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Temporal Enhancement for Video Affective Content Analysis
Anonymous Authors

ABSTRACT
With the popularity and advancement of the Internet and video-
sharing platforms, video affective content analysis has been greatly
developed. Nevertheless, existing methods often utilize simple mod-
els to extract semantic information. This might not capture com-
prehensive emotional cues in videos. In addition, these methods
tend to overlook the presence of substantial irrelevant informa-
tion in videos, as well as the uneven importance of modalities for
emotional tasks. This could result in noise from both temporal frag-
ments and modalities, thus diminishing the capability of the model
to identify crucial temporal fragments and recognize emotions. To
tackle the above issues, in this paper, we propose a Temporal En-
hancement (TE) method. Specifically, we employ three encoders
for extracting features at various levels and sample features to
enhance temporal data, thereby enriching video representation
and improving the model’s robustness to noise. Subsequently, we
design a cross-modal temporal enhancement module to enhance
temporal information for every modal feature. This module inter-
acts with multiple modalities at once to emphasize critical temporal
fragments while suppressing irrelevant ones. The experimental
results on four benchmark datasets show that the proposed tem-
poral enhancement method achieves state-of-the-art performance
in video affective content analysis. Moreover, the effectiveness of
each module is confirmed through ablation experiments.

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence.

KEYWORDS
video affective content analysis, temporal enhancement, cross-
modal attention

1 INTRODUCTION
In today’s digital era, video serves as a primary medium for con-
veying information. It enriches individuals’ daily lives and social
interactions with its unique narrative style and visual expression.
With the widespread adoption of the Internet and the popularity
of video-sharing platforms, a vast array of video content emerges,
emphasizing the crucial necessity for accurately comprehending
and analyzing the emotional undertones within videos. Video af-
fective content analysis seeks to capture various levels of semantic
information, including the video’s core content and depicted events,
to understand and predict the emotions that the video is expected
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Visual

Audio The man is angry and insults his neighbor.

GroundTrue Angry

Audio

GroundTrue Joy

Visual

Irrelevant background noise

(a)   Visual:           Audio:

(b)   Visual:           Audio:

Figure 1: Illustrations on whether modalities in different
videos can provide clues for emotional labels.

to induce in viewers[23, 36]. It holds significance across diverse do-
mains, including personalized video recommendations, emotional
robotics, and the evaluation of film and television productions.

There are currently two challenges in the task of video affective
content analysis. One concerns accurately characterizing the infor-
mation content within video and audio modalities, while the other
involves efficiently integrating the distinctive task-related informa-
tion provided by different modalities and capturing critical temporal
fragments for emotional cues. Regarding the first challenge, deep
learning-based feature extraction[16, 32, 34, 35] is increasingly em-
ployed. However, these approaches often utilize simplistic models
for extracting action or scene information from visual data, which
may not sufficiently capture the complete semantic information of
the video. Building upon this, Pan et al.[15] introduced the CLIP[17]
to encode static single-frame image semantic information, aiming
to attain enhanced semantic representation. Yet, It has not fully
leveraged the potent performance of the CLIP encoder. Addressing
the second challenge, two methods are currently prevalent in this
field including late fusion[35] and feature fusion[15, 34]. The for-
mer treats different modalities as independent, with each passing
through distinct data pipelines, thereby lacking interconnectivity
between them. In contrast, the latter facilitates modality interac-
tion during the model’s feature representation learning process,
leading to superior practical performance. Of course, as the number
of modalities (information sources) increases, designing effective
fusion modules introduces new challenges.

However, in the current research, the presence of noise in vari-
ous types of information is often overlooked, leading to suboptimal
outcomes in models. Noise may arise from two sources. First, in

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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video affective content analysis datasets, video durations are typ-
ically long, while the core clips capable of inducing groundtruth
emotions have relatively short durations[16]. This undoubtedly
results in more noise in terms of the temporal dimension that is
unrelated to the groundtruth emotion. Second, certain modalities
also function as noise compared to others. As illustrated in Fig1, the
visual information depicts "The man couldn’t stand the noise of the
neighbor’s decoration, so he goes to the neighbor’s house to insult
and smashes the bathtub". At the same time, the audio captures "The
man is angry and insults the neighbor" information in Fig 1(a). Both
visual and audio modalities offer precise and effective emotional
cues. Thus, the model should simultaneously consider information
from both modalities during the learning process. Nevertheless,
in Fig1(b), the visual description portrays "The man is performing
acrobatics," while the audio provides only "Irrelevant background
noise." During learning, the model should prioritize visual tempo-
ral information and suppress audio temporal information. Current
methods treat each modality as equally important when different
modalities interact, thereby introducing noise at the modality level.

