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ABSTRACT

Reinforcement Learning with Verifiable Rewards (RLVR), which uses simple
binary feedback to post-train large language models, has shown significant em-
pirical success. However, a principled understanding of why it works has been
lacking. This paper builds a theoretical foundation for RLVR by analyzing its
training process at both the full-response (trajectory) and token levels. Central to
our analysis is a quantity called the Gradient Gap, which formalizes the direction
of improvement from low-reward to high-reward regions of the response space.
We prove that convergence critically depends on aligning the update direction with
this Gradient Gap. Moreover, we derive a sharp step-size threshold based on the
magnitude of the Gradient Gap: below it, learning converges, whereas above it,
performance collapses. Our theory further predicts how the critical step size must
scale with response length and the success rate, thereby explaining why practical
heuristics such as length normalization improve stability and showing that, with a
fixed learning rate, the success rate can stagnate strictly below 100%. We validate
these predictions through controlled bandit simulations and LLM experiments,
including training Qwen2.5-7B with GRPO.

1 INTRODUCTION

Large language models (LLMs) have recently achieved significant advances through reinforcement
learning post-training, which aligns them with complex tasks and preferences (Ziegler et al., 2019;
Ouyang et al., 2022; Shao et al., 2024; Team et al., 2025). In particular, Reinforcement Learning
with Verifiable Rewards (RLVR) has emerged as a powerful approach for post-training LLMs on
tasks where success can be automatically checked (e.g. using a compiler or solver) (Guo et al.,
2025). RLVR methods have shown impressive empirical gains by leveraging binary success/failure
feedback instead of human judgments, thereby simplifying the RL pipeline. Techniques in this vein
(e.g. variants of Proximal Policy Optimization, a.k.a. PPO (Schulman et al., 2017), like GRPO (Shao
et al., 2024), DAPO (Yu et al., 2025b), Dr. GRPO (Liu et al., 2025), etc.) eliminate the need for
learned reward or value models, relying purely on verifiable outcome signals. This has enabled LLMs
to achieve state-of-the-art results on challenging reasoning and code-generation tasks, demonstrating
the promise of RLVR-driven fine-tuning.

However, empirical progress in RLVR has far outpaced our theoretical understanding. The optimiza-
tion process remains largely a black box: we do not fully understand why RL-based post-training
works so well, under what conditions it might falter, or how to tune it for stable convergence. Recent
PPO-based variants (e.g. GRPO, DAPO, Dr. GRPO) have sprung up to improve training stability,
each introducing different heuristics like normalizing gradient updates by the output length or stan-
dardizing rewards by the group’s variance. Yet it remains unclear which of these design choices
truly matter; without a principled basis, their adoption is guided more by intuition than by theory.
This gap is especially pronounced given RLVR’s sparse binary rewards (each episode yields just
a single success/failure bit), which make it difficult to analyze how gradient descent navigates the
model’s vast parameter space or how the policy’s output distribution shifts toward higher-reward
answers. In practice, practitioners often resort to trial-and-error for critical hyperparameters and
algorithmic choices, where a mis-tuning can destabilize training or even cause catastrophic collapse
(e.g., forgetting pre-trained knowledge or converging to trivial outputs). These challenges underscore
the need for a rigorous theoretical framework to demystify RLVR’s optimization dynamics and reduce
reliance on guesswork.
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This work establishes such a framework, providing a rigorous theoretical foundation for RLVR in
LLM post-training. Our key contributions are:

• Unified RLVR theory: We develop a principled framework for RLVR under binary rewards,
introducing the Gradient Gap to characterize the improvement direction from low- to
high-reward responses.

• Convergence guarantees: We prove the existence of a sharp step-size threshold that sepa-
rates stable convergence from divergence, providing clear guidance for safe hyperparameter
tuning.

• Length- and success-aware learning rates: Our theory shows that the effective learning
rate must shrink with output length and adapt to task difficulty, offering a theoretical
explanation for the stabilizing effect of heuristics such as length normalization and clarifying
why fixed step sizes can cause stagnation.

• Empirical validation: We validate our theory through bandit simulations and LLM experi-
ments, including fine-tuning Qwen2.5-7B on GSM8K and DAPO17k datasets with GRPO,
demonstrating close alignment between theory and practice.

1.1 RELATED WORKS

Recent efforts in RL-based language model post-training have introduced a family of GRPO-style
algorithms that extend or modify Proximal Policy Optimization (PPO) for verifiable feedback settings.
GRPO itself eliminates the value critic by estimating advantages from a group of sampled responses,
using relative reward normalization instead of a learned baseline (Shao et al., 2024). Building on
this idea, DAPO augmented GRPO by decoupling the PPO clipping range and dynamically filtering
out cases where all responses in a batch are correct or all are incorrect (Yu et al., 2025b). Dr.
GRPO revisits the advantage normalization procedure, arguing that removing length and variance
normalizations (i.e. using only a mean baseline) can prevent bias in policy updates (Liu et al., 2025).
Additional related papers are discussed in Appendix A.

In parallel, theoretical work has established convergence guarantees for policy gradient (PG) methods,
including REINFORCE and actor-critic algorithms. In finite Markov decision processes with softmax
policies, the PG objective often satisfies a PL condition, implying that any stationary point is globally
optimal and that vanilla gradient ascent converges at a sublinear rate (Agarwal et al., 2021; Xiao,
2022). Actor-critic methods also achieve provable convergence by using two-timescale updates
or pessimistic value estimation (Wu et al., 2020; Zanette et al., 2021). However, extending these
guarantees to post-training large language models with verifiable binary rewards remains challenging,
as sparse success/failure signals provide very limited gradient information.

2 PROBLEM SET-UP

Language Model. We begin with a standard language model parameterized by θ ∈ Rd, which
defines a conditional distribution πθ(o⃗ | q) over sequences of tokens o⃗ = (o1, o2, . . . , o|o⃗|) given
an input prompt/question q. Output tokens {ot}|o⃗|t=1 are drawn from a finite vocabulary T , and the
generation process ends when the special end-of-sequence token o|o⃗| = EOS is emitted.

The model generates tokens in an autoregressive fashion: at every step t, the next token ot is sampled
conditioned on the prompt q and all previously generated tokens o⃗<t = (o1, o2, . . . , ot−1). Formally,
πθ(o⃗ | q) = ∏|o⃗|

t=1 πθ(ot | q, o⃗<t). Each conditional distribution is defined by a softmax over token
logits hθ(·):

πθ(ot | q, o⃗<t) : =
exp{hθ(q, o⃗≤t)}∑

o′∈T exp{hθ(q, o⃗<t, o′)}
. (1)

Post-Training: Reinforcement Learning with Verifiable Rewards (RLVR). While a supervised
language model can generate fluent text, it often struggles to align with task-specific goals such as
math reasoning or code generation. Post-training addresses this limitation by adapting the model
parameters θ to align more closely with an external reward signal that captures desirable behavior.

Formally, we assume access to an outcome reward model r⋆(q, o⃗) that is directly verifiable and
assessed at the end of a generated sequence: r⋆ = 1 if the answer is correct (e.g., a valid proof step
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or passing code execution) and r⋆ = 0 otherwise. The aim of reinforcement learning in this context
is to tune the model parameters θ so as to maximize the expected reward under the current policy:

maximizeθ∈Rd J(πθ) := Eq∼P(Q), o⃗∼πθ(·|q)
[
r⋆(q, o⃗)

]
. (2)

Policy Gradient. To optimize J(πθ), we rely on policy gradient–based methods. At each iteration t,
the parameters θ are updated according to

θk+1 = θk + ηk ·wk , (3)

where ηk ≥ 0 is the learning rate and wk ∈ Rd is a normalized update direction with ∥wk∥2 ≤ 1.
For clarity, we denote the policy and logit function at step k as πk : = πθk and hk : = hθk .

This generic formulation captures a broad family of post-training algorithms used in RLVR. Repre-
sentative examples are:

REINFORCE: The classical policy gradient method updates parameters in the direction

∇θ J(πk) = Eq∼P(Q), o⃗∼πk(·|q)
[
A(q, o⃗) · ∇θ logπk(o⃗ | q)

]
, (4)

where the advantage function is given by A(q, o⃗) = r⋆(q, o⃗) − Eo⃗′∼πk(·|q)[r
⋆(q, o⃗′)]. In

this case, the update rule θt+1 = θk + α · ∇θ J(πk) can be rewritten in our generic form
by setting wk = ∇θ J(πk)/∥∇θ J(πk)∥2 and ηk = α ∥∇θ J(πk)∥2. Viewed in this way,
Dr. GRPO (Liu et al., 2025) emerges as a variant that replaces the single-sample advantage
with a group-wise demeaned version.

Group Relative Policy Optimization (GRPO): GRPO has recently become a standard choice for
RLVR. The full algorithm incorporates clipping ratios and multi-step updates (see Ap-
pendix B.1). To connect it with the generic policy gradient form, we consider a simplified
one-step approximation without clipping. In this case, the gradient direction is

gGRPO(πk) = Eq∼P(Q), o⃗∼πk(·|q)
[A(q, o⃗)
σ(q)

· 1

|o⃗|∇θ logπk(o⃗ | q)
]
, (5)

where the conditional standard deviation σ(q) is given by σ2(q) =Varo⃗∼πk(·|q)[r
⋆(q, o⃗) | q].

In practice, GRPO is typically trained with a cosine learning rate schedule, which can be
locally treated as a constant step size α. Within our generic update rule, this corresponds
to setting wk = gGRPO/∥gGRPO∥2 and ηk = α ∥gGRPO∥2, so that both the response
length |o⃗| and reward variability σ(q) directly influence the effective step size ηk.

Objective. Our goal in this work is to understand how the choice of update direction wk and step
size ηk influences the convergence of RLVR. In particular, we ask: under what conditions can we
guarantee convergence, and what design choices may lead to instability or failure modes?

3 TRAJECTORY-LEVEL ANALYSIS

In this section, we study the optimization scheme (3) on a single prompt q. We take a trajectory-level
view, where each response o⃗ is treated as a single unit rather than a sequence of tokens. By abstracting
away the internal structure, the analysis becomes simpler yet still revealing. We begin by outlining
the key ingredients of this trajectory-level view, then examine both its success modes and failure
cases. Although this setup is only a warm-up for the more detailed token-level analysis, it already
highlights several nontrivial and illuminating properties of RLVR.

3.1 KEY INGREDIENTS: GRADIENT GAP AND GAP ALIGNMENT

Recall that the optimization objective is the correction rate of the model πθ on prompt q: Jq(πθ) :=
Eo⃗∼πθ(·|q)

[
r⋆(q, o⃗)

∣∣ q
]
. To analyze this, we partition the response space O into two sets based on

the verifiable reward r⋆(q, ·):
O+
q : =

{
o⃗ ∈ O

∣∣ r⋆(q, o⃗) = 1
}

and O−
q : =

{
o⃗ ∈ O

∣∣ r⋆(q, o⃗) = 0
}
, (6)

Here O+
q represents desirable responses (correct solutions), while O−

q contains undesirable ones.
Accordingly, Jq(πθ) = Po⃗∼πθ(·|q)

[
o⃗ ∈ O+

q

]
and 1− Jq(πθ) = Po⃗∼πθ(·|q)

[
o⃗ ∈ O−

q

]
.
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Conditional Policies. We further define conditional distributions over the positive and negative
spaces:

π+
θ (o⃗ | q) = πθ

(
o⃗
∣∣ q,O+

q

)
: =

πθ(o⃗ | q)
Jq(πθ)

· 1{o⃗ ∈ O+
q } , (7a)

π−
θ (o⃗ | q) = πθ

(
o⃗
∣∣ q,O−

q

)
: =

πθ(o⃗ | q)
1− Jq(πθ)

· 1{o⃗ ∈ O−
q } . (7b)

These describe how the model πθ distributes probability mass within the “good” and “bad” regions,
respectively.

Gradient Gap: A Direction for Improvement. Using the conditional policies, we measure the
expected log-probability gradient / score function in each region:

g+
q (πθ) := Eo⃗∼π+

θ (·|q)
[
∇θ logπθ(o⃗ | q)

]
and g−

q (πθ) := Eo⃗∼π−
θ (·|q)

[
∇θ logπθ(o⃗ | q)

]
. (8)

The difference between them,

g+
q (πθ)− g−

q (πθ), (9)

is the Gradient Gap. Intuitively, it highlights how the model’s parameters should be shifted to favor
desirable responses over undesirable ones.

Crucially, the Gradient Gap is directly proportional1 to the policy gradient given in equation (4):

∇θ Jq(πθ) = Jq(πθ){1− Jq(πθ)} ·
(
g+
q − g−

q

)
. (10)

This shows that the Gradient Gap captures the true direction of improvement. Unlike the full policy
gradient ∇θ Jq(πθ), g+

q (πθ)−g−
q (πθ) is not scaled down by the variability factor Jq(1−Jq), making

it a purer indicator of where to move.

Gap Alignment: Following the Right Direction. Consider now the optimization scheme (3). At
iteration k, define g+

q (k) and g−
q (k) under the current policy πk. The update vector wk should

ideally align with the improvement direction g+
q (k)− g−

q (k).

