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Supplementary Material

A Properties of HSTs

We present a few useful facts on HSTs for later use. First, for the HST scheme from Fakcharoenphol
et al. [2004], the following fact stands.

Fact A.1. Let T ∈ T . Then, the edges from any internal node of the tree to its children have all
equal lengths.

From this peculiar property of the HSTs generated by the Algorithm by Fakcharoenphol et al. [2004],
two useful lemmas follow.

Lemma A.2. Let T ∈ T , let x and y be any two leaves of T , and let v be their lowest common
ancestor. Then, dT (x, v) ≥ dT (v, y)/2 and dT (x, v) ≥ dT (x, y)/3.

Proof. By the triangle inequality, dT (x, y) ≤ dT (x, v) + dT (v, y). Now, by Fact A.1, all the edges
from v to its children have all equal length, name it dv , so dT (x, v) ≥ dv . Moreover, by definition of
2−HST, the edge lengths decrease geometrically by a factor ≥ 2 on any root to leaf path. Therefore,
we have that dT (v, y) ≤ dv +

∑∞
i=1

dv/2i = 2dv, so dT (v, y) ≤ 2dT (x, v). By substituting this
above, we also get that dT (x, y) ≤ 3dT (x, v), as desired.

Lemma A.3. Let T ∈ T , let v2 be any node, v1 one of its descendants, and v0 a descendant of v1.
Then, dT (v0, v1) ≤ dT (v0, v2)/2.

Proof. By Fact A.1, all the edges from v2 to its children have all equal length, name it x, so
dT (v1, v2) ≥ x. Moreover, by definition of 2−HST, the edge lengths decrease geometrically by
a factor ≥ 2 on any root to leaf path. Therefore, we have that dT (v0, v1) ≤

∑∞
i=1 x/2

i = x, so
dT (v0, v2) = dT (v0, v1) + dT (v1, v2) ≥ dT (v0, v1) + x ≥ 2dT (v0, v1), as desired.

Lemma A.4. Let x, y, z be leaves of T . Let r1 be the lowest common ancestor of x, y and let
r2 be the lowest common ancestor of x, z in T . Assume that r1 is a descendant of r2. Then,
dT (x, y) ≤ dT (x, z).

Proof. By Lemma A.2 we have that dT (x, y) ≤ 3dT (x, r1). Moreover, by Lemma A.3, we have that
dT (x, r1) ≤ dT (x, r2)/2. Thus, by putting them together, we get that dT (x, y) ≤ 3

2dT (x, r2). It
would suffices to show that dT (x, z) ≥ 3

2dT (x, r2). Now, dT (x, z) = dT (x, r2) + dT (r2, z) and, by
Lemma A.2, it holds dT (r2, z) ≥ dT (x, r2)/2, implying that dT (x, z) ≥ 3

2dT (x, r2) indeed.

We also report the proofs of the results in the main paper that link a metric space with its HST
approximated embedding.

PROOF OF LEMMA 3.2. By the triangle inequality and by definition of qp, we have that d(p, `p) ≤
d(p, qp)+d(qp, `p) ≤ d(p, c∗p)+d(qp, `p). Moreover, by the properties of T we have that d(qp, `p) ≤
dT (qp, `p). And so, d(p, `p) ≤ d(p, c∗p) + dT (qp, `p).

PROOF OF LEMMA 3.3. ET∼D
[
dT (qp, c

∗
p)
]
≤ 8 log(|S|)d(qp, c

∗
p) since (T ,D) is an HST family.

By the triangle inequality and by definition of qp, d(qp, c
∗
p) ≤ d(qp, p) + d(p, c∗p) ≤ 2d(p, c∗p).
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B Properties of Algorithm TAKEHEED

We start by showing that Algorithm PLUCK is well-defined.

Lemma B.1. The invocation of Algorithm PLUCK to a leaf q of a tree T always returns a leaf ` of T
where a facility has been opened.

Proof. Algorithm PLUCK and all its recursive calls receive as input:

• a tree T ;

• a node v of T , which is the root of T at the first invocation;

• a leaf q of T .

Consider the first invocation of algorithm PLUCK. If the tree T consists only of a single node v,
which is also a leaf, we execute lines 1–3 and return a leaf v with opened facility. Otherwise, v is the
root of T and is an internal node of T .
Now, assume T (v) has no opened leaf within distance f from q. In this case, we execute lines 6− 7:
we get a child w of v from procedure SELECTHEAVIESTCHILD, and we recur on w. Notice that
T (w) ⊆ T (v) cannot have an opened leaf within distance f from q, so we will do the same for every
recursive call from now on until we get to a leaf `. At that point, we execute lines 1–3 and return `
with opened facility.
Finally, assume T (v) has an opened leaf within distance f from q. Now, consider the set L of opened
leaves within distance f from q (this set is not empty by our last assumption), and let r be the internal
node of T such that: (i) it has both q and a leaf from L among its descendants; (ii) among the ones
satisfying (i), it has minimum edge-distance from q. By definition of PLUCK, we will keep executing
lines 9–11 until we reach r, because every subtree of T containing r has both q and a leaf within
distance f from q as descendants. When we get to r, we execute lines 9–10, but we skip line 11
because x, as defined in line 9, does not contain an element of L. Therefore, we execute lines 12–14:
we take a specific ` ∈ L∩ T (r) and we increase the potential stored in r by dT (q, `). Now, we check
the condition at line 15: if the potential stored in r does not exceed f , we execute line 17 and just
return the opened leaf `, and we are done. Otherwise, we execute line 16 and we recur on T (x). Now,
by definition of r, T (x) does not contain any opened leaf within distance f from q. So, we get back
to the previous case: we keep executing recursively lines 6–7 until we get to a leaf, for which we
execute lines 1–3 to return an opened leaf. All the possible cases have been covered.

From the analysis of the workflow done in the previous proof, we can derive the following corollary.

Corollary B.1.1. The invocation of Algorithm PLUCK to a leaf q of a tree T always affects the
potential of at most one internal node.

Proof. By the proof of Lemma B.1, we could only increase the potential of the aforementioned node
r, which is the lowest common ancestor of q and the leaves of the set L of opened facilities within
distance f from q.

C Proofs in the sampled HST

Here we present the missing proofs from the analysis of our algorithm for points in PFAR. They follow
by definition of PFAR.

Lemma C.1. Let T ∈ T and let p ∈ PFAR. Then, (i) f(p) ≤ 6dT (qp, c
∗
p), and (ii) dT (qp, `p) ≤

6dT (qp, c
∗
p).

Proof. By definition of PFAR, f(p) ≤ f ≤ 6dT (qp, c
∗
p) and the first claim follows. For the second,

recall that PLUCK always returns a leaf within tree distance at most f . Hence, dT (qp, `p) ≤ f ≤
6dT (qp, c

∗
p).