To address the aforementioned issues about noise, we propose
a video affective content analysis method based on temporal en-
hancement. First, to represent complete semantic information in
the video, we employ three encoders to extract different feature
attributes such as semantics, motions, and audio characteristics.
Subsequently, we perform a feature temporal sampling to enrich
the temporal representation of the video, enhancing temporal data
and ensuring the model’s robustness to noise. Second, acknowledg-
ing the varying importance of different modalities during modal
interaction, we design a cross-modal temporal enhancement mod-
ule that accepts inputs of various modal features and designates
one modality as the primary modality for interaction with others.
Its aim is to focus on task-relevant temporal fragments while miti-
gating the impact of irrelevant ones. In this process, the temporal
features of modalities mutually influence each other rather than
operating independently. Finally, to enable synchronous interaction
among all modal temporal fragments, a global Transformer with
shared weights integrates cross-modal and intra-modal interaction.

We conduct experiments on the widely used VideoEmotion-
8[26], YF-E6[9], and LIRIS-ACCEDE[2] datasets, along with the
newly introduced VAD[24] dataset. The experimental results in-
dicate that our method outperforms state-of-the-art methods and
showcases its superiority. Additionally, the ablation experiments
confirm the significance of each module in our method.

In summary, the contributions of this paper are as follows:

• We design a cross-modal temporal enhancement module. It
facilitates the transfer of information from other modalities
to the primary modality, thereby augmenting the temporal
sequence of the primary modality. This module takes into
consideration the significance of each temporal fragment
while amalgamating temporal data from all modalities.

• We present a simple methodological framework named Tem-
poral Enhancement (TE). It can fortify both temporal repre-
sentation and temporal information, ultimately enhancing
the model’s resilience to noise and the ability to detect and
recognize key temporal fragments.

• The effectiveness of the proposedmethod is validated through
a lot of experiments and further analyses conducted on four
distinct datasets.

2 RELATEDWORKS
2.1 Video Affective Content Analysis
Video affective content analysis aims to predict the emotions ex-
pected to be elicited from viewers by the video. The key lies in
capturing the core visual or acoustic temporal information and
mapping it to the emotional space. Early research mainly focused
on designing representative and useful features for identifying
highly abstract emotions. Jiang et al.[9] employed numerous low-
level and intermediate features, such as SBank and OBank[10], for
identifying emotions. Sikka et al.[19] simply combined multiple
visual audio features to conduct emotions classification on video
fragments. Qiu et al.[16] pieced together action and scene features
as a whole, and then inputted them into a dual attention network
to learn frame information related to emotions and reduce the
influence of irrelevant information.

Recently, compared to manually selected features, deep learning-
based features and methods have demonstrated excellent repre-
sentation and predictive ability in predicting emotions in videos
[15, 16, 30, 32, 34, 35]. Zhang et al.[32] extracted frame-level depth
features and used discrete Fourier transform to obtain kernel fea-
tures for emotion recognition. Qiu et al.[16] proposed a dual-focus
attention network (DFAN), in which the time series focus module
concentrated on temporal keyframes, while the frame object focus
module concentrated on objects in each frame and searches for the
key objects that best represent emotional labels. Zhao et al.[35] were
the first to propose an end-to-end deep network named VAANet,
which applies spatial, channel, and temporal attention to visual
features and temporal attention to audio features for recognizing
video emotions. Zhang et al.[34] believed that previous methods
mainly focused on key visual frames, which may limit the ability
to encode the context describing expected emotions. Therefore, a
temporal erasure network was proposed, which locates keyframes
in a weakly supervised manner and can also learn contextual infor-
mation. Pan et al.[15] used three different video encoders to extract
features, namely visual image and motion features, as well as emo-
tional features of audio. They designed a cross-temporal multimodal
fusion module for temporal interaction within and between modal-
ities to capture temporal relationships between different modalities.
Simultaneously, to address the issue of insufficient model super-
vision by a single emotional label, the use of time-synchronized
comments as auxiliary supervision are proposed to provide richer
emotional clues.

Numerous works solely extract action and scene data from vi-
sual modalities, potentially insufficient for accurately representing
video content, thereby fundamentally constraining emotion predic-
tion abilities. Additionally, they frequently disregard the presence
of emotion-independent noise in the video, further compromising
the model’s capacity to capture crucial temporal fragments. Even
though Pan et al. [15] utilized different encoders for visual modali-
ties, it did not fully use the powerful semantic understanding of the
CLIP model due to the use of continuous fragments. Therefore, we
propose to use multiple encoders while utilizing temporal feature
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sampling to enrich the semantic representation of the video and
make the model more robust to noise.

2.2 Multimodal Fusion
The purpose of multimodal fusion is to integrate information from
two or more modalities to improve the prediction accuracy[1]. Tra-
ditional multimodal fusion uses either early fusion or late fusion
methods, which involve simple concatenation or addition[6]. Grad-
ually, more fusion strategies are being implemented from the per-
spective of feature interaction. Some studies [11, 27, 31] treat each
modal feature as a tensor, transforming modal fusion into tensor
fusion. Zadeh et al.[31] proposed the tensor fusion layer (TFN) to
simulate single-modal, bimodal, and bimodal interactions. Liu et
al. [11] proposed the low-rank multimodal fusion method (LMF)
to address the issue of poor computational efficiency in tensor
fusion. Multimodal sequences often exhibit discontinuous prop-
erties, requiring the inference of long-term dependencies across
modalities. Due to the success of Transformer models in these areas,
some studies are based on Transformer models to handle multi-
modal fusion[3, 12, 20, 21]. Tsai et al.[21] proposed MulT, which
extends the standard Transformer framework into a multimodal
Transformer model to directly fuse misaligned multimodal data.
Cheng et al.[12] argued that independent pairwise fusion in MulT
cannot utilize the advanced features of the source modality. Thus,
they proposed a progressive modal reinforcement method (PMR)
for multimodal fusion of misaligned multimodal sequences.

