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ABSTRACT

In the post-AlphaGo era, there has been a renewed interest in search techniques
such as Monte Carlo Tree Search (MCTS), particularly in their application to
Large Language Models (LLMs). This renewed attention is driven by the recogni-
tion that current next-token prediction models often lack the ability for long-term
planning. Is it possible to instill search-like abilities within the models to enhance
their planning abilities without relying on explicit search? We propose DIFFUSE-
ARCH, a model that does implicit search by looking into the future world via
discrete diffusion modeling. We instantiate DIFFUSEARCH on a classical board
game, Chess, where explicit search is known to be essential. Through extensive
controlled experiments, we show DIFFUSEARCH outperforms both the searchless
and explicit search-enhanced policies. Specifically, DIFFUSEARCH outperforms
the one-step policy by 19.2% and the MCTS-enhanced policy by 14% on action
accuracy. Furthermore, DIFFUSEARCH demonstrates a notable 30% enhancement
in puzzle-solving abilities compared to explicit search-based policies, along with
a significant 540 Elo increase in game-playing strength assessment.

1 INTRODUCTION

Search is central to problem-solving in AI (Russell & Norvig, 2010). One of the most notable
examples is IBM’s Deep Blue (Campbell et al., 2002), which performs extensive search over a large
space through a strong search algorithm (alpha-beta pruning; Knuth & Moore 1975), defeated the
world chess champion Garry Kasparov in 1997. Search has also been utilized in neural networks.
A noteworthy advancement in this progression is exemplified by AlphaGo (Silver et al., 2016) and
its successors (Silver et al., 2017b;a), where the policy is guided by an extra value network through
Monte Carlo Tree Search (MCTS; Coulom 2006; Browne et al. 2012). By explicitly searching
into the future, the decision to be taken can be iteratively refined (Silver et al., 2016; 2017b;a;
Schrittwieser et al., 2020).

Recent research on Large Language Models (LLMs) demonstrates the utilization of a similar frame-
work. Although scale-up, the autoregressive one-step policy addresses only a portion of the prob-
lems and relies on explicit search on complex tasks (Hao et al., 2023; Yao et al., 2024; Zhao
et al., 2024; Trinh et al., 2024, inter alia), highlighting their inherent limitations in long-term plan-
ning (Valmeekam et al., 2022; Bubeck et al., 2023; Bachmann & Nagarajan, 2024). This explicit
search-demanding approach, however, is not quite satisfactory, as the repeated invocation of the
value model can result in an accumulation of errors if the value model is inaccurate and increased
inference costs for long-horizon rollouts (Yao et al., 2024). Given the essence of explicit search (e.g.,
MCTS) over one-step policies lies in iteratively looking into the future and leveraging the future to
enhance the next token (or action) prediction, our research question is:

Can the policy model predict and utilize the future by itself to improve the next token (or action)
prediction without relying on explicit search during inference?

This paper explores the potential transition from utilizing an explicit search algorithm (e.g., MCTS)
over the one-step policy to implicitly searching over future representations by teaching the pol-
icy to predict and utilize the future. Firstly, to reduce the difficulty of future prediction, we
take inspiration from diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020), which per-
form a multi-step generative process for sample generation. Secondly, to iterative refine the cur-
rent policy prediction based on future information, we directly rely on the internal bidirectional
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Figure 1: Comparison between explicit
search via MCTS and implicit search via dis-
crete diffusion. MCTS explicitly performs
action selection, state evaluation, and value
backup in an iterative manner before deter-
mining the next action to take (as detailed
in Appendix A), while discrete diffusion im-
plicitly gathers future information during fu-
ture imagination to improve the next action.

self-attention mechanism (Vaswani et al., 2017) and
the multi-step diffusion generative process. Finally,
we represent the future to be learned and predicted
with the multi-step interaction information between
policy and the world (e.g., states and actions), such
that the generation of the future shares similar spirits
as implicit searching in the future world. We name
our approach as DIFFUSEARCH, a method that looks
into the future world via diffusion modeling with-
out any explicit search during inference. Alterna-
tively, DIFFUSEARCH can be seen as containing a
world model that predicts the future. However,
rather than having a separate world model simulat-
ing the environment’s transition dynamics and an-
other policy performing action prediction through
interaction with the world model using planning al-
gorithms such as value iteration (Puterman, 2014) or
MCTS (Schrittwieser et al., 2020), DIFFUSEARCH
internalizes the world model directly within the pol-
icy without intermediate components. We show the
comparison between explicit search via MCTS and
implicit search via discrete diffusion in Figure 1.

We take a specific focus on the chess-playing
task, where explicit search is known to be essen-
tial (Campbell et al., 2002; Silver et al., 2017a). The
ideas and techniques learned in this controlled task
may eventually be useful in natural-language set-
tings as well. We conduct extensive experiments and
take a deep look into various paradigms to represent and learn the future. When measured by ac-
tion accuracy, DIFFUSEARCH outperforms the one-step policy (Ruoss et al., 2024) by 19.2%, and
MCTS-enhanced policy by 14%. DIFFUSEARCH demonstrates a 30% increase in puzzle-solving
capabilities in comparison to the MCTS-enhanced policy. Furthermore, it attains a higher level of
game-playing proficiency, as evidenced by a 540 more Elo rating, which showcases the potential of
substituting one-step policy with explicit search with a learned discrete diffusion model that looks
into the future world by itself.

Our contributions include: 1) we propose DIFFUSEARCH to foresee and utilize future information
via diffusion modeling as an alternative to explicit search via designed search algorithms (§3); 2) we
instantiate DIFFUSEARCH for chess-playing and demonstrate its superior performance compared to
both the one-step policy and the MCTS-powered policy in a rigorous evaluation, such as solving
over 30% more puzzles and 540 Elo playing strength in the tournament (§4.2); 3) we provide a de-
tailed analysis of the design considerations for future representation and diffusion modeling (§4.3),
as well as unveiling the working mechanism and appealing advantage compared to MCTS-based
policy regarding effectiveness and efficiency (§4.4). These findings demonstrate the possibility of
moving from the one-step policy with explicit search algorithms to the future world-aware multi-step
diffusion policy with implicit search ability. All associated code is made publicly at Anonymous.

2 PRELIMINARIES

This section introduces key concepts and notations in the chess-playing problem and diffusion mod-
eling.