The previous Lemma can be used to prove Lemma 3.4.
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PROOF OF LEMMA 3.4. By Lemma C.1, for every p ∈ PFAR, dT (qp, `p) + f(p) ≤ 12 dT (qp, c
∗
p).

The claim follows.

We also present the missing proofs from the analysis of our algorithm for points in PNEAR.

First, we define the restricted optimal clustersR∗ = {R∗1, . . . , R∗k∗}, where

R∗i := C∗i ∩ PNEAR = {p ∈ C∗i | dT (qp, c
∗
i ) < f/6} .

We show that, for most points in PNEAR, we open a new facility when the potential of an internal node
exceeds f . In this case, the cost of opening the new facility is amortized across the set of points
whose potential was accumulated in that internal node.

PROOF OF LEMMA 3.5. Fix a generic 1 ≤ i ≤ k∗ and focus on the restricted cluster R∗i . We want
to show that ∑

p∈R∗i

f(p) ≤ f + 3 ·
∑
p∈X∗i

dT (qp, `p), (1)

where X∗i ⊆ P is a set depending on R∗i . Moreover, for two different restricted clusters R∗i , R
∗
j , the

corresponding sets are disjoint: X∗i ∩X∗j = ∅. Therefore, once Equation (1) is established, the claim
follows by summing over all clusters. If points in R∗i give rise to zero or one opened facility the
claim follows. Assume therefore that they bring about two or more openings. Let p0, . . . , pk be the
points in R∗i such that each one of them gives rise to a new opened leaf, denoted as `0, . . . , `k. And
let q0, . . . , qk be a shorthand notation for their proxies qp0 , . . . , qpk . Recall that for every p ∈ R∗i
there is an invocation of PLUCK with its proxy qp in input.

First, observe that dT (q0, `0) ≤ f/3. This is because when PLUCK opens a new leaf that is always
within distance f/3 from its client.

By the triangle inequality and the definition of R∗i we have that, for all j ∈ [k],

dT (qj , `0) ≤ dT (qj , c
∗
i ) + dT (c∗i , q0) + dT (q0, `0) ≤ f

6
+
f

6
+
f

3
=

2

3
· f. (2)

Focus now on p1. We want to upper bound its contribution to the facility cost (i.e., f(p1)) in terms
of the service costs of some points processed before p1 for which no new facility is opened. By
definition of PLUCK, when called on q1, the algorithm executes lines 13 and 14, and it does so exactly
once by Corollary B.1.1. Let x1 be the node defined in line 9 whose potential is incremented in
line 14. Since p1 caused the opening of a leaf, x1’s potential is greater than f after q1 is processed
(line 15). By Equation (2), dT (q1, `0) ≤ 2/3 · f , and this is the increment of potential due to q1, and
so the potential of x1 must be at least f/3 by the time q1 is processed. Observe that the potential
of any node is increased at most once for every call of PLUCK by Corollary B.1.1. So the increase
can be ascribed to a specific set of points processed before p1. For a point p such an increment is,
by definition of PLUCK, dT (qp, `p) (line 14). Denoting as P i1 the points processed before p1 that
affected x1’s potential, we have,

f

3
≤
∑
p∈P i

1

dT (qp, `p)

And therefore, f(p1) = f ≤ 3 ·
∑
p∈P i

1
dT (qp, `p). We can repeat the same argument for p2, and

so on so forth. We will end up defining the sets P ij , consisting of all the points processed before pj
that affected xj’s potential, where xj is defined analogously to x1. Those sets {P ij}j are all disjoint,
because they are the set of vertices affecting the potential of distinct nodes, and each client affects the
potential of at most one node of the HST by Corollary B.1.1. Thus,

∑
p∈R∗i

f(p) = f(p0) +

k∑
j=1

f(pi) ≤ f + 3 ·
k∑
j=1

∑
p∈P i

j

dT (qp, `p) ≤ f + 3 ·
∑
p∈X∗i

dT (qp, `p),

where X∗i :=
⋃k
j=1 P

i
j ⊆ P . This establishes Equation (1); the sets {X∗i }i defined for different

restricted clusters are disjoint, because so are the sets {P ij}i,j . The claim follows.
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Before proving the bound for
∑
p∈PNEAR

dT (qp, c
∗
p), we need an auxiliary lemma.

Lemma C.2. For every client p, let Fp be the set of opened facilities after running procedure PLUCK
with input qp. Then ∀ q ∈ Fp we have dT (qp, `p) ≤ dT (qp, q).

Proof. The lemma is trivial if `p is the only opened facility within distance f from qp. Moreover, if
qp does not open any new facility, the lemma follows because, by Lemma A.4 and by definition of
PLUCK, the returned facility `p has minimum distance from qp among the opened facilities in Fp.
Assume this is not the case, so `p, returned by procedure PLUCK, has just been opened as facility.
Now, let r be the lowest common ancestor of `p, qp. By definition of the procedure PLUCK, the only
opened facility which has distance ≤ f from qp and is also a descendant of r is `p. Moreover, `p is
closer to qp than all the other facilities in Fp \ T (r) by Lemma A.4, so we are done.

We now provide the fundamental bound for
∑
p∈PNEAR

dT (qp, c
∗
p). We do this on each restricted cluster.

The general idea behind the following Lemma is inspired by the approximation ratio proof for
Meyerson’s Algorithm from Fotakis [2011]. In that proof, for each cluster, one seeks to bound the
service cost by analyzing the input in phases, where a new phase begins when a new facility is opened
at a point that is significantly closer to the center of the optimal cluster. Moreover, the cost of the
points seen in each phase can be easily bounded. In their argument, it is essential to notice that the
number of phases is logarithmic in the input size. In our proof, we follow a similar strategy, but we use
restricted clusters instead of the whole clustering. Moreover, procedure SELECTHEAVIESTCHILD
makes sure that the number of phases is logarithmic in |S| because it roughly halves the HST every
time we open a facility at a leaf that is significantly closer to the center of the restricted cluster.

Lemma C.3. For every T ∈ T and every restricted optimal cluster R∗i we have,∑
p∈R∗i

dT (qp, `p) ≤ 2 log(|S|)f + 4
∑
p∈R∗i

dT (qp, c
∗
i ). (3)

Proof. Let r be the lowest common ancestor in T of all the leaves in R∗i ; let T (r) be the sub-HST
of T rooted at r and containing all its descendants, and let h be its height. Clearly, all the points in
R∗i are contained in this tree, but there could be some other leaves. For the sake of the cost, we will
restrict our attention only to the leaves in R∗i . We will consider h+ 2 phases: h, h− 1, . . . , 0,−1.
We say that a point p ∈ R∗i belongs to phase j, i.e. p ∈ phasej , if, when p arrives in input, the largest
sub-HST of T (r) containing c∗i and no opened facilities has height j. We name this tree treej . In the
proof, we keep track of these trees and show that when we go from one phase to the next their size
shrinks by at least a half, which implies that there can be at most a logarithmic number of phases.
We then focus on each phase to bound the service cost. We start with phase h when no facilities are
opened in T (r); all the points seen after the possible opening of a facility at c∗i belong to phase −1.
We say that a phase is empty if no client in R∗i is seen during that phase, i.e. phasej = ∅. We proceed
by proving simpler facts, which will imply the lemma altogether.