In tasks involving video affective content analysis, the fusion of
information encompasses various modal features from both video
and audio sources. Given the inherent temporal nature of videos,
modal interaction methods based on the transformer or attention
mechanisms are extensively employed in this field. Zhang et al. [34]
introduced a temporal correlation learning module to comprehen-
sively explore implicit correspondences among different fragments
across audio and visual modalities. Pan et al.[15] devised a cross-
temporal multimodal fusion module that utilized self-attention to
understand the interrelations between modalities within each video
fragment and across different fragments. This enables full capture
of temporal dependencies between visual and audio signals. How-
ever, Each modality can only independently focus on useful clues
from other modalities, without considering the differences in impor-
tance of these modalities. Because temporal fragments that can be
given greater weight in a certain modality may have a very limited
effect when placed in the perspective of all modalities. Treating
all modalities equally may introduce noise, indirectly weakening
the role of the most crucial temporal cues. Therefore, we propose a
cross-modal temporal enhancement module. When each modality
is enhanced, the information from multiple modalities is combined
to enhance the correlated temporal fragments, while weakening
the weight of irrelevant temporal fragments to suppress noise.

3 PROBELM DESCRIPTION
The purpose of video affective content analysis is to utilize the
semantic information present in both video and audio to predict
the emotional responses evoked in viewers. This entails the model
learning a mapping from the semantic space to the emotional space.
The input consists of the original video denoted as 𝑥𝑣 ∈ 𝑅𝑇𝑣×𝐻×𝑊 ×3

and the original audio represented as 𝑥𝑎 ∈ 𝑅𝑙𝑎 . Here, 𝑇𝑣 , 𝐻 , and𝑊
symbolize the video frame number, as well as the height and width
of an individual frame image, respectively. Additionally, 𝑙𝑎 signifies
the data length of a one-dimensional audio signal. In classifica-
tion tasks, the output 𝑦 represents a discrete category, signifying
a particular emotion. Conversely, in regression tasks, 𝑦 denotes a
continuous real value, indicating the intensity and magnitude of a
specific emotional dimension.

4 METHODOLOGY
The overall framework of video affective content analysis based
on temporal enhancement method is illustrated in Fig 2. The two
modalities, video, and audio, undergo feature extraction, yielding
various semantic features via three encoders. Initially, preliminary
enhancement of temporal data is conducted through feature tempo-
ral sampling. Subsequently, the three features undergo independent
cross-modal temporal enhancement via separate modules, resulting
in enhanced temporal information for each modal feature. Follow-
ing this, the three features are concatenated along the temporal
dimension, and fed into the global Transformer to facilitate tem-
poral synchronization interaction across all modalities. Lastly, the
fully integrated features undergo temporal averaging to represent
the entire feature, and then they are concatenated and inputted into
the classifier for emotion prediction.

4.1 Feature Extraction
Fragment Motion Features: To extract fragment motion features
from the original pixel video, the video must first be segmented.
Here, each fragment comprises 16 frames, with an overlap of 8
frames between adjacent fragments. Thus, for a video with the
frame number of 𝑇𝑣 , the total number of fragments is 𝑇𝑚 = 𝑇𝑣/8.
Resizing each frame of the fragment to 112 × 112 directly, the 3D
ResNet[7] is employed to extract motion features independently
from each fragment, and outputs feature 𝑓 𝑖𝑚 ∈ R𝐻𝑚×𝑊𝑚×𝐶𝑚 . As
we do not focus on spatial information details, the output features
are spatially averaged to obtain vector representations of the frag-
ments. Finally, the motion features extracted from each video are
represented as 𝑓𝑚 ∈ R𝑇𝑚×𝐶𝑚 .

Image Semantic Features: To maintain alignment with motion
features, a single frame of the video is selected every 8 frames, and
each frame is scaled to a size of 224×224. For each frame, we utilize
the basic CLIP model (ViT-B/32)[17] as the image encoder. The
vector at the [CLS] token serves as the feature representation of the
entire image, with a dimension of 𝑓 𝑖𝑠 ∈ R𝐶𝑠 . Finally, the semantic
features extracted from each video are represented as 𝑓𝑠 ∈ R𝑇𝑠×𝐶𝑠 ,
where 𝑇𝑠 is calculated as 𝑇𝑣/8.

