
∣∣+ |ã2(ycand, ζt)|

∣∣ã1(xcand, ζt)− ã1(ycand, ζt)
∣∣.

(16)
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Using (15), we can bound |ãk,m,j,Xj (xcand, ζt)− ãkmjXj (ycand, ζt)| by

|ãk,t,m,j,Xj
(xcand, ζt)− ãk,t,m,j,Xj

(ycand, ζt)|

≤
∑

i1,...,ij

∣∣S{ij ,m}(µ(xcand,xprev) + L(xcand,xprev)ζt)− S{ij ,m}(µ(ycand,xprev) + L(ycand,xprev)ζt)
∣∣

≤ |Xj |
(
‖µ(xcand,xprev)− µ(ycand,xprev)‖+ ‖L(xcand,xprev)− L(ycand,xprev)‖‖ζt‖

)
.

Since µ and L have uniformly bounded gradients with respect to xcand and ycand, they are Lipschitz.
Therefore, there exist C3, C4 <∞ such that

|ãk,t,m,j,Xj (xcand, ζt)− ãk,t,m,j,Xj (ycand, ζt)| ≤ (C3 + C4‖ζt‖)‖xcand − ycand‖ (17)

for all xcand,ycand, k, t,m, j,Xj .

Substituting (17) into (16), we have∣∣Ã(xcand, ζt)− Ã(ycand, ζt)
∣∣ ≤ 2

(
C1C3 + (C1C4 + C2C3)‖ζt‖+ C2C4‖ζt‖2

)
‖xcand − ycand‖

TheM > 2 is very similar to theM = 2 case in (16) albeit with more complex expansions. Similarly,
There exist C <∞ such that∣∣Ã(xcand, ζt)− Ã(ycand, ζt)

∣∣ ≤ C M∑
m=1

‖ζt‖m‖xcand − ycand‖

Let us define `(ζt) := C
∑M
m=1 ‖ζt‖m. Note that `(ζt) is integrable because all absolute moments

exist for the Gaussian distribution. Since this satisfies the criteria for Theorem 3 in Balandat et al. [2],
the theorem holds for qNEHVI.

E.1 Unbiased Gradient estimates from the MC formulation

As noted in Section 7, we can show the following (note that this result is not actually required for
Theorem 1):
Proposition 1. Suppose that the GP mean and covariance function are continuously differentiable.
Suppose further that the candidate set Xcand has no duplicates, and that the sample-level gradients
∇xHVI(f̃t(x)) are obtained using the reparameterization trick as in Balandat et al. [2]. Then

E
[
∇xcand α̂

N
qNEHVI(xcand)

]
= ∇xcandαqNEHVI(xcand), (18)

that is, the averaged sample-level gradient is an unbiased estimate of the gradient of the true
acquisition function.

The proof of Proposition 1 closely follows the proof of Proposition 1 in Daulton et al. [10].

F Error Bound on Sequential Greedy Approximation for NEHVI

If the acquisition function L(Xcand) is a normalized (meaning L(∅) = 0), monotone, submodu-
lar (meaning that the increase in L(Xcand) is non-increasing as elements are added to Xcand set
function), then the sequential greedy approximation L̂ of L enjoys regret of no more than 1

eL
∗,

where L∗ = maxXcand⊆X L(Xcand) is the optima of L [17]. We have αqNEHVI(Xcand) = L(Xcand) =
EP
[
αqEHVI(Xcand|P)

]
. For a fixed, known P , Daulton et al. [10] showed that αqEHVI is submodu-

lar set function. In αqNEHVI, P is a stochastic, so αqEHVI(Xcand|P) is a stochastic submodular set
function. Because the expectation of a stochastic submodular function is submodular [1], αqNEHVI
is also submodular. Hence, the sequential greedy approximation of αqNEHVI enjoys regret of no
more than 1

eαqNEHVI
∗. Using the result from Wilson et al. [56], the MC-based approximation

α̂qNEHVI(Xcand) =
∑N
t=1 HVI

[
ft(Xcand)|Pt

]
also enjoys the same regret bound because HVI is a

normalized submodular set function.8

8Submodularity technically requires a finite search space X , whereas in BO X is typically an infinite set.
Nevertheless in similar scenarios, submodularity has been extended to infinite sets (e.g. Wilson et al. [56]).
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G Experiment Setup

G.1 Implementation / Code used in the experiments

Our implementations of qNEHVI, MESMO, PFES are available in the supplementary files and will
be open-sourced under MIT license upon publication. For PESMO, we use the open-source imple-
mentation in Spearmint (https://github.com/HIPS/Spearmint/tree/PESM), which is licensed
by Harvard. For DGEMO, MOEA/D-EGO, and TSEMO we use the open-source implementations
available at https://github.com/yunshengtian/DGEMO/tree/master under the MIT license.
For TS-TCH, qEHVI, and qNParEGO we use the open-source implementations in BoTorch, which
are available at https://github.com/pytorch/botorch) under the MIT license.

For the ABR problem, we use the Park simulator, which is available in open-source at https:
//github.com/park-project/park under the MIT license.

G.2 Algorithm Details

All methods are initialized with 2(d+1) points from a scrambled Sobol sequence. All MC acquisition
functions uses N = 128 quasi-MC samples [2]. All parallel algorithms using sequential greedy
optimization for selecting a batch of candidates points and the base samples are redrawn when
selecting candidate xi, i = 1, ..., q.

For EHVI-based methods, we leverage the two-step trick proposed by [58] to perform efficient
box decompositions; (i) we find the set of local lower bounds for the maximization problem using
Algorithm 5 from Klamroth et al. [30]9, and then (ii) using the local lower bounds as a Pareto frontier
for the artificial minimization problem, we compute a box decomposition of the dominated space
using Algorithm 1 from Lacour et al. [33].

qEHVI uses the IEP for computing joint EHVI over a set of candidates and computes EHVI with
respect to the observed Pareto frontier. qEHVI-PM-CBD uses the Pareto frontier over the posterior
means at the previously evaluated points, providing some amount of regularization with respect to
the observed values. In addition, qEHVI-PM-CBD uses CBD rather than the IEP, which enables
scaling to large batch sizes. qNEHVI-1 uses 500 fourier basis functions.