Problem Setting Chess, along with other games of perfect information like checkers, othello,
backgammon, and Go, fits the framework of alternating Markov games (Littman, 1994). In chess,
there exists a state space S, an action space A, a state transition function f(s, a) that determines
the subsequent state after taking action a in state s, and two reward functions r0(s) and r1(s)
representing the two players’ reward in state s (rewards being zero except at the final time-step). The
outcome of the game oi = ±1 is the terminal reward at the end of the game from the perspective of
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the current player at time-step i. Chess is also a zero-sum game which indicates r0(s) = −r1(s). A
policy p(a|s) is a probability distribution over actions space A. A value function vp(s) represents
the expected outcome when all actions for both players adhere to policy p, denoted as vp(s) =
E[oi|si = s, ai...I ∼ p]. The goal is to build a policy that, when actions are taken based on it, results
in the highest possible final outcome.

Discrete Diffusion Modeling Discrete diffusion models (Sohl-Dickstein et al., 2015; Hooge-
boom et al., 2021; Austin et al., 2021) are a class of latent variable models characterized by a
forward and a backward Markov process. Suppose x0 ∼ q(x0) is a discrete random variable with
K possible categories and represented as a one-hot vector. The forward process q(x1:T |x0) =∏T

t=1 q(xt|xt−1) corrupts the original data x0 into a sequence of increasingly noisy latent variables
x1:T := x1, . . . ,xT . The learned backward process pθ(x0:T ) = p(xT )

∏T
t=1 pθ(xt−1|xt) gradu-

ally denoises the latent variables to the data distribution. In order to optimize the generative model
pθ(x0) to fit the data distribution q(x0), we typically optimize a variational upper bound on the
negative log-likelihood due to the intractable marginalization:

Lvb = Eq(x0)

[
DKL[q(xT |x0)||p(xT )]︸ ︷︷ ︸

LT

+

T∑
t=2

Eq(xt|x0)

[
DKL[q(xt−1|xt,x0)||pθ(xt−1|xt)]

]︸ ︷︷ ︸
Lt−1

−Eq(x1|x0)[log pθ(x0|x1)]︸ ︷︷ ︸
L0

]
, (1)

where LT is a constant when a fixed prior p(xT ) is employed. In discrete diffusion, both the forward
and backward distribution are defined as categorical distribution, e.g., q(xt|xt−1) = Cat(xt;p =
Q⊤

t xt−1) and pθ(xt−1|xt) = q(xt−1|xt, f(xt;θ)) (Hoogeboom et al., 2021), where Qt is a pre-
defined transition matrix of size K × K. Therefore, the forward process posterior q(xt−1|xt,x0)
and each KL term can be calculated analytically. We provide more details about discrete diffusion
in Appendix B.1.

3 METHODOLOGY

In this section, we introduce DIFFUSEARCH, an approach that looks into the future world via discrete
diffusion modeling without any explicit search at inference time, with a focus on the chess-playing
task.

3.1 MODELING

In order to endow the model with the capability to predict and utilize the future, we consider train-
ing the model in a supervised way following (Ruoss et al., 2024), leaving self-play training from
scratch (Silver et al., 2017b) for future work. We provide the current state si as the history repre-
sentation following prior studies (Silver et al., 2016; 2017b; Ruoss et al., 2024). For future world
representation, we consider a variety of alternative variants, such as purely future actions (denoted
as s-aa), action-states (denoted as s-asa), and action-state-values (denoted as s-avsav, etc.
We analyze the performance of different future paradigms in Section §4.3. The s-asa approach
is ultimately chosen as our modeling paradigm considering the effectiveness and simplicity. The
policy distribution at state si considering the future is given by:

pθ(ai, si+1, ai+1, . . . , si+h−1, ai+h−1|si), (2)

where h > 1 is the future horizon.

3.2 TRAINING

In order to train a policy that models Eq.(2), we consider a supervised training approach lever-
aging Stockfish (Romstad et al., 2008). We utilize Stockfish 16, currently the world’s strongest
search-based engine, as an oracle to label board states extracted from randomly selected games
on lichess.org. We approximate the optimal policy π∗ with πSF and obtain each action by
taking aSF

j = argmaxaj Q
SF (sj , aj). For a given world horizon h, we construct a dataset

3
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Algorithm 1 DIFFUSEARCH Training

Input: dataset D = {(s, (a, z))}, neural network
f (·;θ), timesteps T .
Output: model parameters θ.
Denote state length l = |s|;
repeat

Draw (s, (a, z)) ∼ D and obtain x0,1:N = s || a ||
z (||: concat);

Draw t ∈ Uniform({1, . . . , T});
Draw xt,n ∼ q(xt,n|x0,n) for n ∈ {l+1, . . . , N};
L(θ) = −λt

∑N
n=l+1 1xt,n ̸=x0,nx

⊤
0,n log f(xt,n;θ);

Minimize L(θ) with respect to θ;
until converged

Algorithm 2 DIFFUSEARCH Inference

Input: board state s, trained network f (·;θ),
timesteps T .
Output: next action a.
Denote state length l = |s|;
Initialize xT,1:l = s and xT,l+1:N ∼ qnoise;
for t = T, . . . , 1 do

for n = l + 1, . . . , N do
Draw x̃0,n ∼ Cat (f(xt,n;θ)) ;
Draw xt−1,n ∼ q(xt−1,n | xt,n, x̃0,n);

end for
end for
Return a = x0,l+1.

D = {(si, (aSF
i , si+1, a

SF
i+1, . . . , si+h−1, a

SF
i+h−1))}, where the oracle future path means playing

some move that has the maximum evaluation for the best opponent’s reply for both players.

An intuitive way to use D is to train a network to directly predict the entire concatenated next action
and future sequence aSF

i || zSF
i (zSF

i := si+1 || aSF
i+1 || · · · || si+h−1 || aSF

i+h−1). Nonetheless,
we observe that this approach not only fails to predict the future but also impedes the learning of
the next action aSF

i (see Section §4.3). Therefore, we resort to diffusion modeling (Sohl-Dickstein
et al., 2015) as a powerful sequence modeling approach with strong expressive capabilities. The
bidirectional multi-layer self-attention and iterative denoising mechanism are expected to enhance
the prediction of the next action by considering future information. Specifically, we consider dis-
crete diffusion modeling and streamline Lvb in Eq.(1) into a weighted cross-entropy loss moti-
vated by Austin et al. (2021); Zheng et al. (2023); Shi et al. (2024); Sahoo et al. (2024). The
KL term DKL[q(xt−1|xt,x0)||pθ(xt−1|xt) for each individual random variable is simplified as
−λt1xt ̸=x0x

⊤
0 log f(xt;θ), where and Lvb becomes:

Lvb = −Eq(x0)

T∑
t=1

λtEq(xt|x0)1xt ̸=x0
x⊤
0 log f(xt;θ), (3)

where λt = αt−1−αt

1−αt
∈ (0, 1] is a time-dependent reweighting term that assigns lower weight for

noisier xt, and αt ∈ [0, 1] belongs to a predefined noise scheduler that controls the level of noise in
xt at timestep t. We explore multiple variants of λt in Section §4.3. To enable conditional training
with a given state, we freeze the state tokens and perform denoising on the next action aSF

i and all
futures tokens zSF

i . We employ Monte Carlo sampling with regard to x0, xt and t when optimizing
Lvb. We provide detailed derivations in Appendix B.2. We elaborate the training procedure in
Algorithm 1.

