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ABSTRACT

Reinforcement Learning with Verifiable Rewards (RLVR), which uses simple
binary feedback to post-train large language models, has shown significant em-
pirical success. However, a principled understanding of why it works has been
lacking. This paper builds a theoretical foundation for RLVR by analyzing its
training process at both the full-response (trajectory) and token levels. Central to
our analysis is a quantity called the Gradient Gap, which formalizes the direction
of improvement from low-reward to high-reward regions of the response space.
We prove that convergence critically depends on aligning the update direction with
this Gradient Gap. Moreover, we derive a sharp step-size threshold based on the
magnitude of the Gradient Gap: below it, learning converges, whereas above it,
performance collapses. Our theory further predicts how the critical step size must
scale with response length and the success rate, thereby explaining why practical
heuristics such as length normalization improve stability and showing that, with a
fixed learning rate, the success rate can stagnate strictly below 100%. We validate
these predictions through controlled bandit simulations and LLM experiments,
including training Qwen2.5-7B with GRPO.

1 INTRODUCTION

Large language models (LLMs) have recently achieved significant advances through reinforcement
learning post-training, which aligns them with complex tasks and preferences (Ziegler et al., 2019;
Ouyang et al., 2022; Shao et al., 2024; Team et al., 2025). In particular, Reinforcement Learning
with Verifiable Rewards (RLVR) has emerged as a powerful approach for post-training LLMs on
tasks where success can be automatically checked (e.g. using a compiler or solver) (Guo et al.,
2025). RLVR methods have shown impressive empirical gains by leveraging binary success/failure
feedback instead of human judgments, thereby simplifying the RL pipeline. Techniques in this vein
(e.g. variants of Proximal Policy Optimization, a.k.a. PPO (Schulman et al., 2017), like GRPO (Shao
et al., 2024), DAPO (Yu et al., 2025b), Dr. GRPO (Liu et al., 2025), etc.) eliminate the need for
learned reward or value models, relying purely on verifiable outcome signals. This has enabled LLMs
to achieve state-of-the-art results on challenging reasoning and code-generation tasks, demonstrating
the promise of RLVR-driven fine-tuning.

However, empirical progress in RLVR has far outpaced our theoretical understanding. The optimiza-
tion process remains largely a black box: we do not fully understand why RL-based post-training
works so well, under what conditions it might falter, or how to tune it for stable convergence. Recent
PPO-based variants (e.g. GRPO, DAPO, Dr. GRPO) have sprung up to improve training stability,
each introducing different heuristics like normalizing gradient updates by the output length or stan-
dardizing rewards by the group’s variance. Yet it remains unclear which of these design choices
truly matter; without a principled basis, their adoption is guided more by intuition than by theory.
This gap is especially pronounced given RLVR’s sparse binary rewards (each episode yields just
a single success/failure bit), which make it difficult to analyze how gradient descent navigates the
model’s vast parameter space or how the policy’s output distribution shifts toward higher-reward
answers. In practice, practitioners often resort to trial-and-error for critical hyperparameters and
algorithmic choices, where a mis-tuning can destabilize training or even cause catastrophic collapse
(e.g., forgetting pre-trained knowledge or converging to trivial outputs). These challenges underscore
the need for a rigorous theoretical framework to demystify RLVR’s optimization dynamics and reduce
reliance on guesswork.



This work establishes such a framework, providing a rigorous theoretical foundation for RLVR in
LLM post-training. Our key contributions are:

* Unified RLVR theory: We develop a principled framework for RLVR under binary rewards,
introducing the Gradient Gap to characterize the improvement direction from low- to
high-reward responses.

* Convergence guarantees: We prove the existence of a sharp step-size threshold that sepa-
rates stable convergence from divergence, providing clear guidance for safe hyperparameter
tuning.

* Length- and success-aware learning rates: Our theory shows that the effective learning
rate must shrink with output length and adapt to task difficulty, offering a theoretical
explanation for the stabilizing effect of heuristics such as length normalization and clarifying
why fixed step sizes can cause stagnation.

* Empirical validation: We validate our theory through bandit simulations and LLM experi-
ments, including fine-tuning Qwen2.5-7B on GSM8K and DAPO17k datasets with GRPO,
demonstrating close alignment between theory and practice.

1.1 RELATED WORKS

Recent efforts in RL-based language model post-training have introduced a family of GRPO-style
algorithms that extend or modify Proximal Policy Optimization (PPO) for verifiable feedback settings.
GRPO itself eliminates the value critic by estimating advantages from a group of sampled responses,
using relative reward normalization instead of a learned baseline (Shao et al., 2024). Building on
this idea, DAPO augmented GRPO by decoupling the PPO clipping range and dynamically filtering
out cases where all responses in a batch are correct or all are incorrect (Yu et al., 2025b). Dr.
GRPO revisits the advantage normalization procedure, arguing that removing length and variance
normalizations (i.e. using only a mean baseline) can prevent bias in policy updates (Liu et al., 2025).
Additional related papers are discussed in Appendix A.

In parallel, theoretical work has established convergence guarantees for policy gradient (PG) methods,
including REINFORCE and actor-critic algorithms. In finite Markov decision processes with softmax
policies, the PG objective often satisfies a PL condition, implying that any stationary point is globally
optimal and that vanilla gradient ascent converges at a sublinear rate (Agarwal et al., 2021; Xiao,
2022). Actor-critic methods also achieve provable convergence by using two-timescale updates
or pessimistic value estimation (Wu et al., 2020; Zanette et al., 2021). However, extending these
guarantees to post-training large language models with verifiable binary rewards remains challenging,
as sparse success/failure signals provide very limited gradient information.

2 PROBLEM SET-UP

Language Model. We begin with a standard language model parameterized by # € R?, which
defines a conditional distribution 719(6 | ¢) over sequences of tokens 6 = (01,02, ...,0|5/) given

an input prompt/question g. Output tokens {ot},‘gl are drawn from a finite vocabulary 7, and the
generation process ends when the special end-of-sequence token 0|5 = EOS is emitted.

The model generates tokens in an autoregressive fashion: at every step ¢, the next token o; is sampled
conditioned on the prompt ¢ and all previously generated tokens 6.; = (01, 02, ..., 0¢—1). Formally,

(0| q) = H‘i‘l (0 | q,0<+). Each conditional distribution is defined by a softmax over token
logits hg(-):
exp{ho(q, 6<¢)}

0 i= . 1
T[Q(Ot | q, O<t) ZO/ET exp{hg(q, 6<t, O/)} ( )

Post-Training: Reinforcement Learning with Verifiable Rewards (RLVR). While a supervised
language model can generate fluent text, it often struggles to align with task-specific goals such as
math reasoning or code generation. Post-training addresses this limitation by adapting the model
parameters 6 to align more closely with an external reward signal that captures desirable behavior.

Formally, we assume access to an outcome reward model 7*(g, 6) that is directly verifiable and
assessed at the end of a generated sequence: r* = 1 if the answer is correct (e.g., a valid proof step



or passing code execution) and 7* = 0 otherwise. The aim of reinforcement learning in this context
is to tune the model parameters 6 so as to maximize the expected reward under the current policy:

maximizeeERd J(ﬂg) = EqwlP(Q),BNng(~|q) [r*(q, 5)} . 2)

Policy Gradient. To optimize J(7ty), we rely on policy gradient-based methods. At each iteration ¢,
the parameters 6 are updated according to

Okt1 = Ok + i - wyi, 3)

where 7, > 0 is the learning rate and w;, € R? is a normalized update direction with ||wg|[o < 1.
For clarity, we denote the policy and logit function at step k as 71, : = 19, and hy, : = hy, .

This generic formulation captures a broad family of post-training algorithms used in RLVR. Repre-
sentative examples are:

REINFORCE: The classical policy gradient method updates parameters in the direction
Vo J(k) = Egup(q), s~ (-la) [A(2:0) - Vo log (6 | g)] 4

where the advantage function is given by A(q, 6) = 7*(q,0) — Eg/urn,(.|9)[7*(q,0)]. In
this case, the update rule 6;11 = 05 + o - V J(71;;) can be rewritten in our generic form
by setting wy, = Vo J(111)/||Vo J(71)||2 and nx, = « ||V J(711)]|2. Viewed in this way,
Dr. GRPO (Liu et al., 2025) emerges as a variant that replaces the single-sample advantage
with a group-wise demeaned version.