For PFES and MESMO, we use 10 sampled (approximate) functions using RFFs (with 500 basis
functions) and optimize each function using 5000 iterations of NSGA-II [11] with a population size
of 50. For PFES, we partition the dominated space under each sampled Pareto frontier using the
algorithm proposed Lacour et al. [33], which is more efficient and yields fewer hyperrectangles than
the Quick Hypervolume algorithm used by the PFES authors [50]. For qNParEGO, we use a similar
pruning strategy to that in qNEHVI to only integrate over the function values of in-sample points
that have positive probability of being best with respect to the sampled scalarization. We use the
off-the-shelf implementation of qNParEGO in BoTorch [2], which does not use low-rank Cholesky
updates; however, we do note that qNPAREGO would likely achieve lower wall times using more
efficient linear algebra tricks.

For DGEMO, TSEMO, and MOEA/D-EGO, we use the default settings provided in https://
github.com/yunshengtian/DGEMO/tree/master.

G.3 Problem Details

All benchmark problems are treated as maximization problems; the objectives for minimization
problems are multiplied by -1 to obtain an equivalent maximization problem.

9More efficient methods for this step exist (e.g. Dächert et al. [14]), but Klamroth et al. [30] can easily
leverage vectorized operations and we find it to be efficient in our experiments.
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BraninCurrin (M = 2, d = 2) The BraninCurrin problem involves optimizing two competing
functions used in BO benchmarks: Branin and Currin. The goal is minimize both:

f (1)(x′1, x
′
2) = (x2 −

5.1

4π2
x21 +

5

π
x1 − r)2 + 10(1− 1

8π
) cos(x1) + 10

f (2)(x1, x2) =

[
1− exp

(
− 1

(2x2)

)]
2300x31 + 1900x21 + 2092x1 + 60

100x31 + 500x21 + 4x1 + 20

where x1, x2 ∈ [0, 1], x′1 = 15x1 − 5, and x′2 = 15x2.

DTLZ2 (M = 2, d = 6) DTLZ2 [12] is a standard problem from the multi-objective optimization
literature. The two objectives are

f1(x) = (1 + g(xM )) cos
(π

2
x1
)
· · · cos

(π
2
xM−2

)
cos
(π

2
xM−1

)
f2(x) = (1 + g(xM )) cos

(π
2
x1
)
· · · cos

(π
2
xM−2

)
sin
(π

2
xM−1

)
,

where g(x) =
∑
xi∈xM

(xi − 0.5)2,x ∈ [0, 1]d, and xM is the d−M + 1 elements of x.

ZDT1 (M = 2, d = 4) ZDT1 is a benchmark problem from the multi-objective optimization
literature [65]. The goal is minimize the following two objectives

f (1)(x) = x1

f (2)(x) = g(x)

(
1−

√
f (1)(x)

g(x)

)

where g(x) = 1 + 9
d−1

∑d
i=2 xi and x = [x1, ..., xd] ∈ [0, 1]d.

VehicleSafety (M = 3, d = 5) The 3 objectives are based on a response surface model that is fit
to data collected from a simulator and are given by [52]:

f1(x) = 1640.2823 + 2.3573285x1 + 2.3220035x2 + 4.5688768x3 + 7.7213633x4 + 4.4559504x5
f2(x) = 6.5856 + 1.15x1 − 1.0427x2 + 0.9738x3 + 0.8364x4 − 0.3695x1x4 + 0.0861x1x5

+ 0.3628x2x4 + 0.1106x21 − 0.3437x23 + 0.1764x24
f3(x) = −0.0551 + 0.0181x1 + 0.1024x2 + 0.0421x3 − 0.0073x1x2 + 0.024x2x3 − 0.0118x2x4

− 0.0204x3x4 − 0.008x3x5 − 0.0241x22 + 0.0109x24

where x ∈ [1, 3]5. We seek to (1) minimize mass (a proxy for fuel efficiency), (2) minimize
acceleration (a proxy for passenger trauma) in a full-frontal collision, and (3) minimize the distance
that the toe-board intrudes into the cabin (a proxy for vehicle fragility) [52].

AutoML (M = 2, d = 8) . This experiment considers optimizing predictive performance and
latency of a deep neural networks (DNN). Practitioners and researchers across many domains use
DNNs for recommendation and recognition tasks in low-latency (e.g. on-device) environments
[48], where any increase in prediction time degrades the product experience [42]. Simultaneously,
researchers are considering increasingly larger architectures that improve predictive performance
[47]. Therefore, a firm may be interesting understanding the set of optimal trade-offs between
prediction latency and predictive performance. For a demonstration, we consider optimizing (d = 8)
hyperparameters of DNN (detailed in Table 1) to minimize out-of-sample prediction error and
minimize latency on the MNIST data set [34]. Using a small randomized test set leads to noisy
evaluations of predictive performance and latency measurements are often noisy due to unrelated
fluctuations in the testing environment. As in previous works, we minimize a logit transformation of
the prediction error and minimize a logarithm of the ratio between the latency of a proposed DNN and
the latency of the fastest DNN [19, 20, 24]. For each evaluation, we randomly partition the 60,000
examples from the MNIST training set into a set of 50,000 examples for training and 10,000 examples
for evaluation. We train each network for 8 epochs using SGD with momentum with mini-batches of
512 examples. The learning rate is decayed after every 30 mini-batch updates using the specified
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PARAMETER SEARCH SPACE

LEARNING RATE (log10 SCALE) [-5.0, -1.0]
LEARNING RATE DECAY MULTIPLIER [0.01, 1.0]
DROPOUT RATE [0.0, 0.7]
L1 REGULARIZATION [10−5 , 0.1]
L2 REGULARIZATION [10−5 , 0.1]
HIDDEN LAYER 1 SIZE [20, 500]
HIDDEN LAYER 2 SIZE [20, 500]
HIDDEN LAYER 3 SIZE [20, 500]

Table 1: The search space for the AutoML benchmark.

decay multiplier. We use randomized rounding on the integer parameters before evaluation. For
evaluating the performance of different BO methods, we estimate the noiseless objectives using the
mean objectives across 3 replications. DNNs are implemented in PyTorch using ReLU activations
and a softmax output layer. Latency measurements are taken on a CPU (2x Intel Xeon E5-2680 v4 @
2.40GHz).