Fact 0. Empty phases have service cost contribution 0 to
∑
p∈R∗i

dT (qp, `p).
No client in R∗i is seen in an empty phase, so there is no contribution to the sum.

Fact 1. For each pair of leaves q1, q2 ∈ T (r), we have that: dT (q1, c
∗
i ) ≤ f/3, dT (q1, q2) ≤

2/3 · f < f .
Recall that r is the root of T (r). First, there exists a leaf q′ ∈ T (r) s.t. dT (c∗i , q

′) ≤ f/6 and
whose lowest common ancestor with c∗i is r. This is true because r is the lowest internal node of T
containing all the points in R∗i as descendants. Now, since r is in the path between c∗i and q′, we have
that dT (c∗i , q

′) = dT (c∗i , r) + dT (r, q′). By Lemma A.2, we have that dT (r, q′) ≥ dT (c∗i , r)/2, so
f/6 ≥ dT (c∗i , q

′) = dT (c∗i , r) + dT (r, q′) ≥ 3
2 · dT (c∗i , r), implying that dT (c∗i , r) ≤ f/9. Now take

a generic leaf of the tree, name it q1: by Lemma A.2 we have that dT (q1, c
∗
i ) ≤ 3 · dT (c∗i , r) ≤ f/3.

Therefore, every leaf of the tree is within HST distance ≤ f/3 from c∗i . We can conclude by the
triangle inequality that dT (q1, q2) ≤ dT (q1, c

∗
i ) + dT (c∗i , q2) ≤ f/3 + f/3 = 2/3 · f < f ∀ q1, q2

leaves of T (r).

Fact 2. Consider a generic client p seen in a phase 0 ≤ j < h. If such a point opens a facility `p in
this tree, then qp belongs to the largest sub-HST of T (r) that contains `p, but did not contain any
opened facility before seeing p.
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Consider the smallest sub-HST of T (r) including `p and another opened facility in T (r): let q̄ be
such opened facility and let r′ be the root of this tree. When opening `p, the procedure PLUCK visited
r′ and decided to go in direction of `p. Since, by Fact 1, qp is within distance ≤ f from q̄, this means
that the procedure was called on a point belonging to the same sub-HST of T (r) containing `p, which
is indeed the largest sub-HST of T (r) (containing `p) that did not contain any opened facility before
seeing p.

Fact 3. Let 0 ≤ j′ < j ≤ h and suppose we switch from phase j to phase j′. Then, |treej′ | <
|treej |/2.
Let ` be the leaf opened during phase j that brings to phase j′. Consider the smallest sub-tree
containing c∗i and `, and let r′ denote its root. And let x and y be the children of r′ such that
c∗i ∈ T (x) and ` ∈ T (y). Since PLUCK goes down the tree and opens a new facility only when
it reaches a leaf, PLUCK must have visited r′. When this happened, T (r′) had no opened leaves
whatsoever since T (r′) ⊆ treej and treej has no opened leaves by definition. And so line 6 was
executed. Since PLUCK went all the way down to open `, SELECTHEAVIESTCHILD returned y and
discarded x. The latter follows from Fact 1, which implies that x satisfies conditions (i) and (ii)
in line 1 of SELECTHEAVIESTCHILD because c∗i ∈ T (x). Hence, |T (x)| ≤ |T (y)| and the claim
follows, for treej′ ( T (x).

Fact 4. There are at most log(|S|) non-empty phases j ≥ 0.
It follows from Fact 3 which says: if j′ < j < h, then |treej′ | < |treej |/2.

Fact 5. For a phase j ≥ 0, it holds
∑
p∈phasej

dT (qp, `p) ≤ 2 · f + 4 ·
∑
p∈phasej

dT (qp, c
∗
i ).

Consider a generic point p in phase j > 0. Let rj be the root of treej . There can be two options for
p ∈ phasej :

• qp /∈ treej . This can only happen if j < h. By definition, we know that the father node r′j of
rj belongs to T (r) and has a child sub-tree containing an opened facility q̄. First, since `p
returned by Algorithm PLUCK is always the closest opened facility to qp by Lemma C.2, it
holds dT (qp, `p) ≤ dT (qp, q̄). Second, dT (qp, q̄) ≤ dT (qp, c

∗
i ) + dT (c∗i , q̄) by the triangle

inequality. Third, we have that dT (c∗i , q̄) ≤ 3 ·dT (qp, c
∗
i ). This is true because dT (qp, c

∗
i ) ≥

dT (c∗i , r
′
j) since r′j belongs to the path from qp to c∗i , and dT (c∗i , r

′
j) ≥ dT (c∗i , q̄)/3 by

Lemma A.2. Thus, dT (qp, `p) ≤ dT (qp, q̄) ≤ 4 · dT (qp, c
∗
i );

• qp ∈ treej . For all those points, except the last one, we can pay at most f in terms of HST
distances from the closest opened facility before opening a new facility in this tree, because
this sum of distances is all cumulated as potential in the root of the tree. This is true because
rj has a sibling (child of the same parent node) with an opened facility as a descendant and
within distance ≤ f from qp by Fact 2, so the procedure PLUCK necessarily accumulates
the corresponding potential in rj . There can be a final point that induces the opening of
a new facility corresponding to a change in the phase: this point, name it pLAST, satisfies
dT (qpLAST

, `pLAST
) ≤ f as any other point. Therefore

∑
p∈treej dT (qp, `p) ≤ f + f = 2 · f .

Fact 6. For each point p ∈ phase−1 it holds dT (qp, `p) ≤ dT (qp, c
∗
i ).

This follows because c∗i has been opened at this point so, since `p is the closest opened facility to qp
by Lemma C.2, it holds dT (qp, `p) ≤ dT (qp, c

∗
i ).

Fact 7. It holds
∑
p∈R∗i

dT (qp, `p) ≤ 2 log(|S|) · f + 4 ·
∑
p∈R∗i

dT (qp, c
∗
i ).

This follows by putting all the previous facts together:∑
p∈R∗i

dT (qp, `p) =
∑
j:

phasej 6=∅

∑
p∈phasej

dT (qp, `p) ≤
∑
j:

phasej 6=∅

∑
p∈phasej

(
2 · f + 4 ·

∑
p∈phasej

dT (qp, c
∗
i )

)
.

where the inequality follows by Fact 5 and Fact 6. Since the union of all non-empty phases yields R∗i
and, by Fact 4, there are ≤ log(|S|) non-empty phases ≥ 0, and the bound for phase −1 comes from
Fact 6, we finally get that∑

p∈R∗i

dT (qp, `p) ≤ 2 log(|S|) · f + 4 ·
∑
p∈R∗i

dT (qp, c
∗
i ).
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The proof of Lemma C.3 shows why procedure SELECTHEAVIESTCHILD always moves to the
subtree with the largest number of leaves: this allows to have only O(log(|S|)) non-empty phases.
Thus, even if the HST has depth Ω(|S|), which is actually the case for some metrics, we are always
able to navigate it with O(log(|S|)) steps.