3.3 INFERENCE

During inference, taking argmaxai
pθ(ai|si) as in one-step policy in DIFFUSEARCH requires

marginalizing over all future with horizon h, i.e., pθ(ai|si) =
∑

zi
pθ(ai, zi|si), which is intractable

due to the exponential-growing search space when h goes larger, e.g., the game tree contains bh

nodes and the branching factor b is around 31 on average in chess (Barnes, 2019). One simplified
approach to comparing actions is to measure the best future if one action is taken, which can be
reflected by the joint probability pθ(ai, zi|si). Therefore, we resort to argmaxai,zi pθ(ai, zi|si),
which does not involve marginalization and can be achieved by sampling from the trained model.
During diffusion sampling, we adopt an easy-first decoding strategy (Savinov et al., 2021; Chang
et al., 2022), which achieves better performance compared to the random decoding approach em-
ployed by Austin et al. (2021). Specifically, at diffusion timestep t, the tokens within the least
100 ∗ t−1

T % predictive log-likelihood are selected to be reset to the noise state. To change search
depth, we mainly train separate models on D with different h, and study a single model on D with
mixed h in Appendix C.1. We elaborate the inference algorithm in Algorithm 2.

4
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4 EXPERIMENTS

4.1 SETUP

Baselines We compare our model with three Transformer models proposed in Ruoss et al. (2024):
State-action model (S-A) which learns to predict next move via behavioral cloning; State-value
model (S-V) which predicts next move via comparing the value of next states; and Action-value
model (SA-V) which predicts next move via comparing the value of each legal actions at the current
state. We also integrate the trained S-A and S-V models into MCTS following AlphaZero (Silver
et al., 2017a).

Table 1: Data statistics.

Stage Records Games
Train SA-V (100k) 193,189,573 100,000
Train SA-V (10k) 17,448,268 10,000
Train others (100k) 6,564,661 100,000
Train others (10k) 659,576 10,000
Action Test 62,561 1,000
Puzzle Test 36,816 10,000

Data We construct a dataset for supervised
training by downloading games from lichess.org
recorded in February 2023. When analyzing the
scaling behavior, we use up to 100k games, while
reverting to the default 10k games for other experi-
ments due to resource constraints. We show the data
statistics in Table 1. Following Ruoss et al. (2024),
we convert the centipawns returned by Stockfish to
the win percentage and then discretize it into 128
bins to represent value in S-V and SA-V. We encode the state as a fixed-length FEN string with
77 characters by padding with ‘.’ if needed. Actions are stored in UCI notation with 1968 possible
moves in total. We provide example training data for each paradigm in Appendix C.3.

Implementation Details For all the neural models in this paper, we use the same decoder-only
GPT-2 transformer architecture (Vaswani et al., 2017; Radford et al., 2019) for a rigorous compar-
ison. For DIFFUSEARCH, we convert casual attention into full attention without introducing addi-
tional learned parameters. We train all baseline models until convergence and set a maximum of 200
epochs for diffusion models due to their slow convergence. We use the Adam optimizer (Kingma
& Ba, 2015), a learning rate of 3e-4, and a batch size of 1024 for all models. By default, we set
the horizon h to be 4, the number of network layers to be 8 (with a total parameter size of 7M), the
diffusion timesteps to be 20, and an absorbing noise type. By default, 100 simulations are utilized
in MCTS-enhanced policy, and its impact is analyzed in Figure 3. We adjust cpuct and τ , constants
determining the level of exploration in MCTS, on a held-out set and set them to cpuct = 0.1 and
τ = 1 for its superior performance. All experiments are done on 8 NVIDIA V100 32G GPUs.

Evaluation Metrics We mainly consider three metrics to evaluate the policies following (Ruoss
et al., 2024): 1) Action Accuracy: the percentage of the test set in which the model selects the
same action as the ground truth; 2) Puzzle Accuracy: the percentage of puzzles where the policy’s
action sequence exactly matches the known solution action sequence and we use 10k puzzles with
difficulty rated by Elo from 399 to 2867 provided by (Ruoss et al., 2024); 3) Tournament Elo:
the Elo ratings calculated using BayesElo (Coulom, 2008) in an internal tournament involving all
policies, where each pair of policies played 400 games, resulting in a total of 6000 games.

4.2 MAIN RESULTS

We report the prediction and playing strength comparison for our model against baselines in Ta-
ble 2. Additionally, we report the performance of Stockfish 16 with a time limit of 0.05s per legal
move, which stands as the oracle used to generate our dataset. We find DIFFUSEARCH signifi-
cantly outperforms the S-A model by 653 Elo and 19% action accuracy, indicating the effectiveness
of DIFFUSEARCH in improving next action prediction through future prediction. Remarkably, de-
spite utilizing 20 times fewer data records than the SA-V model, our model demonstrates superior
performance with approximately 10% higher action accuracy. Our model demonstrates superior per-
formance over the MCTS-based agent by achieving a higher Elo difference of 542 and an increased
action accuracy of 14%. This highlights the effectiveness of DIFFUSEARCH in modeling multi-step
simulations when compared with the step-by-step MCTS-enhanced policy, which relies on a robust
value model and necessitates a careful balance between the policy and value models.

5
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Table 2: Prediction and playing strength comparison for our model against baselines and the oracle
Stockfish 16. The S-V and SA-V models can be seen as depth-one search. The best results are bold.

Agent Search Tournament Elo Accuracy
Puzzles Actions

Stockfish 16 (0.05s) [oracle] ✓ 2689 99.10 100.00
10k games
Transformer (S-A) 1075 3.95 22.10
Transformer (S-V) ✓ 1028 12.20 21.45
Transformer (SA-V) ✓ 1294 12.74 31.50
Transformer (100 MCTS simulations) ✓ 1186 6.85 27.34
DIFFUSEARCH (Ours) 1728 39.49 41.31
100k games
Transformer (S-A) 1467 20.83 36.58
Transformer (S-V) ✓ 1078 17.42 28.89
Transformer (SA-V) ✓ 1521 24.25 39.76
Transformer (100 MCTS simulations) ✓ 1469 20.71 38.05
DIFFUSEARCH (Ours) 1995 58.46 48.66

4.3 ABLATIONS

Table 3: Action accuracy comparison of
baselines and different future paradigms.

