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ABSTRACT

As federated learning (FL) matures, privacy attacks against FL systems in turn
become more numerous and complex. Attacks on language models have pro-
gressed from recovering single sentences in simple classification tasks to recov-
ering larger parts of user data. Current attacks against federated language models
are sequence-agnostic and aim to extract as much data as possible from an FL
update - often at the expense of fidelity for any particular sequence. Because of
this, current attacks fail to extract any meaningful data under large-scale aggre-
gation. In realistic settings, an attacker cares most about a small portion of user
data that contains sensitive personal information, for example sequences contain-
ing the phrase “my credit card number is ...”. In this work, we propose the first
attack on FL that achieves targeted extraction of sequences that contain privacy-
critical phrases, whereby we employ maliciously modified parameters to allow
the transformer itself to filter relevant sequences from aggregated user data and
encode them in the gradient update. Our attack can effectively extract sequences
of interest even against extremely large-scale aggregation.

1 INTRODUCTION

Industrial machine learning models are often trained on large sets of user data. In a traditional
centralized training paradigm, this is done by aggregating user data into a large repository. Unfor-
tunately, when user data contains personal information in the form of text, images, or other media,
dataset aggregation leads to significant security, regulatory, and liability risks.

Against this backdrop, federated learning (FL) has emerged as a popular way to train models with
decentralized data, that is without the need for a central party to host a dataset. By exchanging only
model gradients, user devices collaboratively train a model without the direct exchange of plaintext
data. In many applications, FL is slower than centralized training (Bonawitz et al., 2019)), but the
privacy benefits outweigh the costs, especially in next-word text prediction which requires training
on private text from smartphones (Hard et al.| 2019).

Privacy through federated learning is sometimes taken for granted. In reality, the actual privacy
achieved by federated learning systems depends on a large number of factors and parameters — model
size, architecture, number of users, the aggregation scheme, and more. Attacks against privacy
in FL probe this boundary, empirically discovering pitfalls that should be considered and avoided
when designing federated protocols (Phong et al.,|2017; |Melis et al.,[2019; |Geiping et al., 2020).

In this work, we study the security of federated learning systems involving transformer architectures
(Vaswani et al.,|2017) which form the backbone of many recent advancements in natural language
processing (Brown et al., [2020; |[Dosovitskiy et al., 2021} Jumper et al., [2021)), and especially ap-
plications in text, which represent a key point of interest in many modern applications of federated
learning (Paulik et al.l 2021 Dimitriadis et al.,[2022). Our main threat model of interest is the un-
trusted server scenario, also known as the malicious server scenario, in which the server may make
changes to model parameters in order to break user privacy. This is in contrast to the honest-but-
curious threat model, in which no malicious changes are permitted to the model training protocol.
Untrusted server scenarios are of critical importance from a user-centric privacy perspective.
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Figure 1: The proposed attack “tags” and filters tokens so that they can be reconstructed from gradient
information. Malicious model parameters for a standard transformers (here with a causal structure) are sent to
user devices. The attack uses one head to tag each token in a sequence with the first token of that sequence,
(here in red, green, blue). This enables the attacker to group tokens into sequences after they are extracted from
a gradient update. The attacker then uses two more heads to tag each token that follows the key words “credit”
and “card” (yellow). These yellow target tokens will influence the gradient computation, while others will be
filtered out. Finally the attacker recovers the targeted tokens from the gradient of the modified model returned
by the user.

If a federated system is supposed to uphold privacy, then ideally this privacy can be guaranteed
without having to assert full trust in the server. After all, a perfectly trustworthy server could run the
simplest FL protocol: Centralize all user data, promise not to share it, train a centralized model, and
delete all data. Another way to look at untrusted server threats is to view them as a glimpse of worst-
case dataset security. Even if we believe a server will uphold privacy, we might wonder about the
worst-case loss in privacy that would arise if this server is even briefly compromised (through either
classical security breaches or poisoning attacks (Bagdasaryan et al.l 2019)) and acts maliciously.

A major strategy available to a malicious server is to modify the current state of a machine learning
model as it is being trained, and then broadcast this corrupted model to the users. As the model is
directly executed on each user device, this can be considered an analogue to untrusted code instruc-
tions that are being evaluated on a user’s private data (OWASP, [2022; |[Fowl] et al.| [2022)).

Despite the inherent power that a malicious server has, extracting user data is still extremely difficult
when gradients are aggregated over many users, in which case the averaged gradient does not contain
enough entries to record the whole global training batch. For this reason, existing attacks on text
models only recover user data in scenarios where the number of model parameters is significantly
larger than the number of tokens in a user update (Fowl et al., 2022 |Gupta et al., 2022} Dimitrov
et al.,2022; Pasquini et al.,|2021). In some cases, attacks can siphon random examples of user data,
but only through a large number of repeated queries (Wen et al.,2022)).