Thanks to Lemma C.3, by summing over all the restricted clusters, we finally get Lemma 3.6.

PROOF OF LEMMA 3.6. By Lemma C.3 it holds∑
p∈PNEAR

dT (qp, `p) =

k∗∑
i=1

∑
p∈R∗i

dT (qp, `p) ≤
k∗∑
i=1

(
2 log(|S|)f + 4

∑
p∈R∗i

dT (qp, c
∗
p)

)
= 2fk∗ log(|S|) + 4

∑
p∈PNEAR

dT (qp, c
∗
p).

By combining Lemmas C.1, 3.5, and 3.6 we can finally prove Lemma 3.7.

PROOF OF LEMMA 3.7. First, by Lemma 3.5, it holds∑
p∈PNEAR

f(p) ≤ k∗f + 3 ·
∑
p∈P

dT (qp, `p). (4)

However, by Lemma C.1 and Lemma 3.6, we have that∑
p∈P

dT (qp, `p) =
∑

p∈PFAR

dT (qp, `p) +
∑

p∈PNEAR

dT (qp, `p) ≤

6·
∑

p∈PFAR

dT (qp, c
∗
p)+2 log(|S|)·k∗f+4·

∑
p∈PNEAR

dT (qp, c
∗
p) =≤ 2 log(|S|)·k∗f+6·

∑
p∈P

dT (qp, c
∗
p).

By substituting this bound into (4), we finally get that∑
p∈PNEAR

f(p) ≤ (6 log(|S|) + 1) · k∗f + 18
∑
p∈P

dT (qp, c
∗
p).

C.1 Proof of Theorem 3.1

Theorem 3.1 follows simply by combining previous results.

PROOF OF THEOREM 3.1. The cost of the solution computed by TAKEHEED is a random variable
that depends on the choice of T ∼D T and whose value is X :=

∑
p∈P

(
d(p, `p) + f(p)

)
.

First, by Lemma 3.2, ∑
p∈P

d(p, `p) ≤
∑
p∈P

d(p, c∗p) +
∑
p∈P

dT (qp, `p).

Second, by Lemma 3.4, and Lemmas 3.6 and 3.7,∑
p∈P

(
dT (qp, `p) + f(p)

)
≤
(

8 log(|S|) + 1
)
fk∗ + 34

∑
p∈P

dT (qp, c
∗
p).

Therefore,

E[X] ≤
∑
p∈P

d(p, c∗p) +
(
8 log(|S|) + 1

)
fk∗ + 34ET∼D

[∑
p∈P

dT (qp, c
∗
p)
]
.

Third, by Lemma 3.3,

ET∼D
[∑
p∈P

dT (qp, c
∗
p)
]
≤ 16 log(|S|)

∑
p∈P

d(p, c∗p).

By putting everything together, we have

ET∼D[X] ≤
(
8 log(|S|) + 1

)
fk∗ +

(
544 log(|S|) + 1

)∑
p∈P

d(p, c∗p)

≤
(
544 log(|S|) + 1

)
OPT(P,S) = O

(
log(|S|) OPT(P,S)

)
.

6



D Robustness

Mahdian et al. [2012] showed how to combine two different online algorithms for facility location
into a single one whose cost is a constant approximation of the cost of the best algorithm. By applying
the same scheme to combine our algorithm TAKEHEED and the randomized algorithm by Meyerson
[2001], we obtain an algorithm robust to bad suggestions.

To make our work self-contained, here we report the pseudo-code of the Algorithms by Mahdian et al.
[2012], which we call COMBINE, and Meyerson [2001], which we call MEYERSON.

In the Algorithm MEYERSON, for each client, we open a facility at it with probability proportional to
its distance to the closest opened facility. After that, we assign the client to its closest opened facility.

Algorithm D.1 Algorithm MEYERSON

1: F ← ∅ set of opened facilities
2: for p ∈ P do
3: Let δp := d(p,F) (where d(p,F) =∞ if F = ∅)
4: With probability min

( δp
f , 1

)
open a facility at p

5: Assign p to its closest open facility in F

The following result, derived by Fotakis [2011], is a slight improvement of the original result of
Meyerson [2001].

Theorem D.1. For each input set P , the cost of the solution computed by Algorithm MEYERSON,
name it COST(MEYERSON), satisfies: E[COST(MEYERSON)] ≤

(
2 + 3 log(n)

log log(n)

)
· OPT(P) =

O
( log(n)
log log(n) · OPT(P)

)
.

Algorithm D.2 Algorithm COMBINEγ(A1, A2); input γ > 1, facility location algorithms A1, A2

1: for p ∈ P do
2: if COST(A1) ≤ (γ − 1) · COST(A2) computed up to this point then
3: Let qA1

(p) be the facility used by Algorithm A1 to serve p
4: if qA1

(p) is not open then open it
5: Assign p to qA1

(p)
6: else
7: Let qA2

(p) be the facility used by Algorithm A2 to serve p
8: if qA2(p) is not open then open it
9: Assign p to qA2(p)

Algorithm COMBINE is a generic procedure to combine two facility location algorithms. It starts
with following the decisions of one of the two algorithms. However, it always switches to the other
algorithm when its overall cost, i.e. the cost that would have been paid by following it blindly from
the beginning, is “much” smaller than the overall cost of the currently used algorithm. The decision
rule for swapping between the algorithms is based on a parameter γ > 1.

As shown in Mahdian et al. [2012], the following Theorem holds.

Theorem D.2. For a generic input set P , let COST(A1), COST(A2), COST(COMBINEγ(A1, A2)) be
the final cost of the solutions produced respectively by Algorithms A1, A2, and COMBINE(A1, A2).
They satisfy: COST(COMBINEγ(A1, A2)) ≤ min

(
γ
γ−1 · COST(A1), γ · COST(A2)

)
.

We use Algorithm COMBINE on Algorithm MEYERSON and our Algorithm TAKEHEED. By us-
ing Theorem D.2 on Algorithm COMBINE(MEYERSON, TAKEHEED), we can finally prove Corol-
lary 3.1.1. Notice that COMBINE(MEYERSON, TAKEHEED) is called WARY in the main paper.