Paradigms Transformer DIFFUSEARCH
S-A 22.10 -
S-V 21.45 -
SA-V 31.50 -
S-AA 26.62 15.07
S-ASA 27.39 41.31
S-ASS 24.93 41.19
S-AVAV 25.92 17.63
S-AVSAV 25.59 40.69

Future paradigm matters We compare baselines
and different future paradigms during the training of
DIFFUSEARCH with horizon h = 4 in Table 3. For
each future paradigm, we compare training with au-
toregressive Transformer and DIFFUSEARCH. We
find that directly performing future action prediction
(S-AA) (Chi et al., 2023) with DIFFUSEARCH hurts
performance compared to S-A due to the difficulty
of future move prediction in chess. However, af-
ter we integrate future states, we observe significant
performance improvements when comparing S-AA
(15.07) to S-ASA (41.31), and also when comparing
S-AVAV (17.63) to S-AVSAV (40.69). No further
improvement is observed when integrating the values in DIFFUSEARCH, which may be attributed
to training on the optimal future trajectory rather than all possible trajectories. For training using
autoregressive Transformer, we observe that the overall performance hovers around 26%. This per-
formance level is superior to that achieved by S-A (22.1%), attributed to the utilization of more (S,
A) pairs (e.g., each S-ASA record containing h (S, A) pairs). However, the performance falls short
when compared to DIFFUSEARCH, which underscores the importance of modeling bidirectional
context to leverage future information for subsequent action prediction.

Table 4: Future world quality in su-
pervising the model for the S-ASA
paradigm.

Future Quality Acc.
Without future 22.10
+ Random world+policy 22.69
+ Random policy 39.47
+ Stockfish policy 41.31

Ensuring the validity of future world dynamics is crucial
After we discuss the future paradigm, we now investigate the
effect of future quality on performance, as shown in Table 4.
For better illustration, denote a sequence of future horizon
2 as [s1 = f(s0, a0), a1 = g(s1), s2 = f(s1, a1), a2 =
g(s2)], where f is a world dynamic function and g is a pol-
icy function. s0 is the current state and a0 is the move sug-
gested by Stockfish. We first utilize random state-action se-
quences for future steps, where both actions and states were
randomly selected (i.e., random world f and random policy
g). This methodology did not yield performance enhance-
ments. Subsequently, we explore selecting random actions and incorporating the resulting state
from executing those actions (i.e., random policy g but an oracle world f ), which notably outper-
forms the initial strategy. This underscores the significance of aligning states with corresponding
actions, mirroring the dynamics of the world. Finally, we investigate incorporating high-quality

6
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Figure 2: (Left) Prediction quality analysis for DIFFUSEARCH at different future steps. (Middle)
Action accuracy when scaling self-attention layers. (Right) Action accuracy when increasing diffu-
sion timesteps.

future actions suggested by Stockfish (i.e., Stockfish g and oracle world f ) and observe additional
performance improvements compared to the random action selection approach.

Table 5: Comparison of training meth-
ods. Direct: train the model to predict
the entire future sequence at once.

Method Acc.
Direct 20.61
Auto-regressive 27.39
Gaussian 31.91
Absorbing, λt = 1 39.66
Absorbing, λt = 1/t 39.07
Absorbing, λt = 1− t−1

T 41.31
Multinomial, λt = 1− t−1

T 40.08

Proper discrete diffusion modeling helps Given the
dataset D annotated with future states and actions, we in-
vestigate alternative ways to train the model, as presented
in Table 5. We first observe it is hard to teach the model
to directly output the entire future sequence, leading to
lower performance compared to auto-regressive train-
ing. Secondly, we employ continuous Gaussian diffu-
sion VDM (Kingma et al., 2021) and observe its superior
performance compared to the Direct and auto-regressive
methods, but inferior compared to discrete approaches.
The absorbing diffusion with reciprocal λt = 1/t ob-
tained by setting αt = 1 − t

T in Eq.(3) is a simplified
expression from D3PM (Austin et al., 2021), which we
find significantly outperforms continuous diffusion. Fi-
nally, we discover a linear λt (Bond-Taylor et al., 2022; Zheng et al., 2023) further exceeds the
constant and reciprocal ones, as well as the multinomial counterpart.

4.4 ANALYSIS

Does DIFFUSEARCH predict accurate future information? We analyze the percentage of valid
actions and the optimal action recommended by Stockfish for each predicted action. The best a0
metric is exactly the action accuracy by definition.. Additionally, we assess whether each predicted
state is a valid representation and if si corresponds to the resulting state when action ai−1 is taken
at si−1. The initial state s0 provided as input is excluded, and the results are presented in the left
figure of Figure 2. We observe that the first action, denoted as a0, are almost 100% valid. As we
progress through future steps, both the valid rate and the optimal rate decline. However, even at
i = 3, where the valid rate stands at 50%, it surpasses the random move baseline of approximately
1.6% (calculated as the average number of legal actions per move, 31, divided by the total number of
moves, 1968). This indicates that the model retains a certain level of predictive capability for future
moves, albeit with reduced performance. A similar pattern appears in the evaluation of states, where
the accuracy is perfect for the first predicted state s1 but diminishes in subsequent predictions. In
Appendix Table 8, we demonstrate that further increasing the training data enhances the effective-
ness of the world model within DIFFUSEARCH, achieving over 90% accuracy in predicting valid
and matched future states corresponding to the preceding action.

How does DIFFUSEARCH leverage future information? We attributes the future-aware ability
of DIFFUSEARCH mainly to self-attention and iterative decoding process, as shown in the middle
and right figures of Figure 2, respectively. When employing a single self-attention layer, our model
exhibits inferior performance compared to the S-A model, yet surpasses it with two layers. More-
over, its performance steadily enhances as we augment the number of layers. This suggests that
with additional layers, there is more chance for the subsequent actions and future to interact recipro-
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Figure 3: (Left) Action accuracy when increasing average search depth in MCTS through more
simulations and DIFFUSEARCH through context length extension. (Middle) Latency measured by
ms per second when increasing search depth. (Right) Action accuracy when scaling data size.

cally, akin to the enhancement in the action prediction with increased MCTS simulations. We do not
observe a similar upward trend in the performance of S-A model when increasing attention layers
as in (Ruoss et al., 2024), possibly indicating that the available data (10k) does not necessitate the
integration of more layers. In the right figure of Figure 2, it is evident that employing an appropriate
decoding strategy (such as likelihood-based) further enhances next-action prediction as the number
of iterations grows. However, the overall improvement is relatively modest compared to increasing
the attention layers.