Group Relative Policy Optimization (GRPO): GRPO has recently become a standard choice for
RLVR. The full algorithm incorporates clipping ratios and multi-step updates (see Ap-
pendix B.1). To connect it with the generic policy gradient form, we consider a simplified
one-step approximation without clipping. In this case, the gradient direction is

A(g,0) 1
a(q) ol
where the conditional standard deviation o'(g) is given by 02(q) =Varg.,(.|¢)[r* (¢, 8) | q.
In practice, GRPO is typically trained with a cosine learning rate schedule, which can be
locally treated as a constant step size a. Within our generic update rule, this corresponds

to setting wr = garpo/ll9arpollz and My = a||garpoll2. so that both the response
length |0| and reward variability o(q) directly influence the effective step size 7.

dcrro(Tk) = ]Eq~1P(Q),6~7rk(»|q)[ Vg log 7. (6 | Q)} ; )

Objective. Our goal in this work is to understand how the choice of update direction wy, and step
size 7 influences the convergence of RLVR. In particular, we ask: under what conditions can we
guarantee convergence, and what design choices may lead to instability or failure modes?

3 TRAJECTORY-LEVEL ANALYSIS

In this section, we study the optimization scheme (3) on a single prompt q. We take a trajectory-level
view, where each response 6 is treated as a single unit rather than a sequence of tokens. By abstracting
away the internal structure, the analysis becomes simpler yet still revealing. We begin by outlining
the key ingredients of this trajectory-level view, then examine both its success modes and failure
cases. Although this setup is only a warm-up for the more detailed token-level analysis, it already
highlights several nontrivial and illuminating properties of RLVR.

3.1 KEY INGREDIENTS: GRADIENT GAP AND GAP ALIGNMENT

Recall that the optimization objective is the correction rate of the model 7y on prompt ¢: J,(7p) : =
Egony(-lq) [r*(q, 0) | q} . To analyze this, we partition the response space O into two sets based on
the verifiable reward r*(q, -):

(’); = {6€O|T*(q76):1} and 0, = {6€O|r*(q,5):0}, 6)
Here O; represents desirable responses (correct solutions), while O, contains undesirable ones.
Accordingly, Jy(709) = Pgry(.1q) [0 € OF | and 1 — Jy(19) = Pgry(1) [0 € Of |.



Conditional Policies. We further define conditional distributions over the positive and negative

sSpaces:
- _ (9 -
n;(o|q):7tg(o|q7(9;r) i= ﬁﬂl{oe@j}, (7a)
7 (3]q) =m(3|q,0;) = m.n{aeoq}. (7b)

These describe how the model 7ty distributes probability mass within the “good” and “bad” regions,
respectively.

Gradient Gap: A Direction for Improvement. Using the conditional policies, we measure the
expected log-probability gradient / score function in each region:

9, (M) : =By sy [Vo logms(6 | ¢)] and gy (mg) := By -, [Vo log (G | )]. (8)
The difference between them,
gq (1) — g (1), )

is the Gradient Gap. Intuitively, it highlights how the model’s parameters should be shifted to favor
desirable responses over undesirable ones.

Crucially, the Gradient Gap is directly proportional’ to the policy gradient given in equation (4):
Vo Jq(ﬂe) = Jq(TEH){l_Jq(TEH)} : (93_ _gq_) . (10)

This shows that the Gradient Gap captures the true direction of improvement. Unlike the full policy
gradient Vg J,(19), g1 (19) — g, (719) is not scaled down by the variability factor .J,(1—.J;), making
it a purer indicator of where to move.

Gap Alignment: Following the Right Direction. Consider now the optimization scheme (3). At
iteration k, define g/ (k) and g, (k) under the current policy 7tz. The update vector wj, should

ideally align with the improvement direction g (k) — g, (k).
‘We measure this alignment by the inner product
Apg(k) 1= wy - {g;r(k:) —g;(k)}. (11)
If lw,||> = 1, this equals Apg(k) = |[lgF (k) — g, (k)ll2 - cos Z{wy, g} (k) — g, (k)}. which
depends both on the magnitude of the Gradient Gap and the angle of alignment.
In the convergence analysis, Ay, (k) will play a central role. For stable progress we require:
(i) Apg(k) should be positive and preferably large, ensuring updates move in the right direction.

(ii) The step size n should adapt to its scale, preventing over- or under-shooting.

3.2 MAIN FINDINGS

We now turn to the central findings of our analysis. Proofs will be deferred to Appendices C and D.
Before presenting the results, let us impose a mild regularity condition on the policy score function.

Assumption 1 (Regularity of Trajectory Policy Score). The policy score function Vg log mp(6 | q)
behaves regularly with respect to the parameters 0:

(a) (Boundedness) There exists a constant G, < oo such that for all 0 and (q, 8),

Vo logms(a | q)||, < Go. (12)
(b) (Smoothness) The policy score function is L-Lipschitz continuous with respect to 0:
Vo log e (6 | ) — Ve logma(8 | q)||, < Lo- [0/ — 0] (13)
Throughout this section, we use the shorthand J,(k) = Jy(7;) to denote the performance at

iteration k.

'A formal proof of this is found in Appendix B.2



3.2.1 CONVERGENCE AND STAGNATION

Armed with this set-up, we now state our main theorem, which distinguishes between two possible
outcomes of learning: successful convergence to the optimum, or stagnation at a suboptimal perfor-
mance plateau. The distinction hinges on how well the update directions align with the underlying
objective. To formalize this, we introduce the notion of Cumulative Gap Alignment,

M(K) = 3520 [A g (k)4 mi (14)

which accumulates the amount of “useful progress” made up to horizon K. Intuitively, M (K) grows
whenever the update direction is positively aligned with the true objective, and it stagnates when the
updates fail to exploit the available signal.

Theorem 1 (Convergence and Stagnation). Assume that the step sizes satisfy i < ﬁ

(a) (Stagnation) Consider when J,(0) < 1. If the alignment signal is too weak, in the sense that
the cumulative alignment remains bounded M (K) < Cy and Y ;- ni < C} /(Lo + 8G?),
Sfor some constants 0 < Cy, C) < 00, then learning will stall. In this case, the performance

remains strictly sub-optimal: Jo(k) < J4(0)(J4(0) + exp(Co + C) {1 — J4(0)}) e

(b) (Convergence) Consider a case where J;(0) > 0. Suppose the step size ny, is adapted to the
strength of the alignment signal,

Apg(k
m < [Apg( )}+2
2(L,+8G?)
Then the performance is lower-bounded at any horizon K by
Jy(0) |
Jq(0) + {1 = J4(0)} exp { — 3 M(K)}

Moreover, if the alignment accumulates indefinitely, limg oo M(K) = +oo, then the
policy is guaranteed to achieve perfect performance: limp_,o J,(K) = 1.

where |- |4 = max(0, -). (15a)

Jo(K) > (15b)

The theorem establishes a clear dichotomy. Convergence is attainable only when update directions
exhibit consistent alignment with the underlying objective and the step size is properly scaled to
reflect this signal. In the absence of either alignment or adaptive scaling, progress stagnates and the
policy remains confined to a suboptimal regime.

Sketch of Proof. The key step is the inequality

o (2 ) o (25005) — (k)

which is stated formally in Lemma 1 of Appendix C.1.1. This inequality shows that Ay, (t) 7,
captures the first-order Taylor approximation of the change in log-odds of .J;. Summing (16) over
iterations and analyzing the resulting terms under different cases reveals that the Cumulative Gap
Alignment M (K') governs the value of J,,. This establishes the claims in Theorem 1.

< (Lo +8G2) 12, (16)

3.2.2 THE IMPORTANCE OF PROPERLY CHOSEN STEP SIZE 7y,

According to condition (152a) in Theorem 1(b), the step size 1, must be carefully scaled to match the
gap alignment Ay, (k). To illustrate this, we contrast two scenarios: a modest step size yields linear
convergence, whereas an overly aggressive one causes failure.

Linear Convergence Under Proper Scaling. Suppose that every update direction provides a consistent
signal, so that the Gap Alignment A, (k) is uniformly bounded below. In this case, a properly
chosen fixed step size is sufficient to guarantee rapid improvement.

Corollary 1 (Linear Convergence with a Uniform Gap). If every update direction w, provides a
uniform gap, Apg(k) > Apg > 0 for all k > 0, then a simple fixed step size 1 satisfying
< m Aﬂq 1 }
min
= 9(Lo +8G2) 2/L, [

drives the error to zero at a linear rate: 1 — J,(K) < 135("0()0) exp{ — 3 Auqn-K}.




The Perils of Overshooting. The picture changes sharply when the step size is too large. If condi-
tion (15a) in Theorem 1(b) is violated, convergence may break down entirely. The next result shows
that even with perfect update directions, learning can collapse under overly aggressive step sizes.

Theorem 2 (Catastrophic Failure from an Overly Large Step Size). There exists a problem instance
under Assumption | with G, > /L, where the Gap Alignment is uniformly positive, A, (k) >
Apg > 0 for all k > 0, yet using an overly large constant step size n, = 1 leads to failure.
Specifically, if the step size satisfies

60 Apeg < 1

< - -
L+G: =" = o v G

where 0 < Apg < %\/ Lo + G2, the policy’s performance will strictly decrease at every step,

ultimately converging to zero: Jo(k) < Jq(k — 1) and limg o J4(k) = 0.