We measure this alignment by the inner product

∆µq(k) := wk ·
{
g+
q (k)− g−

q (k)
}
. (11)

If ∥wt∥2 = 1, this equals ∆µq(k) = ∥g+
q (k) − g−

q (k)∥2 · cos∠
{
wt, g

+
q (k) − g−

q (k)
}

, which
depends both on the magnitude of the Gradient Gap and the angle of alignment.

In the convergence analysis, ∆µq(k) will play a central role. For stable progress we require:

(i) ∆µq(k) should be positive and preferably large, ensuring updates move in the right direction.
(ii) The step size ηk should adapt to its scale, preventing over- or under-shooting.

3.2 MAIN FINDINGS

We now turn to the central findings of our analysis. Proofs will be deferred to Appendices C and D.
Before presenting the results, let us impose a mild regularity condition on the policy score function.
Assumption 1 (Regularity of Trajectory Policy Score). The policy score function ∇θ logπθ(o⃗ | q)
behaves regularly with respect to the parameters θ:

(a) (Boundedness) There exists a constant Go <∞ such that for all θ and (q, o⃗),
∥∥∇θ logπθ(o⃗ | q)

∥∥
2

≤ Go. (12)

(b) (Smoothness) The policy score function is Lo-Lipschitz continuous with respect to θ:
∥∥∇θ logπθ′(o⃗ | q)−∇θ logπθ(o⃗ | q)

∥∥
2

≤ Lo · ∥θ′ − θ∥2. (13)

Throughout this section, we use the shorthand Jq(k) = Jq(πk) to denote the performance at
iteration k.

1A formal proof of this is found in Appendix B.2
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3.2.1 CONVERGENCE AND STAGNATION

Armed with this set-up, we now state our main theorem, which distinguishes between two possible
outcomes of learning: successful convergence to the optimum, or stagnation at a suboptimal perfor-
mance plateau. The distinction hinges on how well the update directions align with the underlying
objective. To formalize this, we introduce the notion of Cumulative Gap Alignment,

M(K) : =
∑K−1
k=0 [∆µq(k)]+ ηk, (14)

which accumulates the amount of “useful progress” made up to horizon K. Intuitively, M(K) grows
whenever the update direction is positively aligned with the true objective, and it stagnates when the
updates fail to exploit the available signal.
Theorem 1 (Convergence and Stagnation). Assume that the step sizes satisfy ηk ≤ 1

2
√
Lo

.

(a) (Stagnation) Consider when Jq(0) < 1. If the alignment signal is too weak, in the sense that
the cumulative alignment remains bounded M(K) ≤ C0 and

∑∞
k=0 η

2
k ≤ C ′

0/(Lo + 8G2
o),

for some constants 0 ≤ C0, C
′
0 <∞, then learning will stall. In this case, the performance

remains strictly sub-optimal: Jq(k) ≤ Jq(0)
(
Jq(0) + exp(C0 + C ′

0) {1− Jq(0)}
)−1

< 1.

(b) (Convergence) Consider a case where Jq(0) > 0. Suppose the step size ηk is adapted to the
strength of the alignment signal,

ηk ≤ [∆µq(k)]+
2 (Lo + 8G2

o)
where [ · ]+ = max(0, ·). (15a)

Then the performance is lower-bounded at any horizon K by

Jq(K) ≥ Jq(0)

Jq(0) + {1− Jq(0)} exp
{
− 1

2M(K)
} . (15b)

Moreover, if the alignment accumulates indefinitely, limK→∞M(K) = +∞, then the
policy is guaranteed to achieve perfect performance: limK→∞ Jq(K) = 1.

The theorem establishes a clear dichotomy. Convergence is attainable only when update directions
exhibit consistent alignment with the underlying objective and the step size is properly scaled to
reflect this signal. In the absence of either alignment or adaptive scaling, progress stagnates and the
policy remains confined to a suboptimal regime.

Sketch of Proof. The key step is the inequality
∣∣∣∣log

( Jq(k + 1)

1− Jq(k + 1)

)
− log

( Jq(k)

1− Jq(k)

)
−∆µq(k) ηk

∣∣∣∣ ≤ (Lo + 8G2
o) η

2
k , (16)

which is stated formally in Lemma 1 of Appendix C.1.1. This inequality shows that ∆µq(t) ηt
captures the first-order Taylor approximation of the change in log-odds of Jq. Summing (16) over
iterations and analyzing the resulting terms under different cases reveals that the Cumulative Gap
Alignment M(K) governs the value of Jq . This establishes the claims in Theorem 1.

3.2.2 THE IMPORTANCE OF PROPERLY CHOSEN STEP SIZE ηk

According to condition (15a) in Theorem 1(b), the step size ηk must be carefully scaled to match the
gap alignment ∆µq(k). To illustrate this, we contrast two scenarios: a modest step size yields linear
convergence, whereas an overly aggressive one causes failure.

Linear Convergence Under Proper Scaling. Suppose that every update direction provides a consistent
signal, so that the Gap Alignment ∆µq(k) is uniformly bounded below. In this case, a properly
chosen fixed step size is sufficient to guarantee rapid improvement.
Corollary 1 (Linear Convergence with a Uniform Gap). If every update direction wt provides a
uniform gap, ∆µq(k) ≥ ∆µq > 0 for all k ≥ 0, then a simple fixed step size η satisfying

η ≤ min

{
∆µq

2 (Lo + 8G2
o)
,

1

2
√
Lo

}
,

drives the error to zero at a linear rate: 1− Jq(K) ≤ 1−Jq(0)
Jq(0)

exp
{
− 1

2 ∆µq η ·K
}

.
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The Perils of Overshooting. The picture changes sharply when the step size is too large. If condi-
tion (15a) in Theorem 1(b) is violated, convergence may break down entirely. The next result shows
that even with perfect update directions, learning can collapse under overly aggressive step sizes.
Theorem 2 (Catastrophic Failure from an Overly Large Step Size). There exists a problem instance
under Assumption 1 with Go ≥ √

Lo where the Gap Alignment is uniformly positive, ∆µq(k) ≥
∆µq > 0 for all k ≥ 0, yet using an overly large constant step size ηk = η leads to failure.
Specifically, if the step size satisfies

60∆µq
Lo +G2

o

≤ η ≤ 1

2
√
Lo +G2

o

,

where 0 < ∆µq ≤ 1
120

√
Lo +G2

o , the policy’s performance will strictly decrease at every step,
ultimately converging to zero: Jq(k) < Jq(k − 1) and limK→∞ Jq(k) = 0.

While the numerical constants (e.g., 60, 120) are not sharp, the phenomenon is robust: an oversized
step size causes repeated overshooting, pushing the system toward collapse rather than improvement.

Intuition for the lower bound analysis. Our convergence analysis (Theorem 1) relies on equa-
tion (16), which uses a first-order approximation of the change in log-odds. For the lower bound, how-
ever, it is crucial to examine the second-order expansion. To this end, we define conditional variances
over the positive (and negative) response space: Var+ : = Varo⃗∼πk(·|q,O+

q )

[
wk · ∇θ logπk(o⃗ | q)

]
.

The term Var− is defined analogously. The second-order Taylor expansion gives

log
( Jq(k + 1)

1− Jq(k + 1)

)
− log

( Jq(k)

1− Jq(k)

)
= ∆µq(k) ηk + {Var+ −Var−} · η2k +O(η3k) . (17)

In our construction, the linear term is always favorable:∆µq(k) ηk > 0. The challenge comes from
the quadratic term. If the variance over the negative space dominates, Var− > Var+, then for
moderately large step sizes the second-order effect can overwhelm the first-order gain, pulling the
log-odds downward and decreasing Jq .

This phenomenon is not just a theoretical artifact—it is highly plausible in practice. Real-world
language models typically face an enormous negative space (many incorrect responses) with high
variability, leading to large Var−. In contrast, the positive space often contains only a few consistent
modes, keeping Var+ relatively small. This imbalance highlights the danger of overshooting: unless
the step size ηk is carefully calibrated, the variance contribution from the negative space can dominate
and derail learning. To ensure both stability and progress, the step size must respect the scale
ηk ≍ ∆µq(k)/(Lo +G2

o).

4 TOKEN-LEVEL ANALYSIS

We now move towards a token-level analysis of RLVR, which sharpens the trajectory-level perspective
developed earlier. While natural and general for abstract analysis, our analysis in Section 3 overlooks
the autoregressive structure of LLMs: responses are generated token by token, with intermediate
Chain-of-Thought (CoT) steps shaping the learning dynamics.

At the trajectory level, the regularity conditions in Assumption 1 are imposed on the policy score
∇θ logπθ(o⃗ | q) of the entire response o⃗. However, the score can be decomposed into token-wise
contributions: ∇θ logπθ(o⃗ | q) = ∑|o⃗|

t=1 ∇θ logπθ(ot | q, o⃗<t), where every token ot requires a
forward pass from the language model and thus carries its own regularity properties. This makes it
more natural—and ultimately more powerful—to impose assumptions at the token level. Doing so
introduces response length as an explicit factor, which will be central to our analysis. Interestingly, as
we will see, it also reveals how the training dynamics adapt to task difficulty under the current policy.

We refine Assumption 1 into the following token-level version.
Assumption 2 (Regularity of Token Policy Score). There exist Gp, Lp ∈ (0,+∞) such that
∥∥∇θ logπθ(ot | q, o⃗<t)

∥∥
2

≤ Gp <∞ for all θ, question q, response prefix o⃗<t and token ot,∥∥∇θ logπθ′(ot | q, o⃗<t)−∇θ logπθ(ot | q, o⃗<t)
∥∥
2

≤ Lp · ∥θ′ − θ∥2 .

In addition, we propose a second key assumption concerning the distribution of response length.
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Assumption 3 (Sub-Exponential Response Length). There exist constants T∞, Tψ1 ∈ (0,+∞) such
that for every question q and every policy πθ, if o⃗ ∼ πθ(· | q) and ℓ : = |o⃗| denotes the response
length, then 1 ≤ ℓ ≤ T∞ almost surely, and ∥ℓ∥ψ1

≤ Tψ1
.2

Assumption 3 characterizes response length: T∞ bounds the worst case, while Tψ1
reflects the typical

scale. It holds Eπθ [|o⃗| | q] ≤ Tψ1
≤ T∞/ log 2, so that Tψ1

may be much smaller than T∞.

With these two assumptions in place, we are ready to present our token-level convergence guarantee.
The statement parallels the trajectory-level result, but now incorporates the finer granularity of token-
wise dynamics. We retain the key quantities from Section 3.1, namely the Gap Alignment ∆µq(k)
from equation (11), and the Cumulative Gap Alignment M(K) from equation (14).
Theorem 3 (Convergence at the Token-Level). Assume Jq(0) > 0. If the step size ηk is scaled to the
strength of the alignment signal,

ηk ≤ min

{
[∆µq(k)]+ / 2

Lp T∞ +G2
p min

{ Tψ1

1−Jq(k) , 8T
2∞
} ,

1

2
√
Lp T∞ +G2

p Tψ1

}
, (18a)

then the performance is guaranteed at any horizon K by

Jq(K) ≥ Jq(0)

Jq(0) + {1− Jq(0)} exp
{
− 1

2M(K)
} . (18b)

This result closely mirrors the trajectory-level guarantee but introduces several new elements. The
response length parameters T∞ and Tψ1

now play a direct role, reflecting the cost of token-level
granularity. In addition, the factor (1− Jq) emerges in the step-size condition, linking stability to the
current performance level of the policy. In a later discussion, we will examine the implications of
condition (18a), with particular attention to how step-size choices manifest in practical algorithms
such as GRPO and Dr. GRPO.

Complementing the positive result in Theorem 3, we now show that the step-size scalings with T∞
and Tψ1

are essentially tight, as established by the token-level analogue of Theorem 2 below.
Theorem 4 (Catastrophic Failure from an Overly Large Step Size at the Token Level). There exists
a problem instance satisfying Assumption 2 with Gp ≥

√
Lp where the Alignment Gap is always

positive, ∆µq(k) ≥ ∆µq > 0, yet choosing a constant step size ηk = η that is too large leads to a
complete failure of learning. Specifically, if the step size satisfies

120∆µq
(Lp +G2

p)T∞
≤ η ≤ 1

2
√

(Lp +G2
p)T∞

, (19)

where 0 < ∆µq ≤ 1
240

√
(Lp +G2

p)T∞, the policy’s performance will strictly decrease at every

step, ultimately converging to zero: Jq(k) < Jq(k − 1) and limK→∞ Jq(K) = 0.

This lower bound confirms that the step-size condition (18a) reflects an intrinsic barrier. Indeed, by
treating (1− Jq(k)) as constant and applying the crude bound Tψ1

≲ T∞, the upper limit in (18a)
reduces to ηk ≲ [∆µq(k)]+/{(Lp +G2

p)T∞}, which matches the overshooting threshold in (19) up
to constants. This alignment verifies the sharp dependence on response length in step-size selection.