CarSideImpact (M = 4, d = 7) A side-impact test is common practice under European
Enhanced Vehicle-Safety Committee to uphold vehicle safety standards [13]. In constrast with the
previous VehicleSafety problem where we considered a full-frontal collision, we now consider the
problem of tuning parameters controlling the structural design the of an automobile in the case of
a side-impact collision. This problem has been widely used in various works and has previously
used stochastic parameters to account for manufacturing error [13]. We use the recent 4-objective
version proposed by Tanabe & Ishibuchi [52] where the goal to minimize the weight of the vehicle,
passenger trauma (pubic force), and vehicle damage (the average velocity of the V-pillar). The fourth
objective is a combination of 10 other measures of the vehicle durability and passenger safety (see
[13] for details). The mathematical formulas for a response surface model fit to data collected from a
simulator are given below:

f (1)(x) = 1.98 + 4.9x1 + 6.67x2 + 6.98x3 + 4.01x4 + 1.78x5 + 10−5x6 + 2.73x7

f (2)(x) = 4.72− 0.5x4 − 0.19x2x3

f (3)(x) = 0.5(VMBP(x) + VFD(x))

f (4)(x) = −
10∑
i=1

max[gi(x), 0]

where

g1(x) = 1− 1.16 + 0.3717x2x4 + 0.0092928x3
g2(x) = 0.32− 0.261 + 0.0159x1x2 + 0.06486x1 + 0.019x2x7 − 0.0144x3x5 − 0.0154464x6
g3(x) = 0.32− 0.214− 0.00817x5 + 0.045195x1 + 0.0135168x1 − 0.03099x2x6

+ 0.018x2x7 − 0.007176x3 − 0.023232x3 + 0.00364x5x6 + 0.018x22

g4(x) = 0.32− 0.74 + 0.61x2 + 0.031296x3 + 0.031872x7 − 0.227x22
g5(x) = 32− 28.98− 3.818x3 + 4.2x1x2 − 1.27296x6 + 2.68065x7
g6(x) = 32− 33.86− 2.95x3 + 5.057x1x2 + 3.795x2 + 3.4431x7 − 1.45728

g7(x) = 32− 46.36 + 9.9x2 + 4.4505x1
g8(x) = 4− f2(x)

g9(x) = 9.9− VMBP(x)

g10(x) = 15.7− VFD(x)

VMBP(x) = 10.58− 0.674x1x2 − 0.67275x2
VFD(x) = 16.45− 0.489x3x7 − 0.843x5x6
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. The search space is:

x1 ∈ [0.5, 1.5]

x2 ∈ [0.45, 1.35]

x3, x4 ∈ [0.5, 1.5]

x5 ∈ [0.875, 2.625]

x6, x7 ∈ [0.4, 1.2].

As in the VehicleSafety problem, we add zero-mean Gaussian noise to each objective with a standard
deviation of 1% the range of each objective.

Constrained BraninCurrin (M = 2, V = 2, d = 2) The constrained BraninCurrin problem
uses the same objectives as BraninCurrin, but adds the following disk constraint from [21]:

c(x′1, x
′
2) = 50− (x′1 − 2.5)2 − (x′2 − 7.5)2) ≥ 0

We add zero-mean Gaussian noise to objectives and the constraint slack observations with a standard
deviation of 5% of the range of each outcome.

SphereEllipsoidal (M = 2, d = 5) The SphereEllipsoidal problem is defined over x ∈ [−5, 5]d

and the objectives are given by [6]:

f (1)(x) =

d∑
i=1

(xi − x(1)opt,i)
2 + f

(1)
opt

f (2)(x) =

d∑
i=1

106
i−1
d−1 z2i + f

(2)
opt

where

zi = Tosz(δi)

δi = xi − x(2)opt,i

Tosz(δi) = sign(δi)e
δ̂i+0.049

(
sin
[
c1(δi)δ̂i

]
+sin

[
c2(δi)δ̂i

])
and

δ̂i =

{
log(|δi|), if δi 6= 0

0, otherwise

c1(δi) =

{
10, if δi ≥ 0

5.5, otherwise

c2(δi) =

{
7.9, if δi ≥ 0

3.1, otherwise.

We set

x
(1)
opt = [−0.0299, 2.1458,−3.2922,−2.9438,−1.5406]

x
(2)
opt = [2.0611,−1.7655,−0.7754, 1.8775,−3.7657]

f
(1)
opt = 203.71

f
(2)
opt = 135.6

. We add zero-mean Gaussian noise to objectives and the constraint slack observations with a standard
deviation of 5% of the range of each outcome.
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PROBLEM REFERENCE POINT

BRANINCURRIN [-18.00, -6.00]
ZDT1 [-1.10, -1.10]
DTLZ2 [−1.10]M
VEHICLESAFETY [-1698.55, -11.21, -0.29]
ABR [150.00, -3500.00]
AUTOML [-2.45, 0.60]
CARSIDEIMPACT [-45.49, -4.51, -13.34, -10.39]
CONSTRAINEDBRANINCURRIN [-80.00, -12.00]
SPHEREELLIPSOIDAL [-261.00, −6.77 · 106]

Table 2: The reference points for each benchmark problem.

G.4 Evaluation Details

To compute the log hypervolume difference metric, we use NSGA-II to estimate the true Pareto
frontier (except for the ABR and AutoML problems, where evaluations are time-consuming and we
instead take the true Pareto frontier to be the Pareto frontier across the estimated objectives across all
methods and replications). Using this Pareto frontier, we compute the hypervolume dominated by the
true Pareto frontier in order to calculate the log hypervolume difference. For ZDT1, the hypervolume
dominated by the true Pareto frontier can be computed analytically. For Constrained BraninCurrin,
we evaluate the logarithm of the difference between the hypervolume dominated by the true feasible
Pareto frontier and the feasible in-sample Pareto frontier for each method.

For all problems, we selected the reference point based on the component-wise noiseless nadir
point fnadir(x) = minx∈X f(x) and the range of the Pareto frontier for each noiseless objective
using the common heuristic [55]: r = fnadir(x) − β ∗ (fideal(x) − fnadir(x)), where β = 0.1 and
fideal(x) = maxx∈X f(x).

H Experiments

H.1 Wall Time Results

Tables 3 and 4 report the acquisition optimization wall times for each method. On all benchmark
problems except CarSideImpact, qNEHVI is faster to optimize than MESMO and PFES on a GPU.
The wall times for optimizing qNEHVI are competitive with those for qNParEGO on most benchmark
problems and batch sizes; on many problems, qNEHVI is often faster than qNParEGO. On the
problems VehicleSafety and CarSideImpact problems which have 3 and 4 objectives respectively,
we observed tractable wall times, even when generating q = 32 candidates. The wall time for 3 and
4 objective problems is larger primarily because the box decompositions are more time-consuming
to compute and result in more hyperrectangles as the number of objectives increases. Although,
qEHVI(-PM) is faster for q = 1 and q = 8 on many problems, it is unable to scale to large batch
sizes and ran out of memory for q = 8 on CarSideImpact due to the box decomposition having a
large number of hyperrectangles.
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CPU BRANINCURRIN ZDT1 ABR VEHICLESAFETY

