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1 DETECTION RESULTS ON INVERSE-TEXT
In addition to comparing the recognition results of ’None’ and ’Full’,
we also supplement the comparison of detection results here. We
compare some mainstream end-to-end methods. DNTextSpotter
employs the same data augmentation and the same additional pre-
training datasets as DeepSolo, a mixture of Synth150K, MLT17,
Total-Text, IC13, IC15, and TextOCR. After fine-tuning on the Total-
Text for 2𝑘 iterations, DNTextSpotter directly applies these updated
weights to assess performance on the InverseText dataset. It con-
sistently outperforms current state-of-the-art methods, achieving
94.3% precision, 77.2% recall, and an F1-score of 84.9%.

Table 1: Detection Performance on InverseText. The top two
scores are shown in bold red and blue fonts.

Method Detection

Precision Recall F1

ABCNet [3](ResNet-50-FPN) 85.1 68.5 75.9
ABCNet v2 [4](ResNet-50-FPN) 87.1 64.6 74.2
TESTR [6](ResNet-50) 91.8 54.4 68.3
ESTextSpotter [1](ResNet-50) 78.7 71.4 74.9
DeepSolo [5](ResNet-50) 93.9 63.8 76.0
DeepSolo [5](ViTAEv2-S) 95.1 69.1 80.0

DNTextSpotter(ResNet-50) 94.3 77.2 84.9
DNTextSpotter(ViTAEv2-S) 95.4 79.2 86.4

2 DETAILS OF THE INSTABILITY
MEASUREMENT

We analyze the instability of bipartite graph matching used by DN-
DETR[2]. In the main text, we group every 10𝑘 iterations as one
group. We adopt this setting here as well. For a training image, we
represent the predicted text instances from transformer decoders
at the 𝑖-th group as Pi =

{
𝑃𝑖0, 𝑃

𝑖
1, ..., 𝑃

𝑖
𝑁−1

}
, where 𝑁 signifies the

total count of detected text instances, and the𝑀 ground truth text
instances are denoted as G = {𝐺0,𝐺1,𝐺2, ...,𝐺𝑀−1}. After bipartite
matching, we generate a vector Wi =

{
𝑊 𝑖

0 ,𝑊
𝑖
1 , ...,𝑊

𝑖
𝑁−1

}
for the

𝑖-th iteration to capture the matching outcomes, defined by:

𝑊 𝑖
𝑛 =

{
𝑚, if 𝑃𝑖𝑛 matches 𝐺𝑚

−1, if 𝑃𝑖𝑛 matches nothing (1)

The stability for a single training image at iteration 𝑖 is then deter-
mined by the variance between its𝑊 𝑖 and𝑊 𝑖+1, calculated as:

𝐼𝑆𝑖 =

𝑁∑︁
𝑘=0

1(𝑊 𝑖
𝑛 ≠𝑊 𝑖+1

𝑛 ) (2)

Here, 1(·) stands for the indicator function, where 1(𝑧) = 1 if 𝑧
is true, and 0 otherwise. The overall stability for iteration 𝑖 across
the dataset is obtained by averaging these stability values for all
images. Total Text contains a total of 1255 training images, with an
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Figure 1: We present an example of the attention mask when
the number of the group is equal to 2. The values in the gray
region are set to True to prevent information leakage from
the denoising part to the matching part. The values in the
orange and blue region are set to False, and the attention
scores for this region are computed.

average of 7.04 text instances per image, so the largest possible 𝐼𝑆
is 7.04 × 2 = 14.08. The 𝐼𝑆 visualization comparison results can be
seen in the main text.

3 SINGLE ATTENTION MASK
We further present the attention mask in a graphical form to fa-
cilitate a better understanding for the readers. The attention mask
A =

[
a𝑖 𝑗

]
(𝑔+2𝑛)×(𝑔+2𝑛) is shown in the main text as follows:

𝑎𝑖 𝑗 =


1, if 𝑗 < 𝑔 × 2𝑛 and ⌊ 𝑖

2𝑛 ⌋ ≠ ⌊ 𝑗
2𝑛 ⌋;

1, if 𝑗 < 𝑔 × 2𝑛 and 𝑖 ≥ 𝑔 × 2𝑛;
0, otherwise.

(3)

The visualization can be seen in Fig. 1.

4 MORE QUALITATIVE RESULTS ON
BENCHMARKS

We provide more visualization results for the TotalText, CTW1500,
ICDAR15, and InverseText datasets in Fig. 2, Fig. 3, Fig. 4, and Fig. 5.
From these visualization results, it can be seen that we achieve
advanced detection and recognition effects on texts of any shape.
On inverse-like texts, our spotting performance also does not show
any decline.
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Figure 2: Qualitative results on Total Text.

Figure 3: Qualitative results on CTW1500.
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Figure 4: Qualitative results on ICDAR15.

Figure 5: Qualitative results on InverseText.

5 LIMITATION AND DISCUSSION
Although DNTextSpotter achieves quite good performance, there
are still some limitations. The most significant is the excessive over-
head during training. Compared to the original vector shape of (bs,

100, 25, 256), during denoising training, the maximum shape can
reach (bs, 200, 25, 256). Given that the computational complexity of
the self-attention mechanism increases quadratically, the increased
computational cost when the sequence length grows from 100 to
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200 is non-negligible. DNTextSpotter was trained using 8 NVIDIA
Tesla H800 GPUs, requiring approximately 26 hours of training
time. Fortunately, the denoising training does not add any over-
head during inference, making it a worthwhile method for actual
deployment and application. Additionally, we have only applied
the denoising training method to the evaluation of English scene
text datasets and have not experimented with Chinese. We look for-
ward to DNTextSpotter achieving similarly good results on Chinese
datasets as well.
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