In this work, we discuss a novel attack on text models whereby a malicious server is able to pick
and choose which data to encode and extract from the model gradient, even with industrial-scale
aggregation. The attacker selects a trigger phrase, such as “credit card number” or “social security
number,” and extracts all tokens of user data that follow the occurrence of this trigger. We call this
process, in which we sift selected phrases out of a large corpus of user data, “panning.” In com-
parison to existing attacks, this attack does not degrade when very many user updates are securely
aggregated (Bonawitz et al., 2017). For this reason, panning is an essential shift in capabilities for
attacks against transformer-based models in federated learning.

2 BACKGROUND AND APPLICATION EXAMPLES

Text models were the first and most successful systems where federated learning has been used in
industrial settings. These applications include keystroke prediction Hard et al.|(2019); Ramaswamy
et al.|(2019), settings search Bonawitz et al.|(2019), news personalization (Paulik et al.l 2021}, and
improved messenger services on Android (Googlel |2022). In the latter case, the documentation of
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Google message describes federated learning being used to improve ML models related to Google
messages, for example “smart reply” features. FL is active by default on all Android devices with
this app. According to the documentation, user conversations are protected only through secure
aggregation (Bonawitz et al.l [2017), which “can’t reveal your conversations or content to Google
or anyone else [...], grouping many similar adjustments together so that Google can’t inspect an
adjustment from a single device”. In this work, we argue that this system of protecting privacy
leaves users open to targeted extraction attacks from a malicious server update sent to the user,
provided the system uses a transformer-based machine learning model.

Known attacks against privacy in federated language models are not capable of breaking privacy
in such large aggregation settings. The earliest attacks against transformers in |Zhu et al.| (2019b);
Deng et al.| (2021) operate in the "honest-but-curious” threat model. These attacks have resulted in
only limited success, recovering data only from single sequences. In practice, “single sequences”
imply that user updates are not securely aggregated, each individual user sends an individual update
that represents only their data. Recent developments in |[Dimitrov et al.| (2022) and |Gupta et al.
(2022) have pushed the envelope, reconstructing more and more text fragments, even from multiple
sequences in this restricted threat model. On the other side, malicious server threat models, for
example in |Pasquini et al.| (2021)) and |Fowl et al.|(2022) can recover more information and identify
or respectively reconstruct from aggregates of hundreds of sequences.

These attacks all attempt to recover all user data from an aggregated gradient, putting equal emphasis
on the fidelity of each reconstructed sequence. This strategy inevitably decreases the capability of
previous attacks to recover accurate individual sequences as the number of sequences and tokens
increases, and eventually the extracted sequences become meaningless combinations of tokens.

Attacks that break large scale aggregation generally require additional assumptions. |[Lam et al.
(2021) show that aggregation can be breached if side-channel metadata is available to the server,
Pasquini et al.| (2021) show that if users can be addressed separately by the server and each user only
has limited data, malicious parameters with zero-gradients can be used to suppress all other users
and break aggregation. This trick can also be used for targeted membership inference, checking if a
user owns a specific datapoint. Further, Wen et al.[(2022)) shows that if malicious servers are allowed
to send multiple queries, then they can “fish” for single data points, even from aggregated data.

Yet, in a real-life scenario, among all data a user computes and aggregates model updates with, often
only a few of them contain information valuable to a potential attacker. For example, out of a 50-
sentence online conversation between a user and a bank agent, an attacker may only be interested
in the particular sentence that contains the user’s social security number. This poses the question of
whether it is possible for an attacker to dedicate the capacity of the gradient to only a limited number
of target sequences with a specific set of keywords or triggers.

Threat Model - Untrusted Server Our threat model contains two parties. First, a user (or group
of aggregated users) that owns text, which contains private information following a set of keywords
K = {ki,...,k,}. Second, a malicious server that aims to “pan”, e.g., perform targeted extraction
of user tokens that immediately follow one of these keywords. We assume that the number of
aggregated sequences may be unlimited, but the number of sequences matching the combination
of keywords is limited. We assume that the federated learning exchange is otherwise secure: Both
parties agree beforehand on a transparent implementation for both model architecture and user-side
protocol that is vetted by public examination. The only attack vector for the server is the model
update sent indiscriminately to all users in the group. In this way, the presence of the attack may be
non-obvious because it does not require deploying any new executable code, and it is embedded in
network parameters that are seldom, if ever, inspected.