While the numerical constants (e.g., 60, 120) are not sharp, the phenomenon is robust: an oversized
step size causes repeated overshooting, pushing the system toward collapse rather than improvement.

Intuition for the lower bound analysis. Our convergence analysis (Theorem 1) relies on equa-
tion (16), which uses a first-order approximation of the change in log-odds. For the lower bound, how-
ever, it is crucial to examine the second-order expansion. To this end, we define conditional variances
over the positive (and negative) response space: Var™ : = Varg - (a.04) [wy, - Vg log (6 | q)].

The term Var™ is defined analogously. The second-order Taylor expansion gives

Je(k+1) Jy (k) -
log (25 ) —log (757 ) = Auglk Vart — Var™} -n2 + O(n8). (17
e\ wrn) e L m tiq (k) mi; + {Var ar” } -+ O(ng) . (17)
In our construction, the linear term is always favorable: A4 (k) n,, > 0. The challenge comes from
the quadratic term. If the variance over the negative space dominates, Var~ > Var™, then for
moderately large step sizes the second-order effect can overwhelm the first-order gain, pulling the
log-odds downward and decreasing J,.

This phenomenon is not just a theoretical artifact—it is highly plausible in practice. Real-world
language models typically face an enormous negative space (many incorrect responses) with high
variability, leading to large Var ™. In contrast, the positive space often contains only a few consistent
modes, keeping Var™ relatively small. This imbalance highlights the danger of overshooting: unless
the step size 7y, is carefully calibrated, the variance contribution from the negative space can dominate
and derail learning. To ensure both stability and progress, the step size must respect the scale
e = Apg(k)/ (Lo + G2).

4 TOKEN-LEVEL ANALYSIS

We now move towards a token-level analysis of RLVR, which sharpens the trajectory-level perspective
developed earlier. While natural and general for abstract analysis, our analysis in Section 3 overlooks
the autoregressive structure of LLMs: responses are generated token by token, with intermediate
Chain-of-Thought (CoT) steps shaping the learning dynamics.

At the trajectory level, the regularity conditions in Assumption | are imposed on the policy score
Vo logmy(6 | q) of the entire response 6. However, the score can be decomposed into token-wise
contributions: Vg logmy(0 | q) = Z';;'l Vo logmg (ot | q,0<¢), where every token o, requires a
forward pass from the language model and thus carries its own regularity properties. This makes it
more natural—and ultimately more powerful—to impose assumptions at the token level. Doing so
introduces response length as an explicit factor, which will be central to our analysis. Interestingly, as
we will see, it also reveals how the training dynamics adapt to task difficulty under the current policy.
We refine Assumption | into the following token-level version.

Assumption 2 (Regularity of Token Policy Score). There exist Gy, L, € (0, 400) such that

HV@ log g (ot | ¢, 6<t)H2 < Gp < oo forall 0, question q, response prefix G, and token oy,
b < Lo- 18—l

Hve log mg: (04 | q,6<t) — Vg log (0t | q,0<¢)

In addition, we propose a second key assumption concerning the distribution of response length.



Assumption 3 (Sub-Exponential Response Length). There exist constants Too, Ty, € (0, +00) such
that for every question q and every policy Ty, if G ~ 7r9( | ¢) and ¢ : = |0| denotes the response
length, then 1 < £ < T, almost surely, and |||y, < Ty,.”

Assumption 3 characterizes response length: T, bounds the worst case, while T, reflects the typical
scale. It holds Er, [|0] | ¢] < Ty, < Too/log?2, so that Ty, may be much smaller than 7.

With these two assumptions in place, we are ready to present our token-level convergence guarantee.
The statement parallels the trajectory-level result, but now incorporates the finer granularity of token-
wise dynamics. We retain the key quantities from Section 3.1, namely the Gap Alignment Ay, (k)
from equation (1 1), and the Cumulative Gap Alignment M (K) from equation (14).

Theorem 3 (Convergence at the Token-Level). Assume J,(0) > 0. If the step size ny, is scaled to the
strength of the alignment signal,

e < min{ [Apg(k)]+ /2 } (18a)

L, T +Grmﬂ1waMﬁ}2/LT +G2Ty,

then the performance is guaranteed at any horizon K by

J4(0)
JlK) 2 O T = 70} e [~ TR}

This result closely mirrors the trajectory-level guarantee but introduces several new elements. The
response length parameters T, and T, now play a direct role, reflecting the cost of token-level
granularity. In addition, the factor (1 — .J;) emerges in the step-size condition, linking stability to the
current performance level of the policy. In a later discussion, we will examine the implications of
condition (18a), with particular attention to how step-size choices manifest in practical algorithms
such as GRPO and Dr. GRPO.

(18b)

Complementing the positive result in Theorem 3, we now show that the step-size scalings with T,
and Ty, are essentially tight, as established by the token-level analogue of Theorem 2 below.

Theorem 4 (Catastrophic Failure from an Overly Large Step Size at the Token Level). There exists
a problem instance satisfying Assumption 2 with G, > \/Lip where the Alignment Gap is always
positive, Apq (k) > Apg > 0, yet choosing a constant step size ny, = 1 that is too large leads to a
complete failure of learning. Specifically, if the step size satisfies

120 Apig ) < 1
Lo+ G T = 7 7 2 (L, +G2) T

where 0 < Ap, < 240, [(Lp + G2 ) o, the policy’s performance will strictly decrease at every

19)

step, ultimately converging to zero: J (k) < Jy(k — 1) and limg _, o, J4(K) = 0.

This lower bound confirms that the step-size condition (18a) reflects an intrinsic barrier. Indeed, by
treating (1 — J ,(k)) as constant and applying the crude bound Ty, < T&, the upper limit in (18a)

reduces to g S [Apg(k)] 4 /{(Ly + G2) Two }, which matches the overshooting threshold in (19) up
to constants. This alignment verifies the sharp dependence on response length in step-size selection.

Finally, note that the (1 — J,(k)) factor only influences how fast convergence proceeds toward 1. In
the lower bound construction of Theorem 4, J, (k) is strictly decreasing, so this term behaves like a
constant and does not alter the failure guarantee. Hence, it affects the upper bound but not the lower
bound.

Implications in GRPO and Dr. GRPO. We next examine how the update rules of GRPO and Dr.
GRPO (or REINFORCE) fit into our token-level framework. For clarity, we restrict attention to the
scaling behavior with respect to Apig, Ty, , Jq, and (1 — J;;) under a single prompt g.

In this regime, the GRPO gradient from equation (5) simplifies to

gcrro(T) =< Esom,(1g) [A( 0) - Vg logm (6| q) Q] {Twl V(1= J, }

*For a random variable X, the t)1-Orlicz norm is || X ||y, := inf {a > 0 : E [exp(|X|/a)] < 2}. Finite-
ness of || X ||, is equivalent to X being sub-exponential.




The Dr. GRPO (or REINFORCE) gradient takes the form (4). Applying identity (10) gives

garpo =< Ty VI (1= Jg) - (9 —9;) and  gp, areo = Jo(1 = Jo) - (95 —95) -
An update step 0y1 = 0 + o - g(71) for g = garpo OF 9py. crpo can therefore be interpreted
as moving in the direction wy = (g —g,)/llgs — g, |2, with alignment magnitude Ay, =
lgs — gy ll2, and effective learning rates

(GRPO) i = Apg T \/J;1—J;) and (Dr. GRPO) ny, = Aptg - Jy(1—Jg). (20)

On the other hand, condition (18a) in Theorem 3, under the simplification L, < Gf, and retaining
the Ty, /(1 — J,) term in the denominator, reduces to

(Theorem 3, condition (18a)) M S Apg - dell(l —Jg) . 21

Comparing equations (20) and (21) leads to several insights:

Gradient gap. Both GRPO and Dr. GRPO scale proportionally with the gap alignment Ay, consis-
tent with the theoretical condition.

Sequence length. GRPO exhibits the correct 1/T), scaling, aligning with the theory, offering an
explanation for why length normalization empirically stabilizes training. In contrast,
Dr. GRPO lacks this normalization.

Correction rate. After variance normalization, GRPO overshoots as J; — 1. We hypothesize that
this may explain the observed stagnation of training at a correction rate strictly below 1.

Sketch of Proof for Theorem 3. The proof builds on the following refined token-level inequality:

log (%) —log (%) > Apg(k) - mi — (Lp Too + IG_‘Q’%) n2. (22)

The formal statement of bound (22) is provided in Lemma 2 in Appendix C.2. In parallel, we adapt
the trajectory-level result (16) to the token setting by taking G, = G, T\ and L, = L,T. We then
combine these two bounds, applying whichever is tighter in a given regime. The remaining steps
follow the same structure as in Theorem 1(b).