MESMO (q=1) 21.24 (±0.02) 19.76 (±0.03) 23.24 (±0.04) 28.39 (±0.07)
PFES (q=1) 22.86 (±0.05) 39.82 (±0.14) 43.03 (±0.12) 53.16 (±0.17)
TS-TCH (q=1) 0.51 (±0.0) 0.48 (±0.0) 0.75 (±0.0) 0.67 (±0.0)
qEHVI-PM-CBD (q=1) 2.34 (±0.02) 3.7 (±0.02) 3.56 (±0.03) 7.82 (±0.05)
qEHVI (q=1) 0.58 (±0.0) 0.66 (±0.01) 2.98 (±0.02) 5.07 (±0.03)
qNEHVI (q=1) 40.55 (±0.61) 35.66 (±0.47) 62.29 (±0.97) 120.43 (±1.25)
qNPAREGO (q=1) 3.19 (±0.05) 1.65 (±0.02) 6.94 (±0.06) 1.05 (±0.01)
qPAREGO (q=1) 0.58 (±0.01) 0.7 (±0.01) 2.5 (±0.03) 0.75 (±0.01)
DGEMO (q=1) 65.28(±0.26) 76.99(±0.35) NA NA
DGEMO (q=8) 65.44(±0.63) 86.97(±0.85) NA NA
DGEMO (q=16) 66.44(±0.93) 86.06(±1.21) NA NA
DGEMO (q=32) 66.66(±1.47) 84.66(±1.66) NA NA
TSEMO (q=1) 3.02(±0.01) 2.98(±0.01) NA 3.61(±0.01)
TSEMO (q=8) 3.53(±0.01) 3.48(±0.01) NA 7.45(±0.1)
TSEMO (q=16) 3.77(±0.02) 3.74(±0.02) NA 11.06(±0.28)
TSEMO (q=32) 4.29(±0.03) 4.22(±0.02) NA 16.3(±0.68)
MOEA/D-EGO (q=1) 57.79(±0.17) 58.1(±0.17) NA 71.0(±0.21)
MOEA/D-EGO (q=8) 63.56(±0.18) 63.57(±0.17) NA 77.56(±0.22)
MOEA/D-EGO (q=16) 64.0(±0.18) 63.99(±0.19) NA 78.03(±0.25)
MOEA/D-EGO (q=32) 64.09(±0.26) 63.9(±0.24) NA 77.77(±0.35)
GPU BRANINCURRIN ZDT1 ABR VEHICLESAFETY

MESMO (q=1) 19.9 (±0.04) 19.92 (±0.04) 21.54 (±0.08) 24.57 (±0.09)
PFES (q=1) 21.68 (±0.07) 45.9 (±0.17) 43.3 (±0.13) 47.25 (±0.16)
TS-TCH (q=1) 0.88 (±0.01) 0.94 (±0.01) 1.08 (±0.01) 1.04 (±0.01)
TS-TCH (q=8) 1.85 (±0.03) 2.01 (±0.03) 2.99 (±0.04) 2.32 (±0.05)
TS-TCH (q=16) 3.08 (±0.08) 3.29 (±0.1) 4.28 (±0.08) 3.54 (±0.09)
TS-TCH (q=32) 5.25 (±0.15) 5.41 (±0.16) 7.23 (±0.2) 6.41 (±0.23)
qEHVI-PM-CBD (q=1) 2.17(±0.01) 2.12(±0.02) 3.59(±0.02) 51.11(±0.28)
qEHVI-PM-CBD (q=8) 39.56(±0.79) 30.83(±1.35) 36.2(±0.73) 716.03(±13.44)
qEHVI-PM-CBD (q=16) 82.91(±2.42) 67.3(±3.88) 70.02(±1.64) 1410.79(±41.72)
qEHVI-PM-CBD (q=32) 147.81(±6.85) 105.74(±8.55) 251.97(±12.69) 2570.95(±116.61)
qEHVI (q=1) 0.72 (±0.01) 0.99 (±0.02) 3.67 (±0.02) 3.96 (±0.05)
qEHVI (q=8) 18.12 (±1.03) 18.05 (±0.86) 40.55 (±0.58) 71.49 (±2.04)
qNEHVI (q=1) 6.15 (±0.06) 5.75 (±0.04) 7.72 (±0.09) 20.81 (±0.11)
qNEHVI (q=8) 48.19 (±1.2) 46.74 (±0.83) 49.7 (±0.79) 168.63 (±2.49)
qNEHVI (q=16) 102.87 (±4.02) 95.6 (±2.62) 93.14 (±1.72) 289.02 (±5.82)
qNEHVI (q=32) 177.56 (±7.81) 190.59 (±6.07) 181.97 (±4.77) 546.83 (±16.09)
qNEHVI-1 (q=1) 0.32(±0.0) 0.24(±0.0) 0.56(±0.0) 0.92(±0.0)
qNEHVI-1 (q=8) 2.43(±0.02) 2.11(±0.03) 4.55(±0.06) 7.1(±0.1)
qNEHVI-1 (q=16) 4.97(±0.07) 3.73(±0.06) 8.73(±0.14) 14.77(±0.31)
qNEHVI-1 (q=32) 9.03(±0.18) 8.18(±0.24) 17.15(±0.41) 34.99(±1.46)
qNPAREGO (q=1) 2.39 (±0.04) 1.84 (±0.04) 6.47 (±0.05) 0.9 (±0.02)
qNPAREGO (q=8) 47.05 (±1.74) 52.99 (±1.94) 74.72 (±1.9) 45.56 (±1.17)
qNPAREGO (q=16) 118.73 (±5.53) 116.68 (±5.51) 116.79 (±3.19) 91.3 (±3.83)
qNPAREGO (q=32) 306.17 (±17.81) 279.01 (±17.72) 240.56 (±6.44) 188.42 (±13.42)
qPAREGO (q=1) 0.81 (±0.02) 1.05 (±0.03) 4.39 (±0.05) 0.79 (±0.02)
qPAREGO (q=8) 13.01 (±0.53) 16.4 (±0.72) 31.02 (±0.81) 12.64 (±0.84)
qPAREGO (q=16) 34.34 (±2.12) 43.66 (±3.12) 66.85 (±3.13) 36.68 (±4.48)
qPAREGO (q=32) 139.73 (±25.22) 108.25 (±6.94) 122.37 (±6.12) 107.34 (±14.76)