Finally, note that the (1− Jq(k)) factor only influences how fast convergence proceeds toward 1. In
the lower bound construction of Theorem 4, Jq(k) is strictly decreasing, so this term behaves like a
constant and does not alter the failure guarantee. Hence, it affects the upper bound but not the lower
bound.

Implications in GRPO and Dr. GRPO. We next examine how the update rules of GRPO and Dr.
GRPO (or REINFORCE) fit into our token-level framework. For clarity, we restrict attention to the
scaling behavior with respect to ∆µq , Tψ1

, Jq , and (1− Jq) under a single prompt q.

In this regime, the GRPO gradient from equation (5) simplifies to

gGRPO(πk) ≍ Eo⃗∼πk(·|q)
[
A(q, o⃗) · ∇θ logπk(o⃗ | q)

]
/
{
Tψ1

√
Jq(1− Jq)

}
.

2For a random variable X , the ψ1-Orlicz norm is ∥X∥ψ1 : = inf
{
a > 0 : E [exp(|X|/a)] ≤ 2

}
. Finite-

ness of ∥X∥ψ1 is equivalent to X being sub-exponential.
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The Dr. GRPO (or REINFORCE) gradient takes the form (4). Applying identity (10) gives

gGRPO ≍ T−1
ψ1

√
Jq(1− Jq) ·

(
g+
q − g−

q

)
and gDr.GRPO ≍ Jq(1− Jq) ·

(
g+
q − g−

q

)
.

An update step θk+1 = θk + α · g(πk) for g = gGRPO or gDr.GRPO can therefore be interpreted
as moving in the direction wk = (g+

q − g−
q )/∥g+

q − g−
q ∥2, with alignment magnitude ∆µq =

∥g+
q − g−

q ∥2, and effective learning rates

(GRPO) ηk ≍ ∆µq · T−1
ψ1

√
Jq(1− Jq) and (Dr. GRPO) ηk ≍ ∆µq · Jq(1− Jq) . (20)

On the other hand, condition (18a) in Theorem 3, under the simplification Lp ≪ G2
p and retaining

the Tψ1/(1− Jq) term in the denominator, reduces to

(Theorem 3, condition (18a)) ηk ≲ ∆µq · T−1
ψ1

(1− Jq) . (21)

Comparing equations (20) and (21) leads to several insights:
Gradient gap. Both GRPO and Dr. GRPO scale proportionally with the gap alignment ∆µq , consis-

tent with the theoretical condition.
Sequence length. GRPO exhibits the correct 1/Tψ1 scaling, aligning with the theory, offering an

explanation for why length normalization empirically stabilizes training. In contrast,
Dr. GRPO lacks this normalization.

Correction rate. After variance normalization, GRPO overshoots as Jq → 1. We hypothesize that
this may explain the observed stagnation of training at a correction rate strictly below 1.

Sketch of Proof for Theorem 3. The proof builds on the following refined token-level inequality:

log
( Jq(k + 1)

1− Jq(k + 1)

)
− log

( Jq(k)

1− Jq(k)

)
≥ ∆µq(k) · ηk −

(
Lp T∞ +

G2
p Tψ1

1− Jq(k)

)
· η2k . (22)

The formal statement of bound (22) is provided in Lemma 2 in Appendix C.2. In parallel, we adapt
the trajectory-level result (16) to the token setting by taking Go = GpT∞ and Lo = LpT∞. We then
combine these two bounds, applying whichever is tighter in a given regime. The remaining steps
follow the same structure as in Theorem 1(b).

The main technical challenge lies in proving inequality (22). The difficulty is that the Gradient Gap
g+
q − g−

q is not a martingale, since it depends on the conditional distributions π+
θ and π−

θ . To address
this, we relate the log moment generating functions of the conditional score functions to those of
the unconditional scores, which do form martingales. This step is crucial: it yields the sharp linear
dependence on Tψ1 in the η2k term of (22). Without this refinement, a naive trajectory-level analysis
would give only the weaker quadratic dependence G2

p T
2
∞.

5 NUMERICAL EXPERIMENTS

5.1 REINFORCE ON CONTEXTUAL BANDITS

We consider a contextual variant of the synthetic bandit experiment of Arnal et al. (2025, Section 5.1).
contextual bandit with contexts x ∈ [0, 1]d for d = 10. For a set of N : = 100 arms, we generate
linear scores for each context x, s(x) = βββ⊤x ∈ RN for a matrix βββ ∈ Rd×N , with standard normal
entries. ry(x) := argmaxy∈[N ] s(x). We use linear logits initialized as ℓ0(x) : = θ⊤0 x ∈ RN , for
θ0 ∼ N (0, 0.012 ·Idd×d). The policy πθk was then initialized as a softmax over ℓ0 and the parameters
θk were updated according to the REINFORCE exact gradient update at a training context xk with
stepsize η : = 0.1:

θk+1 = θk + η Ey∼πθk (·|xk)[(ry(xk)− Jxk(πθk)) · ∇θ logπθk(y | xk)] .
The training context xk was selected at random among those (from an initial pool of 100 contexts
drawn uniformly from [0, 1]d) with intermediate value function J(xk) ∈ [0.2, 0.8], following intu-
itions from curriculum learning for filtering out overly difficult or easy prompts (Zhang et al., 2025).

We construct three plots based on calculating the following for 500 randomly evaluated contexts x: the
value function Jx(πθk), per-context cumulative gradient gap

∑k
i=0[∆µx(i)]+ · η, and the relative per-

context cumulative gradient gap
∑k
i=0([∆µx(i)]+− [∆µxi(i)]+) ·η which measures the discrepancy

of the gradient gaps at the training contexts xk.

8
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Figure 1: Contextual Bandit Experiments.

From the first subplot, we observe a distinctive logistic relationship between the cumulative gradient
gap and the value function, reminiscent of our theory (Corollary 1).

From the second subplot, we see there are two regimes for each context’s cumulative gradient gap
curve: either fast exponential convergence (Corollary 1) or lack of improvement (Theorem 2).

In the third plot, we interestingly see that those contexts with close to 0 relative cumulative gradient
gap (i.e., close to that of training contexts) experience faster convergence.

5.2 GRPO ON LANGUAGE MODELS

We validate our theory on three GRPO training runs for language model math reasoning: (1) Qwen2.5-
7B on the GSM8k dataset (Cobbe et al., 2021) and (2) Qwen2.5-Math-7B on the DAPO-17k dataset
(Yu et al., 2025a). For background, the GSM8k dataset consists of grade-school math word problems,
while the more challenging DAPO-17k dataset consists of problems derived from past AIME and
AMC competitions.

At each training step, we approximate the batch-average gradient gap magnitude Eq[∆µq] using
the relation gGRPO ∝

√
Jq(1− Jq) ·

(
g+
q − g−

q

)
, as derived in Section 4. In Figure 2, we plot

the cumulative gradient gap vs. the value function, colored by normalized step count. For all three
datasets, we see a similar relationship between cumulative gradient gap and accuracy as in our theory
and bandit experiment.

Figure 2: Cumulative Gradient Gap vs. Validated Accuracy for our experiments.

6 DISCUSSION AND FUTURE DIRECTIONS

Our analysis is restricted to the single-prompt setting, which enabled sharp characterizations of
Gradient Gap alignment and step size scaling. In practice, however, training involves a diverse batch
of prompts. In this regime, both the alignment signal ∆µq(k) and the optimal step size ηk can vary
substantially across prompts. A single update direction wk may align well with some prompts but
poorly with others, and a step size that is safe for one subset may be overly aggressive for another,
leading to overshooting and limited overall gains.

These observations suggest several directions for future work: developing prompt-adaptive updates
that adjust direction or scale based on batch heterogeneity, analyzing the statistical dynamics of RLVR
under diverse prompt distributions, and extending the framework to sequential or curriculum-based
training (Bengio et al., 2009; Chen et al., 2025; Zhang et al., 2025). Such extensions are essential for
a full theory of RLVR in realistic multi-prompt settings.
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THE USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) solely as an aid for literature review and language refinement.
Specifically, LLMs were employed to help identify relevant papers, summarize their contributions,
and organize them into coherent thematic categories. No LLM outputs were used in developing
theoretical results, experiments, or conclusions.

A ADDITIONAL RELATED WORK

A growing body of work has begun to examine the theoretical foundations of preference-based RLHF
and verifiable-reward RL. Early studies analyzed preference-driven RL with trajectory-level feedback,
establishing convergence guarantees under pairwise or K-wise comparisons (Pacchiano et al., 2021;
Chen et al., 2022; Zhu et al., 2023). More recent results offered complexity characterizations: Wang
et al. (2023) and Du et al. (2024) compared RLHF with standard RL, identifying conditions for
sample-efficient preference optimization. In parallel, techniques from function approximation and
offline RL have been adapted to the fine-tuning setting (Chen, 2025; Wang et al., 2024; Brantley
et al., 2025). Yet the optimization behavior of Reinforcement Learning with Verifiable Rewards
(RLVR)—where supervision is provided by deterministic outcomes rather than preferences—remains
largely unexplored.

Building on these foundations, researchers have investigated how sparse, outcome-based rewards
shape learning dynamics. For example, one study shows that off-policy updates can benefit from
emphasizing positive (successful) outcomes more strongly than negative ones (Arnal et al., 2025),
while another finds that purely outcome-driven signals can collapse solution diversity in the absence
of exploration incentives (Song et al., 2025). These insights illustrate how verifiable binary rewards
influence both convergence and the diversity of reasoning strategies, offering early theoretical
guidance for RLVR.

Complementing this theoretical line, sequence-level optimization methods have advanced the al-
gorithmic toolkit for RL-based fine-tuning. GSPO, for instance, defines importance ratios over
whole-answer likelihoods with sequence-level clipping and updates, improving stability and effi-
ciency compared to token-level methods (Zheng et al., 2025). To control variance from variable
output lengths, specialized loss aggregation schemes such as ∆L normalization have been introduced,
yielding an unbiased, minimal-variance estimator of policy loss across different generation lengths
(He et al., 2025).

B BACKGROUND AND DERIVATIONS

B.1 REVIEW OF GROUP RELATIVE POLICY OPTIMIZATION (GRPO)

Among post-training algorithms, Group Relative Policy Optimization (GRPO) has emerged as the
workhorse for improving LLM reasoning ability toward the verifiable-reward objective J(π) in
equation (2). The idea is straightforward: instead of evaluating each generated response in isolation,
GRPO leverages relative performance within a group.

Overview of algorithm. For each question q, we sample a group of G candidate responses
{o⃗(i)}Gi=1 ∼ πθold(· | q). These raw outcomes are converted into group-normalized advantages:

Â
(i)
t =

r(i) −mean({r(j)}j∈[G])

std({r(j)}j∈[G])
. (23)

GRPO then performs a PPO-style update, using a clipped surrogate objective and an optional KL
penalty toward a fixed reference policy πref :

JGRPO(πθ) = Eq,{o⃗(i)}
1

G

G∑

i=1

1

|o⃗(i)|

|o⃗(i)|∑

t=1

[
min

{
ρ
(i)
t Â

(i)
t , clip(ρ

(i)
t , 1− ϵ, 1 + ϵ) Â

(i)
t

}

− β DKL
(
πθ(· | q, o⃗(i)

<t)
∥∥ πref(· | q, o⃗(i)

<t)
)]
, (24)
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where the density ratio

ρ
(i)
t : =

πθ
(
o
(i)
t

∣∣ q, o⃗(i)
<t

)

πθold
(
o
(i)
t

∣∣ q, o⃗(i)
<t

)

corrects for off-policy sampling. In practice, many implementations set β = 0 and drop the KL term.

Simplified Form. To simplify the analysis, we omit clipping and focus on a simplified surrogate:

J̃GRPO(πθ) = Eq,{o⃗(i)}
1

G

G∑

i=1

1

|o⃗(i)|

|o⃗(i)|∑

t=1

ρ
(i)
t Ã

(i)
t

= Eq,{o⃗(i)}
1

G

G∑

i=1

1

|o⃗(i)|

|o⃗(i)|∑

t=1

πθ
(
o
(i)
t

∣∣ q, o⃗(i)
<t

)

πθold
(
o
(i)
t

∣∣ q, o⃗(i)
<t

) Ã(i)
t .

with

Ã
(i)
t =

r(i) − 1
G−1

∑
j ̸=i r

(j)

σ(q)
. (25)

Here σ2(q) denotes the conditional reward variance: σ2(q) = Varo⃗∼πt(·|q)[r
⋆(q, o⃗) | q].

Evaluating the gradient at θ = θold yields

∇θ J̃GRPO(πθ)
∣∣
θ=θold

= Eq,{o⃗(i)}
1

G

G∑

i=1

1

|o⃗(i)|

|o⃗(i)|∑

t=1

∇θ πθold
(
o
(i)
t

∣∣ q, o⃗(i)
<t

)

πθold
(
o
(i)
t

∣∣ q, o⃗(i)
<t

) Ã
(i)
t

= Eq,{o⃗(i)}
1

G

G∑

i=1

1

|o⃗(i)|

|o⃗(i)|∑

t=1

∇θ logπθold
(
o
(i)
t

∣∣ q, o⃗(i)
<t

)
Ã

(i)
t

= Eq,{o⃗(i)}
1

G

G∑

i=1

1

|o⃗(i)|∇θ logπθold(o⃗
(i) | q) Ã(i)

t .