PROOF OF COROLLARY 3.1.1. Consider the Algorithm COMBINEγ(MEYERSON, TAKEHEED)
with γ = 1 +O(1). By Theorem D.2, the expected cost of the resulting Algorithm is bounded by the
minimum between:
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• γ
γ−1 · E[COST(MEYERSON)], which is bounded by O

(
log(n)

log log(n) OPT
)

by Theorem D.1;

• γ · E[COST(TAKEHEED)], which is bounded by O (log(|S|)OPT(P,S)) by Theorem 3.1.

The Corollary follows.

The robust version of our Algorithm, WARY, is therefore COMBINEγ(MEYERSON, TAKEHEED)
with a specific value of γ > 1.

D.1 Extending Algorithm COMBINE to Multiple Advice

There is a natural extension of Algorithm COMBINE to the setting with multiple advice (k ≥ 2). Here
we will describe this extension, and we will show that its performance can be much worse than the
one guaranteed by our Algorithm TAKEHEED.

Algorithm D.3 Algorithm COMBINE-MULγ(A1, . . . , Ak); input γ > 1, facility location algorithms
A1, . . . , Ak

1: i← 1
2: for p ∈ P do
3: if minj∈[k] COST(Aj) < (γ − 1) · COST(Ai) all computed up to this point then
4: i← arg minj∈[k] COST(Aj)
5: Let qAi

(p) be the facility used by Algorithm Ai to serve p
6: if qAi

(p) is not opened then open it
7: Assign p to qAi

(p)

In Algorithm COMBINE-MUL, we start by blindly following one of the Algorithms. However, we
always switch to another algorithm when its overall cost, i.e. the cost that would have been paid
by following it blindly from the beginning, is “much” smaller than the overall cost of the currently
used algorithm. When switching, clearly, we switch to the best-performing algorithm. The decision
rule for switching the algorithm is based on a parameter γ > 1. Algorithm COMBINE-MUL can be
used to combine multiple advice. The Algorithm naturally associated with an advice set, i.e. a set of
suggested facilities Si, simply assigns to any client its closest suggested facility in Si, after opening it
if it was not opened yet. Given S1, . . . ,Sk sets of suggested facilities, we will name this combination
procedure COMBINE-MULγ(S1, . . . ,Sk). With abuse of notation, we will also refer to each Si as
the described algorithm for the set of suggested facilities Si.
We will prove a lower bound for the cost computed by COMBINE-MULγ(S1, . . . ,Sk). The lower
bound shows that Algorithm COMBINE-MULγ(S1, . . . ,Sk) can perform much worse than our robust
Algorithm TAKEHEED.
Theorem D.3. Let f = 1 be the uniform facility cost and γ > 1 fixed. For every integer k ≥ 2, there
is a finite metric space (S, d) of cardinality |S| = k and input sequences such that: (i) The optimal
solution has cost O(1), but (ii) Algorithm COMBINE-MULγ(S1, . . . ,Sk) computes solutions of cost
Ω(|S|) = Ω(k).

Proof. Consider Si = {1/k2i}, 1 ≤ i ≤ k − 1, and Sk = {0}. Let S be their union. The
input set contains the points with multiplicity, where the multiplicities are mi := m(1/k2i) =

dγ · k
2i

i2 e for 1 ≤ i ≤ k − 1, mk := m(0) = 1. We will show an Ω(k)−lower bound for
Algorithm COMBINE-MULγ(S1, . . . ,Sk) on this instance, where the clients are received in this
order: 1/k2, 1/k4, . . . , 1/k2(k−1), 0.

First, we show that OPT ≤ π2/3 = O(1). An upper bound for the cost of the optimal solution is
given by the cost of the solution opening only a facility at 0. This has cost

k−1∑
i=1

(
1

k2i
·
⌈
k2i

i2

⌉)
≤
k−1∑
i=1

(
1

k2i
·
(
k2i

i2
+ 1

))
≤
∞∑
i=1

(
1

k2i
·
(
k2i

i2
+
k2i

i2

))
because ki ≥ i for each k ≥ 2, i ≥ 1. Thus, the cost is ≤ 2

∑∞
i=1

1
i2 = π2

3 by a well-known result
on the sum of the inverse squares of natural numbers.
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Second, we show that Algorithm COMBINE-MULγ(S1, . . . ,Sk) switches to S2, . . . ,S` in this order,

where ` :=
⌊√

γ−1
2(2+3γ) (k−1)

⌋
(notice that ` ≤ k−1), each time opening the facility in Si, 2 ≤ i ≤ `.

This will imply that it opens ≥ `− 1 facilities, so it produces a solution of cost ≥ `− 1 = Ω(k) =
Ω(|S|). We will show this by induction on i. We divide the input in phases 1, . . . , k: phase i contains
only repetitions of the client in Si, i.e. 1/k2i for i < k and 0 for i = k. It suffices to show that,
before the end of each phase 2 ≤ i ≤ `, it holds: (1) COST(Si) < COST(Sj) for each j 6= i; (2)
cost(Si) ≤ (γ − 1) · COST(Si−1). Indeed, this will imply a switch from Si−1 to Si by the end of
each phase i. Now, by the inductive hypothesis, before phase i starts, we are using advice Si−1.
When half of the points from phase i have been seen, i.e. only mi/2, we have that:

• COST(Sj) > COST(Si) for each j > i: this is true because each solution pays 1 as facility
cost. However, for each client seen until now, its distance to the facility in Si is strictly
smaller than its distance to the facility in any Sj , j > i.

• COST(Sj) > (γ−1)COST(Si−1) for each j < i−1. This is true by the inductive hypothesis
before seeing any point from phase i. After that, the points in phase i are farther from 1

k2j

than 1
k2(i−1) , so it will still hold COST(Sj) > (γ − 1) · COST(Si−1).

• COST(Si) ≤ (γ − 1)COST(Si−1). First, COST(Si) = 1 +
∑i−1
h=1

(
1
k2h
− 1

k2i

)
·mh +

mi

2 · 0 ≤ 1 + γ · 2
∑∞
i=1

1
i2 = 1 + γ · π

2

3 ≤ 1 + 4γ. Second, COST(Si−1) ≥ 1 +

γ
∑i−1
h=1

(
1
k2h
− 1

k2(i−1)

)
k2h

h2 +γ
(

1
k2(i−1)− 1

k2i

)
k2i

2i2 ≥ 1+γ
(

1
k2(i−1)− 1

k2i

)
k2i

2i2 = 1+γ· k
2−1
2i2 .

Since i2 ≤ `2 ≤ (γ−1)(k−1)2
2(2+3γ) by definition of `, we have that COST(Si) ≥ 1 + γ ·

2(2+3γ)(k+1)
(γ−1)(k−1) ≥ 1 + 2γ·(2+3γ)

γ−1 . It now suffices to show that COST(Si) ≤ 1 + 4γ ≤
(γ − 1) ·

(
1 + 2γ(2+3γ)

γ−1
)
≤ (γ − 1) · COST(Si−1). It holds (γ − 1) ·

(
1 + 2γ(2+3γ)

γ−1
)

=

6γ2 + 5γ − 1, and this is ≥ 1 + 4γ if and only if 6γ2 + γ − 2 ≥ 0, which is true because
6γ2 + γ − 2 = (2γ − 1)(3γ + 2) ≥ 0 for γ > 1.