Audio Characteristic Features: Initially, Mel-Frequency Cep-
stral Coefficients (MFCC) are employed to derive the audio charac-
teristic description from the original audio signal. By establishing a
proportional relationship, the temporal interval of eachmotion frag-
ment is mapped to the corresponding temporal position of MFCC
features, thereby acquiring the primary features of the associated
audio fragment. These primary features are fed into the audio recog-
nition model VGGish1, which has been pre-trained on the AudioSet
dataset[5], to extract the high-level feature representation of the
1https://github.com/JMGaljaard/VGGish-pytorch
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Figure 2: Illustration of the overall structure of the temporal enhancementmethod. The variousmodal features are distinguished
by different colors. Locked modules do not participate in training. As data progresses through the pipeline, the temporal
information from each modality is enhanced.

audio fragment. The model outputs the feature vector 𝑓 𝑖𝑎 ∈ R𝐶𝑎 ,
and ultimately, the temporal feature representation of the entire
audio signal is denoted as 𝑓𝑎 ∈ R𝑇𝑎×𝐶𝑎 .

The encoders responsible for extracting various semantic fea-
tures are not involved in the training process. Consequently, in prac-
tical applications, these extracted features are pre-stored, leading to
a significant reduction in computational workload and acceleration
of the training process.

4.2 Temporal Sampling
During the feature extraction, each feature maintains equal tem-
poral length and adheres to a strict one-to-one correspondence,
denoted as 𝑇𝑚 = 𝑇𝑠 = 𝑇𝑎 = 𝑇𝑣/8 = 𝑇𝑐 , where 𝑇𝑐 represents the
common length. However, 𝑇𝑐 tends to vary significantly among
different videos within the dataset, posing challenges for model
training. Furthermore, videos often contain multiple fragments that
evoke emotional responses in viewers. They are distributed across
various periods. Simultaneously, numerous fragments may lack
relevance to the groudtruth label. Consequently, the model needs
to effectively identify key temporal fragments while disregarding
noise fragments. The strategy of segmenting continuous fragments
in [15] generally requires setting a long temporal length to encom-
pass useful fragments. However, this may result in a surplus of
redundant and homogeneous data during training, hindering the
model’s ability to discern temporal feature differences and poten-
tially leading to overfitting.

Unlike the strategy in [15], we opt to randomly sample the en-
tire temporal features directly, without requiring continuity. The
main motivation for this choice is that the CLIP model is powerful

enough for semantic understanding and representation capabilities
of single-frame images. In addition, the representation of videos
from different perspectives can be greatly enriched. These represen-
tations are temporally distinct, which provides an opportunity for
the model to notice key temporal fragments. Specifically, the three
encoded and stored features have a common temporal length of 𝑇𝑐 .
We define a constant sampling temporal length, denoted as 𝑇 . We
utilize a random sampler from the set {1, 2, 3, · · · ,𝑇𝑐 }, sampling 𝑇
times without replacement to obtain𝑇 unique numbers, as depicted
in following equation:

[𝑖𝑑1, 𝑖𝑑2, ·, 𝑖𝑑𝑇 ] = 𝑆𝑎𝑚𝑝𝑙𝑒𝑟 ({1, 2, 3, · · · ,𝑇𝑐 }) (1)

After that, the𝑇 numbers are sorted from small to large to simu-
late their temporal sequence:

[𝑠1, 𝑠2, · · · , 𝑠𝑇 ] = 𝑆𝑜𝑟𝑡𝑒𝑑 ( [𝑖𝑑1, 𝑖𝑑2, · · · , 𝑖𝑑𝑇 ]) (2)

Indexing among the three features according to the sorted num-
bers to obtain the representation of all features of the video and
audio modalities in the current batch:

¯𝑓𝑚 = 𝑓𝑚 [𝑠1, 𝑠2, · · · , 𝑠𝑇 ] ∈ R𝑇×𝐶𝑚

𝑓𝑠 = 𝑓𝑠 [𝑠1, 𝑠2, · · · , 𝑠𝑇 ] ∈ R𝑇×𝐶𝑠

𝑓𝑎 = 𝑓𝑎 [𝑠1, 𝑠2, · · · , 𝑠𝑇 ] ∈ R𝑇×𝐶𝑎

(3)

For the subsequent interaction of the three features, three linear
layers are used to map the features to the same dimension 𝑑 . The
transformed features are ¯𝑓𝑚, 𝑓𝑠 , 𝑓𝑎 ∈ 𝑅𝑇×𝑑 . Since temporal sampling
does not consider the temporal relationship between fragments, we
choose absolute position encoding to inject sequential information
into the temporal features. The position encoding utilizes sine and
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Figure 3: The cross-modal temporal enhancement module consists of multimodal cross attention and feed-forward network
(FFN).

cosine functions of different frequencies. Its formula is as follows:

𝑃𝐸 (𝑥,2𝑦) = 𝑠𝑖𝑛(
𝑥

100002𝑦/𝑑 )

𝑃𝐸 (𝑥,2𝑦+1) = 𝑐𝑜𝑠 (
𝑥

100002𝑦/𝑑 )
(4)

where 𝑥,𝑦 and 𝑑 respectively represent the temporal position, the
position of the dimension, and the size of the dimension. The calcu-
lated fixed position coding value is added to the three transformed
features to obtain the final temporal feature representation.