Explicit search vs. Implicit search Based on our previous analysis, we can consider DIFFUSE-
ARCH as performing implicit search through the inner self-attention layers and the multi-step dif-
fusion process. Now, we aim to evaluate the efficiency and effectiveness of this implicit search in
comparison to explicit search using MCTS when conducting deeper searches. In DIFFUSEARCH,
deeper search is realized by increasing the context length (80 tokens per search depth), whereas in
MCTS, it is achieved through running more simulations. In the left figure of Figure 3, it is evident
that DIFFUSEARCH exhibits significant enhancement when increasing search depth, while MCTS
becomes stagnant after 50 simulations at a search depth of around 4. This could be attributed to
the accumulated errors caused by the value network due to a limited horizon. In the middle figure
of Figure 3, we measure the latency per move for Transformer with MCTS and DIFFUSEARCH on
a single V100 GPU with batch size 1. The performance of Transformer combined with MCTS is
notably affected by the necessity of invoking the value network for every simulation. In contrast,
DIFFUSEARCH experiences only a slight rise in latency as it requires just one call for greater depth.

Scaling In Figure 2, the effectiveness of model scaling in DIFFUSEARCH has been observed. Here
we explore the impact of increasing the dataset size on the performance. Specifically, we conduct
experiments training the DIFFUSEARCH S-ASA model with a horizon of 4 and the Transformer
S-A using game sizes ranging from 5k to 100k, as shown in the right figure of Figure 3. Both the
Transformer and DIFFUSEARCH models exhibit a log-2 scaling behavior, showing that doubling
the training data results in a linear increase in accuracy. Scaling also enhances future prediction
significantly, leading to a more valid and accurate representation of future actions and states, as well
as a near-perfect level of capturing the state-action transition dynamics, as detailed in Appendix C.2.

Case study We sample several challenging puzzles from Lichess (with Elo ratings above 1800)
to compare the predictions of DIFFUSEARCH and Transformer (S-A). Two instances are shown in
Figure 4, with additional cases provided in Appendix C.4. DIFFUSEARCH demonstrates superior
foresight, accurately predicting critical exchanges and piece sacrifices that lead to long-term strategic
advantages. In the left puzzle, DIFFUSEARCH strategically sacrifices the rook to set up a long-term
checkmate situation against the opponent. This maneuver compels the opponent to defend and
creates an opportunity to capture the queen, facilitating valuable piece exchanges. The S-A model,
unfortunately, makes a critical error by focusing on achieving direct checkmate without considering
the possibility of the opponent’s queen launching a counterattack. Similarly, in the right puzzle,
DIFFUSEARCH anticipates an exchange sacrifice, correctly valuing the long-term positional benefits
of opening lines by sacrificing the rook for its queen. Conversely, the S-A model misjudges the
value of this exchange, leading to suboptimal moves. These findings highlight the effectiveness of
DIFFUSEARCH in long-term planning without relying on explicit search.
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Transformer (S-A) Transformer (S-A) DiffuSearch

①
③

②

DiffuSearch

①

②

③

Figure 4: Two examples of Transformer (S-A) and DIFFUSEARCH solving challenging puzzles. The
predicted next move is in blue for both policies. The predicted future actions from DIFFUSEARCH
are in light blue and red representing the two players, respectively, along with the numerical counters
1, 2, and 3 indicating future steps.

5 RELATED WORK

5.1 NEURAL NETWORKS FOR CHESS

The development of chess AI has undergone a significant transformation, shifting from the explicit
design of search strategies and heuristics to the more data-driven and learning-based approaches.
The early research, exemplified by Turing’s investigations (Burt, 1955) and NeuroChess (Thrun,
1994), heavily depended on handcrafted search algorithms and heuristics, eventually leading to the
development of powerful search engines like Deep Blue (Campbell et al., 2002) and Stockfish (Rom-
stad et al., 2008). However, the emergence of neural network-based approaches, typically Alp-
haZero (Silver et al., 2017a), marked a paradigm shift, where deep reinforcement learning equipped
with Monte Carlo Tree Search (MCTS) enabled the system to learn its own heuristics, i.e., the policy
and value networks, without the need for manual design (Klein, 2022; McGrath et al., 2021). The
rise of large language models (LLMs) has also inspired innovations in chess AI, such as the eval-
uation (Toshniwal et al., 2022; Carlini, 2023) and interpretation (Li et al., 2023a; Karvonen, 2024)
of LLMs’ ability to play chess, the integration of chess-related text data into training (Feng et al.,
2024), and the exploring of searchless models by scaling the policy networks (Ruoss et al., 2024).
Despite this, lookahead search methods like beam search (Feng et al., 2024) and even depth-one
search with the value network (Ruoss et al., 2024) remain superior to the policy models as action
predictors, which is the same as in the AlphaZero era (Silver et al., 2017b; Team., 2018). This under-
scores the continued significance of lookahead information for move prediction in chess. In contrast
to prior research, we explore directly teaching the policy model to look ahead, thereby eliminating
the requirement of handcrafted search algorithms or separate value networks.

5.2 DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Austin et al., 2021), a powerful class
of generative models, have been applied to various fields such as image generation (Dhariwal &
Nichol, 2021; Rombach et al., 2022; Croitoru et al., 2023, inter alia), text generation (Li et al.,
2022; Gong et al., 2022; Zheng et al., 2023; Lou et al., 2023; Ye et al., 2024; Li et al., 2023b, in-
ter alia) and reinforcement learning (Janner et al., 2022; Ajay et al., 2022; Chi et al., 2023; Zhu
et al., 2023, inter alia). Theoretically, diffusion models perform a multi-step denoising process to
progressively convert a random noise into a data sample, and the denoising procedure can be seen
as parameterizing the gradients of the data distribution (Song & Ermon, 2019), connecting them to
score matching (Hyvärinen & Dayan, 2005) and energy-based models (LeCun et al., 2006). Par-
ticularly, diffusion models have been shown effective in tasks that require global control and future
planning, such as paragraphs generation (Zhang et al., 2023b), trajectory planning (Janner et al.,
2022) and robot manipulation (Chi et al., 2023). Different from Diffusion Policy (Chi et al., 2023),
DIFFUSEARCH internalizes a world model inside the policy, which we find is crucial in Section
§4.3. Furthermore, we focus on exploring diffusion models for implicit search as an alternative to
the one-step policy with explicit search to deal with complex tasks that require search.
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5.3 WORLD MODELS