It follows that Algorithm COMBINE-MULγ(S1, . . . ,Sk) has cost ≥ `− 1 = Ω(k).

For the next section, it will also be important to prove an upper bound to the performance of
Algorithm COMBINE-MUL. We show that the lower bound of Theorem D.3 is asymptotically tight.
The following result is a generalization of the result for Algorithm COMBINE, which is proved in
Mahdian et al. [2012].
Theorem D.4. Consider k algorithms A1, . . . , Ak and their combination
COMBINE-MUL2(A1, . . . , Ak). Then, for any set of clients P ,

COST(COMBINE-MUL2(A1, . . . , Ak)) ≤ k ·min
i∈[k]

COST(Ai).

Proof. Assume WLOG that COMBINE-MUL has actually chosen the algorithms A1, . . . , Ah, h ≤ k,
at some point. Let Ai∗ be the final algorithm used in COMBINE-MUL2(A1, . . . , Ak). By definition,
COST(Ai∗) = mini∈[k] COST(Ai). Now, we partition the set of clients P into contiguous set of
points. Define Pj ⊆ P such that:

• All the points in Pj are contiguous in P ;

• A single algorithm Ai was used on the points on Pj ;

• Different algorithms from Ai were used on the points immediately before and after the ones
in Pj .

We can also define a total order relation among those sets: we say that Pj < P ′j if and only if
all the points in Pj are seen before the points in P ′j . This relation defines an ordering such that
P1 < P2 < . . . and

⋃
j Pj = P . Now, for each Pj , we can define i(j) such thatAi(j) is the algorithm

used for the points in Pj . Let COSTj be the cost paid by algorithm COMBINE-MUL2(A1, . . . , Ak)
on all the points seen up to Pj (including the ones in this set), and let COSTj(Ai(j)) be the cost paid
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by algorithm Ai(j) on the same points. We will prove by (complete) induction that COSTj ≤ |{i(j′) :
j′ ≤ j}| · COSTj(Ai(j)).

Base Case: j = 1. Trivially, we have been using only Ai(1). So COST1 = COST1(Ai(1)) ≤
|{i(1)}|COST1(Ai(1)).

Inductive Step: 1, . . . , (j − 1) → j. We have used Ai(j) for the points in Pj . Now, either
i(j) /∈ {i(1), · · · i(j − 1)} or i(j) ∈ {i(1), · · · i(j − 1)}.
In the former, We have that COSTj ≤ COST(Ai(j))|Pj

+costj−1 ≤ COST(Ai(j))|Pj
+|{i(1), · · · i(j−

1)}|costj−1(Ai(j−1)) by the inductive hypothesis. However, since we were not using Ai(j) at
the previous step, but Ai(j−1), it holds costj−1(Ai(j−1)) ≤ costj−1(Ai(j)). Thus, COSTj ≤
COST(Ai(j))|Pj

+ (|{i(1), · · · i(j)}| − 1)costj−1(Ai(j)) = |{i(j′) : j′ ≤ j}| · COSTj(Ai(j)).
In the latter, we can treat separately the clients managed by Ai(j) across time and the other clients, for
which we can still use the inductive hypothesis with respect to the algorithms {Ai(j′) : j′ < j}\{i(j)}.
It is equivalent to the previous case in which all the points managed by Ai(j) are merged directly into
Pj . Thus, analogously, we get the desired bound.

By applying the proved inequality to the last set Pi∗ , we get that

COST(COMBINE-MUL2(A1, . . . , Ak)) ≤ h · COST(Ai∗) ≤ k ·min
i∈[k]

COST(Ai).

E Additional Robustness to Bad Advice Sets: BUCKETHEED

Our Algorithm TAKEHEED could be tricked by just a single bad advice set: if there is an advice
set, name it Sbad, which has a much larger cardinality than the optimal advice and a much larger
cost, Theorem 3.1 shows that we could get a log(|Sbad|) approximation of the desired solution. If
|Sbad| = Θ(n), we could get worse guarantees than MEYERSON Algorithm, which has no access to
any advice. This observation suggests that TAKEHEED could not be robust to the presence of a few
bad advice sets, even if the other advice sets are very good, and motivates our proposal of a more
robust algorithm, BUCKETHEED.

Here we describe Algorithm BUCKETHEED and prove theoretical guarantees for its performance.
We do not perform an experimental analysis on it because, in practice, advice sets are not adversarial.
In our experiments, we show that we can always guarantee to have the advice of roughly the same
cardinality. The motivation behind the introduction of BUCKETHEED is purely theoretical and further
validates our approach.

Let ∆ := maxi∈[k] |Si|. We assume to have a polynomial approximation, ñ, of the number of clients
n (hence log n = Θ (log ñ)). Then, we can assume that log(∆) = O(log(n)) (i.e., ∆ ∈ poly(n)): a
set with more than n facilities can be discarded, because it always has a larger cost than the trivial
algorithm which opens a facility at each client. Moreover, we can suppose that log(k) = O(log(n))
as well. If this is not true, Theorem 4.1 shows that we cannot get a better approximation ratio than
MEYERSON Algorithm.

E.1 Algorithm BUCKETHEED

The idea behind Algorithm BUCKETHEED is to divide the advice sets into O(log log(n)) advice
“buckets” that contain advice sets with limited cardinality. We then use Algorithm COMBINE-MUL to
combine applications of Algorithm TAKEHEED on the single buckets. By an appropriate definition
of the buckets, we make sure that the cost of following Algorithm TAKEHEED on a single bucket,
is a ∼ log(k) application of the best advice set in that bucket. Moreover, since the buckets are only
O(log log(n)), the overall algorithm will achieve a ∼ O(log log(n) · log(k)) approximation of the
best oracle, which is closer to the Ω

( log(k)
log log(k)

)
approximation lower bound from Theorem 4.1.

We now divide the advice sets into non-disjoint buckets {Bi}i∈[h].
Definition E.1. Consider the advice sets {Sj}j∈[k]. Let the buckets B0 := {Sj , j ∈ [k] : |Sj | = 1}
and Bi := {Sj , j ∈ [k] : 22

i−1 ≤ |Sj | < 22
i} for each i ≥ 1. Let h ≥ 0 be the minimum value such

10



that Bh contains all the advice sets. Then, we consider as buckets

B0,B1, . . . ,Bh.

Notice that, by definition,

h ≤ log log

∣∣∣∣∣∣
⋃
j∈[k]

Sj

∣∣∣∣∣∣
 ≤ log log(k∆) = O(log log(n)).

This is true because of our assumption on k,∆.