Table 3: Acquisition function optimization wall time (including box decompositions) in seconds on a
CPU (2x Intel Xeon E5-2680 v4 @ 2.40GHz) and a Tesla V100 SXM2 GPU (16GB RAM). The mean
and two standard errors are reported. DGEMO, TSEMO, and MOEA/D-EGO are omitted for ABR
because they have package requirements that are not easily compatible with our distributed evaluation
pipeline and ABR evaluations are prohibitively slow without distributed evaluations. DGEMO is
omitted for VehicleSafety because the open-source implementation raises an consistently raises an
exception in the graph cutting algorithm with this problem.
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H.2 Scaling to large batch sizes with CBD

In Figure 6, we provide results demonstrating the CBD approach enables scaling to large batch sizes,
even with 3 or 4 objectives, whereas the IEP wall times grow exponentially with the batch size and
the IEP overflows GPU memory even with modest batch sizes.
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Figure 6: Acquisition optimization wall time under a sequential greedy approximation using L-
BFGS-B for three and four objectives. CBD enables scaling to much larger batch sizes q than
using the inclusion-exclusion principle (IEP) and avoids running out-of-memory (OOM) on a GPU.
Independent GPs are used for each outcome and are initialized with 20 points from the Pareto frontier
of the 6-dimensional DTLZ2 problem [12] with 3 objectives (left) and 4 objectives (right). Wall times
were measured on a Tesla V100 SXM2 GPU (16GB GPU RAM) and a Intel Xeon Gold 6138 CPU
@ 2GHz CPU (251GB RAM).

H.3 Additional Empirical Results

The additional optimization performance results in the appendix demonstrate that qNEHVI-based
algorithms are consistently the top performer. The only case where qNEHVI(-1) is outperformed
is in the sequential setting on the CarSideImpact problem in Figure 9(a), where qEHVI performs
best However, as show in Figure 9(b) and Figure 9(c), qNEHVI enables scaling to large batch sizes,
whereas qEHVI runs out of memory on a GPU for q = 8. Therefore, in a practical setting where
vehicles are manufactured and test in parallel, qNEHVI would be the best choice.

Figure 11 shows that qNEHVI achieves solid performance anytime throughout the learning curve in
the sequential setting, and Figure 13 shows that qNEHVI-based variants consistently achieves the
best performance for various q with a fixed budget of 224 function evaluations. Although, qNEHVI-1
does not consistently perform better than qNEHVI, qNEHVI-1 achieves very little degradation of
sample complexity as the batch size q increases.

H.4 Better performance from qEHVI with a larger batch size

Interestingly, on many test problems qEHVI performs better with q = 8 than q = 1. In the
case of BraninCurrin and ConstrainedBraninCurrin, qParEGO also improves as q increases. Since
this phenomenon is not observed with the noisy acquisition functions (qNEHVI, qNParEGO), we
hypothesize that it may be the case that sequential data collection results in a difficult to optimize
acquisition surface and that integrating over the in-sample points leads to a smoother acquisition
surface that results in improved sequential optimization. The acquisition functions that do not account
for noise may be misled by the noise in sequential setting, but using a larger batch size (within limits)
may help avoid the issue of not properly accounting for noise.
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H.5 Performance over Higher Dimensional Spaces

qNEHVI-1 relies on approximate GP sample paths (RFFs). Although we find that qNEHVI-1
performs very well on many low-dimensional problems (see Figure 4), Figures 8 and 7 show that
qNEHVI-1 does not perform as well a qNEHVI on higher dimensional problems. We hypothesize
that the RFF approximation degrades in higher dimensional search spaces leading to poor optimization
performance relative qNEHVI, which uses exact GP samples. It is likely that using 500 Fourier basis
functions leads to large approximation error on high dimensional search spaces. Further study is
needed to examine whether robust performance can be achieved by increasing the number of basis
functions. As shown in Figure 7, qNEHVI consistently outperforms all tested methods regardless of
the dimension of the design space.
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Figure 7: Sequential optimization performance 2-objective DTLZ2 with σ = 5% problems as the
dimension of the search space increases from d = 5 to d = 20.
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Figure 8: A comparison of the final optimization performance of qNEHVI-1, a single sample path
approximation of qNEHVI, and qNEHVI on 2-objective DTLZ2 problems with input dimensions
between 5 and 20 under different batch sizes q. qNEHVI-1 is very effective on lower dimensional
problems, but does not perform as well as qNEHVI on higher dimensional problems.
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CPU DTLZ2 AUTOML CARSIDEIMPACT CONSTRAINED BRANINCURRIN

MESMO (q=1) 27.79(±0.07) 37.86 (±0.08) 33.31 (±0.06) NA
PFES (q=1) 69.85(±0.21) 101.24 (±0.29) 102.55 (±0.34) NA
TS-TCH (q=1) 0.72(±0.0) 0.93 (±0.0) 1.27 (±0.01) NA
qEHVI-PM-CBD (q=1) 3.98(±0.02) 5.76 (±0.05) 83.14 (±0.74) 10.27 (±0.06)
qEHVI (q=1) 2.74(±0.01) 5.05 (±0.04) 96.19 (±0.9) 3.26 (±0.05)
qNEHVI (q=1) 54.04(±0.67) 22.71 (±0.48) 541.13 (±6.83) 267.67 (±4.09)
qNPAREGO (q=1) 21.39(±0.2) 5.6 (±0.07) 3.38 (±0.05) 12.05 (±0.17)
qPAREGO (q=1) 2.33(±0.02) 3.06 (±0.03) 1.91 (±0.02) 1.56 (±0.03)
DGEMO (q=1) 84.48(±0.64) NA NA NA
DGEMO (q=8) 65.99(±0.51) NA NA NA
DGEMO (q=16) 69.57(±0.59) NA NA NA
DGEMO (q=32) 72.82(±0.8) NA NA NA
TSEMO (q=1) 3.1(±0.01) NA 14.91(±0.16) NA
TSEMO (q=8) 3.58(±0.01) NA 100.78(±3.75) NA
TSEMO (q=16) 3.87(±0.02) NA 188.44(±9.88) NA
TSEMO (q=32) 4.55(±0.03) NA 326.51(±24.03) NA
MOEA/D-EGO (q=1) 59.3(±0.18) NA 79.87(±0.16) NA
MOEA/D-EGO (q=8) 65.5(±0.18) NA 85.34(±0.21) NA
MOEA/D-EGO (q=16) 65.81(±0.2) NA 85.18(±0.3) NA
MOEA/D-EGO (q=32) 65.44(±0.3) NA 84.8(±0.39) NA