The main technical challenge lies in proving inequality (22). The difficulty is that the Gradient Gap
g — g7 is not a martingale, since it depends on the conditional distributions 7t and 71, . To address
this, we relate the log moment generating functions of the conditional score functions to those of
the unconditional scores, which do form martingales. This step is crucial: it yields the sharp linear
dependence on Ty, in the 77 term of (22). Without this refinement, a naive trajectory-level analysis
would give only the weaker quadratic dependence G2 T2 .

5 NUMERICAL EXPERIMENTS
5.1 REINFORCE ON CONTEXTUAL BANDITS

We consider a contextual variant of the synthetic bandit experiment of Arnal et al. (2025, Section 5.1).
contextual bandit with contexts = € [0, 1]¢ for d = 10. For a set of N : = 100 arms, we generate
linear scores for each context x, s(z) = 8 T2 € RV for a matrix 8 € R4*V, with standard normal
entries. 7, (x) : = arg max, ¢ (y) s(2). We use linear logits initialized as {o(z) : = 6 « € RV, for
0o ~ N(0, 0.012 -Idgxq). The policy 7y, was then initialized as a softmax over ¢y and the parameters
0 were updated according to the REINFORCE exact gradient update at a training context x with
stepsize n : = 0.1:
Ok =0k + 1 Eyry, (o) [(ry(@r) = o, (710,)) - Vo log o, (y | 21)] -

The training context x;, was selected at random among those (from an initial pool of 100 contexts
drawn uniformly from [0, 1]%) with intermediate value function J () € [0.2,0.8], following intu-
itions from curriculum learning for filtering out overly difficult or easy prompts (Zhang et al., 2025).

We construct three plots based on calculating the following for 500 randomly evaluated contexts x: the
value function .J, (71p,, ), per-context cumulative gradient gap Zf:o [Apz(i)]4 - m, and the relative per-

context cumulative gradient gap Zfzo([A,ui(i)]Jr — [Apz, (4)]+) - 7 which measures the discrepancy
of the gradient gaps at the training contexts .
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Figure 1: Contextual Bandit Experiments.
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From the first subplot, we observe a distinctive logistic relationship between the cumulative gradient
gap and the value function, reminiscent of our theory (Corollary 1).

From the second subplot, we see there are two regimes for each context’s cumulative gradient gap
curve: either fast exponential convergence (Corollary 1) or lack of improvement (Theorem 2).

In the third plot, we interestingly see that those contexts with close to 0 relative cumulative gradient
gap (i.e., close to that of training contexts) experience faster convergence.

5.2 GRPO ON LANGUAGE MODELS

We validate our theory on three GRPO training runs for language model math reasoning: (1) Qwen2.5-
7B on the GSMS8k dataset (Cobbe et al., 2021) and (2) Qwen2.5-Math-7B on the DAPO-17k dataset
(Yu et al., 2025a). For background, the GSM8k dataset consists of grade-school math word problems,
while the more challenging DAPO-17k dataset consists of problems derived from past AIME and
AMC competitions.

At each training step, we approximate the batch-average gradient gap magnitude IE,[A/,] using
the relation ggrpo X v/Jq(1 —Jg) - (g;r - gq’), as derived in Section 4. In Figure 2, we plot
the cumulative gradient gap vs. the value function, colored by normalized step count. For all three
datasets, we see a similar relationship between cumulative gradient gap and accuracy as in our theory
and bandit experiment.
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Figure 2: Cumulative Gradient Gap vs. Validated Accuracy for our experiments.

6 DISCUSSION AND FUTURE DIRECTIONS

Our analysis is restricted to the single-prompt setting, which enabled sharp characterizations of
Gradient Gap alignment and step size scaling. In practice, however, training involves a diverse batch
of prompts. In this regime, both the alignment signal Ay, (k) and the optimal step size ;, can vary
substantially across prompts. A single update direction wj, may align well with some prompts but
poorly with others, and a step size that is safe for one subset may be overly aggressive for another,
leading to overshooting and limited overall gains.

These observations suggest several directions for future work: developing prompt-adaptive updates
that adjust direction or scale based on batch heterogeneity, analyzing the statistical dynamics of RLVR
under diverse prompt distributions, and extending the framework to sequential or curriculum-based
training (Bengio et al., 2009; Chen et al., 2025; Zhang et al., 2025). Such extensions are essential for
a full theory of RLVR in realistic multi-prompt settings.
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THE USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) solely as an aid for literature review and language refinement.
Specifically, LLMs were employed to help identify relevant papers, summarize their contributions,
and organize them into coherent thematic categories. No LLM outputs were used in developing
theoretical results, experiments, or conclusions.

A ADDITIONAL RELATED WORK

A growing body of work has begun to examine the theoretical foundations of preference-based RLHF
and verifiable-reward RL. Early studies analyzed preference-driven RL with trajectory-level feedback,
establishing convergence guarantees under pairwise or K -wise comparisons (Pacchiano et al., 2021;
Chen et al., 2022; Zhu et al., 2023). More recent results offered complexity characterizations: Wang
et al. (2023) and Du et al. (2024) compared RLHF with standard RL, identifying conditions for
sample-efficient preference optimization. In parallel, techniques from function approximation and
offline RL have been adapted to the fine-tuning setting (Chen, 2025; Wang et al., 2024; Brantley
et al., 2025). Yet the optimization behavior of Reinforcement Learning with Verifiable Rewards
(RLVR)—where supervision is provided by deterministic outcomes rather than preferences—remains
largely unexplored.

Building on these foundations, researchers have investigated how sparse, outcome-based rewards
shape learning dynamics. For example, one study shows that off-policy updates can benefit from
emphasizing positive (successful) outcomes more strongly than negative ones (Arnal et al., 2025),
while another finds that purely outcome-driven signals can collapse solution diversity in the absence
of exploration incentives (Song et al., 2025). These insights illustrate how verifiable binary rewards
influence both convergence and the diversity of reasoning strategies, offering early theoretical
guidance for RLVR.

Complementing this theoretical line, sequence-level optimization methods have advanced the al-
gorithmic toolkit for RL-based fine-tuning. GSPO, for instance, defines importance ratios over
whole-answer likelihoods with sequence-level clipping and updates, improving stability and effi-
ciency compared to token-level methods (Zheng et al., 2025). To control variance from variable
output lengths, specialized loss aggregation schemes such as A L normalization have been introduced,
yielding an unbiased, minimal-variance estimator of policy loss across different generation lengths
(He et al., 2025).

B BACKGROUND AND DERIVATIONS

B.1 REVIEW OF GROUP RELATIVE POLICY OPTIMIZATION (GRPO)

Among post-training algorithms, Group Relative Policy Optimization (GRPO) has emerged as the
workhorse for improving LLM reasoning ability toward the verifiable-reward objective J(7t) in
equation (2). The idea is straightforward: instead of evaluating each generated response in isolation,
GRPO leverages relative performance within a group.

Overview of algorithm. For each question ¢, we sample a group of G candidate responses
{8U1% | ~ 7., (- | q). These raw outcomes are converted into group-normalized advantages:

30 _ r@® fmean({r(j)}je[g])
! std({r)};e1a1)

GRPO then performs a PPO-style update, using a clipped surrogate objective and an optional KL
penalty toward a fixed reference policy 7t,f:

(23)

G 181"

1 1 . i) 20 . i (i
Jerro(my) = Eq,{ﬁ(”}a Z 50| Z {mln {pg )A,E ), chp(pg ), 1—¢14¢€) A,E )}
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where the density ratio

(3) Tty (Otl) ‘ %6(25)
Pro = 50)
T 014 (Ot ’ q, o<t)

corrects for off-policy sampling. In practice, many implementations set 3 = 0 and drop the KL term.

Simplified Form. To simplify the analysis, we omit clipping and focus on a simplified surrogate:

AR
Jerpo(my) = Eq,{au)}az 30| Z P A0
i=1 t=1
G 18] (4) 5(4)
1 1 (0" [ 4:65) )
= E, ;501 = A7
B G 2 TFm 2 oy A
! G i=1 ‘O( )| t=1 7-[90101( 2 | ( )
with
(1) — _1_ (@)
s r T
A = o1 2! (25)

a(q)
Here 02(g) denotes the conditional reward variance: 0(q) = Varg.r,(.)[7*(¢, ) | q].

Evaluating the gradient at § = 60,4 yields

G 8] i)
1 Vo g, (0 ‘q,o ) ~(4)
q{o() Ez 5( 1a \Yt <t A

Vo Joreo(ma) |9:0"ld N | Tthpa (0 g K O<?t) t
old ’

~

(i

NS

o

G
1 1 (i) 7 (2)
= Ey (50 )}52 0] 2 Vg 10g7'[601d( ’ q,0621) A
G
= By sy 5 Y e Vo logmg,,, (89 | ) AV
q, o(@)}G | | 0g 719,14 (O q) A

Because responses within a group are independent, this simplifies to

~ 1 o
Vo Feneol) g, = Easmr (10| 7 Vo108 0,4(6 | )
which is exactly the normalized policy gradient form in equation (5).