4.3 Cross-Modal Temporal Enhancement
Module

In order to enhance the temporal information of each feature, we
design a cross-modal temporal enhancement module based on the
attention mechanism. The module enables one modality to incor-
porate information from other modalities effectively. As illustrated
in Fig 3, this module comprises two main components. First, multi-
modal cross-attention facilitates the simultaneous integration of
various modal features, focusing on relevant temporal fragments
while suppressing irrelevant ones. Additionally, to standardize the
numerical range of diverse features, the adaptive shift module is
employed at the residual connection. Second, a variant of the gated
linear unit (GLU) introduced by Dauphin et al.[18] is utilized to
construct the FFN, thereby facilitating the nonlinear transformation
of modal features.

4.3.1 Multimodal Cross-Attention. Assume that there are three
modal temporal feature inputs 𝑋1, 𝑋2, 𝑋3 ∈ R𝑇×𝑑 , where 𝑋1 is the
feature that needs to be enhanced, and the others are features that
provide information. First, layer regularization is performed on
each feature to obtain a normalized representation:

𝑋 𝑙𝑛1 = 𝐿𝑁1 (𝑋1);𝑋 𝑙𝑛2 = 𝐿𝑁2 (𝑋2);𝑋 𝑙𝑛3 = 𝐿𝑁3 (𝑋3) (5)

then 𝑋 𝑙𝑛1 is mapped to the query domain, and 𝑋 𝑙𝑛2 , 𝑋 𝑙𝑛3 is mapped
to the key domain and the value domain through linear transfor-
mation:

𝑄 = 𝑋 𝑙𝑛1 𝑊𝑄1

𝐾2 = 𝑋 𝑙𝑛2 𝑊𝐾2 ;𝑉2 = 𝑋 𝑙𝑛2 𝑊𝑉2

𝐾3 = 𝑋 𝑙𝑛3 𝑊𝐾3 ;𝑉3 = 𝑋 𝑙𝑛3 𝑊𝑉3

(6)

where𝑊𝑄1 ,𝑊𝐾2 ,𝑊𝑉2 ,𝑊𝐾3 ,𝑊𝑉3 ∈ 𝑅𝑑×𝑑 is the learnable parameter
matrix. 𝐾2 and 𝐾3 are spliced along temporal dimension to form
the multimodal key 𝐾 ∈ R2𝑇×𝑑 , and 𝑉2 and 𝑉3 are spliced along
temporal dimension to form a multimodal value 𝑉 ∈ R2𝑇×𝑑 . The
attention weight between the multimodal key 𝐾 and the query 𝑄
is multiplied with the multimodal value 𝑉 to obtain the enhanced
feature representation, as followings:

𝑋2,3→1 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾
𝑇

√
𝑑

)𝑉 ∈ 𝑅𝑇×𝑑 (7)

When querying keys of different modalities, it’s important to
note that the same query domain is utilized. During the calculation
of attention weights for all query-key pairs, each temporal fragment
is compared across all modalities. This process accounts for the
intrinsic importance of each modality. Even less significant frag-
ments within a modality are given relatively higher weights, these
fragments may still compete with important fragments from other
modalities at a global level, resulting in them ultimately receiving
small weights.

In order to integrate the features𝑋2,3→1 obtained by information
transfer into the original features 𝑋1, we use the scaling factor 𝛼
to limit the numerical adaptation of the temporal feature of the
former to a reasonable range, the calculation formula is as follows:

𝑋1 = 𝑋1 + 𝛼𝑋2,3→1 (8)
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𝛼 =𝑚𝑖𝑛{ ∥𝑋1∥2
∥𝑋2,3→1∥2

, 1} (9)

where ∥·∥2 represents the L2 norm.

4.3.2 FFN. Unlike the general feed-forward network, this module
has two branches, with additional branches serving as gating mech-
anisms. The primary function of this module is to apply a specific
nonlinear transformation to the enhanced features 𝑋1. The features
undergo layer regularization before being separately fed into the
two branches. The outputs of these branches are element-wise mul-
tiplied. Then the result is subjected to linear transformation and
added to the original input, resulting in the final enhanced feature
representation. The formula is as follows:

¯
𝑋 𝑙𝑛1 = 𝐿𝑁 (𝑋1)

𝑋1 = 𝑋1 + (𝐺𝑒𝐿𝑈 ( ¯
𝑋 𝑙𝑛1 𝑊1) ⊗ ( ¯

𝑋 𝑙𝑛1 𝑊2))𝑊3
(10)

where𝑊1,𝑊2,𝑊3 represents the matrix parameters in the linear
layer, and 𝐺𝑒𝐿𝑈 is the activation function.