Because responses within a group are independent, this simplifies to

∇θ J̃GRPO(πθ)
∣∣
θ=θold

= Eq,o⃗∼πθold (·|q)

[
1

|o⃗|∇θ logπθold(o⃗ | q) ·
r⋆(q, o⃗)− Eπθold

[r⋆(q, o⃗′) | q]
σ(q)

]
,

which is exactly the normalized policy gradient form in equation (5).

B.2 PROOF OF EQUATION (10)

We begin with the definition of Jq(πθ), which is the probability of generating a response in the
positive space O+

q :

Jq(πθ) =

∫

O+
q

πθ(o⃗ | q) do⃗ .

First, we take the gradient of Jq(πθ) and apply the log-derivative trick

∇θ Jq(πθ) =

∫

O+
q

∇θ πθ(o⃗ | q) do⃗ =

∫

O+
q

∇θ logπθ(o⃗ | q)πθ(o⃗ | q) do⃗

= Eo⃗∼πθ(·|q)
[
∇θ logπθ(o⃗ | q) · 1{o⃗ ∈ O+

q }
]
.

This integral can be written as a conditional expectation over the positive response space, which gives
us our first identity:

∇θ Jq(πθ) = Jq(πθ) · Eo⃗∼πθ(·|q,O+
q )

[
∇θ logπθ(o⃗ | q)

]
= Jq(πθ) · g+

q . (26)
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Alternatively, we can express Jq(πθ) using the negative response space:

Jq(πθ) = 1−
∫

O−
q

πθ(o⃗ | q) do⃗ .

This gives us our second identity, this time in terms of the negative response space:
∇θ Jq(πθ) = −{1− Jq(πθ)} · Eo⃗∼πθ(·|q,O−

q )

[
∇θ logπθ(o⃗ | q)

]
= −{1− Jq(πθ)} · g−

q .

(27)

From the two identities in (26) and (27), we can isolate the score terms g+
q and g−

q :

g+
q =

∇θ Jq(πθ)

Jq(πθ)
and g−

q = − ∇θ Jq(πθ)

1− Jq(πθ)
.

Finally, we compute their difference:

g+
q − g−

q =
∇θ Jq(πθ)

Jq(πθ){1− Jq(πθ)}
.

Rearranging this final expression gives the desired result in equation (10), completing the proof.

C PROOFS OF CONVERGENCE GUARANTEES

C.1 TRAJECTORY-LEVEL ANALYSIS

C.1.1 PROOF OF THEOREM 1

We begin with the following Lemma 1, which is the core tool for our analysis. The proof is provided
in Appendix E.1.
Lemma 1. Suppose that Assumption 1 holds and the step size

ηk ≤ 1

2
√
Lo

.

Then ∣∣∣∣log
( Jq(k + 1)

1− Jq(k + 1)

)
− log

( Jq(k)

1− Jq(k)

)
−∆µq(k) ηk

∣∣∣∣ ≤ (Lo + 8G2
o) η

2
k . (28)

This lemma shows that the single-step improvement is driven by the term ∆µq(k) · ηk, with an
approximation error proportional to the step size squared.

Iterating inequality (28) over T timesteps gives us a bound on the cumulative effect:
∣∣∣∣log

( Jq(k)

1− Jq(k)

)
− log

( Jq(0)

1− Jq(0)

)
−
K−1∑

k=0

∆µq(k) ηk

∣∣∣∣ ≤ (Lo + 8G2
o)

K−1∑

k=0

η2k . (29)

Using this inequality, we analyze two distinct outcomes.

(a) Stagnation. First, we show that return Jq(K) can be bounded away from the optimum under
the condition from Theorem 1(a). Rearranging the cumulative inequality gives an upper bound:

log
( Jq(k)

1− Jq(k)

)
≤ log

( Jq(0)

1− Jq(0)

)
+

K−1∑

k=0

∆µq(k) · ηk + (Lo + 8G2
o)

K−1∑

k=0

η2k ,

which further leads to

Jq(k) ≤ Jq(0)

Jq(0) + {1− Jq(0)} exp
{
−∑K−1

k=0 ∆µq(k) ηk − (Lo + 8G2
o)

∑K−1
k=0 η2k

} .

By applying the bounds on the cumulative alignment gap and step sizes from Theorem 1(a), the
inequality simplifies to

Jq(k) ≤ Jq(0)

Jq(0) + exp(C0 + C ′
0) {1− Jq(0)}

< 1 .

This result shows that the performance Jq(K) hits a ceiling and is strictly bounded away from the
optimum value of 1, proving the stagnation described in Theorem 1(a).
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(b) Convergence. Next, we show that an adaptive step size ηk guarantees convergence. The key
is the rule from condition (15a): If the gap alignment ∆µq(k) < 0, the step size ηk is set to zero.
This is a “do no harm” policy that prevents any update in the wrong direction. On the other hand, if
∆µq(k) ≥ 0, then the step size ηk is chosen carefully to ensure that (Lo+8G2

o) η
2
k ≤ 1

2 [∆µq(k)]+ ·ηk.
This guarantees meaningful progress. The rule (15a) strengthens inequality (28) to a lower bound on
progress:

log
( Jq(k + 1)

1− Jq(k + 1)

)
− log

( Jq(k)

1− Jq(k)

)
≥ [∆µq(k)]+ ηk − (Lo + 8G2

o) η
2
k

≥ 1

2
[∆µq(k)]+ ηk . (30)

By telescoping and rearranging terms in the same manner as before, we obtain:

Jq(k) ≥ Jq(0)

Jq(0) + {1− Jq(0)} exp
{
− 1

2

∑K−1
k=0 [∆µq(k)]+ ηk

} .

This result shows that as the cumulative gap alignment grows, the exponential term shrinks, pushing
the performance Jq(K) towards 1. This confirms the convergence guarantee in Theorem 1(b), as
described in inequality (15b).

C.1.2 PROOF OF COROLLARY 1

Suppose ∆µq(k) ≥ ∆µq > 0 for any k, and that

ηk = η ≤ min

{
∆µq

2 (Lo + 8G2
o)
,

1

2
√
Lo

}
.

According to the bound (30), we have by our bound on ηk = η:

log
( Jq(k + 1)

1− Jq(k + 1)

)
− log

( Jq(k)

1− Jq(k)

)
≥ ∆µq

2
· η .

Next, rearranging and telescoping in the same manner as the proof of Theorem 1, we obtain

1− Jq(k) ≤
1− Jq(0)

1− Jq(0) + Jq(0) · exp
{
K · ∆µq

2 · η
} ≤ 1− Jq(0)

Jq(0)
· exp

{
−K · ∆µq

2
· η

}
,

which completes the proof of Corollary 1.

C.2 TOKEN-LEVEL ANALYSIS (PROOF OF THEOREM 3)

We begin by providing the formal statement of inequality (22) from the main body. This result,
presented below as Lemma 2, serves as the token-level counterpart to the trajectory-level analysis in
Lemma 1 and establishes a precise lower bound on the one-step improvement of the log-odds ratio.
Lemma 2. Suppose Assumptions 2 and 3 hold. If the step size ηk is sufficiently small so that

ηk ≤ 1√
2G2

p · Tψ1

, (31a)

then the increment of the log-odds satisfies

log
( Jq(k + 1)

1− Jq(k + 1)

)
− log

( Jq(k)

1− Jq(k)

)
≥ ∆µq(k) · ηk −

(
Lp T∞ +

G2
p Tψ1

1− Jq(k)

)
· η2k . (31b)

With this lemma, we can proceed to the main proof of Theorem 3. Our strategy is to synthesize the
bounds from Lemma 1 (the trajectory-level analysis) and Lemma 2 (the token-level analysis). Our
central aim is to demonstrate that for a sufficiently small step size ηk, the log-odds of the objective
function improves at each step according to the following inequality:

log
( Jq(k + 1)

1− Jq(k + 1)

)
− log

( Jq(k)

1− Jq(k)

)
≥ 1

2
[∆µq(k)]+ · ηk . (32)

To establish this, we consider two distinct cases that cover all possibilities.
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Case I: (1− Jq(k))T∞ ≥ 1. In this scenario, we apply the token-level bound from Lemma 2. The
lemma guarantees that inequality (32) holds, provided that the step size ηk meets conditions

ηk ≤ 1√
2G2

p · Tψ1

and
(
Lp T∞ +

G2
p Tψ1

1− Jq(k)

)
· ηk ≤ 1

2
[∆µq(k)]+ . (33)

Case II: (1 − Jq(k))T∞ < 1. For the alternative case, we fall back on the trajectory-level
bound from Lemma 1. By setting the Lipschitz and gradient norm parameters to Lo = LpT∞ and
Go = GpT∞ respectively, the bound (28) ensures that inequality (32) holds if

ηk ≤ 1

2
√
Lp · T∞

and
(
Lp T∞ + 8G2

p T
2
∞
)
· ηk ≤ 1

2
[∆µq(k)]+ . (34)

Synthesizing the Results. To ensure inequality (32) holds universally, we must select a condition
on the step size ηk that satisfies the constraints from both cases. By adopting the more lenient of the
two sets of constraints, we arrive at the unified condition specified in (18a).

With this per-step improvement established, the remainder of the proof follows the same structure as
the proof of Theorem 1(b). We sum inequality (32) over all iterations from k = 0 to K − 1, which
yields the final convergence result (18b) and completes the proof.

D PROOFS OF LOWER BOUNDS

D.1 TRAJECTORY-LEVEL ANALYSIS LOWER BOUND (PROOF OF THEOREM 2)

For simplicity, we omit the prompt q and consider a fixed instance. The positive set is a singleton,
O+
q = {o⃗1}, while the negative set contains two responses, O−

q = {o⃗−1, o⃗−2}.

We adopt a linear feature representation for the logits hθ, defined by

hθ(q, o⃗) = ⟨ϕ(q, o⃗), θ⟩ ,
with the following feature map:

ϕ(q, o⃗1) =
Go

2

(
0
1

)
, ϕ(q, o⃗−1) =

Go

2

(
1
0

)
, ϕ(q, o⃗−2) =

Go

2

(
−1
0

)
.

By this construction, the Euclidean norm of the score function
∇θ logπθ(o⃗ | q) = ϕ(q, o⃗)− Eo⃗∼πθ(·|q)

[
ϕ(q, o⃗)

]
is uniformly bounded by Go and has Lip-

schitz constant Lo = 0.

We now define the optimization scheme:

Initialization:

θ0 : =
η

3

(
−1
0

)
. (35)
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By this construction, the Euclidean norm of the score function
r✓ log ⇡✓(~o | q) = �(q, ~o) � E~o⇠⇡✓(·|q)

⇥
�(q, ~o)

⇤
is uniformly bounded by Go and has Lip-

schitz constant Lo = 0.

We now define the optimization scheme:

Initialization:

✓0 : =
⌘

3

✓
�1
0

◆
. (37)

Step size: fixed ⌘k = ⌘ satisfying

60 �µq

Lo + G2
o

 ⌘  1

2
p

Lo + G2
o

. (38)

Update direction:

wk =
1

3

✓
(�1)k · 2

��

◆
� : =

1

15
⌘ Go . (39)

The resulting parameter trajectory is

✓k : =
⌘

3

✓
�(�1)k

��k

◆
. (40)

We can confirm that kwkk2  1 since

4

9
+

�

9
 1 () �  5

where the latter inequality is true since ⌘ Go  1
2 .

Now let us verify two key properties of this trajectory:

Decreasing value: The value function J equals the probability assigned to the positive response
~o1, which is given by

Jq(k) = ⇡(~o1 | q) =
exp

�
� (�⌘ Go/6) · k

 

exp
�

� (�⌘ Go/6) · k
 

+ exp{⌘ Go/6} + exp{�⌘ Go/6}

=
1

1 +
�

exp(⌘ Go/6) + exp(�⌘ Go/6)
 

· exp
�
(�⌘ Go/6) · k

 .

This expression decreases monotonically in .

Positive gap: Consider even indices k (the odd case is symmetric). Then

wk =
1

3

✓
2

��

◆
. (41)

The conditional probabilities of the two negative responses are

⇡✓

�
~o�1

�� q, O�
q

�
=

exp(�⌘ Go/6)

exp(�⌘ Go/6) + exp(⌘ Go/6)
,

⇡✓

�
~o�2

�� q, O�
q

�
=

exp(⌘ Go/6)

exp(�⌘ Go/6) + exp(⌘ Go/6)
.

Define

eg+
q : = E~o⇠⇡✓(·|q,O+

q )

⇥
�(q, ~o)

⇤
and eg�

q : = E~o⇠⇡✓(·|q,O�
q )

⇥
�(q, ~o)

⇤
.

17

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

By this construction, the Euclidean norm of the score function
r✓ log ⇡✓(~o | q) = �(q, ~o) � E~o⇠⇡✓(·|q)

⇥
�(q, ~o)

⇤
is uniformly bounded by Go and has Lip-

schitz constant Lo = 0.