B.2 PROOF OF EQUATION (10)

We begin with the definition of J,(7g), which is the probability of generating a response in the
positive space Of:

I = [ w3 9ds

First, we take the gradient of J,(719) and apply the log-derivative trick

Vo J, (1) / Vomo(6 | q)do = /+V0 log7y(6 | ) mg(0 | q) do
Oq

= Ea,\,ﬂg(.m) [V@ 10g7'[9(6 | q) . ]l{(_j S O;r}] .

This integral can be written as a conditional expectation over the positive response space, which gives
us our first identity:

Vo Jo(mg) = Jo(m0) - By (1a, o) (Vo logmg(8 | q)] = Jg(ms) - gif (26)
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Alternatively, we can express J, () using the negative response space:
Jo(mg) = 1— / B mp(0 | ¢)do.

This gives us our second identity, this time in terms of the negative response space:

Vo Jo(mo) = —{1 = Jy(m6)} - Eg e, (1g.0-) (Vo logmo(] q)] = —{1 - Jy(mo)} - g, -
(27)
From the two identities in (26) and (27), we can isolate the score terms gj[ and 9,
gr = Vo Jo(79) and g, = — Vo Jo(m9) .

Jq(79) 1= Jy(m)

Finally, we compute their difference:
_ Vo Jy(Tt)
+ — =
Ja =90 = T ) {1 — Jy(ma)}

Rearranging this final expression gives the desired result in equation (10), completing the proof.

C PROOFS OF CONVERGENCE GUARANTEES

C.1 TRAJECTORY-LEVEL ANALYSIS
C.1.1 PROOF OF THEOREM 1

We begin with the following Lemma 1, which is the core tool for our analysis. The proof is provided
in Appendix E. 1.

Lemma 1. Suppose that Assumption | holds and the step size

1
Mk < 27\/[/—0-
Then T,k +1) 7, (k)
q(F + q 2y, 2
‘log (m) — log (m) = Apg(k) k| < (Lo +8G3)mj - (28)

This lemma shows that the single-step improvement is driven by the term Ay, (k) - 5, with an
approximation error proportional to the step size squared.

Iterating inequality (28) over 7" timesteps gives us a bound on the cumulative effect:

K-—1 K—-1
’log (%) “log (%) - ’; Apg(k)mr| < (Lo +8G?) kZ:o 2. (9

Using this inequality, we analyze two distinct outcomes.

(a) Stagnation. First, we show that return J, (K') can be bounded away from the optimum under
the condition from Theorem 1(a). Rearranging the cumulative inequality gives an upper bound:

lo (M)QO (‘]‘1(0))+KZIA (k) -1 + (L +8G2)I§ ?
g l—Jq(k) = g 1_Jq(0) P Mq 77kr o o P nkv
which further leads to
Jq(O)

Jq(k) <
T (0) + {1 = J4(0)} exp { = 325 Apg(k) e — (Lo +8G2) Sy
By applying the bounds on the cumulative alignment gap and step sizes from T heorem 1(a), the
inequality simplifies to

Jq(0)
Jq(k) < Jq(0) +exp(Co + Cf) {1 — J4(0)}

This result shows that the performance J, (K) hits a ceiling and is strictly bounded away from the
optimum value of 1, proving the stagnation described in Theorem 1(a).

< 1.
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(b) Convergence. Next, we show that an adaptive step size 7, guarantees convergence. The key
is the rule from condition (15a): If the gap alignment A, (k) < 0, the step size 7, is set to zero.
This is a “do no harm” policy that prevents any update in the wrong direction. On the other hand, if
Apiq(k) > 0, then the step size 7, is chosen carefully to ensure that (Lo +8G2) 07 < 2[Apq(k)]+ 1.
This guarantees meaningful progress. The rule (15a) strengthens inequality (28) to a lower bound on
progress:

log (Jq(k“))) ~log (I‘Jﬂ) > [Apg(k)4 e — (Lo +8G2)

1—Jy(k+1 — Jy (k)
1
2 5 [Apig (k)] e - (30)
By telescoping and rearranging terms in the same manner as before, we obtain:
J4(0)

Jy(k) > — :
“ Jg(0) + {1 = J4(0)} exp { — 3 Sy [Arrg (k)] e }

This result shows that as the cumulative gap alignment grows, the exponential term shrinks, pushing
the performance J, (K') towards 1. This confirms the convergence guarantee in Theorem 1(b), as
described in inequality (15b).

C.1.2 PROOF OF COROLLARY 1

Suppose Apg(k) > Apg > 0 for any k, and that
. Apg 1
e =11 S mm{Q(LO+8Gg)’ 2\/LT)}'
According to the bound (30), we have by our bound on 7, = n:

log Jo(k +1) ))—log( Ja(k) ) = Apg

1—Jg(k+1 1— Jy(k) 2
Next, rearranging and telescoping in the same manner as the proof of Theorem 1, we obtain
1—J,00 1—J,(0 A
1_Jq(k)§ q() A < q()'eX {—K' Mq-n},
1—J4(0) + J4(0) - exp { K - 2. ) J4(0) 2

which completes the proof of Corollary 1.

C.2 TOKEN-LEVEL ANALYSIS (PROOF OF THEOREM 3)

We begin by providing the formal statement of inequality (22) from the main body. This result,
presented below as Lemma 2, serves as the token-level counterpart to the trajectory-level analysis in
Lemma | and establishes a precise lower bound on the one-step improvement of the log-odds ratio.

Lemma 2. Suppose Assumptions 2 and 3 hold. If the step size ny, is sufficiently small so that

1
M < —— (31a)
\/2G2 Ty,

then the increment of the log-odds satisfies

log (%) —log (%) > Apg(k) - — (Lp Too +

; Ty 2

P 1
——F— ) . Blb
With this lemma, we can proceed to the main proof of Theorem 3. Our strategy is to synthesize the
bounds from Lemma 1 (the trajectory-level analysis) and Lemma 2 (the token-level analysis). Our
central aim is to demonstrate that for a sufficiently small step size 7y, the log-odds of the objective
function improves at each step according to the following inequality:

log (%) —log (%) z 1 [Apg (k)] 4 - - (32)

To establish this, we consider two distinct cases that cover all possibilities.
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CaseI: (1 — J,(k)) Too > 1. In this scenario, we apply the token-level bound from Lemma 2. The
lemma guarantees that inequality (32) holds, provided that the step size 7, meets conditions

1 GQTw 1
< and (L, T+ —22Y ) < = [Apg(R)]. 33
e m o ( ’ +1—Jq(k)) e < 5 [Bug(k)]+ (33)

Case II: (1 — J,(k))Too < 1. For the alternative case, we fall back on the trajectory-level
bound from Lemma 1. By setting the Lipschitz and gradient norm parameters to L, = LT and
G, = GpTw respectively, the bound (28) ensures that inequality (32) holds if

1
and (LpTo +8G2TZ) -1y < 5 [Brg (k)] . (34)

1
Ny < ———
N

Synthesizing the Results. To ensure inequality (32) holds universally, we must select a condition
on the step size 7y, that satisfies the constraints from both cases. By adopting the more lenient of the
two sets of constraints, we arrive at the unified condition specified in (18a).

With this per-step improvement established, the remainder of the proof follows the same structure as
the proof of Theorem 1(b). We sum inequality (32) over all iterations from k = 0 to K — 1, which
yields the final convergence result (18b) and completes the proof.

D PROOFS OF LOWER BOUNDS

D.1 TRAJECTORY-LEVEL ANALYSIS LOWER BOUND (PROOF OF THEOREM 2)

For simplicity, we omit the prompt g and consider a fixed instance. The positive set is a singleton,
O = {61}, while the negative set contains two responses, O, = {6_1,0_2}.

We adopt a linear feature representation for the logits hg, defined by
ho(q,6) = (¢(q,0), 0),

with the following feature map:

o(0.61) = (?) N (é) L lgo) = (51) .

By this construction, the Euclidean norm of the score function
Vo logm9(8 | q) = ¢(q,0) — Egry(.|q) [#(q,8)] is uniformly bounded by G, and has Lip-
schitz constant L, = 0.