Even stronger threat models have also been investigated (Freyl 2021} [Boenisch et al., 2021} [Fowl
et al.,[2021). Threat models considered in [Frey| (2021) allow the server to execute arbitrary pieces
of code on user devices, while [Fowl et al. (2021); Boenisch et al.| (2021) assumes a server can
maliciously modify model architectures. We also note that the role of the attacker need not be
played by the party that owns the server, and any individual/party that has access to the model
update anywhere in the pipeline can assume the role. Particularly, a man-in-the-middle attacker can
inject the attack into model parameters before broadcasting to users, retrieve the resulting unsecured
user update, and replace the outgoing update with seemingly normal model gradients.

'https://support.google.com/messages/answer/932790
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Figure 2: An overview of the mechanics of the proposed panning attack. The attacker reprograms the encoder
block to tag and filter input sequences. This encodes keyword-specific information into the model gradient,
which enables the attacker to ”pan” for targeted tokens from even large aggregated user updates. The attacker
can then post-process the tokens retrieved from the model gradient to recover original sequences.

Input

Remark (Peer-to-Peer Attacks between Users.). This threat model applies even if the server is
fully benign: If in any round of training, a group of malicious users can control enough updates
to replace the model parameters (Bagdasaryan et al.| | 2019; |Bhagoji et al.| |2019) in a single round
of training, then the server will unwittingly distribute these malicious model parameters in the
next round of training, collect model updates from other, vulnerable users, aggregate them and
redistribute the updated model. Because an attack through “panning” is invariant to aggregation
sizes, this means that the group of attackers can then discover data from vulnerable users in the
next round of training, while the server remains unaware of any breach privacy.

3 METHOD

Here we discuss the possibility of a“panning” attack that performs extraction of target sequences
that contain a specific set of keywords. The attack we describe below is specific to transformer
architectures and based on modifications to attention mechanisms and linear layers. The key ideas
can be summarized as follows:

1. Modification of multi-head attention blocks (MHSA) to “tag” the tokens of a sequence that
contains specific keywords, as in Section[3.2]

2. Modification of linear layers to detect the tag and trigger capture of token embeddings
belonging to target sequences, while filtering out non-target sequences, see Section 3.3

3. Post-processing the relevant embeddings into target sequences, as in Section[3.4]

An overview of our attack is presented in Figure2} The discussed attack draws on a family of works
describing “analytic” attacks against models in federated learning that we describe in Section 3.1}

3.1 PRELIMINARIES

As discussed in|Phong et al.|(2017);|Geiping et al.|(2020); Fowl et al.|(2021)), the gradient of a linear
layer parameterized by (W, b) whose forward pass is y = W f + b reveals information about its
input f. In particular, for any given row W, and the related bias entry b,,,, we have
oL oL oL OL  Oym oL

Vw,L=——-V = -, — ) _
L / Obm,  Oym Obm  Oym

where L(y) denotes the downstream loss computed on the layer output y. An attacker can then
simply reconstruct f by computing f =V, L © gTL, where @ denotes entry-wise division as.

m

(D

However, attackers cannot easily apply this trick to transformers in federated learning. Firstly, trans-
formers add together token embeddings and positional embeddings, and have residual connections
that add the output of multi-head self-attention (MHSA) to these mixed embeddings before applying
the first fully-connected linear layer. In other words, the individual input f; ; of the first linear layer
of the first encoder block is

fij = eij+p; +MHSA({e; ;o +pjr Yoy (2)

where e; ; is the embedding of the j-th token in the i-th sequence, p; is the j-th positional embed-
ding, and MHSA({e; ;- +p;/ }§':1 , 7) is the j-th entry after applying MHSA on sequence 7. Secondly,
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assuming the model update is computed over B sequences of length ¢, an attacker only has access
to the average gradient aggregated over all BY tokens, The aggregated gradients of the first linear
layer are instead

B ¢ B ¢ oL B ¢
ZZVWMLi,j:ZZ(&yim'fiJ)v lel
i=1 j=

i=1 j=1 i=1 j=1

OLi; = 0Li;
By, = 222 Dy
i=1 j=1

Recovering an individual f; ; from this gradient cocktail is non-trivial.

3)

In summary, to recover a user’s input sequences, an attacker needs to (1) isolate out individual mixed
embedding f; j, (2) split the mixed embedding f; ; into a token embedding e; ; and position p; ; ,
and (3) match e; ; to the most probable word. If all tokens are uniformly represented in the gradient,
then step (1) may be impossible. Below, we show how the network can be put into a state where the
gradient’s information capacity is sparingly used to encode targeted sequences.

Big Picture: To extract data from a transformer model update, the attacker needs to first
extract individual mixed embeddings from aggregated (batch averaged) gradients, group
these into sentences, and then split the mixed embeddings into their position and token.