4.4 Global Transformer and Prediction
The three modal features undergo multiple layers of independent
cross-modal temporal enhancement modules, continuously rein-
forcing each feature until the modalities achieve full interaction.
However, the temporal fragments within the modalities have yet
to establish a connection with each other. To address this, a global
Transformer with shared matrix parameters is employed to model
all temporal relationships within and between modalities simul-
taneously. The enhanced features obtained above are denoted as
¯𝑓𝑚, 𝑓𝑠 , 𝑓𝑎 respectively. They are then concatenated along the tem-
poral dimension to obtain a multimodal feature representation
𝑓 = [ ¯𝑓𝑚 ; 𝑓𝑠 ; 𝑓𝑎]. Initially, all temporal interactions are completed
through the self-attention layer, as demonstrated in the following:

¯𝑓 𝑙𝑛 = 𝐿𝑁 (𝑓 )

𝑓 =
¯𝑓 𝑙𝑛 + 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (

( ¯𝑓 𝑙𝑛𝑊𝑄 ) ( ¯𝑓 𝑙𝑛𝑊𝐾 )𝑇 )√
𝑑

) ( ¯𝑓 𝑙𝑛𝑊𝑉 )
(11)

where𝑊𝑄 ,𝑊𝐾 , 𝑄𝑉 represents the three learnable parameter matri-
ces, which act on three modalities at the same time. Subsequently,
the temporal features are transformed nonlinearly through the
general feedforward network layer, as following:

¯𝑓 𝑙𝑛 = 𝐿𝑁 (𝑓 )

𝑓 =
¯𝑓 𝑙𝑛 + 𝑅𝑒𝐿𝑈 ( ¯𝑓 𝑙𝑛𝑊1)𝑊2

(12)

where𝑊1,𝑊2 represents the two learnable parameters in the feed-
forward network.

After the interaction, the multimodal features are split into their
respective modal features [ ¯𝑓𝑚 ; 𝑓𝑠 ; 𝑓𝑎] = 𝑓 in the temporal dimen-
sion. These features are averaged to represent the final vector repre-
sentation of semantic features at different levels. Finally, the feature
vectors are spliced and inputted to the classifier/regressor to com-
plete emotion prediction. The calculation formula is as follows:

𝑦 = 𝑀𝐿𝑃 ( [ ¯𝑓𝑚
𝑚𝑒𝑎𝑛

, 𝑓𝑠
𝑚𝑒𝑎𝑛

, 𝑓𝑎
𝑚𝑒𝑎𝑛]) (13)

where MLP stands for the classifier/regressor, which is a nonlinear
multi-layer perceptron.

5 EXPERIMENTS
This section first introduces the dataset used in the experiment,
and then explains the technical details. After that, we compare
our method with state-of-the-art approaches. Finally, we conduct
the ablation experiment to verify the effectiveness of the features
and modules. It is worth mentioning that we further analyze the
training process of the temporal enhancement method and the role
of cross-modal temporal enhancement through visualization in the
supplementary material.

5.1 Datasets
To evaluate the proposed method based on temporal enhancement,
we employ commonly used public datasets in the field of video
affective content analysis, including VideoEmotion-8[9], YF-E6[26],
LIRIS-ACCEDE [2]. In addition, the new VAD dataset[24] has the
same number of modal features as we extracted in the above three
datasets, so our method is also experimented on the VAD dataset
and compared with its baseline model. A detailed introduction to
each dataset as well as the experimental setup is included in the
supplementary material.

5.2 Implementation Details
Based on different label attributes, the datasets are categorized
into two groups, each requiring specific evaluation metrics. For the
VideoEmotion-8, YF-E6, and VAD datasets, they involve classifica-
tion tasks. So the Accuracy (ACC) serves as the primary evaluation
metric and the F1-score is supplemented for the VAD dataset. In con-
trast, for the MediaEval2016 task[13] utilizing the LIRIS-ACCEDE
dataset, it entails a regression task. So the Mean Squared Error
(MSE) and Pearson Correlation Coefficient (PCC) are employed
as evaluation metrics. Other relevant implementation details are
included in the supplementary material.

5.3 Comparison with state-of-the-art methods
We compare the proposed method with state-of-the-art methods
on various datasets in the field of video affective content analysis.
For YF-E6 and VideoEmotion-8 datasets, advanced works include
VAANet[35], Dual[16], TAM[15], WECL[34], KeyFrame[25], and
FAEIL[33]. They are all based on deep learning methods. For the
MediaEval2016 task, the state-of-the-art methods include RBN[4],
MMDRBN[22], MML[28], AFRN[29], MMLGAN[14] and TAM[15].
They include both traditional and deep learning based models. For
the VAD dataset, we compare with the baseline models provided in
the dataset, including TFN[31], MISA[8], and MulT[21].