We now define the optimization scheme:

Initialization:

✓0 : =
⌘

3

✓
�1
0

◆
. (37)

Step size: fixed ⌘k = ⌘ satisfying

60 �µq

Lo + G2
o

 ⌘  1

2
p

Lo + G2
o

. (38)

Update direction:

wk =
1

3

✓
(�1)k · 2

��

◆
� : =

1

15
⌘ Go . (39)

The resulting parameter trajectory is

✓k : =
⌘

3

✓
�(�1)k

��k

◆
. (40)

We can confirm that kwkk2  1 since

4

9
+

�

9
 1 () �  5

where the latter inequality is true since ⌘ Go  1
2 .

Now let us verify two key properties of this trajectory:

Decreasing value: The value function J equals the probability assigned to the positive response
~o1, which is given by

Jq(k) = ⇡(~o1 | q) =
exp

�
� (�⌘ Go/6) · k

 

exp
�

� (�⌘ Go/6) · k
 

+ exp{⌘ Go/6} + exp{�⌘ Go/6}

=
1

1 +
�

exp(⌘ Go/6) + exp(�⌘ Go/6)
 

· exp
�
(�⌘ Go/6) · k

 .

This expression decreases monotonically in .

Positive gap: Consider even indices k (the odd case is symmetric). Then

wk =
1

3

✓
2

��

◆
. (41)

The conditional probabilities of the two negative responses are

⇡✓

�
~o�1

�� q, O�
q

�
=

exp(�⌘ Go/6)

exp(�⌘ Go/6) + exp(⌘ Go/6)
,

⇡✓

�
~o�2

�� q, O�
q

�
=

exp(⌘ Go/6)

exp(�⌘ Go/6) + exp(⌘ Go/6)
.

Define

eg+
q : = E~o⇠⇡✓(·|q,O+

q )

⇥
�(q, ~o)

⇤
and eg�

q : = E~o⇠⇡✓(·|q,O�
q )

⇥
�(q, ~o)

⇤
.
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Then due to the expression r✓ log ⇡✓(~o | q) = �(q, ~o) � E~o⇠⇡✓(·|q)
⇥
�(q, ~o)

⇤
, we have

g+
q � g�

q = {E+ � E�}[r✓ log ⇡✓(~o | q)] = {E+ � E�}[�(q, ~o)] = eg+
q � eg�

q .

Note that

eg+
q =

Go

2

✓
0
1

◆

eg�
q = ⇡✓

�
~o�1

�� q, O�
q

�
· �(q, ~o�1) + ⇡✓

�
~o�2

�� q, O�
q

�
· �(q, ~o�2)

=
1 � exp(⌘ Go/3)

1 + exp(⌘ Go/3)
· Go

2

✓
1
0

◆
.

Since ⌘ Go  1
2 , and using the inequality ex�1

1+ex � 2
5x for x 2 [0, 1]

⌦
wk, g+

q � g�
q

↵
=

2

3
· exp(⌘ Go/3) � 1

exp(⌘ Go/3) + 1
· Go

2
� �

3
· Go

2
�

⇣2

3
· 2

5
(⌘ Go/3) � �/3

⌘
· Go

2

=
⇣ 4

15
(⌘ Go/3) � �/3

⌘
· Go

2
=

1

30
⌘ G2

o � �µq ,

where the last inequality is true by the lower bound on ⌘ of (38) and the fact that L
1/2
o  Go. Note

that the normalizing constant terms arising in r✓ log ⇡✓(~o | q) within the definitions g+
q and g�

q

were not computed since they cancel out in the difference g+
q � g�

q . Therefore, the gap condition is
satisfied.

C.2 TOKEN-LEVEL ANALYSIS LOWER BOUND (PROOF OF THEOREM 4)

Under the token-level formulation of (1), recall that Tseq denotes the maximum length of a sequence
~o 2 O. We then aim to show for any Tseq, Lp, and Gp with Gp � L

1/2
p , there exists a problem

instance where we have �µq(k) � �µq > 0 and for ⌘ satisfying

120�µq

T
1/2
seq · Lp + Tseq · G2

p

 ⌘  1

2
q

T
1/2
seq · Lp + TseqG2

p

,

with 0 < �µq  1
240

q
T

1/2
seq · Lp + Tseq · G2

p, we’ll have degrading performance:

Jq(k) < Jq(k � 1) and lim
K!1

Jq(K) = 0 .

Similar to the proof of Theorem 2, we’ll use a token space of {o1, o�1, o�2} and we’ll use a linear
feature representation for the logit h✓(q, ~ot) : = h�(q, ~ot), ✓i at each layer t 2 [Tseq]. Note that the
feature map only depends on the last token in the subsequence ~ot and is the same for each layer t.
Each feature map will be

�(q, o1) =
Gp

2

✓
0
1

◆
, �(q, o�1) =

Gp

2

✓
1
0

◆
, �(q, o�2) =

Gp

2

✓
�1
0

◆
.

The optimization scheme will be the same as in the sequence-level analysis:

Initialization:

✓0 : =
⌘

3

✓
�1
0

◆
. (42)

Step size: fixed ⌘k = ⌘ satisfying
120 �µq

T
1/2
seq · Lp + Tseq · G2

p

 ⌘  1

2
q

T
1/2
seq · Lp + Tseq · G2

p

. (43)

Update direction:

wk =
1

3

✓
(�1)k · 2

��

◆
� : =

1

10
⌘ Gp . (44)
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simplified language model policy, which is a conditional distribution over trajectories ~o as:

⇡✓(~o | q) : =
exp{h✓(q, ~o)}P

~o2O exp{h✓(q, ~o)} . (6)

By abstracting away the internal structure, the analysis becomes simpler yet still revealing. We begin
by outlining the key ingredients of this trajectory-level view, then examine both its success modes
and failure cases. Although this setup is only a warm-up for the more detailed token-level analysis, it
already highlights several nontrivial and illuminating properties of RLVR.

3.1 KEY INGREDIENTS: GRADIENT GAP AND GAP ALIGNMENT

Recall that the optimization objective is the correction rate of the model ⇡✓ on prompt q: Jq(⇡✓) : =

E~o⇠⇡✓(·|q)
⇥
r?(q, ~o)

�� q
⇤
. To analyze this, we partition the response space ~O into two sets based on

the verifiable reward r?(q, ·):
O+

q : =
�
~o 2 ~O

�� r?(q, ~o) = 1
 

and O�
q : =

�
~o 2 ~O

�� r?(q, ~o) = 0
 

, (7)

Here O+
q represents desirable responses (correct solutions), while O�

q contains undesirable ones.
Accordingly, Jq(⇡✓) = P~o⇠⇡✓(·|q)

⇥
~o 2 O+

q

⇤
and 1 � Jq(⇡✓) = P~o⇠⇡✓(·|q)

⇥
~o 2 O�

q

⇤
.

Conditional Policies. We further define conditional distributions over the positive and negative
spaces:

⇡+
✓ (~o | q) = ⇡✓

�
~o
�� q, O+

q

�
: =

⇡✓(~o | q)

Jq(⇡✓)
· 1{~o 2 O+

q } , (8a)

⇡�
✓ (~o | q) = ⇡✓

�
~o
�� q, O�

q

�
: =

⇡✓(~o | q)

1 � Jq(⇡✓)
· 1{~o 2 O�

q } . (8b)

These describe how the model ⇡✓ distributes probability mass within the “good” and “bad” regions,
respectively.

Gradient Gap: A Direction for Improvement. Using the conditional policies, we measure the
expected log-probability gradient / score function in each region:

g+
q (⇡✓) : = E~o⇠⇡+

✓ (·|q)
⇥
r✓ log ⇡✓(~o | q)

⇤
and g�

q (⇡✓) : = E~o⇠⇡�
✓ (·|q)

⇥
r✓ log ⇡✓(~o | q)

⇤
. (9)

The difference between them,
g+

q (⇡✓) � g�
q (⇡✓),

is the Gradient Gap. Intuitively, it highlights how the model’s parameters should be shifted to favor
desirable responses over undesirable ones.

Crucially, the Gradient Gap is directly proportional1 to the policy gradient given in equation (4):
r✓ Jq(⇡✓) = Jq(⇡✓){1 � Jq(⇡✓)} ·

�
g+

q � g�
q

�
. (10)

This shows that the Gradient Gap captures the true direction of improvement. Unlike the full policy
gradient r✓ Jq(⇡✓), g+

q (⇡✓)�g�
q (⇡✓) is not scaled down by the variability factor Jq(1�Jq), making

it a purer indicator of where to move.

Gap Alignment: Following the Right Direction. Consider now the optimization scheme (3). At
iteration t, define g+

q (k) and g�
q (k) under the current policy ⇡t. The update vector wt should ideally

align with the improvement direction g+
q (k) � g�

q (k).

We measure this alignment by the inner product
�µq(k) : = wt ·

�
g+

q (k) � g�
q (k)

 
. (11)

If kwtk2 = 1, this equals

�µq(k) = kg+
q (k) � g�

q (k)k2 · cos \
�
wt, g

+
q (k) � g�

q (k)
 
,

which depends both on the magnitude of the Gradient Gap and the angle of alignment.

In the convergence analysis, �µq(k) will play a central role. For stable progress we require:
1A formal proof of this is found in ??
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⇡✓(~o | q) =
Q|~o|

t=1 ⇡✓(ot | q, ~o<t). Each conditional distribution is defined by a softmax over token
logits,

⇡✓(ot | q, ~o<t) : =
exp{h✓(q, ~ot)}P

o02T exp{h✓(q, ~o<t, o0)} , (1)

where h✓(·) denotes the logit function.

Post-Training–Reinforcement Learning with Verifiable Rewards (RLVR). While a supervised
language model can generate fluent text, it often struggles to align with task-specific goals such as
math reasoning or code generation. Post-training addresses this limitation by adapting the model
parameters ✓ to align more closely with an external reward signal that captures desirable behavior.

Formally, we assume access to an outcome reward model r?(q, ~o) that is directly verifiable and
assessed at the end of a generated sequence: r? = 1 if the answer is correct (e.g., a valid proof step
or passing code execution) and r? = 0 otherwise. The aim of reinforcement learning in this context
is to tune the model parameters ✓ so as to maximize the expected reward under the current policy:

maximize✓2Rd J(⇡✓) : = Eq⇠P(Q), ~o⇠⇡✓(·|q)
⇥
r?(q, ~o)

⇤
. (2)

Policy Gradient. To optimize J(⇡✓), we rely on policy gradient–based methods. At each iteration t,
the parameters ✓ are updated according to

✓k+1 = ✓k + ⌘k · wk , (3)

where ⌘k � 0 is the learning rate and wk 2 Rd is a normalized update direction with kwkk2  1.
For clarity, we denote the policy and logit function at step k as ⇡k : = ⇡✓k

and hk : = h✓k
.

This generic formulation captures a broad family of post-training algorithms used in RLVR. Repre-
sentative examples are:

REINFORCE: In the classical policy gradient method, the update direction wk coincides with the
gradient of the value function:

r✓ J(⇡k) = Eq⇠P(Q), ~o⇠⇡k(·|q)
⇥
A(q, ~o) · r✓ log ⇡k(~o | q)

⇤
, (4)

where the advantage function is given by A(q, ~o) = r?(q, ~o) � E~o0⇠⇡k(·|q)[r?(q, ~o0)]. In
this case, the update rule ✓t+1 = ✓k + ↵ · r✓ J(⇡k) can be rewritten in our generic form by
setting wk = r✓ J(⇡k)/kr✓ J(⇡k)k2 and ⌘k = ↵ kr✓ J(⇡k)k2.

Group Relative Policy Optimization (GRPO): GRPO has recently become a standard choice for
RLVR. The full algorithm incorporates clipping ratios and multi-step updates (see Ap-
pendix A.1). To connect it with the generic policy gradient form, we consider a simplified
one-step approximation without clipping. In this case, the gradient direction is

gGRPO(⇡k) = Eq⇠P(Q), ~o⇠⇡k(·|q)
hA(q, ~o)

�(q)
· 1

|~o|r✓ log ⇡k(~o | q)
i
, (5)

where the conditional standard deviation �(q) is given by
�2(q) = Var~o⇠⇡k(·|q)[r?(q, ~o) | q]. In practice, GRPO is typically trained with a
cosine learning rate schedule, which can be locally treated as a constant step size ↵.
Within our generic update rule, this corresponds to setting wk = gGRPO/kgGRPOk2 and
⌘k = ↵ kgGRPOk2, so that both the response length |~o| and reward variability �(q) directly
influence the effective step size ⌘k.

Objective. Our goal in this work is to understand how the choice of update direction wk and step
size ⌘k influences the convergence of RLVR. In particular, we ask: under what conditions can we
guarantee convergence, and what design choices may lead to instability or failure modes?