GPU DTLZ2 AUTOML CARSIDEIMPACT CONSTRAINED BRANINCURRIN

MESMO (q=1) 17.01(±0.13) 28.83 (±0.2) 26.0 (±0.06) NA
PFES (q=1) 46.63(±0.51) 85.73 (±0.4) 55.41 (±0.16) NA
TS-TCH (q=1) 0.84(±0.01) 1.49 (±0.01) 2.17 (±0.01) NA
TS-TCH (q=8) 3.71(±0.07) 3.64 (±0.1) 4.15 (±0.07) NA
TS-TCH (q=16) 5.85(±0.14) 6.16 (±0.21) 6.9 (±0.19) NA
TS-TCH (q=32) 9.33(±0.3) 9.47 (±0.47) 10.2 (±0.4) NA
qEHVI-PM-CBD (q=1) 4.29(±0.01) 5.26(±0.05) 52.7(±0.41) 15.89(±0.08)
qEHVI-PM-CBD (q=8) 40.85(±0.41) 39.55(±0.8) 460.18(±9.76) 135.89(±1.43)
qEHVI-PM-CBD (q=16) 93.39(±1.87) 71.8(±1.81) 866.12(±26.46) 314.42(±5.44)
qEHVI-PM-CBD (q=32) 194.12(±5.6) 143.83(±4.88) 1682.28(±72.5) 823.01(±24.48)
qEHVI (q=1) 2.93(±0.02) 4.67 (±0.1) 9.63 (±0.05) 5.69 (±0.11)
qEHVI (q=8) 39.64(±0.57) 104.48 (±1.34) OOM 68.95 (±2.57)
qNEHVI (q=1) 4.91(±0.01) 7.95 (±0.1) 82.66 (±0.63) 20.47 (±0.12)
qNEHVI (q=8) 39.96(±0.35) 67.28 (±1.87) 683.06 (±13.82) 168.04 (±1.85)
qNEHVI (q=16) 74.41(±0.63) 145.66 (±4.45) 1289.4 (±36.81) 362.15 (±9.08)
qNEHVI (q=32) 142.18(±1.59) 247.92 (±11.93) 2480.41 (±102.38) 654.66 (±23.48)
qNEHVI-1 (q=1) 0.42(±0.0) 0.53(±0.0) 2.11(±0.01) 1.57(±0.02)
qNEHVI-1 (q=8) 3.26(±0.03) 4.55(±0.09) 16.88(±0.2) 11.01(±0.16)
qNEHVI-1 (q=16) 6.34(±0.04) 7.22(±0.19) 34.78(±0.63) 20.56(±0.4)
qNEHVI-1 (q=32) 14.85(±0.45) 12.66(±0.54) 67.27(±1.61) 40.6(±1.1)
qNPAREGO (q=1) 6.41(±0.03) 4.86 (±0.1) 3.25 (±0.06) 6.17 (±0.07)
qNPAREGO (q=8) 57.17(±0.43) 48.62 (±1.18) 30.65 (±0.92) 38.66 (±0.95)
qNPAREGO (q=16) 114.91(±1.3) 122.09 (±3.5) 81.04 (±3.44) 84.27 (±3.04)
qNPAREGO (q=32) 263.56(±4.03) 275.41 (±8.29) 219.98 (±9.75) 199.6 (±9.68)
qPAREGO (q=1) 2.62(±0.03) 3.31 (±0.07) 3.03 (±0.06) 2.83 (±0.08)
qPAREGO (q=8) 25.75(±0.66) 33.84 (±1.76) 22.0 (±0.88) 20.28 (±1.18)
qPAREGO (q=16) 67.89(±2.27) 77.25 (±3.9) 56.09 (±3.09) 50.06 (±3.84)
qPAREGO (q=32) 159.98(±7.41) 217.55 (±19.15) 139.25 (±9.41) 135.39 (±13.04)

Table 4: Acquisition function optimization wall time (including box decompositions) in seconds on a
CPU (2x Intel Xeon E5-2680 v4 @ 2.40GHz) and a Tesla V100 SXM2 GPU (16GB RAM). The mean
and two standard errors are reported. DGEMO, TSEMO, MOEA/D-EGO are omitted for AutoML
because they have package requirements that are not easily compatible with our distributed training
and evaluation pipeline, and they are omitted for ConstrainedBraninCurrin because they do not support
constraints in the open-source implementation at https://github.com/yunshengtian/DGEMO/
tree/master. DGEMO is omitted on CarSideImpact because the open-source implementation does
not support more than 3 objectives.
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(a) Sequential Optimization performance on additional benchmark problems.
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(b) Parallel optimization performance vs batch iterations (1/2).
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(c) Parallel optimization performance vs batch iterations (2/2).

Figure 9: Optimization performance on additional problems. (a) Sequential optimization performance.
(b) and (c) Optimization performance of batch acquisition functions using various q over the number
of BO iterations. To improve readability, we omit qEHVI(-PM) in this figure because the IEP cannot
scale beyond q = 8 because of the exponential time and space complexity (running it on a GPU runs
out of memory and running it on a CPU results in prohibitively slow wall times). See Figure 10 for
results using qEHVI(-PM).
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Figure 10: Optimization performance of qNEHVI under various batch sizes q vs qEHVI(-PM).
Note that using the IEP, qEHVI(-PM) cannot scale beyond q = 8 because of the exponential time
and space complexity (running it on a GPU runs out of memory and running it on a CPU results in
prohibitively slow wall times).
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Figure 11: Anytime optimization performance of batch acquisition functions using various q over the
number of function evaluations. To improve readability, we omit qEHVI(-PM) in this figure because
the IEP cannot scale beyond q = 8 because of the exponential time and space complexity (running it
on a GPU runs out of memory and running it on a CPU results in prohibitively slow wall times).
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Figure 12: Anytime optimization performance of batch EHVI-based acquisition functions using
various q over the number of function evaluations.
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Figure 13: Final log hypervolume difference with various q under a budget of 224 function evaluations.
Smaller log hypervolume differences are better.
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H.6 Optimization Performance under Increasing Noise Levels

Figure 14 shows the sequential optimization performance of qNEHVI and qNEHVI-1 relative
to qEHVI and qNParEGO under increasing noise levels. qNEHVI-1 achieves the best final hy-
pervolume when the noise standard deviation σ is less than 15% of the range of each objective,
but performs worse than qNEHVI earlier in the optimization. qNEHVI is the top performer in
high-noise environments. We observe that all methods degrade as the noise level increases, however
qNEHVI consistently exhibits excellent performance relative to other methods and only qNEHVI-1
is competitive and only in the low-noise regime.
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Figure 14: Sequential optimization performance under increasing noise levels on a DTLZ2 problem
(d = 6, M = 2). σ is the noise standard deviation, which we define as a percentage of the range
of each objective over the entire search space. A noise level of 20% is very high; for comparison,
previous work on noisy MOBO has only considered noise levels of 1% [24].