Table 1 compares our method with the advanced approaches on
the YF-E6 and VideoEmotion-8 datasets. In the table, all methods
are further differentiated according to the two attributes of "addi-
tional auxiliary data" and "pre-stored features". As illustrated in
Table 1, our method achieves the classification accuracy of 64.91%
and 59.39% on the YF-E6 and VideoEmotion-8 datasets respectively,
which are improved by 3.91% and 1.76% compared to the previ-
ous best results. This demonstrates the effectiveness of the pro-
posed temporal enhancement method. To exclude the improvement
brought about solely by adding the image semantic information
of the CLIP encoder, our method is compared with the "TAM w/o
TSC" method. Both use the same encoder and share the pre-stored
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features without the participation of additional data. Our method
shows an improvement of 4.27% and 3.35% on the two datasets re-
spectively. Even though the TAM method adds additional auxiliary
data, our method still far exceeds it. Compared with the KeyFrame
and FAEIL methods that use additional auxiliary data, our method
surpasses them by extracting information about emotional clues
and events in the original video through a powerful encoder. This
approach proves to be more effective than the way that uses ad-
ditional data but lets the model learn from the original signal. It
also demonstrates that there is still untapped potential in the orig-
inal video. It is worth mentioning that although the method of
pre-stored features cannot perform spatial data enhancement on
single-frame images in the video like VAANet and WECL meth-
ods, and may lead to a slight loss in performance, it significantly
accelerates model training and prediction.

Table 2 compares ourmethodwith the state-of-the-art approaches
on the MediaEval2016 task. In the Valence regression task, our
method achieves the best performance on both indicators. Specifi-
cally, compared with the previous best method, our method reduced
the MSE metric by 0.004 while increasing the PCC metric by 0.028.
In the Arousal regression task, our method achieves only moderate
results on the MSE, but again attains the highest results on the PCC.
Pan et al.[15] explain the reasons for this phenomenon. That is,
the numerical distribution of the Arousal label is highly concen-
trated. Even if the model predicts a constant value of 3.3, it can
still yield the MSE of 0.6159, which is also much higher than the
result of our method. However, the model obviously did not learn
any emotional information about the input, so the PCC metric may
be more suitable to evaluate this task[13]. It is worth noting that,
when comparing our method with the "TAM w/o TSC" method,
our method outperforms it in both metrics, with improvements of
0.2 and 0.038 on the MSE and PCC respectively. This improvement
shows that even for regression tasks, our method based on tempo-
ral enhancement is more effective than the cross-modal temporal
fusion method proposed in TAM. Combining the results of Table
1 and Table 2, our method outperforms the advanced approaches
in both classification and regression tasks. This indicates the excel-
lent ability of our method to capture and identify task-related core
temporal information.

Table 3 shows the experimental results of our method and base-
line models on the newVAD dataset. As observed from the table, our
method outperforms other models on five of the six metrics for the
three labels, with the remaining metric deviating from the best re-
sults by only 0.2%. Concerning Valence and Arousal labels, theMulT
stands out as the best-performing model. Similar to our method,
both employ cross-modal attention. However, unlike our method,
the modal interactions in MulT are independent of each other and
solely receive information from the original signal. Contrarily, our
method receives information from all modalities simultaneously
during each modal interaction. This enables the concentration of
the most relevant information between modalities while suppress-
ing all weakly relevant information through the softmax function.
In comparison to MulT, our method improves the accuracy met-
ric by 1.5% and 1.2% respectively. For the primary emotion labels,
our method compared with MISA achieves improvements of 3.7%
and 4.2% in accuracy and F1-score respectively. In comparison to
MulT, although our method does not attain the highest value in the

Table 1: Comparison with the state-of-the-art methods on
YF-E6 and VideoEmotion-8 datasets. The result represents
the accuracy (%) on the test set.

Method Auxiliary Pre-store YF-E6 VideoEmotion-8
VAANet ✕ ✕ 54.5 55.3
Dual ✕ ✓ 57.37 53.34

TAM w/o TSC ✕ ✓ 60.64 56.04
WECL ✕ ✕ 58.2 57.3

KeyFrame ✓ ✕ 59.51 52.85
FAEIL ✓ ✕ 60.44 57.63
TAM ✓ ✓ 61.00 57.53
TE ✕ ✓ 64.91 59.39

Table 2: Comparison with the state-of-the-art methods on
the MediaEval2016 task.

MediaEval2016
Valence Arousal

Method MSE↓ PCC↑ MSE↓ PCC↑
RBN 0.332 0.387 0.766 0.416

MMDRBN 0.303 0.405 0.713 0.470
MML 0.198 0.399 1.173 0.446

MMLGAN 0.194 0.445 1.077 0.491
AFRN 0.193 0.468 0.524 0.522

TAM w/o TSC 0.172 0.529 1.115 0.550
TAM 0.177 0.533 0.754 0.560
TE 0.168 0.561 0.915 0.588

Table 3: Comparison with the baseline models on the new
VAD dataset.

VAD
Valence Arousal Primary Emotion

Method ACC↑ F1↑ ACC↑ F1↑ ACC↑ F1↑
TFN 0.630 0.626 0.603 0.585 0.273 0.206
MISA 0.633 0.631 0.593 0.564 0.449 0.216
MulT 0.644 0.642 0.618 0.608 0.338 0.260
TE 0.659 0.657 0.630 0.612 0.486 0.258

F1-score, the F1-score metric only decreases by 0.2%, while the accu-
racy surges by 14.8%. This phenomenon is explained in [24]. MISA
prioritizes predicting categories with a large proportion, whereas
MulT focuses on predicting categories with a smaller proportion.
Undoubtedly, our method achieves a better balance between the
two and yields commendable results.