3.2 TAGGING TARGET SEQUENCES

In this section, we describe how an attacker could modify parameters in the attention block
to “tag” the mixed embedding that belongs to a sequence that contains the selected keywords
K = {ky,...,kn}. Weillustrate the modification in Figure For simplicity, we start by detailing
this construction with only one keyword k. We refer to a sequence that contains k as either the
“target” sequence or “relevant” sequence. Other sequences are called ‘“non-targeted” or “irrelevant.”

To facilitate the construction, we assume the norm of token embedding e(*) associated with the
target word & to be larger than the norm of all other token and positional embeddings. The server
can easily meet this assumption as both embedding matrices are also part of the model parameters
under their control. With this assumption, we design a self-attention mechanism inspired by [Fowl
et al.| (2022) that tags the target sequences by imprinting e(*) into every mixed embedding in the
target sequence. To be more specific, let (Wq,bg), (Wk,bk), (Wy, by ) be the weight matrices
and biases of query, key, and value layers of MSHA in the first encoder block respectively. We set
each of the parameters as follows,

Wgo =0, bg = e
Wi =14, brx =0, Ty [%T] = {
Wy =Ty, by =0,

1 g=rq<d,
0 otherwise.

“4)

where « is a large positive value (e.g. 10%) and T is the truncated identity matrix with pre-defined
dimension d’. W and by form an identity operator, and thus the key token K (and others) pass
through unaltered. W and b are designed so that the query vectors () are each identical copies
of e(¥). Finally, Wy and by keep only the first d’ entries of the input embedding, and set all other
positions in each embedding to zero.

Let’s evaluate the results of the MHSA computation based on this construction. If a length-¢ se-

1
quence {e; }5:1 contains the target k at position j', then the attention weight sof tmax( %) will be

large, forcing every word in the sentence to attend to the target word. In fact, when « is large enough,
attention to the target is near-absolute. Thus, the resulting mixed embedding after the MHSA is:

fi=ej+p;+Ta(e® +p;) ®)

In plain language, the first d’ entries of the keyword embedding vector are added to the first d’ posi-
tions of every embedding in the sequence. We say that the sequence is now fagged with the keyword.
For causal language models, applying the construction in Equation (I0) on masked MHSA turns the
keyword into a trigger, where the attention imprints e(*) to tokens that appear after the keyword in
the target sequences. Coupling this tagging approach with a filter introduced later in Section[3.3] one
can perform targeted extraction of sub-sequences that start with the keyword k. On the other hand,
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Figure 4: The measurement distributions of mixed
embedding by w + w’ from Section on GPT-
2. The measurement distribution of irrelevant, non-
target, embeddings (blue) exhibits clear separation

from the measurement distribution of relevant target
embeddings (orange). We set 8 = 2.5 here.

this manner filter for only targeted tokens. & repre-
sents the add-and-norm operation in a transformer.

if the sequence is irrelevant, or in the case of causal MHSA, if the mixed embedding appears before
k, then the imprinted embedding will be random from e; to ey. This difference allows our malicious
modification to tag the mixed embedding in target sequences by a keyword-specific imprint, and we
will discuss in the next section how we filter out irrelevant sequences based on this imprint.

We note that extending the above construction to multiple keywords is straightforward. In particular,
for N keywords k1, . . ., kn, one can simply repeat the above constructions for a separate head in the
MHSA block for each keyword, and imprint each keyword-specific signature to different positions.

Big Picture: The attention mechanism of a transformer is repurposed to attend strongly
to the attacker’s keywords, and add these keyword embeddings to all other entries in the
sequences, thereby tagging them as important.

3.3 FILTERING NON-TARGETED TOKENS

Targeted tokens are those appearing in a relevant sequence containing a keyword. All other tokens
in other sequences are not targets and should be filtered out. We want to remove them from the
gradient aggregation to enable the attacker to isolate the few remaining target tokens in the gradient.
We provide an illustration of the key idea in Figure [3] Our approach draws inspiration from [Fowl
et al.| (2021), who performs gradient separation on aggregated gradients uncovered in Equation (3).
We construct a malicious linear “imprint” layer by assigning to each row of W identical copies of a
measurement vector w. We then set the entries of the bias vector b to form an increasing sequence

b™ < b™FL If the linear layer is followed by a ReLU activation, the aggregated gradient becomes
B ¢ oL
YD) DTN 3) 78 (i) gt ZZ R 3 SURIBE: ) ©
=1 j5=1 =1 j=1 =1 j=1 =1 j=1

where ¢,,(fi ;) = 1if (w, f; ;) + by > 0 and ¢, (f; ;) = O otherwise.