H.7 Optimization Performance on Noiseless Benchmarks

We include a comparison of optimization performance on noiseless benchmarks. Figure 15 shows
that qNEHVI performs competitively with qEHVI(-PM-CBD) and outperforms DGEMO, TS-TCH
and qNParEGO across all benchmark problems. qNEHVI-1 is also a top performer on noiseless
problems and both qNEHVI and qNEHVI-1 show little degradation in performance with increasing
levels of parallelism.
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Figure 15: Sequential (a) and parallel (b) optimization Performance on noiseless benchmarks.

H.8 Performance of qNEHVI-1 on 5-Objective Optimization

We demonstrate that qNEHVI-1 enables scaling to 5-objective problems. To our knowledge, no
previous methods leveraging EHVI or HVI (e.g. DGEMO, TSEMO) considers 5-objective problems
because of the super-polynomial complexity of the hypervolume indicator. Nevertheless, we show
that using CBD and a single sample path approximation, qNEHVI-1 can be used for 5-objective opti-
mization. As shown in Figure 16, qNEHVI-1 outperforms qNParEGO and Sobol search. qNEHVI-1
takes on average 73.53 seconds (with an SEM of 1.74 seconds) to generate each candidate, whereas
qNParEGO takes 11.37 seconds (with an SEM of 0.97 seconds).
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Figure 16: Optimization performance on a 5-objective DTLZ2 problem (d = 6) with σ = 5%.
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H.9 Performance compared against a Multi-Objective CMA-ES

CMA-ES is an evolutionary strategy that is a strong method in single objective optimization, and many
works have proposed extensions of CMA-ES to the multi-objective setting [26, 54]. We compare
qNEHVI against the COMO-CMA-ES algorithm, which has been shown to outperform MO-CMA-
ES on a variety of problems [54].10. We evaluate performance on the SphereEllipsoidal function from
Bi-objective Black-Box Optimization Benchmarking Test Suite [6], and we add zero-mean Gaussian
noise to each objective with σ = 5% of the range of each objective. We run COMO-CMA-ES with 5
kernels, the same initial quasi-random design as the BO methods, a population size of 10, and an
initial step size of 0.2. As shown in Figure 17, the BO methods vastly outperform COMO-CMA-ES.
qNEHVI and qNParEGO perform best and are closely followed by qNEHVI-1.
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Figure 17: Optimization performance on a 2-objective Sphere-Ellipsoidal problem (d = 5) with
σ = 5%.
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Figure 18: An illustration of the effect of noisy observations on the true noiseless Pareto frontiers
identified by DGEMO (right) DGEMO-PM-NEHVI (left, see Appendix H.10). Both algorithms
are tested on a BraninCurrin synthetic problem, where observations are corrupted with zero-mean,
additive Gaussian noise with a standard deviation of 5% of the range of respective objective. All
methods use sequential (q = 1) optimization.

10COMO-CMA-ES is also the only multi-objective CMA-ES that we could find with an open-source Python
implementation. We use the implementation available at https://github.com/CMA-ES/pycomocma under
the BSD 3-clause license.
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Similar to EHVI, DGEMO relies on the observed (noisy) Pareto frontier for batch selection. The right
plot in Figure 18 shows that DGEMO exhibits the same clumping behavior in objective space in the
noisy setting as EHVI. While DGEMO’s diversity constraints (with respect to the input parameters)
make it slightly more robust to noise, the solutions are clustered and the bottom right corner of the
Pareto frontier is not identified. In an attempt to mitigate these issues, we propose an augmented
version of DGEMO, which we call DGEMO-PM-NEHVI, as follows: (i) we use the posterior mean
at the previously evaluated points to estimate the in-sample Pareto frontier, which we hope will
improve robustness to noise when selecting a discrete set of potential candidates using the DGEMO’s
first-order approximation of the Pareto frontier, and (ii) we use qNEHVI rather than HVI under the
posterior mean as the batch selection criterion over the discrete set, subject to DGEMO’s diversity
constraints. We find that using qNEHVI to integrate over the uncertainty in the Pareto frontier over
the previously evaluated points, results in identifying higher quality Pareto frontiers as shown in
Figure 18. We also include DGEMO-PM, which uses (i) but not (ii) for completeness. Not only
does DGEMO-PM-NEHVI identify much more diverse solutions that provide better coverage across
the Pareto frontier, but DGEMO-PM-NEHVI also identifies much better solutions on the lower
right portion of the Pareto frontier than DGEMO and DGEMO-PM. DGEMO-PM performs much
better than DGEMO and is competitively with DGEMO-PM-NEHVI, which we speculate is because
DGEMO uses a first-order approximation of the Pareto frontier (using the observed values or using
the posterior mean for -PM variants) to generate a discrete set of candidates. Using the posterior mean
in this step is important for regularizing against extreme observed values due to noise. qNEHVI
is only used as a filtering criterion for batch selection over that discrete set of candidates, subject
to DGEMO’s diversity constraints. Hence, qNEHVI has limited control over the batch selection
procedure.

DGEMO’s first-order approximation fundamentally does not account for uncertainty in the Pareto
frontier over previously evaluated points. Although one could integrate over the uncertainty in
the in-sample Pareto frontier by generating a first-order approximation of the Pareto frontier under
different sample paths, the graph cut algorithm would yield different families under each sample path.
It is unclear how to set the diversity constraints in that setting. We leave this for future work.

I Noisy Outcome Constraints

While the focus of this work is on developing a scalable parallel hypervolume-based acquisition
function for noisy settings, our MC-based approach naturally lends itself to support for constraints.

I.1 Derivation of Constrained NEHVI

The NEHVI formulation in (2) can be extended to handle noisy observations of outcome constraints.
We consider the scenario where we receive noisy observations of M objectives f(x) ∈ RM and V
constraints c(v) ∈ RV , all of which are assumed to be “black-box”: Dn = {xi,yi, bi}ni=1 where[
yi
bi

]
∼ N

([
f(xi)
c(xi)

]
,Σi

)
, Σi ∈ R(M+V )×(M+V ). We assume, without loss of generality, that

c(v) is feasible iff c(v) ≥ 0. In the constrained optimization setting, we aim to identify the a finite
approximate feasible Pareto set

Pfeas = {f(x) | x ∈ Xn, c(x) ≥ 0, @ x′ : c(x′) ≥ 0 s.t. f(x′) � f(x)}

of the true feasible Pareto set

P∗feas = {f(x) s.t. c(x) ≥ 0, @ x′ : c(x′) ≥ 0 s.t. f(x′) � f(x)}.