The primary goal of a world model is to capture the underlying dynamics of the environment and
predict the future outcome of certain actions in the context of model-based reinforcement learning
(MBRL) (Wang et al., 2019; Moerland et al., 2023). The learned world model can be used for
policy optimization of a RL agent (Sutton, 1991; Feinberg et al., 2018; Hafner et al., 2020a) and
allow the agent to explicitly reason about the future consequences of its actions (Hafner et al., 2019;
Schrittwieser et al., 2020; Ye et al., 2021). Most of the conventional world models (Hafner et al.,
2020a;b; 2023) rely on single-step prediction, which suffer from compounding errors (Asadi et al.,
2019; Xiao et al., 2019; Lambert et al., 2022). Recently, there has been growing interest in building
multi-step world models utilizing diffusion models (Zhang et al., 2023a; Rigter et al., 2023; Jackson
et al., 2024; Ding et al., 2024), which, however, separate the world model and policy. Similar to ours,
Diffuser (Janner et al., 2022) and Decision Diffuser (DD; Ajay et al. 2022) also unify the world
model with the policy. However, the modeling details, training paradigm, and action prediction
differ. Specifically, both of them employ continuous diffusion while we use discrete diffusion. In
addition, Diffuser trains an unconditioned model and requires a guidance function to obtain desired
actions, while we model the best action and future trajectory condition on a given state. DD models
state-only future trajectories and predicts the action through an inverse dynamics model while we
model both future states and actions. Finally, the comparison of diffusion world model and explicit
search has not been rigorously explored in domains that require precise and sophisticated lookahead
such as chess, to the best of our knowledge.

6 CONCLUSION AND DISCUSSION

In this study, we present evidence showcasing the potential transition from employing explicit search
on a one-step policy to implicit search within a future-aware policy on the classic board game Chess.
The proposed model, DIFFUSEARCH, demonstrates not only superior performance compared to the
searchless policy but also the policy empowered by explicit search. We provide extensive experi-
ments to demonstrate and analyze DIFFUSEARCH. More broadly, the ideas and techniques discussed
in this controlled task may eventually be valuable in natural language settings to improve the current
next-token prediction LLMs as well.

We now discuss some limitations and workarounds in our study. Firstly, one usage of explicit search
such as MCTS is to enhance policy performance through self-play training, such that is able to
achieve amazing performance without any human supervision (Silver et al., 2017b). However, our
model currently relies on an oracle (Stockfish) to provide future supervision. The integration of
DIFFUSEARCH with self-play is an interesting direction to explore. Secondly, our model achieves
a deeper search by increasing the context length, with the current training limited to a depth of 7,
corresponding to a context length of 648. For scenarios requiring more tokens to represent a state or
deeper searches, integrating techniques for long-context models may be useful for efficient training
or inference (Dao et al., 2022; Gu & Dao, 2023; Xiong et al., 2024; An et al., 2024). Finally, our
model’s performance is currently constrained by the relatively small training dataset of up to 100k
games due to resource restrictions, considerably less than the 10 million games used in the study by
Ruoss et al. (2024). Continuing to scale the model and data remains a valuable direction.
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A DETAILS ABOUT MCTS-ENHANCED POLICY

This baseline is fully aligned with the approach used in AlphaZero (Silver et al., 2017a). The one-
step policy directly predicts the next action, while the MCTS-enhanced Policy constructs a search
tree that simulates the future to enhance the evaluation of potential next actions. Each node s in the
search tree contains edges (s, a) for all legal actions a ∈ A(s). Each edge stores a set of statistics,

{N(s, a),W (s, a), Q(s, a), P (s, a)}, (4)

where N(s, a) is the visit count, W (s, a) is the total action-value, Q(s, a) is the mean action-value,
and P (s, a) is the prior probability of selecting that edge. The algorithm proceeds by iterating over
the former three phases below and then selects a move to play:

Selection. The algorithm begins at the root node and traverses the tree, selecting child nodes
based on strategies to maximize the exploration of promising paths. Specifically, at each in-
termediate node, an action is selected according to the statistics in the search tree, at =
argmax

a
(Q(st, a) + U(st, a)), using a variant of the PUCT algorithm,

U(s, a) = cpuctP (s, a)

√∑
b N(s, b)

1 +N(s, a)
, (5)

where cpuct is a constant determining the level of exploration; this search control strategy initially
prefers actions with high prior probability and low visit count, but asymptotically prefers actions
with high action-value.

Expansion and evaluation. Upon reaching a leaf node, if it does not represent a terminal state
(i.e., the end of the game), one or more new child nodes are expanded and evaluated by the policy
and value model. The leaf node sL is added to a queue for neural network evaluation, v = vθ(sL)
and p = pθ(sL). The leaf node is expanded and each edge (sL, a) is initialized to {N(sL, a) =
0,W (sL, a) = 0, Q(sL, a) = 0, P (sL, a) = pa}; the value v is then backed up.

Backup. The edge statistics are updated in a backward pass through each step t ≤ L. The visit
counts are incremented, N(st, at) = N(st, at) + 1, and the action-value is updated to the mean
value, W (st, at) = W (st, at) + v,Q(st, at) =

W (st,at)
N(st,at)

.

Play. After iteratively cycling through the above phases, a move is selected to play in the root
position s0 at the end of the search based on the statistical information, e.g., proportional to its
exponentiated visit count, π(a|s0) = N(s0, a)

1/τ/
∑

b N(s0, b)
1/τ , where τ is a temperature pa-

rameter that controls the level of exploration. The search tree is reused at subsequent time-steps: the
child node corresponding to the played action becomes the new root node; the subtree below this
child is retained along with all its statistics, while the remainder of the tree is discarded.

B DERIVATIONS

B.1 DISCRETE DIFFUSION

In this section, we provide a detailed derivation of the representation for distributions used in the
objective Eq.(1), which we bring here for a better illustration:

Lvb = Eq(x0)

[
DKL[q(xT |x0)||p(xT )]︸ ︷︷ ︸

LT

+

T∑
t=2

Eq(xt|x0)

[
DKL[q(xt−1|xt,x0)||pθ(xt−1|xt)]

]︸ ︷︷ ︸
Lt−1

−Eq(x1|x0)[log pθ(x0|x1)]︸ ︷︷ ︸
L0

]
.
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where LT is a constant when a fixed prior p(xT ) is employed. In discrete diffusion, both the forward
and backward distribution are defined as categorical distribution, e.g., q(xt|xt−1) = Cat(xt;p =
Q⊤

t xt−1) and pθ(xt−1|xt) = q(xt−1|xt, f(xt;θ)) (Hoogeboom et al., 2021), where Qt is a pre-
defined K ×K transition matrix and K is the size of categories.