3 TRAJECTORY-LEVEL ANALYSIS

In this section, we study the optimization scheme (3) on a single prompt q. We take a trajectory-level
view, where each response ~o is treated as a single unit rather than a sequence of tokens. We define a
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t=1 ⇡✓(ot | q, ~o<t). Each conditional distribution is defined by a softmax over token
logits,

⇡✓(ot | q, ~o<t) : =
exp{h✓(q, ~ot)}P

o02T exp{h✓(q, ~o<t, o0)} , (1)

where h✓(·) denotes the logit function.

Post-Training–Reinforcement Learning with Verifiable Rewards (RLVR). While a supervised
language model can generate fluent text, it often struggles to align with task-specific goals such as
math reasoning or code generation. Post-training addresses this limitation by adapting the model
parameters ✓ to align more closely with an external reward signal that captures desirable behavior.

Formally, we assume access to an outcome reward model r?(q, ~o) that is directly verifiable and
assessed at the end of a generated sequence: r? = 1 if the answer is correct (e.g., a valid proof step
or passing code execution) and r? = 0 otherwise. The aim of reinforcement learning in this context
is to tune the model parameters ✓ so as to maximize the expected reward under the current policy:

maximize✓2Rd J(⇡✓) : = Eq⇠P(Q), ~o⇠⇡✓(·|q)
⇥
r?(q, ~o)

⇤
. (2)

Policy Gradient. To optimize J(⇡✓), we rely on policy gradient–based methods. At each iteration t,
the parameters ✓ are updated according to

✓k+1 = ✓k + ⌘k · wk , (3)

where ⌘k � 0 is the learning rate and wk 2 Rd is a normalized update direction with kwkk2  1.
For clarity, we denote the policy and logit function at step k as ⇡k : = ⇡✓k

and hk : = h✓k
.

This generic formulation captures a broad family of post-training algorithms used in RLVR. Repre-
sentative examples are:

REINFORCE: In the classical policy gradient method, the update direction wk coincides with the
gradient of the value function:

r✓ J(⇡k) = Eq⇠P(Q), ~o⇠⇡k(·|q)
⇥
A(q, ~o) · r✓ log ⇡k(~o | q)

⇤
, (4)

where the advantage function is given by A(q, ~o) = r?(q, ~o) � E~o0⇠⇡k(·|q)[r?(q, ~o0)]. In
this case, the update rule ✓t+1 = ✓k + ↵ · r✓ J(⇡k) can be rewritten in our generic form by
setting wk = r✓ J(⇡k)/kr✓ J(⇡k)k2 and ⌘k = ↵ kr✓ J(⇡k)k2.

Group Relative Policy Optimization (GRPO): GRPO has recently become a standard choice for
RLVR. The full algorithm incorporates clipping ratios and multi-step updates (see Ap-
pendix A.1). To connect it with the generic policy gradient form, we consider a simplified
one-step approximation without clipping. In this case, the gradient direction is

gGRPO(⇡k) = Eq⇠P(Q), ~o⇠⇡k(·|q)
hA(q, ~o)

�(q)
· 1

|~o|r✓ log ⇡k(~o | q)
i
, (5)

where the conditional standard deviation �(q) is given by
�2(q) = Var~o⇠⇡k(·|q)[r?(q, ~o) | q]. In practice, GRPO is typically trained with a
cosine learning rate schedule, which can be locally treated as a constant step size ↵.
Within our generic update rule, this corresponds to setting wk = gGRPO/kgGRPOk2 and
⌘k = ↵ kgGRPOk2, so that both the response length |~o| and reward variability �(q) directly
influence the effective step size ⌘k.

Objective. Our goal in this work is to understand how the choice of update direction wk and step
size ⌘k influences the convergence of RLVR. In particular, we ask: under what conditions can we
guarantee convergence, and what design choices may lead to instability or failure modes?

3 TRAJECTORY-LEVEL ANALYSIS

In this section, we study the optimization scheme (3) on a single prompt q. We take a trajectory-level
view, where each response ~o is treated as a single unit rather than a sequence of tokens. We define a
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The theorem establishes a clear dichotomy. Convergence is attainable only when update directions
exhibit consistent alignment with the underlying objective and the step size is properly scaled to
reflect this signal. In the absence of either alignment or adaptive scaling, progress stagnates and the
policy remains confined to a suboptimal regime.

3.2.2 THE IMPORTANCE OF PROPERLY CHOSEN STEP SIZE ⌘k

The role of the step size ⌘k is particularly delicate in our setting. Even when update directions are
uniformly informative, the long-term behavior of learning depends critically on whether the step size
is tuned to the correct scale. To illustrate this, we contrast two scenarios: one where a modest step
size ensures linear convergence, and another where an overly aggressive step size leads to complete
failure.

Linear Convergence Under Proper Scaling. Suppose that every update direction provides a consistent
signal, so that the Gap Alignment �µq(k) is uniformly bounded below. In this case, a properly
chosen fixed step size is sufficient to guarantee rapid improvement.
Corollary 1 (Linear Convergence with a Uniform Gap). If every update direction wt provides a
uniform gap, �µq(k) � �µq > 0 for all k � 0, then a simple fixed step size ⌘ satisfying

⌘  min

⇢
�µq

2 (Lo + 8 G2
o)

,
1

2
p

Lo

�
,

drives the error to zero at a linear rate:

1 � Jq(k)  1 � Jq(0)

Jq(0)
exp

n
� 1

2
�µq ⌘ · K

o
.

The Perils of Overshooting. The situation changes dramatically if the step size is chosen too
aggressively. A natural question is: what happens if the condition (16a) of Theorem 1(b) is violated?
The next result demonstrates that the outcome can be catastrophic: even with excellent update
directions, learning can collapse.
Theorem 2 (Catastrophic Failure from an Overly Large Step Size). There exists a problem instance
satisfying Assumption 1 with G � L1/2 where the Gap Alignment is always positive, �µq(k) �
�µq > 0 for all k � 0, yet choosing a constant step size ⌘ that is too large leads to failure.
Specifically, if the step size satisfies

60 �µq

Lo + G2
o

 ⌘  1

2
p

Lo + G2
o

,

where 0 < �µq  1
120

p
Lo + G2

o, the policy’s performance will strictly decrease at every step,
ultimately converging to zero:

Jq(k) < Jq(k � 1) and lim
K!1

Jq(k) = 0.

Although the numerical constants (e.g., 60, 120) are not sharp and could be refined, the phenomenon
is robust: an oversized step size can force the algorithm to repeatedly overshoot the region of good
policies, driving the system toward collapse rather than improvement.

Together, Corollary 1 and Theorem 2 highlight a fundamental principle: the effectiveness of learning
depends not only on moving in the correct direction but also on moving at the correct scale. If
the step size is chosen too aggressively, the optimization may repeatedly overshoot the region of
high-performing policies, ultimately driving performance toward failure rather than improvement. To
avoid this outcome, both stability and progress require respecting the scale

⌘k ⇣ �µq(k)

Lo + G2
o

. (17)

4 TOKEN-LEVEL ANALYSIS

Next, we consider the general token-level formulation (1). The key distinction from the trajectory-
level analysis will be in making use of the autoregressive structure of the policy ⇡✓(~o | q) =

6

Acute angle
   ⇒ 

Figure 3: Constructed instance for (trajectory-level) lower bound proof.
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Step size: fixed ηk = η satisfying

60∆µq
Lo +G2

o

≤ η ≤ 1

2
√
Lo +G2

o

. (36)

Update direction:

wk =
1

3

(
(−1)k · 2

−δ

)
δ : =

1

15
η Go . (37)

The resulting parameter trajectory is

θk : =
η

3

(
−(−1)k

−δk

)
. (38)

We can confirm that ∥wk∥2 ≤ 1 since

4

9
+
δ

9
≤ 1 ⇐⇒ δ ≤ 5

where the latter inequality is true since η Go ≤ 1
2 .

Now let us verify two key properties of this trajectory:

Decreasing value: The value function J equals the probability assigned to the positive response
o⃗1, which is given by

Jq(k) = π(o⃗1 | q) =
exp

{
− (δη Go/6) · k

}

exp
{
− (δη Go/6) · k

}
+ exp{η Go/6}+ exp{−η Go/6}

=
1

1 +
{
exp(η Go/6) + exp(−η Go/6)

}
· exp

{
(δη Go/6) · k

} .

This expression decreases monotonically in k.

Positive gap: Consider even indices k (the odd case is symmetric). Then

wk =
1

3

(
2
−δ

)
. (39)

The conditional probabilities of the two negative responses are

πθ
(
o⃗−1

∣∣ q,O−
q

)
=

exp(−η Go/6)

exp(−η Go/6) + exp(η Go/6)
,

πθ
(
o⃗−2

∣∣ q,O−
q

)
=

exp(η Go/6)

exp(−η Go/6) + exp(η Go/6)
.

Define

g̃+
q : = Eo⃗∼πθ(·|q,O+

q )

[
ϕ(q, o⃗)

]
and g̃−

q : = Eo⃗∼πθ(·|q,O−
q )

[
ϕ(q, o⃗)

]
.

Then due to the expression ∇θ logπθ(o⃗ | q) = ϕ(q, o⃗)− Eo⃗∼πθ(·|q)
[
ϕ(q, o⃗)

]
, we have

g+
q − g−

q = {E+ − E−}[∇θ logπθ(o⃗ | q)] = {E+ − E−}[ϕ(q, o⃗)] = g̃+
q − g̃−

q .

Note that

g̃+
q =

Go

2

(
0
1

)

g̃−
q = πθ

(
o⃗−1

∣∣ q,O−
q

)
· ϕ(q, o⃗−1) + πθ

(
o⃗−2

∣∣ q,O−
q

)
· ϕ(q, o⃗−2)

=
1− exp(η Go/3)

1 + exp(η Go/3)
· Go

2

(
1
0

)
.
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Since η Go ≤ 1
2 , and using the inequality ex−1

1+ex ≥ 2
5x for x ∈ [0, 1]

〈
wk, g

+
q − g−

q

〉
=

2

3
· exp(η Go/3)− 1

exp(η Go/3) + 1
· Go

2
− δ

3
· Go

2
≥

(2
3
· 2
5
(η Go/3)− δ/3

)
· Go

2

=
( 4

15
(η Go/3)− δ/3

)
· Go

2
=

1

30
η G2

o ≥ ∆µq ,

where the last inequality is true by the lower bound on η of (36) and the fact that L1/2
o ≤ Go. Note

that the normalizing constant terms arising in ∇θ logπθ(o⃗ | q) within the definitions g+
q and g−

q

were not computed since they cancel out in the difference g+
q − g−

q . Therefore, the gap condition is
satisfied.

D.2 TOKEN-LEVEL ANALYSIS LOWER BOUND (PROOF OF THEOREM 4)

Under the token-level formulation of (1), recall that T∞ denotes the maximum length of a sequence
o⃗ ∈ O. We then aim to show for any T∞, Lp, and Gp with Gp ≥ L

1/2
p , there exists a problem

instance where we have ∆µq(k) ≥ ∆µq > 0 and for η satisfying

120∆µq

T
1/2
∞ · Lp + T∞ ·G2

p

≤ η ≤ 1

2
√
T

1/2
∞ · Lp + T∞G2

p

,

with 0 < ∆µq ≤ 1
240

√
T

1/2
∞ · Lp + T∞ ·G2

p, we’ll have degrading performance:

Jq(k) < Jq(k − 1) and lim
K→∞

Jq(K) = 0 .

Similar to the proof of Theorem 2, we’ll use a token space of {o1, o−1, o−2} and we’ll use a linear
feature representation for the logit hθ(q, o⃗≤t) := ⟨ϕ(q, o⃗t), θ⟩ at each layer t ∈ [T∞]. Note that the
feature map only depends on the last token in the subsequence o⃗≤t and is the same for each layer t.
Each feature map will be

ϕ(q, o1) =
Gp

2

(
0
1

)
, ϕ(q, o−1) =

Gp

2

(
1
0

)
, ϕ(q, o−2) =

Gp

2

(
−1
0

)
.

The optimization scheme will be the same as in the sequence-level analysis:

Initialization:

θ0 : =
η

3

(
−1
0

)
. (40)

Step size: fixed ηk = η satisfying

120∆µq

T
1/2
∞ · Lp + T∞ ·G2

p

≤ η ≤ 1

2
√
T

1/2
∞ · Lp + T∞ ·G2

p

. (41)

Update direction:

wk =
1

3

(
(−1)k · 2

−δ

)
δ : =

1

10
η Gp . (42)

with resulting parameter trajectory:

θk : =
η

3

(
−(−1)t

−δk

)
. (43)

We can confirm ∥wk∥2 ≤ 1 since η Gp ≤ 500.

Now, let the positive space of responses consist of a single sequence using all token o1’s, or O+ :
= {oT∞

1 } so that O− : = O\O+. The reward r⋆(q, o⃗) will be 0 for negative responses and 1 for
positive responses.
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Decreasing value: Since at each layer t ∈ [T∞], the policy chooses a token independent from the
previous tokens, the value function is

Jq(k) = πθk(o
T∞
1 | q) =

( 1

1 +
{
exp(η Gp/6) + exp(−η Gp/6)

}
· exp

{
(δη Gp/6) · k

}
)T∞

,

which is decreasing with increasing k and goes to 0.