Intuitively, the ReLU outputs from this layer are like a thermometer for measuring the inner product
(w, fi,; >). Because the bias entries are increasing, more ReLUs will be active if the value of
W f; ; is larger. The m-th ReLU turns on when (w, fi, ; >) lies above the cutoff defined by b,,
The gradient for the row W, aggregates over all tokens with inner products above b,

Now suppose that just one token f’ out of all f; ; uniquely satisfies g,,, (f') = 1 and g, 41(f") = 0.
Then we can separate out the individual gradient for this token by computing

B ¢
YD (VwalLij = Vw,Lig) = 5—-f, ZZ

i=1 j=1 i=1 j=1

OLi;  OLi,
by Obmat

oL’
Y

)

We can now uniquely recover f” just as we did from with a batch size of 1 in Equation (1). There-
fore, if the attacker can accurately estimate the distribution of (w f; ;), they can then construct b
accordingly to maximize the chance for every f; ; to fall uniquely in one of the bins (b, by+1)-
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It was noted by [Fowl et al.|(2022) that the distribution of (w, (e; ; + p;)) is approximately Gaussian
if every entry of w is a random sample from a standard Gaussian. Assuming b has M entries
in total, we can optimize the attack by setting b,, = —®~'(3F) where ®~'(-) is the inverse of
estimated Gaussian distribution. Under this choice, each bin (by,, b,,+1) approximately contains
the same probably mass. However, observe that the number of bins upper-bounds the capability
of an attacker to recover user data; if too many samples pass through the bins will become over-
saturated. Therefore, directly attempting to recover all f; ; becomes less effective against large-scale

aggregation.

To address the issue, we propose a set of modifications for linear layers to pan for relevant mixed
embeddings. Here, we describe how to program the first linear layer of the first encoder block, and
discuss the extension to multiple encoder blocks in Appendix |[A] The key idea is to design w so
that targeted tokens produce a large value of (w, f) while untargeted tokens produce a small value.
We then assign entries of b so that ReLUs only activate for tokens in the target distribution. To be
more concrete, we scale the norm of e(*), the embedding of the given keyword, to 5 > 1, where 3
controls the ”signal strength” of the relevant mixed embedding, and helps to separate the irrelevant
embedding as detailed later. We also sample the random measurement vector w from standard
Gaussian and mask out the first d’ entries. Finally, we construct w’ as

e®[q], q<d&
W/[Q}:{O “ q >d’.

By setting each row of W to (w + w’), we have
(w+ w, fj> = <W +w, €j +pj> + <Wl7 Td’(ej’ +pj/)>7 ®)

by Eq. 5| where j’ is the position the MHSA attends to. Assuming e; and p; are both zero-mean
(these can be chosen at will by the server), the measurement distribution of irrelevant embeddings
remains zero-mean, while a mean shift of (3||w’||)? can be observed in the distribution of the mixed
target embeddings. We show the separation between both distributions empirically in Figure[d The
distinction allows us to adapt the binning strategy from Fowl et al.|(2022) to focus on the distribution
of relevant target embeddings. This allows the attack to condense all other embeddings into a small
number of bins and dedicate the remaining bins to separating individual target embeddings.

Big Picture: The attack leads to a bimodal distribution of embeddings. Targeted embeddings
produce large activations in the linear imprint layer, while untargeted embeddings produce
low activations.

3.4 POST-PROCESSING MIXED EMBEDDINGS INTO MEANINGFUL SEQUENCES

With individual mixed embeddings f; ; isolated into separate ReLU bins, we then need to extract the
corresponding sequence index ¢, position index j and the actual word from the vocabulary for each
fi,;. The tagging we describe above is used to label tokens based on the keyword that made them
a target Section We can also introduce a second tagging mechanism that imprints positional
information onto each token.

To be more concrete, we construct a positional imprint using a second head in the MHSA block:
WQ = O, bQ = Py,

WK = Id, bK = 07 Td’ [QvT] = {
Wy =Ty, by =0,

1 g=nrd<qg<2d,
0 otherwise.

For a given sequence { f; }§:1 with mixed-in embeddings {e; }ﬁz 1» the positional imprint outputs

fi=ej+pj+Tauler+p1), 9

where entries d+ 1 to 2d of the first token in every sequence are imprinted to mixed embeddingin the
same sequence. We then group f; ; into sequences with constrained K-means clustering (Bradley
et al., [2000) using entries d 4 1 to 2d that encode sentence identity. Constrained K -means allows us
to constraint the size of each cluster, which is no larger than sequence length /.

After grouping embeddings into sequences, the next step is to recover positions. As mixed embed-
dings in the same sequences are guaranteed to have distinct positions, we perform position recovery
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Figure 5: Comparison of our method with Decepticons, a recent Transformer-based attack, for different ar-
chitectures across various batch sizes on targeted sequences. Decepticons is depicted with dashed lines. The
sequence length is fixed to 32. Panning is a strictly stronger attack against sequences containing the target word.

on a sequence-by-sequence basis. For a set of mixed embeddings {f;/} grouped in the same
sequence, identifying the most suitable unique position j of each f; can be viewed as a maximum
weight bipartite matching problem, where we define the weight of a potential match (f;/, j) to be
the correlation between f;, and p;. We can solve the matching problem efficiently (Kuhn| [1955) and
obtain the pure token embedding e; ; by subtracting the recovered positional embedding from f; ;.