We can now define BUCKETHEED.
Definition E.2. BUCKETHEED:=COMBINE-MUL2(A1, . . . , Ak), where, for each i ∈ [k],
Ai :=TAKEHEED

(⋃
Sj∈Bi

Sj
)
.

We also report the full pseudocode of Algorithm BUCKETHEED.

Algorithm E.4 Algorithm BUCKETHEED(S1, . . . , Sk). Input: advice sets S1, . . . , Sk
1: h← dlog log(maxi∈[k] |Si|)e
2: Bj ← ∅ ∀ 0 ≤ j ≤ h
3: for i = 1, . . . , k do
4: if |Si| = 1 then
5: B0 ← B0 ∪ {Si}
6: else
7: for j = 1, . . . , h do
8: if 22

i−1 ≤ |Si| < 22
i

then
9: Bj ← Bj ∪ {Si}

10: i← 1
11: for p ∈ P do
12: if minj∈[h] COST(TAKEHEED(Bj)) < COST(TAKEHEED(Bi)) all computed up to this point

then
13: i← arg minj∈[h] COST(TAKEHEED(Bj))
14: Let qi(p) be the facility used by Algorithm TAKEHEED(Bi) to serve p
15: if qi(p) is not opened then open it
16: Assign p to qi(p)

We will show the following robustness result for BUCKETHEED.
Theorem E.1. Consider an advice set {Sj}j∈[k]. Let S∗j := arg minSj COST(Sj) be a best advice
set for a specific input set. Then,

E[COST(BUCKETHEED)] ≤ O
(
log log(n) · (log(k) + log(|S∗j |))

)
· COST(S∗j ).

Proof. Let Bi∗ be the bucket containing S∗j . By Theorem D.4, we have that
E[COST(BUCKETHEED)] ≤ (h + 1) · E[COST(Aj)]. However, we have noticed that h =
O(log log(n)). Moreover, by Theorem 3.1, E[COST(Aj)] ≤ O(log(|Bi∗ |)) · COST(S∗j ). Now,

by definition of bucket, either |S∗j | = 1, or i∗ ≥ 1 is such that 22
i∗−1 ≤ |S∗j | < 22

i∗

. In the former,
we are done because log(|Bi∗ |) ≤ log(k). In the latter,

|Bi∗ | < k · 22
i∗

= k ·
(

22
i∗−1

)2
≤ k · |S∗j |2.

This implies that
log(|Bi∗ |) ≤ log(k) + 2 log(|S∗j |).

By putting everything together, we get the desired bound.

Theorem E.2 entails that Algorithm BUCKETHEED is robust to the presence of very large, bad, advice
sets, since they do not affect the resulting bound. This theorem, then, further validates our HST-based
approach.
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F Lower Bounds: the Analysis

PROOF OF THEOREM 4.1. Consider a full binary tree of height H = 2t, for an integer t ≥ 1. Let L
be its set of leaves; then, |L| = 2H = 22

t

.

Given v ∈ L, we define a0(v) = v, and we define ai+1(v) to be the parent of ai(v).

Given v ∈ L, and 0 ≤ i ≤ H , let Li(v) ⊆ L be the set of leaves that are descendants of ai(v). Thus,
L0(v) = {v}, and LH(v) = V .

Given two leaves {v, w} ∈
(
V
2

)
, let h(v, w) be the height of the smallest subtree containing both v

and w — for instance, if v and w have the same parent, h(v, w) = 1; if the least common ancestor of
v and w is the root of the tree, then h(v, w) = H .

The metric space on V is defined as follows. For {v, w} ∈
(
V
2

)
, the distance d(v, w) is equal to

d(v, w) = 2h(v,w)−H . In particular, if {v, w} ∈
(
LH−i(v)

2

)
, then d(v, w) ≤ 2−i. We set the cost of

opening a facility to be f = 1.

At the outset, the adversary will choose a node s ∈ V . The adversary will then pick the sequence
of facilities independently of the algorithm to be tested: for each phase p = 0, . . . ,H , and for each
i = 1, 2, . . . , d2p/He, the adversary will pick a uniform-at-random client cp,i in LH−p(s). Observe
that d(cp,i, s) ≤ 2−p, and d(cH,i, s) = 0.

First, observe that the algorithm that opens s at the outset, and uses it to serve all the clients, will
incur in a total cost of at most

1 +

H−1∑
p=0

d2p/He∑
i=1

d(s, cp,i) ≤ 1 +

H−1∑
p=0

d2p/He∑
i=1

2−p

= 1 +

H−1∑
p=0

(⌈
2p

H

⌉
· 2−p

)
≤ 1 +

H−1∑
p=0

((
2p

H
+ 1

)
· 2−p

)

≤ 1 +

H−1∑
p=0

(
1

H
+ 2−p

)
< 4.

That is, there exists a leaf that, if opened and used to serve each client, acts as a solution having a
total cost of O(1).

Now, create one oracle for each leaf v ∈ L. The v-oracle, Sv will suggest to open a single facility:
v. Then, the best oracle will incur in a total cost of O(1). Moreover, the number of oracles equals
k = |L| = 2H , the set of all suggested facilities is S = L and has cardinality k = 2H .

Then, observe that if an algorithm opens more than 0.1H/ lg(H) facilities, its total cost will be larger
than the cost of that of the best oracle by a factor of Ω(H/ log(H)) = Ω(log(k)/ log log(k)).

In the remainder of the proof, we will then only consider algorithms opening no more than
0.1H/ lg(H) = O(log(k)/ log log(k)) facilities.

Suppose that the adversary picks the node s uniformly at random. From the algorithm’s perspec-
tive, this amounts to the following distributions on the facilities. For each p = 1, . . . ,H , the pth
batch will contain d2p/He clients, each of which will be chosen independently and uniformly at
random in a set Mp, that the adversary known to be equal to Mp = LH−p(s), and that, from
the algorithm’s perspective during phase p − 1, will be chosen uniformly at random in the class
Cp = {Mp, LH−p+1(s)−Mp}. The algorithm, once phase p− 1 begins, knows the class Cp, but
will have no way of inferring, before phase p begins, which of its two sets will end up being the
support of the distribution of phase p. (Indeed, the distribution of the clients up to and including those
in phase p− 1 is independent of the uniform-at-random bit choosing the support of the distribution of
phase p.) Analogously, at phase p− 1, the algorithm only knows that the set Mp+2` will be chosen
UAR from a class of 22`+1 sets.

Now, suppose that the algorithm does not open facilities in any of the phases p + 1, . . . , p + 2`.
Consider any of the previously opened facilities f , and any client c of phase p+ 2`. Let ξ be the event
that d(c, f) ≤ 2−p−`. For ξ to happen, it must be that c is a leaf of the set LH−p−` — since, at phase
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p, c is uniformly distributed in (a superset of) LH−p, we have that Pr[ξ] ≤ O
(
|LH−p−`|
|LH−p|

)
= O

(
2−`
)
.