The posterior q(xt−1|xt,x0) Starting from x0, we obtain the following t-step marginal and pos-
terior at time t− 1:

q(xt|x0) = Cat
(
xt;p = Q

⊤
t x0

)
, with Qt = Q1Q2 . . .Qt

q(xt−1|xt,x0) =
q(xt|xt−1,x0)q(xt−1|x0)

q(xt|x0)
= Cat

(
xt−1;p =

Qtxt ⊙Q
⊤
t−1x0

x⊤
t Q

⊤
t x0

)
, (6)

where q(xt|xt−1,x0) = q(xt|xt−1) due to the Markov property of the forward process. The
KL divergence between q and pθ can be computed by simply summing over all possible values
of each random variable. The cumulative products Qt, which can be computed in closed form or
precomputed for all t depending on the choice Qt, may be prohibitive for large T and number of
categories. Therefore, two commonly used forms of Q are introduced by Hoogeboom et al. (2021)
and Austin et al. (2021), which ensures Qt can still be computed efficiently, allowing the framework
to scale to a larger number of categories.

Multinominal diffusion The transition matrix initially proposed for the binary scenario by Sohl-
Dickstein et al. (2015) and later expanded to categorical by Hoogeboom et al. (2021) can be repre-
sented as a K ×K matrix:

[Qt]ij =

{
1− K−1

K βt if i = j
1
Kβt if i ̸= j

.

This transition matrix can also be written as (1− βt)I + βt11
⊤/K, where 1 is a column vector of

all ones. The transition matrices Q can be computed in closed form. Denote the vector represents
the uniform noise distribution as qnoise = 1/K. In each step, we transition to another token with
probability βt and stay the same with probability 1 − βt. After t steps, the only operative quantity
is the probability of not yet having transitioned to another token, given by αt =

∏t
i=0(1 − βi).

Therefore, we derive:

Qt = αtI + (1− αt)1q
⊤
noise, (7)

where setting qnoise = 1/K gives the Qt for multinominal diffusion.

Absorbing diffusion For diffusion models with an absorbing state m, the following matrix is
introduced by Austin et al. (2021):

[Qt]ij =


1 if i = j = m

1− βt if i = j ̸= m

βt if j = m, i ̸= m

.

The transition matrix can also be written as (1 − βt)I + βt1e
⊤
m, where em is a vector with a one

on the absorbing state m and zeros elsewhere. Since m is an absorbing state, the corruption process
converges not to a uniform distribution but to the point-mass distribution on m. For text generation,
m is the [MASK] token and this leads to a BERT-like training objective (Devlin et al., 2019), while
masks tokens according to some schedule and learns to denoise them iteratively. Similar as in
multinomial diffusion, we set qnoise = em for absorbing diffusion, where em is a one-hot vector on
the [MASK] token, and obtain Qt based on Eq.(7).
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B.2 A SIMPLIFIED OBJECTIVE

The categorical distribution parameterized by p for each variable that follows q(xt−1|xt,x0) based
on Eq.(6) is given as:

p =
Qtxt ⊙Q

⊤
t−1x0

x⊤
t Q

⊤
t x0

=
[(1− βt)xt + βtσxt

1]⊙ [αt−1x0 + (1− αt−1)qnoise]

αtx⊤
t x0 + (1− αt)x⊤

t qnoise

=
(1− βt)αt−1xt⊙x0+(1− βt)(1−αt−1)xt⊙qnoise+βtαt−1σxt

1⊙x0+βt(1−αt−1)σxt
1⊙qnoise

αtx⊤
t x0 + (1− αt)x⊤

t qnoise

=
(1− βt)αt−1xt⊙x0 + (1− βt)(1−αt−1)σxt

xt + βtαt−1σxt
x0 + βt(1−αt−1)σxt

qnoise

αtx⊤
t x0 + (1− αt)σxt

,

where σxt
:= qnoise(u = xt) represents the probability of noise drawn from qnoise being equal to

xt. Note xt ⊙ x0 = 0 if xt ̸= x0 otherwise 1. Thus the computation of p that parameterize
q(xt−1|xt,x0) breaks down into two cases:

p =

{
ηtxt + (1− ηt) qnoise, if xt = x0

λtx0 + (1− λt) qnoise(xt), if xt ̸= x0,

where ηt := 1− βt(1−αt−1)qnoise(u=xt)
αt+(1−αt)qnoise(u=xt)

, λt :=
αt−1−αt

1−αt
, and qnoise(xt) = (1−βt)xt+βtqnoise denotes

a noise distribution that interpolates between xt and qnoise.

Since we set pθ(xt−1|xt) = q(xt−1|xt, f(xt;θ)), the KL divergence between q(xt−1|xt,x0) and
pθ(xt−1|xt) becomes 0 when xt = x0. In the case of absorbing diffusion, xt = qnoise = em if
xt ̸= x0 and qnoise(xt) = qnoise. p has probability λt on index x0 and 1− λt on the absorbing state.
The model f(xt;θ) has zero-probability on the absorbing state as it never predicts the mask token.
Therefore, pθ(xt−1|xt) also has 1 − λt probability on the absorbing state. Putting them together,
we derive the KL divergence as:

DKL[q(xt−1|xt,x0)||pθ(xt−1|xt)] = 1xt ̸=x0
[λt log

λt

f(xt;θ)x0

+ (1− λt) log
1− λt

1− λt
]

= −λt1xt ̸=x0
x⊤
0 log f(xt;θ) + C,

where 1xt ̸=x0 is 1 if xt ̸= x0 otherwise 0, and C is a constant. Moreover, given α0 = 1 by definition
and therefore λ0 = 1, L0 in Eq.(1) can also be written into the final formulation:

Lvb = −Eq(x0)

T∑
t=1

λtEq(xt|x0)1xt ̸=x0
x⊤
0 log f(xt;θ)

For x0 that represents a sequence of random variables x0 = (x0,1, . . . ,x0,N ), we can add all
computed losses for each token, arriving at the final expression for the whole sequence:

Lvb = −Eq(x0)

N∑
n=1

T∑
t=1

λtEq(xt,n|x0,n)1xt,n ̸=x0,nx
⊤
0,n log f(xt,n;θ).

For multinomial diffusion, we follow Zheng et al. (2023) to adopt a reparameterized form, which
results in the above formulation as well.

C ADDITIONAL EXPERIMENTS

C.1 DYNAMIC SEARCH DEPTH IN DIFFUSEARCH

In explicit search algorithms, the search depth is predefined either through an exact parameter as in
depth-first search, or a related parameter such as the number of simulations as in MCTS. In DIF-
FUSEARCH, the deeper search is achieved by extending the context length of the input. In this
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Table 6: Action accuracy when increasing implicit search depth by extending context length. We
compare training separate models on D with different horizon h and a single model on D with
h = 4. For the single model, predicting future steps equal to or larger than 4 requires the model’s
extrapolation ability.