5.4 Ablation Study
In order to explore the importance of different features for video
affective content analysis and the effect of different feature combina-
tions, we conduct ablation experiments on motion features, image
semantic features, and audio features on the YF-E6 dataset. The ex-
perimental results are shown in Table4. Comparing the results of all
combinations of only two features, the "image + audio" combination
achieves the best results, while the "motion + audio" combination
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Table 4: Ablation experiment of each feature onYF-E6 dataset.
The result represents the accuracy (%) on the test set.

Motion Image Audio YF-E6
✓ ✓ ✕ 61.12
✕ ✓ ✓ 64.43
✓ ✕ ✓ 59.05
✓ ✓ ✓ 64.91

Table 5: Ablation experiments of each module on YF-E6
dataset. The result represents the accuracy (%) on the test
set.

Method YF-E6
Simple Concatenate 61.49
Overall Method 64.91

w/o position encoding 64.79
w/o global Transformer 64.30

w/o cross-modal temporal enhancement 63.20
independent modal interaction 64.18

achieves the worst results. Although both image features and mo-
tion features are visual features and are extracted from videos, the
results show that image features can provide more emotional clues
than motion features, which may benefit from the powerful seman-
tic understanding ability of the CLIP encoder. The combination of
only two features can be regarded as the discarding of a certain
feature from the complete feature combination. Comparing each
two-feature combination with the complete feature combination
and observing their performance degradation, the importance of
the feature can be roughly estimated. Their importance from high
to low is image, audio, and motion. Although the performance of
the best two-feature combination "image + audio" is very close to
that of the complete feature combination, the results still show
slight improvement after introducing the relatively less important
motion feature. This reflects the nature of multimodal learning,
whereby by integrating features with different characteristics, the
model can learn the complementary aspects of different features to
make accurate predictions.

In order to verify the effectiveness of each module in our method,
we conduct ablation experiments by removing components from
the overall method. The results of all experiments are presented in
Table5. The "Simple Concatenation" method refers to taking the
temporal average of each feature and splicing them for classifica-
tion after feature sampling, bypassing the intermediate modality
interaction process. The "independent modal interaction" method
involves replacing the method of combining multiple modal fea-
tures simultaneously in the cross-modal temporal enhancement
module with the way of independent modal interaction in [15, 21].
The former focuses on the salient parts of all modal features and
suppresses the relatively ineffective parts, while the latter focuses
on important fragments in each modality separately, treating all
modalities interacting with a certain modality as equally important.
First, regarding the "Simple Concatenation" method, it achieved an
accuracy of 61.49%. Comparing this to the best 61.00% obtained by
the previousmethod on the YF-E6 dataset in Table1, it is evident that

temporal data enhancement achieved by simple feature sampling
yields promising results during training. Building upon this, cou-
pled with subsequent cross-modal temporal enhancement modules
and other modules, the "Overall Method" further improves accuracy
by 3.42% compared to "Simple Concatenation". These demonstrate
the effectiveness of the temporal enhancement method. Second,
"w/o" denotes removing a module from the overall method. Remov-
ing the position coding has little impact on emotion prediction,
resulting in only a 0.12% decrease in performance. Since features
are sampled along the temporal dimension, whether to add position
coding affects the results minimally. Removing the global Trans-
former results in a 0.61% decrease in performance, emphasizing
the importance of simultaneous inter-modal and intra-modal inter-
action. Removing the cross-modal temporal enhancement module
leads to a sharp drop in accuracy by 1.71%. Even though a global
Transformer for intra-modal and inter-modal interaction still exists,
the transformation matrix of each feature is shared at this point,
limiting the ability of each modality to learn unique information
and utilize the complementary advantages of different modalities
fully. This illustrates the importance of the cross-modal temporal
enhancement module. Finally, replacing the interaction method
in the cross-modal temporal enhancement module with indepen-
dent modal interaction decreases recognition accuracy by 0.73%.
This may be because the model assigns certain temporal fragments
relatively unimportant large weight without integrating all modal
temporal information, introducing unnecessary noise and weaken-
ing performance.

5.5 Conclusion
In this paper, we propose a method for video affective content anal-
ysis based on temporal enhancement in order to solve the impact of
noise from both temporal and modal aspects. The method utilizes
three encoders to extract various modal features and conducts tem-
poral data enhancement via temporal feature sampling. Then, we
design the cross-modal temporal enhancement module to facilitate
temporal interaction among modalities, emphasizing significant
temporal fragments across all modalities during the interaction.
Finally, the global Transformer is employed to facilitate both intra-
modal and inter-modal interaction across all modes. Comparisons
between our method and existing advanced approaches on various
datasets demonstrate the superiority of our method. The signifi-
cance of each modal feature and module in our method is revealed
through ablation experiments.
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