Since the number of facilities opened by the algorithm is at most O(H/ logH), by the union bound,
the probability that there exists a facility opened by the algorithm before phase p+1 that is at distance
at most 2−p−` from c is at most O(2−`H/ logH).

If we let ` = lg(H), this probability becomes at most O(1/ logH). That is, the expected cost for
serving c, if no facilities were opened in phases p+ 1, . . . , p+ 2`, is at least Ω(2−p−`) — then, since
phase p+ 2` contains at least 2p+2`/H clients, the expected cost for phase p+ 2`, with no facilities
opened in phases p+ 1, . . . , p+ 2`, is at least Ω(2−p−` · 2p+2`/H) = Ω(2`/H) = Ω(1).

Now, if the algorithm has opened at most 0.1H/ lgH facilities, then there must exist at least H/2
phases p such that the algorithm has not opened any facilities in the phases p−2`, p−2`+1 . . . , p−1, p
(indeed, each opened facility can cover at most 2` = 2 lg(H) phases and, thus, the number of covered
phases is at most 0.2H , less than half of the total). Therefore, if the algorithm has opened at most
0.1H/ lg(H) facilities, its expected (distance) cost is at least Ω(H) = Ω(log k) — a Ω(log k) factor
larger than the cost of the best oracle.

PROOF OF THEOREM 4.2. Consider S = {1/22i, 1 ≤ i ≤ k−1}∪{0}. The set of clients contains
the points in this order with multiplicity, where the multiplicities are mi := m(1/22i) = d 2

2i

i2 e for
1 ≤ i ≤ k − 1, mk := m(0) = 1. We will show an Ω(k)−lower bound for any Meyerson-like
algorithm on this instance, where the clients are received in this order: 1/22, 1/24, . . . , 1/22(k−1), 0.

First, we show that OPT ≤ π2/3 = O(1). An upper bound for the cost of the optimal solution is
given by the cost of the solution opening only a facility at 0. This has cost

k−1∑
i=1

(
1

22i
·
⌈

22i

i2

⌉)
≤
k−1∑
i=1

(
1

22i
·
(

22i

i2
+ 1

))
≤
∞∑
i=1

(
1

22i
·
(

22i

i2
+

22i

i2

))

because 2i ≥ i for each i ≥ 1. Thus, the cost is ≤ 2
∑∞
i=1

1
i2 = π2

3 by a well-known result on the
sum of the inverse squares of natural numbers.

Second, any Meyerson-like algorithm pays cost ≥ 1 on each location in S except 0. We will show
this by induction on i. By definition of Meyerson-like algorithm, a facility is opened at the first input
point (i = 1), with resulting cost paid = 1. Now, when the i−th distinct input point is seen, its
distance to its closest previous input point, and so to the closest opened facility, is ≥ 1

k2(i−1) − 1
k2i ,

and its multiplicity is dk
2i

i2 e. If we, sooner or later, open a facility at this location, we are done
since we pay 1 to do that. Assume this is not true, so for points in this location we will pay
≥
(

1
k2(i−1) − 1

k2i

)
· k

2i

i2 = k2−1
i2 =

(
k
i

)2 − 1
i2 ≥

k
i −

1
i ≥ 1 because i ≤ k − 1.

Third, for this specific class of instances SNFL algorithm from Fotakis [2005] behaves exactly as a
Meyerson-like algorithm, so it produces a solution with cost ≥ k − 1 = Ω(k). We also show this by
induction on the different locations of the input points. In the inductive hypothesis, we also include a
fact about possible facilities that have not been touched by any input point: they could not be opened
facilities, and their potentials are smaller the closer they are to 0. By definition of SNFL algorithm,
a facility is opened at the first input point (i = 1), exactly as for Meyerson-like algorithms, and
nothing is done for the other points. Now, when the i−th distinct input point is seen, its distance
to its closest previous input point, and so to the closest opened facility by inductive hypothesis, is
≥ 1

k2(i−1) − 1
k2i , and its multiplicity is dk

2i

i2 e. By inductive hypothesis, there is not an opened facility
at 1

k2i yet. However, its potential is not smaller than the potentials of the possible facilities that have
not been opened yet, because those as closer to 0. Subsequent arrivals of input points at 1

k2i may
increase the potentials of all the closed possible facilities, but the increases are always smaller for
closer points to 0. At a certain point, for what shown for Meyerson-like algorithms, the potential of
1
k2i reaches 1, so it gets opened as a facility (recall that it is the largest potential of the remaining
closed possible facilities). For the remaining input points at 1

k2i , no potentials are touched and we are
done.
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G Experimental Results

In this section, we report the experimental results for Gowalla and Uber. The behavior is similar
to Brightkite, reported in the experimental section of the main paper. We include plots showing the
performance of the robust variant of our algorithm with different values of the mixing parameter γ
(Figures 5, 9, 13). For completeness, we also show the quality of each advice of the set supplied to
the advice-based algorithms (Figures 6, 10, 14). Finally, we included a plot showing the running time
of the different algorithms (Figure 15).
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Figure 5: Average estimated competitive ra-
tios for different mixing parameter γ between
TAKEHEED and MEYERSON for robustness (by
γ = 1 we mean the non-robust version). The
shaded area represents one standard deviation.
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Figure 6: Average estimated competitive ratios
for the single advice sets and the algorithms com-
bining them. The shaded area represents one
standard deviation.
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Figure 7: Average estimated competitive ratios
of the main online algorithms. The shaded area
represents one standard deviation.
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Figure 8: Average estimated competitive ratios
of the robust version of main online algorithms.
The shaded area represents one standard devia-
tion.
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Figure 9: Average estimated competitive ra-
tios for different mixing parameter γ between
TAKEHEED and MEYERSON for robustness (by
γ = 1 we mean the non-robust version). The
shaded area represents one standard deviation.
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Figure 10: Average estimated competitive ra-
tios for the single advice sets and the algorithms
combining them. The shaded area represents one
standard deviation.
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Figure 11: Average estimated competitive ratios
of the main online algorithms. The shaded area
represents one standard deviation.
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Figure 12: Average estimated competitive ratios
of the robust version of main online algorithms.
The shaded area represents one standard devia-
tion.
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Figure 13: Average estimated competitive ra-
tios for different mixing parameter γ between
TAKEHEED and MEYERSON for robustness (by
γ = 1 we mean the non-robust version). The
shaded area represents one standard deviation.
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Figure 14: Average estimated competitive ra-
tios for the single advice sets and the algorithms
combining them. The shaded area represents one
standard deviation.
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Figure 15: Average running time of the main
online algorithms to process all the clients. For
TAKEHEED, it includes the time needed to sam-
ple the HST. The shaded area represents one
standard deviation.
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applicable? [N/A]
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Board (IRB) approvals, if applicable? [N/A]
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