Future Step Length Separate Model Single Model
0 88 23.36 34.71
1 168 37.35 38.11
2 248 38.82 37.41
3 328 41.31 36.99
4 408 39.34 36.78
5 488 40.87 36.02
6 568 41.04 34.56
7 648 41.69 32.72

section, we present the results of training a single model for dynamic search depth, compared with
separate models in the previous sections. We convert the learned position embedding to RoPE (Su
et al., 2024), enabling the utilization of a context length beyond what was encountered during train-
ing at inference time. During training, a horizon h is randomly chosen from the interval [1, 4] for
each data to expose the model to various input lengths. As shown in Table 6, the single model sur-
passes the one-step policy with a lookahead of up to 5 future steps, exceeding the training stage’s
future step of 3. Nonetheless, a diminishing trend emerges as we escalate the search depth, possibly
attributed to the constrained training data and limited context extension capability of the current
RoPE-based model. We leave more effective context extension beyond training stage for implicit
search to future work.

C.2 SCALING BEHAVIOR WITH MORE DATA

Table 7: Detailed action accuracy with increasing mode size on 10k and 100k games.

Model Layers Transformer S-A DIFFUSEARCH S-ASA
10k games (660k records)
1 21.92 11.97
2 23.28 26.61
4 23.05 36.49
8 22.10 41.31
16 21.55 42.87
100k games (6.6M records)
1 29.62 11.32
2 35.40 31.27
4 36.93 42.57
8 36.58 48.66
16 35.03 51.89

Improved next-action accuracy In Table 7, we show the comparison of Transformer S-A and
DIFFUSEARCH S-ASA when scaling data and model size. We can see the performance of DIF-
FUSEARCH consistently improves with more data and model layers, while that of Transformer S-A
converges with 2 layers with 10k games and 4 layers with 100k games. Further increasing model
size is still useful for DIFFUSEARCH under both data-limited (e.g., 10k games) and relatively data-
sufficient (e.g., 100k games) scenarios.

Improved future accuracy In Table 8, we show the quality of predicted futures for DIFFUSE-
ARCH with horizon h = 4. We find when we scale data to 100k games (6.6M records), almost
all the future actions are valid (i.e., legal), future states are valid (i.e., the predicted states tokens
correctly represent a valid board state), and the action-state transition dynamics are well learned.
Moreover, the best action percentage (i.e., action accuracy) also improves greatly compared to that
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Table 8: Detailed percentage of future predictions with increasing mode size on 10k and 100k games
for DIFFUSEARCH with horizon h = 4. Best ai percentage when future step i = 0 is equivalent to
action accuracy.

Future Step Valid ai Best ai Valid si Match ai−1-si
10k games (660k records)
0 98.40 41.31 100.00 -
1 79.33 20.72 97.35 37.22
2 50.40 4.60 53.59 6.74
3 50.07 3.00 51.26 3.30
100k games (6.6M records)
0 99.85 48.66 100.00 -
1 99.72 32.52 99.89 99.12
2 99.67 19.67 99.88 99.13
3 99.17 13.85 99.92 93.71

in the 10k games setting. This demonstrates the potential of accurate future world modeling through
model scaling.
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Table 9: Example of training example for each training paradigm. We show horizon h = 4 for
illustration.

Paradigm Input Output

S_A r.bqkbnrpppp.ppp..n.........p.......P........N..PP
PP.PPPRNBQKB.RwKQkq-.2.3.. d2d4 

S_V r.bqkbnrpppp.ppp..n.........p.......P........N..PP
PP.PPPRNBQKB.RwKQkq-.2.3.. WIN[56]

SA-V r.bqkbnrpppp.ppp..n.........p.......P........N..PP
PP.PPPRNBQKB.RwKQkq-.2.3.. d2d4 WIN[61]

S-AA r.bqkbnrpppp.ppp..n.........p.......P........N..PP
PP.PPPRNBQKB.RwKQkq-.2.3.. d2d4 e5d4 f3d4 g8f6

S-ASA r.bqkbnrpppp.ppp..n.........p.......P........N..PP
PP.PPPRNBQKB.RwKQkq-.2.3..

d2d4 r.bqkbnrpppp.ppp..n.........p......PP........N..PPP..PPPRNBQKB.RbKQkq-.0.3.. e5d4 
r.bqkbnrpppp.ppp..n................pP........N..PPP..PPPRNBQKB.RwKQkq-.0.4.. f3d4 
r.bqkbnrpppp.ppp..n................NP...........PPP..PPPRNBQKB.RbKQkq-.0.4.. g8f6

S-ASS r.bqkbnrpppp.ppp..n.........p.......P........N..PP
PP.PPPRNBQKB.RwKQkq-.2.3..

d2d4 r.bqkbnrpppp.ppp..n.........p......PP........N..PPP..PPPRNBQKB.RbKQkq-.0.3.. 
r.bqkbnrpppp.ppp..n................pP........N..PPP..PPPRNBQKB.RwKQkq-.0.4.. 
r.bqkbnrpppp.ppp..n................NP...........PPP..PPPRNBQKB.RbKQkq-.0.4..

S-AVAV r.bqkbnrpppp.ppp..n.........p.......P........N..PP
PP.PPPRNBQKB.RwKQkq-.2.3.. d2d4 WIN[61] e5d4 WIN[69] f3d4 WIN[60] g8f6 WIN[68]

S-AVSAV r.bqkbnrpppp.ppp..n.........p.......P........N..PP
PP.PPPRNBQKB.RwKQkq-.2.3..

d2d4 WIN[61] r.bqkbnrpppp.ppp..n.........p......PP........N..PPP..PPPRNBQKB.RbKQkq-
.0.3.. e5d4 WIN[69] 
r.bqkbnrpppp.ppp..n................pP........N..PPP..PPPRNBQKB.RwKQkq-.0.4.. f3d4 
WIN[60] r.bqkbnrpppp.ppp..n................NP...........PPP..PPPRNBQKB.RbKQkq-.0.4.. 
g8f6 WIN[68]

C.3 EXAMPLE OF TRAINING INSTANCE

We show an example of each training paradigm in Table 9.

C.4 ADDITIONAL CASES

In Figure 5, we provide the predictions of Transformer (S-A) and DIFFUSEARCH on more challeng-
ing puzzles. We also show the prediction of all models in Figure 6, where all models are trained on
10k games and 100 MCTS simulations are used for Transformer with MCTS.
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Figure 5: Additional prediction cases on challenging puzzles.
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Figure 6: Additional cases on challenging puzzles compared with all baselines.
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