The final step is to associate each recovered token embedding e; ; with the actual words. (Fowl
et al} [2022) discovered that the frequency of tokens presented in user updates can be estimated
accurately. The estimated frequency dictates the maximum number of e; ; a specific word v can be
associated with. Then, taking the constraint into account, matching e; ; to the most suitable word
v can be formulated as another maximum weight bipartite matching problem, where the weight of
a potential match (e; ;, v) is the correlation between e; ; and e,.

Big Picture: Individually recovered mixed embeddings (which are the sum of a position
embedding and a token embedding) can be grouped by sequence. The tokens in a sequence
can then be separated into token ID and position ID by solving bipartite matching problems.

4 EMPIRICAL EVALUATION OF THE ATTACK

In this section, we empirically evaluate our proposed attack on different transformer architectures
commonly used in real-world applications. In particular, we consider the smallest variant of GPT-
2 (Radford et al., 2019) with 124 million parameters, which is a causal language model with masked
self-attention. We also consider a variant of BERT (Devlin et al., 2019) with 110 million parameters,
which was used in previous works (Deng et al., 2021;[Zhu et al., 2019a)) for attack evaluation. Unlike
GPT-2, BERT is trained as a masked language model which allows bidirectional self-attention.

We evaluate on the wikitext dataset (Merity et al., 2016), which we partition into articles. We sim-
ulate each user by sampling text from an article. We focus on fedSGD, where each user performs a
single gradient step and sends a model update to the server. Note that many related protocols, such as
federated averaging (McMahan et al.|[2017), can be converted back to fedSGD, if the server is mali-
cious and can control the number of local update steps or local batch size. We perform quantitative
evaluations on our method with a range of different metrics. We measure success based on BLEU
scores (Papineni et al., 2002), ROUGE-L (Lin,|2004), and total accuracy (where we only count exact
matches of both token ID and positions ID). We provide additional details in Appendix [A]

4.1 COMPARING WITH TRANSFORMER-BASED ATTACKS FOR MALICIOUS SERVERS

We begin by comparing our proposed method with Decepticons (Fowl et al., [2022), a recent
transformer-based attack for the malicious server threat model, across various batch size and se-
quence lengths. To simulate the scenario where only a small number of sequences contain privacy-
critical information, we select the first 3 sequences from each batch and replace one of the tokens
of each sequence with a target keyword. For experiments on BERT, the replaced token is ran-
domly selected. For experiments on GPT-2, we instead replace one of the first four tokens with a
trigger keyword, which allows us to assess the impact of imperfect imprints created by masked self-
attention. Due to causal language modeling, an attacker can only recover tokens following the trigger
keywords for GPT-2. The quantitative results are then evaluated only on these target sequences.
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Figure 6: Experiment on our attack across different architectures for large batch size. The sequence length is
fixed to 32. We evaluate our method only on the target sequences. Panning attack success remains constant as
batch sizes increases to even large aggregation sizes.
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Figure 7: Experiment on our attack across different architectures for target phrases with different length. We
fix the sequence length to 32 and batch size to 64 respectively. Our method is able to accurately capture relevant
sequences given target phrases of various lengths.

We first fix the sequence length, and compare our method with Decepticons, while varying batch
size in Figure[5] We see that the performance of Decepticons drops significantly as the batch size
increases beyond 128, however the proposed panning attack mechanism is able to maintain a steady
reconstruction quality on the targeted sequences as the batch size increases. In this sense, the new
attack really is independent of aggregation size, and rather only depends on the number of keyword
occurrences. We push this further in the next section.

4.2 EXPERIMENTS WITH LARGE-SCALE AGGREGATION AND MULTIPLE KEYWORDS

Next, we evaluate our proposed methods under more extreme conditions. First, we assess the capa-
bility of our method to capture relevant sequences under extremely large-scale aggregation. We fix
the sequence length to 32, and experiments with batch size up to 2048, and summarize the results in
Figure[6] As demonstrated in the figure, the fidelity of our recovered relevant sequences remains high
and is still largely agnostic to batch size. This observation validates the danger of the tagging and
filtering strategy, which can capture tokens in targeted sequences even against extremely large-scale
aggregation. We note that at this level, it becomes infeasible to even compare to Decepticons, due
to the increased computational complexity to run the algorithm proposed therein for 65536 tokens.