We now define the optimization scheme:

Initialization:

_n(-1

Acute angle
= Apg >0

© ___— N ©
update direction w

Figure 3: Constructed instance for (trajectory-level) lower bound proof.
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Step size: fixed 1, = n satisfying

60 Apiq 1

— L < p < —. 36

L+c2 =" Yy (30)
Update direction:

L /(=1)F.2 1

= - 6= — o- 37

The resulting parameter trajectory is
1 (—(=DF
Op 1= 3( sk . (38)

We can confirm that ||wy||2 < 1 since
4 6
-4+ -<1 << 6<5
9 97 -
where the latter inequality is true since nn G, < %

Now let us verify two key properties of this trajectory:

Decreasing value: The value function J equals the probability assigned to the positive response
01, which is given by
exp{ — (dnGo/6) - k}
exp{ — (0nGo/6) - k} + exp{nGo/6} + exp{—n G, /6}
1
1+ {exp(nGo/6) + exp(—1 G, /6) } - exp { (00 G0 /6) - k}

This expression decreases monotonically in k.

Jo(k) = m(01]q) =

Positive gap: Consider even indices k (the odd case is symmetric). Then

1
wi = 5 (%) . (39)

The conditional probabilities of the two negative responses are

-y _ exp(—n Go/6)

I exp(—1 Go/6) + exp(n Go /6) ’
exp(n Go/6)

exp(—nGo/6) + exp(n G, /6)

U (671 ’ q, @

m(6-2 | 4.0;) =
Define
53 F= anguq,o;)[@b(q’a)] and g, = g 000 )[¢(q75)]-

Then due to the expression Vi log 719(8 | q) = ¢(q, ) — Egry(.|q) [#(q, 8)], we have

95 —9, = {B* —E }[Vologm(3 | q)] = {E* —~E }[¢(4,0)] = g4 — 9, -

Note that
- Go (0
+ o

9, = 7-[9(0—1 "L ) ¢(Q7O 1)+7T9(6—2 | Q7O;) '¢(Qa6—2)
1 —exp(n G, /3 G0< )

1+exp(nGo/3) 2
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Since 1) G, < %, and using the inequality <=1 > 2z for z € [0, 1]

1+e* — 5
_ 2 exp(nGo/3)—1 G, ¢ G, 2 2 G,
+ _ = - =\rmer7 — e 2 22 s (2.2 o Y .2
(w99 =90) = 3 pmaum 1 2 3 2 ° (550G =0/3) -3
4 Go 1,
_ _ 2o - = >
(15(77Go/3) 5/3) 5 30 "1Go 2 Ara,

where the last inequality is true by the lower bound on 7 of (36) and the fact that L(l)/ ? < G,. Note
that the normalizing constant terms arising in V log 79 (6 | ¢) within the definitions g, and g

were not computed since they cancel out in the difference gg — g, - Therefore, the gap condition is
satisfied.

D.2 TOKEN-LEVEL ANALYSIS LOWER BOUND (PROOF OF THEOREM 4)

Under the token-level formulation of (1), recall that 7., denotes the maximum length of a sequence

6 € O. We then aim to show for any 7o, Ly, and G}, with G, > L%,/ 2, there exists a problem
instance where we have Ap, (k) > Ap, > 0 and for 7 satisfying

120Ap, oo 1
T1/2 L T, -G2 == 1/2
22 Ly + T - G2 2T L, + T2

)

with 0 < Apy < ﬁ\/ Tolo/ 2. Ly + Ty - GI%, we’ll have degrading performance:

-1 li K)=0.
Je(k) < Jy(k ) and i Jy(K)=0
Similar to the proof of Theorem 2, we’ll use a token space of {01,0_1,0_2} and we’ll use a linear
feature representation for the logit hg(q, 8<;) : = (¢(q, 6¢), 8) at each layer ¢ € [T,]. Note that the

feature map only depends on the last token in the subsequence 0<; and is the same for each layer ¢.
Each feature map will be

sao) = (1) oo = F(5).  stwon = F (7).

The optimization scheme will be the same as in the sequence-level analysis:

Initialization:
-1
90:22(0)' (40)
Step size: fixed 7, = 7 satisfying
120 A 1
< —— . (1)
T™ Ly +To - G2 2\/Too/ Ly +Tn - G2
Update direction:
_ L =nk-2 1

with resulting parameter trajectory:

_n(=(=1)
Op 1= 3( Uk ) (43)

We can confirm ||wy||2 < 1 since n G, < 500.

Now, let the positive space of responses consist of a single sequence using all token 0;’s, or O :
= {oT>} so that O~ := O\O. The reward r*(q, 3) will be 0 for negative responses and 1 for
positive responses.
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Decreasing value: Since at each layer ¢ € [T..], the policy chooses a token independent from the
previous tokens, the value function is

Too . 1 Too
1) = 1,01 19) = (T Tommanre T o o] e (Grai 1)

which is decreasing with increasing & and goes to 0.

Checking positive gap. Consider even indices ¢ (the odd case is symmetric). Then

1
w=3(%)- (44)

Vo logmy, (G | q)]

We first claim that

{Eamrsk_ (la.0+) ~Eerm, (10,07) }

{IE@N?T@;C (lg,0%) — ]anﬂek (-|q,O*)}

Too
Zve log(7tg, (6 | Qa6<t))]

t=1

Too
= {Ea~nek(~|q,o+) - EaNﬂekabO’)} [Z ®(q, 5t)] :
t=1

The last equality above is true because the normalizing constants of each 71y (8 | ¢, 6<+) only do not
depend on G<;. Thus, the gradient log of the normalizing constants will cancel out from the positive
and negative expectations.

We’ll next simplify notation to avoid normalizing constants and let g; i=
Egm, (10,0+) [ZtT:“l o(q, 6,5)} and define g analogously.

We next note

94 = Eomy, (10.0) [Z ®(q,04)

Next, the negative term is

T,
9; = Esny (19.,07) lz ?(q, 6t)]
t=1

% . ( (é) (N(8,-1) — N(8,-2)) + (?) - N(3, 1)] ,

where N(6,5) : = EtT:"j 1{0, = o;} is the count of tokens which are equal to o;.

el

= Es mp, (-1g,0-)

o, (819)-1{6€0, }

Now, acknowledging that 71y, (6 | ¢, O~ ) = — =5 > We have
. T exp(—nGy/6)
E, - N(o,—1)| = .
s 0N (O D = T G ap(C0Gy/6) + oxp(1Gip/6) + exp(— (017G 6) - F)
- Too exp(nG,/6)
E;. .- N(o,—-2)] = .
s 10V (0 =D = T2 05 p (G 6) + oxp(1Gip6) + exp(— (317G 6) - F)
T 1
Es .~ 10N (B,1)] < = . ,
0~“ek('\q)[ (6, 1)) < L= Jy(k) 1+ {exp(nGp/6)+ exp(—nGy/6)} - exp {(6nGy/6) - k}

where the last inequality follows from bounding 1{6; = 01} - 1{6 € O } < 1{6; = 01}.

Thus, we have:

o) > GpTo exp(nGp/3) — 1
T 31— Jy(R) 14 exp(nGyp/3) + exp(nGyp/3 — (61Gy/6) - k)
0G (B . 1
6 L—Jy(k)/ 14 {exp(nGp/6) + exp(—nGp/6)} - exp {(6nGp/6) - k}
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Next, we note the elementary inequality fi;elz > 0.3z for z € [0, 0.5]. Then, since J,(k) # 0 for
all ¢, we have

B T -Gy-8 03G% Ty -7
<wkvg;r_gq>2_ 6P + L

9
o 0.3
>Too~n-Gf,
- 60
> Apig

where the last inequality is true by n Th (G3 + Lp) > Apg - 120 and Ly, < G2.

E FIRST-ORDER ANALYSIS OF THE LOG-ODDS CHANGE

In this section, we analyze how the objective value’s log-odds ratio changes over a single update
step. To simplify the notation, let us consider the state at a single update step k. We will use the
following shorthand: step size 1 : = 7, update direction w = wy, parameters 6,4 : = 6 and
0 : = 0141, objective values J;’ld 1= Jy(k) and J, : = J4(k + 1). Our goal is to prove the following
relationship:

log (1 iqjq) — log (1_"0;;1(1) = Apg(To,,) 1+ O(°),

where the gap alignment Ay, is defined in equation (11). Essentially, this equation shows a first-order
Taylor expansion of the change in the log-odds ratio. The key insight is that the term Ay, emerges as
the linear coefficient for the step size 7).

We will prove this fundamental relationship at two distinct levels of granularity:

Trajectory Level: The analysis for entire generation trajectories is presented in Lemma 1, with the
full proof in Appendix E.1.

Token Level: The corresponding result for token-level consideration is established in Lemma 2,
with its proof located in Appendix E.2.

E.1 PROOF OF LEMMA 1
E.1.1 OVERVIEW

We first formulate Lemma 3 below, which establishes an equivalent expression for the difference of
logarithms. The proof is deferred to Appendix E.1.2.