Checking positive gap. Consider even indices t (the odd case is symmetric). Then

wk =
1

3

(
2
−δ

)
. (44)

We first claim that
{
Eo⃗∼πθk (·|q,O+)−Eo⃗∼πθk (·|q,O−)

}[
∇θ logπθk(o⃗ | q)

]

=
{
Eo⃗∼πθk (·|q,O+) − Eo⃗∼πθk (·|q,O−)

}[ T∞∑

t=1

∇θ log(πθk(o⃗t | q, o⃗<t))
]

=
{
Eo⃗∼πθk (·|q,O+) − Eo⃗∼πθk (·|q,O−)

}[ T∞∑

t=1

ϕ(q, o⃗t)

]
.

The last equality above is true because the normalizing constants of each πθ(o⃗t | q, o⃗<t) only do not
depend on o⃗≤t. Thus, the gradient log of the normalizing constants will cancel out from the positive
and negative expectations.

We’ll next simplify notation to avoid normalizing constants and let g+
q : =

Eo⃗∼πθk (·|q,O+)

[∑T∞
t=1 ϕ(q, o⃗t)

]
and define g−

q analogously.

We next note

g+
q = Eo⃗∼πθk (·|q,O+)

[
T∞∑

t=1

ϕ(q, o⃗t)

]
=
T∞ ·Gp

2

(
0
1

)
.

Next, the negative term is

g−
q = Eo⃗∼πθk (·|q,O−)

[
T∞∑

t=1

ϕ(q, o⃗t)

]

= Eo⃗∼πθk (·|q,O−)

[
Gp

2
·
((

1
0

)
· (N(o⃗,−1)−N(o⃗,−2)) +

(
0
1

)
·N(o⃗, 1)

]
,

where N(o⃗, j) :=
∑T∞
t=1 1{o⃗t = oj} is the count of tokens which are equal to oj .

Now, acknowledging that πθk(o⃗ | q,O−) =
πθk (o⃗|q)·1{o⃗∈O−

q }
1−Jq(k) , we have

Eo⃗∼π−
θk

(·|q)[N(o⃗,−1)] =
T∞

1− Jq(k)
· exp(−ηGp/6)

exp(−ηGp/6) + exp(ηGp/6) + exp(−(δηGp/6) · k)

Eo⃗∼π−
θk

(·|q)[N(o⃗,−2)] =
T∞

1− Jq(k)
· exp(ηGp/6)

exp(−ηGp/6) + exp(ηGp/6) + exp(−(δηGp/6) · k)

Eo⃗∼π−
θk

(·|q)[N(o⃗, 1)] ≤ T∞
1− Jq(k)

· 1

1 +
{
exp(η Gp/6) + exp(−η Gp/6)

}
· exp

{
(δη Gp/6) · k

} ,

where the last inequality follows from bounding 1{o⃗t = o1} · 1{o⃗ ∈ O−
q } ≤ 1{o⃗t = o1}.

Thus, we have:

−⟨wk, g
−
q ⟩ ≥

GpT∞
3(1− Jq(k))

· exp(ηGp/3)− 1

1 + exp(ηGp/3) + exp(ηGp/3− (δηGp/6) · k)

+
δ G

6
·
( T∞
1− Jq(k)

)
· 1

1 +
{
exp(η Gp/6) + exp(−η Gp/6)

}
· exp

{
(δη Gp/6) · k

} .
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Next, we note the elementary inequality ex−1
1+2ex ≥ 0.3x for x ∈ [0, 0.5]. Then, since Jq(k) ̸= 0 for

all t, we have

⟨wk, g
+
q − g−

q ⟩ ≥ −T∞ ·Gp · δ
6

+
0.3G2

p · T∞ · η
9

= T∞ ·Gp ·
(
− δ

6
+

0.3

9
· η ·Gp

)

≥ T∞ · η ·G2
p

60
≥ ∆µq ,

where the last inequality is true by η T∞ (G2
p + Lp) ≥ ∆µq · 120 and Lp ≤ G2

p.

E FIRST-ORDER ANALYSIS OF THE LOG-ODDS CHANGE

In this section, we analyze how the objective value’s log-odds ratio changes over a single update
step. To simplify the notation, let us consider the state at a single update step k. We will use the
following shorthand: step size η : = ηk, update direction w = wk, parameters θold : = θk and
θ : = θk+1, objective values Jold

q : = Jq(k) and Jq : = Jq(k + 1). Our goal is to prove the following
relationship:

log
( Jq
1− Jq

)
− log

( Jold
q

1− Jold
q

)
= ∆µq(πθold) η +O(η2) ,

where the gap alignment ∆µq is defined in equation (11). Essentially, this equation shows a first-order
Taylor expansion of the change in the log-odds ratio. The key insight is that the term ∆µq emerges as
the linear coefficient for the step size η.

We will prove this fundamental relationship at two distinct levels of granularity:

Trajectory Level: The analysis for entire generation trajectories is presented in Lemma 1, with the
full proof in Appendix E.1.

Token Level: The corresponding result for token-level consideration is established in Lemma 2,
with its proof located in Appendix E.2.

E.1 PROOF OF LEMMA 1

E.1.1 OVERVIEW

We first formulate Lemma 3 below, which establishes an equivalent expression for the difference of
logarithms. The proof is deferred to Appendix E.1.2.
Lemma 3. For policies πθold and πθ, it holds that

log
( Jq
1− Jq

)
− log

( Jold
q

1− Jold
q

)

= logEo⃗∼πθold (· | q,O
+
q )

[
exp

{
(logπθ − logπθold)(o⃗ | q)

}]

− logEo⃗∼πθold (· | q,O
−
q )

[
exp

{
(logπθ − logπθold)(o⃗ | q)

}]
. (45)

The difference of logarithms from Lemma 3 is central to our analysis of the optimization scheme. As
shown in equation (45), we express this term as the difference between two log moment-generating
functions (MGFs). These MGFs are derived from the conditional probabilities over the correct
(positive) and incorrect (negative) solution spaces, O+

q and O−
q , respectively.

In Lemma 4 below, we approximate the log MGFs based on the expectations of the random variables.
See Appendix E.1.3 for the proof.
Lemma 4. For any random variable X , we have:

∣∣logE[eX ]− E[X]
∣∣ ≤ 2 ∥X∥2∞ . (46)
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We now combine Lemmas 3 and 4 to prove Lemma 1. In what follows, we introduce a shorthand
Lθ : = logπθ. In our analysis recall that θ − θold = ηk ·wk with ∥wk∥2 ≤ 1. We denote η : = ηk
and w : = wk for short.

We apply the bound from equation (46) in Lemma 4 to the random variable (Lθ −Lθold)(q, o⃗). By
evaluating this for the distributions corresponding to the positive space, o⃗ ∼ πθold

(
·
∣∣ q,O+

q

)
, and

the negative space, o⃗ ∼ πθold
(
·
∣∣ q,O−

q

)
, we find that

∣∣∣∣log
( Jq
1− Jq

)
− log

( Jold
q

1− Jold
q

)
− T1

∣∣∣∣ ≤ 4 ∥Lθ −Lθold∥2∞ , (47)

where

T1 : =
{
Eo⃗∼πθold (· | q,O

+
q ) − Eo⃗∼πθold (· | q,O

−
q )

}[
(Lθ −Lθold)(q, o⃗)

]
.

To establish the final bound in Lemma 1, we need to prove two intermediate results:
(i) T1 = ∆µq(πθold) · η +O(η2) and (ii) ∥Lθ − Lθold∥∞ = O(η). Once we show these two re-
lationships hold, the desired bound (28) follows directly by substituting them into inequality (47).

Analyzing term T1: For term T1, Assumption 1 on the smoothness of function Lθ implies that

∣∣(Lθ −Lθold)(q, o⃗)−
〈
∇θ Lθold(q, o⃗), θ − θold

〉∣∣ ≤ Lo

2
∥θ − θold∥22 .

According to our optimization scheme θ = θold + η ·w, it follows that

∣∣(Lθ −Lθold)(q, o⃗)− η {w · ∇θ Lθold(q, o⃗)}
∣∣ ≤ Lo

2
η2 . (48)

Recalling the definition (8) of vectors g+
q = g+

q (πθold) and g−
q = g−

q (πθold), we find that

g+
q − g−

q =
{
Eπ+

θold
(·|q) − Eπ−

θold
(·|q)

}[
∇θ Lθold(q, o⃗)

]
.

Moreover, the definition (11) of gap ∆µq leads to

∆µq(πθold) =
〈
w, g+

q − g−
q

〉
=

{
Eπ+

θold
(·|q) − Eπ−

θold
(·|q)

}[
w · ∇θ Lθold(q, o⃗)

]
.

Therefore, taking expectations
{
Eπ+

θold
(·|q) −Eo⃗∼π−

θold
(·|q)

}
(·) of the terms inside the absolute value

of equation (48), we get

∣∣T1 −∆µq(πθold) η
∣∣ ≤ Lo

2
η2 . (49)

Bounding norm ∥Lθ −Lθold∥∞: From inequality (48), we also have

∥Lθ −Lθold∥∞ ≤ η supo⃗∈O
{
w · ∇θ Lθold(q, o⃗)

}
+
Lo

2
η2

≤ η supo⃗∈O∥∇θ Lθold(q, o⃗)∥2 +
Lo

2
η2 ≤ Go η +

Lo

2
η2 . (50)

Finalizing the proof: Combining our previous bounds (47), (49) and (50), we get
∣∣∣∣log

( Jq
1− Jq

)
− log

( Jold
q

1− Jold
q

)
−∆µq(πθold) η

∣∣∣∣

≤ 4 ∥Lθ −Lθold∥2∞ +
∣∣T1 −∆µq(πθold) η

∣∣

≤
{
(2Go + Lo η)

2 +
Lo

2

}
η2 ≤ (Lo + 8G2

o) η
2 ,

where the last inequality follows from the condition η ≤ 1
2
√
Lo

. This establishes inequality (28) and
completes the proof of Lemma 1.
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E.1.2 PROOF OF LEMMA 3

Let Lθ(o⃗, q) := logπθ(o⃗ | q) be the log-likelihood function and define Lθold analogously. The
updated policy πθ can be expressed in terms of the old policy πθold as follows:

πθ(o⃗ | q) ∝ πθold(o⃗ | q) exp
{
(Lθ −Lθold)(o⃗ | q)

}
.

Therefore, we have

Jq
1− Jq

=

∑
o⃗∈O+

q
πθ(o⃗ | q)

∑
o⃗∈O−

q
πθ(o⃗ | q) =

∑
o⃗∈O+

q
πθold(o⃗ | q) exp

{
(Lθ −Lθold)(q, o⃗)

}
∑

o⃗∈O−
q
πθold(o⃗ | q) exp

{
(Lθ −Lθold)(q, o⃗)

} = :
T+
T−

.

(51)

Regarding the numerator T+, we use the conditional probability relationship

πθold(o⃗ | q) = Jold
q πθold(o⃗ | q,O+

q ) = Jold
q π+

θold
(o⃗ | q) for o⃗ ∈ O+

q

and find that

T+ = Jold
q

∑

o⃗∈O+
q

π+
θold

(o⃗ | q) exp
{
(Lθ −Lθold)(q, o⃗)

}

= Jold
q · Eπ+

θold
(· | q)

[
exp

{
(Lθ −Lθold)(q, o⃗)

}]
. (52a)

Similarly, for the denominator T−, we apply equality

πθold(o⃗ | q) = (1− Jold
q ) πθold(o⃗ | q,O−

q ) = (1− Jold
q ) π−

θold
(o⃗ | q) for o⃗ ∈ O−

q .

It follows that

T− = (1− Jold
q ) · Eπ−

θold
(· | q)

[
exp

{
(Lθ −Lθold)(q, o⃗)

}]
. (52b)

Then, substituting equations (52a) and (52b) into equation (51), we obtain precisely equation (45)
stated in Lemma 3.

E.1.3 PROOF OF LEMMA 4

We start by centering the random variable X . Let us define Y : = X − E[X], which gives us a new
variable with a mean of zero. This simplifies the core expression:

logE[eX ]− E[X] = logE[eE[X]+Y ]− E[X] = logE[eY ].

By Jensen’s inequality, the term logE[eY ] is always non-negative. This allows us to safely drop the
absolute value bars:

∣∣logE[eX ]− E[X]
∣∣ = logE[eY ] .

Finally, applying Hoeffding’s lemma to this resulting log moment-generating function bounds it by at
most 2 ∥X∥2∞. This establishes the result in Lemma 4.

E.2 PROOF OF LEMMA 2

E.2.1 OVERVIEW

Our proof proceeds in two main steps. First, we establish a lower bound on the improvement in the
log-odds of value Jq:

log
( Jq
1− Jq

)
− log

( Jold
q

1− Jold
q

)

≥
{
log

(
E+[exp(X)]

)
− log

(
E−[exp(X)]

)}
− LpT∞ · η2 , (53)
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where the random variable X is defined as

X : = η
{
w · ∇θ logπθold(o⃗ | q)

}
=

〈
∇θ logπθold(o⃗ | q), θ − θold

〉
. (54)

Here E+ and E− denote expectations over the conditional distributions of positive and negative
responses, i.e., Eo⃗∼πθold (· | q,O

+
q ) and Eo⃗∼πθold (· | q,O

−
q ), respectively.