Additionally, we investigate how the number of keywords K impacts the performance of our attack.
We perform experiments on K € {1,2,3,4,5,6}, We randomly replace a length- K sub-sequence
with a length- K target phrase in each of the first 3 sentences. We present results in Figure [/| and
demonstrate that our attack is able to recover sequences relevant to a various number of keywords.
We note that both GPT-2 and BERT include 12 heads and allow us to target 11 keywords, which is
enough to target most sensitive information in the real world.

5 CONCLUSION

In this paper, we describe a novel vulnerability for transformers used in a federated setting. This
vulnerability opens the door to an attack through malicious parameter vectors that can “pan” for
sequences that contain private information based on specified keywords. The attack allows an ad-
versary to accurately capture sentences that contain the keywords out of aggregated updates from
thousands of sequences. The attack injects malicious parameters into the transformer whereby sensi-
tive sequences are “tagged” with a unique signature, and filtered to recover these targeted sequences.
This attack reflects a notable shift in the capabilities of data reconstruction attacks in federated learn-
ing as the attack succeeds under seemingly arbitrary amounts of aggregation.
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ETHICS AND MITIGATIONS STATEMENT

We describe an attack that significantly extends the capabilities of data extraction attacks for trans-
former models in federated learning. However, this attack only extends the capabilities of a mali-
cious server and furthers our understanding that privacy cannot be guaranteed against such a server
with only secure aggregation. Yet, in examples such as the message application discussed in Sec-
tion 2] the described attack in this paper does nor actually extend the capabilities of the server, as
the federated learning system considered therein is implemented on a good-will basis without the
ability for a user to inspect and vet the implementation of the protocol. From a security perspective,
the server is so far not constrained to protocol, and is already capable of downloading user data -
without federated learning. Both with and without our attack, the server in this example remains
with current implementations only legally bounded to minimize their use of user data.

In terms of mitigation opportunities, two lines of defense algorithms are possible. The first line
of defense algorithms involves (automatic) inspection of model parameters, and the second line of
algorithms leverages differential privacy. We provide discussions for each separately.

Mitigations through Inspection The vulnerability induced via malicious modifications of trans-
former parameters, as discussed in this work exhibits identifiable characteristics. Yet, there are
several problems with relying on parameter inspection as a defense to this attack. First, awareness
of this type of attack is necessary to know what to look for in terms of “conspicuous” parameters,
which we hope to provide with this work.

Second, parameter inspection, at least on the server side, is not implemented in any major FL frame-
work (see Bonawitz et al.| (2021)); Dimitriadis et al.| (2022)). As such, the point of even being able
to inspect parameters on a user side would require a user to have “rooted” their device - making this
defense currently infeasible for the average user concerned about privacy.

Finally, inspection defenses naturally put users on the “back foot” in a back-and-forth between
ever-adapting attackers and constantly defending users. Both parties need to agree about the imple-
mentation of all defenses, so that the defenses used on the user side are always known to the attacker,
i.e. the server. On the other hand though, knowledge of attacks is limited until such vulnerabilities
are published.

Because of the asymmetry induced by these sorts of defenses, we strongly advise against relying
only on fixed sets of parameter inspection rules to avoid attacks like this.

Mitigations through Differential Privacy We argue that strong user-level differential privacy, i.e.
mechanisms applied directly on the user device to all outgoing model updates, remains the defense
of choice against the attacks in the untrusted or malicious server threat model that we consider here.
Common differential-privacy-based defense algorithms involve gradient noising and clipping, and
we provide additional experiments to evaluate the effectiveness of these defenses Appendix [C]

REPRODUCIBILITY STATEMENT

We perform all our experiments based on the official implementation provided in|Fowl et al.| (2022]).
We provide details of parameters and evaluations for our experiments, as well as pre-processing
steps for the wikitext dataset in Appendix [A]
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A ADDITIONAL DETAILS

In this section, we first describe how to reprogram multiple linear layers as hinted in Section [3.3]
We then discuss variants of our construction for MHSA and linear layers that improve performance
in practice.
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A.1 EXTENSION TO MULTIPLE LINEAR LAYERS

Linear layers in encoder blocks other than the first can provide more bins for a finer-grain gradient
separation. Assuming we have H encoder blocks, We can apply the same construction technique
for every W) of the first linear layer of the h-th encoder block. For bias, we instead compute

bgf) =—¢! ( Hg;;[m ), where we essentially concatenate all the bias vectors, assign bin thresholds

on the concatenated bias with H M entries, and separate it back to corresponding linear layers.

Additionally, we need to disable MHSA blocks other than the first by setting the output to zero,
and also partially disable the feed-forward block of each encoder block by setting all output entries
except for the last to zero. Note that the output of feed-forward cannot be entirely disabled, or the
gradient to the first linear layer will become zero. These additional treatments allow inputs of each
feed-forward block to stay the same except for the last entry through residual connection.