Lemma 3. For policies my_,, and Ty, it holds that

old

J, e
log (1 - Jq) ~log (1 - J;;Id)
= logBs r, (|q00) [exp {(log 7ty — log m,,,) (8 | q)}]
— logE, (10,05) [exp {(log Tty — log Ty, ) (8 | q)}] . (45)

o~ Tlg

old

The difference of logarithms from Lemma 3 is central to our analysis of the optimization scheme. As
shown in equation (45), we express this term as the difference between two log moment-generating
functions (MGFs). These MGFs are derived from the conditional probabilities over the correct
(positive) and incorrect (negative) solution spaces, O;r and O, respectively.

In Lemma 4 below, we approximate the log MGFs based on the expectations of the random variables.
See Appendix E.1.3 for the proof.

Lemma 4. For any random variable X, we have:
log E[e¥] - E[X]| < 2X]|Z. (46)
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We now combine Lemmas 3 and 4 to prove Lemma |. In what follows, we introduce a shorthand
Ly : = log mp. In our analysis recall that § — 0,9 = 7y, - wy with [|wg|2 < 1. We denote 7 : = 1,
and w : = wy, for short.

We apply the bound from equation (46) in Lemma 4 to the random variable (Lg — Lg_,,)(g, 3). By
evaluating this for the distributions corresponding to the positive space, 6 ~ Ty, ( ] q, O;) and
the negative space, 6 ~ 7, (- | 7,0, ), we find that

old

tog - quq) o8 () = T 7)

2
901d||oo7

< 4||Lo - L

where

T = By, 10.08) ~ Bonmy, (10,00} (Lo =~ L0,)(0:6)]

To establish the final bound in Lemma 1, we need to prove two intermediate results:
() T1 = Apg(mg,,,) -1+ O(n?) and (i) || Ly — Lo, ,||cc = O(n). Once we show these two re-
lationships hold, the desired bound (28) follows directly by substituting them into inequality (47).

Analyzing term 7;:  For term 77, Assumption | on the smoothness of function Ly implies that

L,
’(Le_Leold)(q7 ) <V9L9 1d(Q7 ) 0 — 901d>‘ < 7”0_90161”3’

According to our optimization scheme 6 = 6,4 + 77 - w, it follows that
_ Lo
(Lo = L6,4)(a,6) = n{w- Vo Lo, (0, 0)}] < Zn*. (48)
Recalling the definition (8) of vectors g/ = g.f (7,,,) and g, = g, (71,,,), we find that

B Eﬂgold('\lZ)} [Vg Leold (Qa 6)] .

+
95 =95 = {Bxt (1)
Moreover, the definition (11) of gap A, leads to

Apg(To,,) = <w7 g;_ > {E”e L Cla) Ene—om(.m)} [w -V Lg,,,(q, 5)] .

Therefore, taking expectations {Eﬂ: Clo) — E sy (o) } (+) of the terms inside the absolute value
old old

of equation (48), we get

L
Ty — Apg(mo,)n| < 70 n. (49)

Bounding norm || Ly — Ly, ||t From inequality (48), we also have

L,
HL9 - LeoldHOO <7 SUPgco {w Vo Leold q,0 }+

IN

Lo L
1 $uPseo|[Vo Lo (4,6)|2 + = n”? < Gon+ 70 n°. (50)

Finalizing the proof: Combining our previous bounds (47), (49) and (50), we get

o (27) = o (24757) ~ St

< 4||Lo — Lo, |12, + |11 — Apg(me,,,) 1l

L,
< {(2G0+Lon)2+7}n2 < (Lo +8G2)n?

\ﬁ
completes the proof of Lemma 1.
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E.1.2 PROOF OF LEMMA 3

Let Ly(0,q) : = logmy(0 | q) be the log-likelihood function and define Lg_,, analogously. The
updated policy 7ty can be expressed in terms of the old policy 71y, as follows:

7'[9(6 | (]) X Ttaold(a | (]) exp {(L9 - Leold)(a | (])} .
Therefore, we have

Jq scof 7-[9(6 | q) 8cof TWo1a (6 | C]) €xXp {(L9 - L901d)(Q7 6)} . T+

1- ‘]11 2660; 7-(9(6 ‘ q) a Zae(’); TWo1a (6 | Q) exp {(L9 - L901d)(Qa 5)} T
(5D

Regarding the numerator 7'y, we use the conditional probability relationship

ﬂ901d(6|q) = ngd ﬂ901d<6|q’03_) = J;)Id . <6|q) for6e(’);

Oola
and find that
Ty = J9 " nf (6]q) exp{(Ly— Ly,,)(q.6)}
scof
= ngd . Eﬂg Nar) [exp {(Ly — Ly,,)(q,0)}] - (52a)

Similarly, for the denominator 7", we apply equality
7T'901d(6 | q) = (1- J:;)ld) 7T901d(6 | 4, Oq_) = (1 - J:;Id) 7-[0_01(1(6 | ) foro € Oq_ :
It follows that
T = (1 _ J;)ld) -Ene_ 1d('|q) [exp {(L9 — L901d)(Q> 5)}] . (52b)

Then, substituting equations (52a) and (52b) into equation (51), we obtain precisely equation (45)
stated in Lemma 3.

E.1.3 PROOF OF LEMMA 4

We start by centering the random variable X . Let us define Y : = X — E[X], which gives us a new
variable with a mean of zero. This simplifies the core expression:

log E[eX] — B[X] = log B[e®X+Y] — B[X] = log E[eY].

By Jensen’s inequality, the term log E[e¥ ] is always non-negative. This allows us to safely drop the
absolute value bars:

}log]E[eX] — E[XH =log E[eY].

Finally, applying Hoeffding’s lemma to this resulting log moment-generating function bounds it by at
most 2 || X ||%,. This establishes the result in Lemma 4.

E.2 PROOF OF LEMMA 2
E.2.1 OVERVIEW

Our proof proceeds in two main steps. First, we establish a lower bound on the improvement in the
log-odds of value J:

T old
g (7777,) ~ o8 (7= 7m)
o8 1-J, Og(l—J;;ld

> {log (E*[exp(X)]) — log (E™[exp(X)]) } — LpTs -, (53)
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where the random variable X is defined as
X =1 {w -V logmy, (0| q)} = <V@ logmy,, (0| q), 0 — 901d>. (54)

Here E* and IE~ denote expectations over the conditional distributions of positive and negative

responses, i.e., It and E , respectively.

&~ (-1, OF) 8~mo, (-1a,00)

Second, we bound the difference between the log-moment-generating functions (log-MGFs) that
appears on the right-hand side of inequality (53):
G2Ty,

2
oM (55)
ngd

log (E*[exp(X)]) — log (E™ [exp(X)]) > Apg(t,,,) -1 —
which holds under the condition that
1

N < ———.
V262 Ty,

Combining the bounds from (53) and (55) directly establishes the result in Lemma 2. We now prove
these two intermediate claims in Appendices E.2.2 and E.2.3.

E.2.2 PROOF OF INEQUALITY (53)

Our starting point is the smoothness property of the log-policy, as stated in Assumption 2. For any
prompt-response pair (g, 3), the function log 7y (0 | q) is (L - To)-smooth with respect to 6. A
standard result for smooth functions is that:

Ly

- T,
5 2160 = boall3 -

By substituting the definition of the random variable X from equation (54) and using the gradient
update rule 0 — 6,19 = 1 - w (wWhere ||w||2 < 1), this inequality simplifies to:
LT
2
This directly implies the following bounds on the conditional expectations:

|(10g Ty — log 7-[901(1)(6 ‘ Q) - <v9 log 714 (6 | q)7 0 — 901d>’ <

|(10g7—[9 - lOgﬂ@old)(a | Q) - X| <

LoTo
5
T

ploc 9
2

10g B, (1q.05) [ exP {(logmy —logms,,,)(8] q)}] > log (E¥[exp(X)]) —
L

108 B, (1q, 05 exP{(logmy —logms,,,)(6 | q)}] < log (E [exp(X)]) +
Subtracting the second inequality from the first yields the desired bound (53).
E.2.3 PROOF OF INEQUALITY (55)

To prove inequality (55), we will establish and combine three intermediate results.

First, we relate the ratio of conditional MGFs to the unconditional MGF:

E*[e¥] 1 1
1 > ——— _logE[eX]+ ——— log Et[eX]. 56
o8 (e} ) >~ ol + T o 1 56)

Here It denotes the expectation over the entire response space O = O U O, .

Next, we bound the two terms on the right-hand side of inequality (56) separately. We show that

1
1_ Jod log BT [e] > Apg(mo,.,) -1, and (57a)
q
Gy - Ty 1
—logE[e*] < 2—0=bop®  ifn < ———. (57b)
1-— Jqld 1-— Jqld \/QC:I%—T%

Combining these three bounds (56), (57a) and (57b) directly yields the target inequality (55).