The natural improvement measure in the constrained setting is feasible HVI, which we define for a
single candidate point x as

HVIC(f(x), c(x)|Pfeas) := HVI[f(x)|Pfeas] · 1[c(x) ≥ 0].

Taking the expectation over HVIC gives the constrained expected hypervolume improvement:

αEHVIC
(x) =

∫
HVIC(f(x), c(x)|Pfeas)p(f , c|D)dfdc (19)
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For brevity, we define Cn = c(Xn),Fn = f(Xn). The noisy expected hypervolume improvement is
then defined as:

αNEHVIC
(x) =

∫
αEHVIC

(x|Pfeas)p(Fn, Cn|Dn)dFndCn. (20)

Performing feasibility-weighting on the sample-level allows us to include such auxiliary outcome
constraints into the full Monte Carlo formulation given in (3) in a straightforward way:

α̂NEHVIc(x) =
1

N

N∑
t=1

Kt∑
k=1

[
M∏
m=1

[
z
(m)
k,t − l

(m)
k,t

]
+

V∏
v=1

1[c
(v)
t (x) ≥ 0]

]
where z(m)

k,t := min
[
u
(m)
k,t , f̃

(m)
t (x)

]
and l(m)

k,t , u
(m)
k,t are the mth dimension of the lower and upper

vertices of the rectangle Sk,t in the non-dominated partitioning {S1,t, ..., SKt,t} under the feasible
sampled Pareto frontier

Pfeas,t = Pfeas = {f̃t(x) | x ∈ Xn, c̃t(x) ≥ 0, @ x′ : c̃t(x
′) ≥ 0 s.t. f̃t(x

′) � f̃t(x)}.

In this formulation, the
∏V
v=1 1[c

(v)
t (x) ≥ 0] indicates feasibility of the t-th sample.

To permit gradient-based optimization via exact sample-path gradients, we replace the indicator
function (which is non-differentiable) with a differentiable sigmoid approximation with a temperature
parameter τ , which becomes exact as τ →∞:

1[c(v)(x) ≥ 0] ≈ s(c(v)(x); τ) :=
1

1 + exp(−c(v)(x)/τ)
(21)

Hence,

α̂NEHVIc(x) ≈ 1

N

N∑
t=1

Kt∑
k=1

[
M∏
m=1

[
z
(m)
k,t − l

(m)
k,t

]
+

V∏
v=1

s(c
(v)
t (x), τ)

]

I.2 Derivation of Parallel, Constrained NEHVI

The constrained NEHVI can be extended to the parallel setting in a straightforward fashion. The
joint constrained hypervolume improvement of a set of points {xi}qi=1 is given by

HVIC({f(xi), c(xi)}qi=1) =

K∑
k=1

q∑
j=1

∑
Xj∈Xj

(−1)j+1

[( M∏
m=1

[
z
(m)
k,Xj
−l(m)

k

]
+

) ∏
x′∈Xj

V∏
v=1

1[c(v)(x′) ≥ 0]

]
.

and the constrained qEHVI is [10]:

αqEHVIC
(Xcand|Pfeas) =

∫
HVIC(f(Xcand), c(Xcand)|Pfeas)p(f , c|Dn)dfdc

Hence, the constrained qNEHVI is given by:

αqNEHVIc(Xcand) =

∫
αqEHVIC

(Xcand|Pfeas)p(Fn, Cn|Dn)dFndCn

=

∫
HVIC(f(Xcand), c(Xcand)|Pfeas)p(Fn, Cn|Dn)dFndCn

(22)

Using MC integration for the integral in (22), we have

α̂qNEHVIc(Xcand) =
1

N

N∑
t=1

HVIc(f̃t(Xcand), c̃t(Xcand)|Pfeas,t). (23)

Under the CBD formulation, the constrained qNEHVI is given by

α̂qNEHVI({x1, ...,xi}) =
1

N

N∑
t=1

HVIC

(
{f̃t(xj), c̃t(xj)}i−1j=1} | Pfeas,t

)
+

1

N

N∑
t=1

HVIC

(
f̃t(xi), c̃t(xi) | Pfeas,t ∪ {f̃t(xj), c̃t(xj)}i−1j=1}

)
.

(24)
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As in (6), the first term is a constant when generating candidate i and the second term is the NEHVI
of xi.

J Evaluating Methods on Noisy Benchmarks

Given noisy observations, we can no longer compute the true Pareto frontier over the in-sample points
Xn. Moreover, the subset of Pareto optimal designsX ∗n = {x ∈ Xn, @ x′ ∈ Xn s.t. f(x′) � f(x)}
from the previously evaluated points may not be identified due to noise. For the previous results
reported in this paper, we evaluate each method according to hypervolume dominated by the true
unknown Pareto frontier of the noiseless objectives over the in-sample points. In practice, decision-
makers would often select one of the in-sample points according to their preferences. If the decision
maker only has noisy observations, selecting an in-sample point may be preferable to evaluating a
new out-of-sample point according to the model’s beliefs. An alternative evaluation method would
be use the model’s posterior mean to identify what it believes is the Pareto optimal set of in-sample
designs. The hypervolume dominated by the true Pareto frontier of noiseless objectives over that set
of selected designs could be computed and used for comparing the performance of different methods.
Results using this procedure are shown in Figure 19. The quality of the Pareto set depends on the
model fit. Several methods have worse performance over time (e.g. qEHVI and qPAREGO on
the ZDT1 problem), likely due to the collection of outlier observations that degrade the model fit.
Nevertheless, qNEHVI consistently has the strongest performance.

An alternative to the in-sample evaluation techniques described above would be to use the model to
identify the Pareto frontier across the entire search space (in-sample or out-of-sample). For example,
Hernández-Lobato et al. [24] used NSGA-II to optimize the model’s posterior mean and identify
the model estimated Pareto frontier. For benchmarking purposes on expensive-to-evaluate functions
(e.g. in AutoML or ABR), this is prohibitively expensive. Moreover, such a method is less appealing
in practice because a decision-maker would have to select out-of-sample points according to the
posterior mean and then evaluate a set of preferred designs on the noisy objective to verify that the
model predictions are fairly accurate at those out-of-sample designs. Therefore, in this work we
evaluate methods based on the in-sample designs.
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Figure 19: Sequential optimization performance using based on the model-identified Pareto set across
in-sample points.
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