A.2 ALTERNATIVE CONSTRUCTION OF MHSA BLOCK AND LINEAR LAYER

Here we provide an alternative construction of the MHSA block. In particular, we instead use the
following,

WQ = 0, bQ = ae(k),
Wi =1a, by =0, Td/[Qﬂ"]:{
Wy =Ty, by =0,

1 g+d =rqg<d,

10
0 otherwise. (10)

where the key difference is that the new Ty is instead a truncated shift matrix that shifts the entries
d'+1to 2d’ of the input to the first d’ entries. By additionally setting the first d’ entries of each token
embedding and position embedding to be zero, the resulting mixed embedding f; ; from Equation
will have their first d’ entries contain only the imprint information. On the other hand, the original
fi,; whose first d’ entries are a mixture of imprint and original token/positional embedding, To

apply this construction we also need set w’ in Sectionas w’ = Tye® instead. Comparing to
the original construction, this alternative provides better performance in practice.

B ADDITIONAL EXPERIMENT DETAILS

In this section we provide additional details for our experiments. We start by detailing hyperparam-
eters. We set @ = 10'2 for GPT-2 and o = 108 for BERT across all experiments. For GPT-2, we set
B = 10 for GPT-2 if batch size is smaller than 256 and 8 = 3 for GPT-2 if otherwise. For BERT,
we set 8 = 10 for all single keyword experiments, and we set § = % for experiments on multiple
keywords, where K is the number of keywords. We set d’, the block size to be truncated and shifted

as described in Section[3.2} to 32.

Next, we describe our procedure to process articles into sequences of tokens for each user. For
experiments on GPT-2, the articles are tokenized with GPT-2 (BPE) tokenizer. For experiments on
BERT, we tokenize the articles with the original BERT tokenizer. Then, given a sequence length
¢, we concatenate all the words in an article into one array, and partition the array into sequences
of length ¢. The left-over words are discarded. Then, given the batch size B, we keep the first B
sequences for each user and discard the rest. The user then computes their model update based on
the remaining B sequences.

For each quantitative metric, the reported result is obtained over the average over the first 10 users
with enough data. That is, for a given combination of batch size and sequence length, a user only
contributes to the final result if his/her data is enough to fill in the required number of tokens.

Discussion about FedAVG: In this work we focus on fedSGD as a template for federated learning.
However, this restriction is not as limiting as it might seem: A malicious server can side-step the
restriction of FedAVG if the hyperparameters of the FedAVG protocol can be configured so that
either the user runs only a single local update step or runs the update on a large enough batch size.
Both variants effectively turn FedAVG into FedSGD.
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Figure 8: Experiments on 3-layer transformer with different noise scale. The x-axis represents the value after
taking base-10 log on the noise scale.
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Figure 9: Comparison of our method with Decepticons for different architectures across various sequence
lengths. The batch size is fixed to 32. We evaluate both methods only on the target sequences. Our attack
remains agnostic to sequence length, and outperforms Decepticons in all metrics on target sequences.

C ADDITIONAL EXPERIMENTS FOR DIFFERENTIAL PRIVACY

Here we provide experiments where a user additionally adds Gaussian noise and performs gradient
clipping before sending the model update to server. Notice that the presence of noise makes the mea-
surement by Eqn. 7 noisy. Therefore, we only perform embedding recovery using Equation (7) when
the magnitude of difference between bias gradient is larger than a certain threshold. The experiment
is performed on a 3-layer transformer as ribed in (Wang et al.,[2021), where we clip gradient norm to
1 and compare performance on different noise scales from {1e =%, 1e=7, 1e78,1e72 1719}, and fix
the threshold to be 1e~5. The experiment also uses batch size of 2 and sequence length of 32, where
one of the sequences contains the target word. The experiment results are presented in Figure|[§]

The results show that the attacker is still able to succeed when the noise scale is relatively small, but
predictably fails if the gradient becomes sufficiently noisy. We also note that defense based on noisy
gradient is more likely to succeed against attack on larger transformer models due to the inherently
smaller gradient magnitude.

Overall, as promised by theory, applying stronger differential privacy eventually enforces user’s
privacy, and we believe related defense algorithms are more practically attractive. However, it is
also known that stronger differential privacy degrades the utility of the final model. Finding a good
balance between privacy and utility remains an important research direction.

D ADDITIONAL EXPERIMENTS

To verify that the attack is stable across sequence lengths, we run a series of additional experiments,
where we fix the batch size and compare across sequence length in Figure[9] The figure shows that
our proposed attack also outperforms Decepticons across all combinations of model and sequence
length (although the performance of Decepticons is less sensitive to the change of sequence length).
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