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Abstract

Background: Protein Development Our approach: novel framework + in vitro data + validation
« Key area in biotechnology * Few-shot protein language modelling
 Traditional methods are laborious and inefficient « Adapt MSA transformer to include in vitro fitness measurements
« Experimental directed evolutionmay « Extensive model evaluation & variant characterisation in vitro
require >10 000 screening samples * Improved in silico sequence predictions for high-performing variants
* ML-integrated protein engineering holdspromise in * 62% improved PET degradation over starting variant
de protein design and guided directed evolution * 16% improved PET degradation overcurrent state-of-the-art

e Most ML models have lacked robustness
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ICCM is a high-performing variant engineered through site-directed mutagenesis

Site saturation mutagenesis Few-shot simulated annealing
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Experimental Setup

 Starting protein: leaf-branch compost cutinase (LCC)

« PET degradation assays: cell lysate was incubated
with semi-crystalline PET for 72 h. Reaction products A R
were quantified by HPLC and used as a measure of
enzymatic activity.

« Thermostability assays: colorimetric reporter assay
was used to measure enzymatic rates before and
after heat treatment (2 h at 70°C). Thermostability
was calculated as the ratio of heat-treated to non- Position along the sequence Position along the sequence
heat-treated activity.
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Mutation locations found in variants fitter than wild-type are shown in red; mutation locations found in variants less fit than
wild-type are shown in blue. Highlighted on the crystal structure of LCC obtained from the protein databank, PDB ID: 4EBO
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Part of Capgemini Invent Zero-shot, p = 0.18 Few-shot, p = 0.51 examples used in 2" round training
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