We now prove each claim in turn.
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Proof of Inequality (56): This result follows from a general property of logarithms derived from
the weighted AM-GM inequality. For any real numbers u, v > 0 and any p € (0, 1), the weighted
AM-GM inequality states pu + (1 — p)v > uPv'~P. Dividing by v and taking the logarithm gives
1
log(u/v) < _ (log(pu + (1 — p)v) — log(v)).

We apply this inequality by setting u : = E~[eX], v := Et[eX]andp:=1— J;’ld. This substitution
yields

1og<]E[eX]> < log {JMUET Y]+ (1 - ) B[]} -

X
EfeX]) S 1= Jgn logE™[e”].

1—Jod
(58)

By the law of total expectation, the term in the curly braces is simply the unconditional expectation
E[eX]:

X1 _  7old X dy o—(,X
Ele?] = JOYET[e? ]+ (1 - JJ)E"[e7]. (59)
Substituting (59) into (58) completes the proof of inequality (56).

Proof of Inequality (57a): By Jensen’s inequality, log E* [eX] > E+[X]. Therefore, we have

logE*[eX] _ Et[X]
L Jod = jeid

The remainder of the proof is dedicated to showing that the right-hand side is exactly equal to the
desired term:

ET[X]

W = A:“q (neold) - (60)
q

To prove this, we start with the policy gradient identity from equation (10):

w- Vo Jy(mg,,,) = J;ld(l — J;ld) “Apg(ma,,,) -

old

We can express policy gradient Vg J, (74, ) in terms of an expectation over negative responses.
Using the fact that Jy(7,,4) = Par,, (1g) [0 € OF |, we get

V@ Jq(ﬂfgold) = V@ IP5N7T001d('|q) [5 S O;} = E[]l{6 (S O;r} . Vg log 70,14 (5 ‘ q)]
= ngd B [Vg log 719, (o | Q)] .
Substituting this back into our gradient identity yields:
w - J'-E [V logme,, (8| )] = Jg1 = Jg'9) - Apg(m,,) -
Dividing by J;ld and multiplying by 7, we find

n-Et[w- Vg logmg,,(6]q)] = (1—J0 Apg(m,,) 1.

From the definition of X in (54), the left-hand side is IE*[X]. This confirms equation (60) and
completes the proof of inequality (57a).

Proof of Inequality (57b): The final step is to bound the unconditional log-MGF, log E[e*X]. Our
strategy is to view X as the final value of a martingale and apply a variant of Hoeffding’s inequality.

Martingale Formulation. Consider a random response 6 generated from policy my_ , i.e., G ~

y,,, (- | ¢). The random variable X is a sum over the tokens in the response o:

old”?
o]

X = n{w-Vslogmo,, (o | 4.3<)} -

t=1
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Let F; be the o-field generated by the prompt ¢ and the response prefix 0<;. We define a martingale
difference sequence {;}:

gt =1 {w -V 10g7r901d (Ot | 4, 6<t)} ’ (D

Then X; = Zi,:l & is a martingale with respect to the filtration {73}, and X = X|5. By
Assumption 2, the increments are bounded: |;| < G, - 1.

Supermartingale and Optional Stopping. Using Hoeffding’s lemma (Boucheron et al., 2013, Lemma
2.6) on the conditional expectation, we have

E[exp(2 &) | Ft_l] < exp {2 Gf)nz} .
This allows us to construct a supermartingale {Mt}tTg’l:

M, := exp{2X, —2Gin* -t}  fort=1,2,....

Since |8 < T is a bounded stopping time, Doob’s optional stopping theorem applies, giving
E[M,5/] < E[M,] = 1. This means

E{exp{QX—QGf,nz-\a\}} =E[Mpg] < 1.

Cauchy-Schwarz and 1 Norm. We now isolate IE[e* ] using the Cauchy-Schwarz inequality:

1
2

1 1
Ele*] < E[exp {2X - 2Gin2 - |6|}} 2]E{exp {26%772 . |5\}} f < E[exp {26%772 . \6|}} ,
where the last step used our supermartingale bound. Taking the logarithm gives

1 ~
log E[e*] < §logE[exp{2Gin2 . |o|}} .

Finally, we bound the remaining term using the sub-exponential (¢/;-Orlicz) norm of the response
length, T';,, from Assumption 3. By definition,

E[exp{[6]/T5,)] < 2.

Consider a function ¢(\) : = log Elexp()\ |0
0<2 Gf)n2 <1/T,,, the convexity implies

)], which is convex with ¢(0) = 0. Under condition

¢(2 GIZ)”F) < 2 Giﬁ2Tw1 ’ (b(l/Twl) < 2log2- GIQ)UQTIZU :
It follows that
logE[exp {2 G§n2 . |6|}} = ¢(2 G?)r]Q) < QG?J]Q Ty, -
Plugging this back into our bound for log E[e*X] gives
log Ele™] < Gn® - Ty, -
This establishes inequality (57b) and completes the proof.

F FURTHER EXPERIMENTS AND DETAILS

F.1 REINFORCE oN AN MAB PROBLEM

Here, we consider a simplified version of the experiment in Section 5.1, for a single context/prompt.
We run REINFORCE (with an exact value baseline) on a tabular softmax policy class over a bandit
problem with 100 arms, with a randomly chosen best arm, having reward 1 with all other arms 0. The
logits 6}, are initialized as a constant and updated according to the exact gradient update rule:

ki1 =0k + 1 Byr,, [(Velog o, (y)) - (r(y) = J(7,))]
with fixed stepsize > 0, run over K : = 10, 000 steps.
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We construct three plots in Figure 4, based on the value function J(k), gradient gap Apu(k), and

the cumulative gradient gap ZkK:o [Ap(k)]+ - mk, colored by the step count k. Interestingly, the
curve k — Ay, (k) behaves as a concave quadratic. This is in fact explainable via calculating the
alignment gap using our advantage expression (10):

wy, = Vo J () = (19, (a”) - (1 — 79, (a”)) - L{a = a*} — 1, (a) - Ty, (a*) - L{a # a*})aepr00] -
Thus,

1
Apy (k) = Vo J(7,), Vo J(m
Mq( ) J(Ttgk).(li(](nek))< 0 ( ek) 0 ( 9k)>
7'[9‘(0,)2
— * . 1 _ * * k .
o) (=m0 (e) 32 77T
Now, defining the vector v : = (7, (a))asq+, since we have go5|[v[|? < [[v[|3 < [v[| and since

|lv]]1 =1 — g, (a*), we have the above RHS scales like =~ 71y, (a*) - (1 — 719, (a*)).

Altogether, our experiment here reinforces the message that increasing cumulative gradient gap
corresponds to convergence as in Corollary 1.
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Figure 4: MAB Experiments.

F.2 FURTHER ELABORATION ON CONTEXTUAL BANDIT EXPERIMENTS

Our theoretical analysis so far has focused on convergence for a single prompt g. A natural question
is: how does the theory extend to the case of multiple prompts or questions? To illustrate this, we
consider a contextual bandit simulation. In this setup, each iteration k draws a random context xy,
(equivalent to a prompt g, in our framework), and the update gradient wj, is computed from that
context x;. Crucially, the same update direction is then applied globally to all prompts (via the shared
parameter 6).

Two scenarios can arise: Case (a): Alignment. For some prompts g (or contexts x), the update
direction wj, aligns closely with the Gradient Gap g(j — g, - In these cases, the Gap Alignment
Apgq(k) is positive and large, leading to effective improvement. Case (b): Misalignment. For other
prompts, the Gradient Gap is nearly orthogonal to wy,. Here, Apiq (k) is small, and applying the same
step size 7 can cause overshooting, preventing performance gains.

Our simulation confirms this intuition: some contexts consistently overshoot and are difficult to
improve, while those with stronger alignment improve steadily—the better the alignment, the greater
the improvement. For overshooting contexts, there is no gradual accumulation of Ay, (k) toward
improvement; instead, crossing into the overshooting region acts as a decisive threshold, after which
performance collapses toward zero with no recovery.

F.3 DETAILS ON LANGUAGE MODEL EXPERIMENTS

Each of our training routines were performed on a single NVIDIA H200 SXM GPU (with 141GB
of VRAM), using the TRL framework (von Werra et al., 2020) for training GRPO without KL,
regularization.
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For training on GSM8k, we performed 3000 training steps with each step involving 4 prompts per
batch, 4 responses per prompt in the GRPO estimator, a learning rate of 5 - 1075, and maximum
prompt and completion sequence lengths of 256.

For training on DAPO-17k, we performed 1000 training steps with each step involving 4 prompts per
batch, 4 responses per prompt, a learning rate of of 10~°, and max sequence lengths of 2048.

To compute the validated accuracies, we held out 20% of the questions in each dataset as a holdout
test/validation set. Finally, we used a binary reward function on the exact match of the final answer,
with validated accuracies in Figure 2 reported as an average over 5 tries for each step’s model.
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