Second, we bound the difference between the log-moment-generating functions (log-MGFs) that
appears on the right-hand side of inequality (53):

log
(
E+[exp(X)]

)
− log

(
E−[exp(X)]

)
≥ ∆µq(πθold) · η −

G2
pTψ1

Jold
q

· η2 , (55)

which holds under the condition that

η ≤ 1√
2G2

p · Tψ1

.

Combining the bounds from (53) and (55) directly establishes the result in Lemma 2. We now prove
these two intermediate claims in Appendices E.2.2 and E.2.3.

E.2.2 PROOF OF INEQUALITY (53)

Our starting point is the smoothness property of the log-policy, as stated in Assumption 2. For any
prompt-response pair (q, o⃗), the function logπθ(o⃗ | q) is (Lp · T∞)-smooth with respect to θ. A
standard result for smooth functions is that:

∣∣(logπθ − logπθold)(o⃗ | q)−
〈
∇θ logπθold(o⃗ | q), θ − θold

〉∣∣ ≤ Lp · T∞
2

∥θ − θold∥22 .

By substituting the definition of the random variable X from equation (54) and using the gradient
update rule θ − θold = η ·w (where ∥w∥2 ≤ 1), this inequality simplifies to:

∣∣(logπθ − logπθold)(o⃗ | q)−X
∣∣ ≤ LpT∞

2
· η2 .

This directly implies the following bounds on the conditional expectations:

logEo⃗∼πθold (· | q,O
+
q )

[
exp

{
(logπθ − logπθold)(o⃗ | q)

}]
≥ log

(
E+[exp(X)]

)
− LpT∞

2
· η2 .

logEo⃗∼πθold (· | q,O
−
q )

[
exp

{
(logπθ − logπθold)(o⃗ | q)

}]
≤ log

(
E−[exp(X)]

)
+
LpT∞

2
· η2 .

Subtracting the second inequality from the first yields the desired bound (53).

E.2.3 PROOF OF INEQUALITY (55)

To prove inequality (55), we will establish and combine three intermediate results.

First, we relate the ratio of conditional MGFs to the unconditional MGF:

log

(
E+[eX ]

E−[eX ]

)
≥ − 1

1− Jold
q

logE[eX ] +
1

1− Jold
q

logE+[eX ] . (56)

Here E denotes the expectation over the entire response space O = O+
q ∪ O−

q .

Next, we bound the two terms on the right-hand side of inequality (56) separately. We show that
1

1− Jold
q

logE+[eX ] ≥ ∆µq(πθold) · η , and (57a)

1

1− Jold
q

logE[eX ] ≤ G2
p · Tψ1

1− Jold
q

· η2 if η ≤ 1√
2G2

p · Tψ1

. (57b)

Combining these three bounds (56), (57a) and (57b) directly yields the target inequality (55).

We now prove each claim in turn.
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Proof of Inequality (56): This result follows from a general property of logarithms derived from
the weighted AM-GM inequality. For any real numbers u, v > 0 and any p ∈ (0, 1), the weighted
AM-GM inequality states pu+ (1− p)v ≥ upv1−p. Dividing by v and taking the logarithm gives

log(u/v) ≤ 1

p
(log(pu+ (1− p)v)− log(v)) .

We apply this inequality by setting u : = E−[eX ], v : = E+[eX ] and p : = 1−Jold
q . This substitution

yields

log

(
E−[eX ]

E+[eX ]

)
≤ 1

1− Jold
q

log
{
Jold
q E+[eX ] + (1− Jold

q )E−[eX ]
}
− 1

1− Jold
q

logE+[eX ] .

(58)

By the law of total expectation, the term in the curly braces is simply the unconditional expectation
E[eX ]:

E[eX ] = Jold
q E+[eX ] + (1− Jold

q )E−[eX ] . (59)

Substituting (59) into (58) completes the proof of inequality (56).

Proof of Inequality (57a): By Jensen’s inequality, logE+[eX ] ≥ E+[X]. Therefore, we have

logE+[eX ]

1− Jold
q

≥ E+[X]

1− Jold
q

,

The remainder of the proof is dedicated to showing that the right-hand side is exactly equal to the
desired term:

E+[X]

1− Jold
q

= ∆µq(πθold) · η . (60)

To prove this, we start with the policy gradient identity from equation (10):

w · ∇θ Jq(πθold) = Jold
q (1− Jold

q ) ·∆µq(πθold) .
We can express policy gradient ∇θ Jq(πθold) in terms of an expectation over negative responses.
Using the fact that Jq(πθold) = Po⃗∼πθold (·|q)

[
o⃗ ∈ O+

q

]
, we get

∇θ Jq(πθold) = ∇θ Po⃗∼πθold (·|q)
[
o⃗ ∈ O+

q

]
= E

[
1{o⃗ ∈ O+

q } · ∇θ logπθold(o⃗ | q)
]

= Jold
q · E+

[
∇θ logπθold(o⃗ | q)

]
.

Substituting this back into our gradient identity yields:

w · Jold
q · E+

[
∇θ logπθold(o⃗ | q)

]
= Jold

q (1− Jold
q ) ·∆µq(πθold) .

Dividing by Jold
q and multiplying by η, we find

η · E+
[
w · ∇θ logπθold(o⃗ | q)

]
= (1− Jold

q ) ·∆µq(πθold) · η .

From the definition of X in (54), the left-hand side is E+[X]. This confirms equation (60) and
completes the proof of inequality (57a).

Proof of Inequality (57b): The final step is to bound the unconditional log-MGF, logE[eX ]. Our
strategy is to view X as the final value of a martingale and apply a variant of Hoeffding’s inequality.

Martingale Formulation. Consider a random response o⃗ generated from policy πθold , i.e., o⃗ ∼
πθold(· | q). The random variable X is a sum over the tokens in the response o⃗:

X =

|o⃗|∑

t=1

η
{
w · ∇θ logπθold(ot | q, o⃗<t)

}
.
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Let Ft be the σ-field generated by the prompt q and the response prefix o⃗≤t. We define a martingale
difference sequence {ξt}:

ξt : = η
{
w · ∇θ logπθold(ot | q, o⃗<t)

}
. (61)

Then Xt =
∑t
t′=1 ξt′ is a martingale with respect to the filtration {Ft}, and X = X|o⃗|. By

Assumption 2, the increments are bounded: |ξt| ≤ Gp · η.

Supermartingale and Optional Stopping. Using Hoeffding’s lemma (Boucheron et al., 2013, Lemma
2.6) on the conditional expectation, we have

E
[
exp(2 ξt)

∣∣ Ft−1

]
≤ exp

{
2G2

pη
2
}
.

This allows us to construct a supermartingale {Mt}T∞
t=1:

Mt : = exp
{
2Xt − 2G2

pη
2 · t

}
for t = 1, 2, . . ..

Since |o⃗| ≤ T∞ is a bounded stopping time, Doob’s optional stopping theorem applies, giving
E[M|o⃗|] ≤ E[M0] = 1. This means

E
[
exp

{
2X − 2G2

pη
2 · |o⃗|

}]
= E

[
M|o⃗|

]
≤ 1 .

Cauchy-Schwarz and ψ1 Norm. We now isolate E[eX ] using the Cauchy-Schwarz inequality:

E[eX ] ≤ E
[
exp

{
2X − 2G2

pη
2 · |o⃗|

}] 1
2

E
[
exp

{
2G2

pη
2 · |o⃗|

}] 1
2 ≤ E

[
exp

{
2G2

pη
2 · |o⃗|

}] 1
2

,

where the last step used our supermartingale bound. Taking the logarithm gives

logE[eX ] ≤ 1

2
logE

[
exp

{
2G2

pη
2 · |o⃗|

}]
.

Finally, we bound the remaining term using the sub-exponential (ψ1-Orlicz) norm of the response
length, Tψ1 from Assumption 3. By definition,

E
[
exp{|o⃗|/Tψ1}

]
≤ 2 .

Consider a function ϕ(λ) : = logE[exp(λ |o⃗|)], which is convex with ϕ(0) = 0. Under condition
0 ≤ 2G2

pη
2 ≤ 1/Tψ1 , the convexity implies

ϕ(2G2
pη

2) ≤ 2G2
pη

2Tψ1 · ϕ(1/Tψ1) ≤ 2 log 2 ·G2
pη

2Tψ1 .

It follows that

logE
[
exp

{
2G2

pη
2 · |o⃗|

}]
= ϕ(2G2

pη
2) ≤ 2G2

pη
2 · Tψ1 .

Plugging this back into our bound for logE[eX ] gives

logE[eX ] ≤ G2
pη

2 · Tψ1 .

This establishes inequality (57b) and completes the proof.

F FURTHER EXPERIMENTS AND DETAILS

F.1 REINFORCE ON AN MAB PROBLEM

Here, we consider a simplified version of the experiment in Section 5.1, for a single context/prompt.
We run REINFORCE (with an exact value baseline) on a tabular softmax policy class over a bandit
problem with 100 arms, with a randomly chosen best arm, having reward 1 with all other arms 0. The
logits θk are initialized as a constant and updated according to the exact gradient update rule:

θk+1 = θk + η · Ey∼πθk
[(∇ℓ logπθk(y)) · (r(y)− J(πθk))] ,

with fixed stepsize η > 0, run over K : = 10, 000 steps.
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We construct three plots in Figure 4, based on the value function J(k), gradient gap ∆µ(k), and
the cumulative gradient gap

∑K
k=0[∆µ(k)]+ · ηk, colored by the step count k. Interestingly, the

curve k 7→ ∆µq(k) behaves as a concave quadratic. This is in fact explainable via calculating the
alignment gap using our advantage expression (10):

wk = ∇θ J(πθk) = (πθk(a
⋆) · (1− πθk(a

⋆)) · 1{a = a⋆} − πθk(a) · πθk(a⋆) · 1{a ̸= a⋆})a∈[100] .

Thus,

∆µq(k) =
1

J(πθk) · (1− J(πθk))
⟨∇θ J(πθk),∇θ J(πθk)⟩

= πθk(a
⋆) · (1− πθk(a

⋆)) + πθk(a
⋆)

∑

a ̸=a⋆

πθk(a)
2

1− πθk(a
⋆)
.

Now, defining the vector v : = (πθk(a))a̸=a⋆ , since we have 1
99∥v∥21 ≤ ∥v∥22 ≤ ∥v∥21 and since

∥v∥1 = 1− πθk(a
⋆), we have the above RHS scales like ≈ πθk(a

⋆) · (1− πθk(a
⋆)).

Altogether, our experiment here reinforces the message that increasing cumulative gradient gap
corresponds to convergence as in Corollary 1.

Figure 4: MAB Experiments.

F.2 FURTHER ELABORATION ON CONTEXTUAL BANDIT EXPERIMENTS

Our theoretical analysis so far has focused on convergence for a single prompt q. A natural question
is: how does the theory extend to the case of multiple prompts or questions? To illustrate this, we
consider a contextual bandit simulation. In this setup, each iteration k draws a random context xk
(equivalent to a prompt qk in our framework), and the update gradient wk is computed from that
context xk. Crucially, the same update direction is then applied globally to all prompts (via the shared
parameter θ).

Two scenarios can arise: Case (a): Alignment. For some prompts q (or contexts x), the update
direction wk aligns closely with the Gradient Gap g+

q − g−
q . In these cases, the Gap Alignment

∆µq(k) is positive and large, leading to effective improvement. Case (b): Misalignment. For other
prompts, the Gradient Gap is nearly orthogonal to wk. Here, ∆µq(k) is small, and applying the same
step size ηk can cause overshooting, preventing performance gains.

Our simulation confirms this intuition: some contexts consistently overshoot and are difficult to
improve, while those with stronger alignment improve steadily—the better the alignment, the greater
the improvement. For overshooting contexts, there is no gradual accumulation of ∆µq(k) toward
improvement; instead, crossing into the overshooting region acts as a decisive threshold, after which
performance collapses toward zero with no recovery.

F.3 DETAILS ON LANGUAGE MODEL EXPERIMENTS

Each of our training routines were performed on a single NVIDIA H200 SXM GPU (with 141GB
of VRAM), using the TRL framework (von Werra et al., 2020) for training GRPO without KL
regularization.
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For training on GSM8k, we performed 3000 training steps with each step involving 4 prompts per
batch, 4 responses per prompt in the GRPO estimator, a learning rate of 5 · 10−6, and maximum
prompt and completion sequence lengths of 256.

For training on DAPO-17k, we performed 1000 training steps with each step involving 4 prompts per
batch, 4 responses per prompt, a learning rate of of 10−6, and max sequence lengths of 2048.

To compute the validated accuracies, we held out 20% of the questions in each dataset as a holdout
test/validation set. Finally, we used a binary reward function on the exact match of the final answer,
with validated accuracies in Figure 2 reported as an average over 5 tries for each step’s model.
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