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A Selection of ISL hyperparameters

Thresholds: As described in Sec. 3.2 and Algorithm 1, after Eq.3 converges at all environments, we employ
a threshold t to convert the adjacency matrix W to a DAG. To find a proper threshold, we use the following
strategy. We set a minimum edges number Emin and a maximum edges number Emax based on the dataset
information. Usually, Emin is half of the number of nodes |E|/2 and Emax is 5|E|. We also set a range of
threshold t ∈ [tmin, tmax] and a step size ts base on the value range of W . Usually we use tmin = min(W )
and tmax = max(W ). Then, we employ a grid search over the range [tmin, tmax] with a step size ts, and keep
the thresholds and corresponding DAG that satisfied the following requirements: (1) The graph after the
filtering with threshold should be a DAG (no cyclicity). (2) The number of graph edges Emin < E < Emax.
For the selected threshold values and DAGs, we remove the duplicated group as different threshold may
obtain the same DAG, which further refines the interval. Then, for each threshold, we use the selected Pa(Y )
as input to train a one-layer MLP to predict Y and select the threshold t that has smallest Y reconstruction
error in the validation set.

Regularization coefficients: For training of ISL, we use different loss terms. The hyperparameter γ
controls the trade off between Y reconstruction and DAG constrain among environments. As we decrease
the value of γ, the training would focus more on the target Y reconstruction. We also have 4 regularization
hyperparameters: Lsparse(θ) = β1||θY

1 ||1 + β2||θY
r ||2 + β3||θX ||1 + β4||θX ||2, where || · ||1 and || · ||2 denote

l1 and l2 regularization. β1 controls the importance of the l1 regularization on the θY
1 , increasing β1 makes

the selection of Pa(Y ) more conservative (most of the values of the first column in W would be zero). β2
helps avoid overfitting of h(·). β3 and β4 controls the regularization on θX . We choose the value of γ
and βi that achieves the smallest target Y reconstruction on the validation set. We find the parameters:
γ = 1;β1 = 0.001;β2 = 0.01;β3 = 0.01;β4 = 0.01 as reasonable choices across many different settings,
although they are not extensively optimized.

Table. 1 shows the results on Boston Housing for the prediction target of median value of homes (MED) ISL
with different regression parameters. We demonstrate that the results are not too sensitive to the change of
regularization. That is because the regularization coefficients mainly influence the DAG learning process, and
we apply fine-tuning for h(·) after convergence of DAG learning, which provides a mechanism to mitigate the
differences at the first training stage.

B Building environments

To show the efficacy of the proposed unsupervised environment building method based on k-means clustering,
we present comparisons to the setting with the environment building based on known data source information,
i.e. the data comes with the indication on how the environments are split based on data collection or
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Table 1: Boston Housing median value of homes (MED) target prediction results by ISL with different
regression parameters.

γ β1 β2 β3 β4 MSE (↓)

1 0.001 0.01 0.01 0.01 0.052

5 0.001 0.01 0.01 0.01 0.054

1 0.001 0.001 0.01 0.01 0.057

generation process. Table. 2 shows that their difference is quite small (much smaller than the outperformance
of ISL compared to the other methods) and the proposed ISL is highly effective and robust with unsupervised
environment building by clustering.

We employed standard clustering evaluation techniques such as the Elbow and Silhouette Method. These
methods enabled us to assess various cluster numbers systematically, identifying the point at which adding
more clusters led to diminishing returns (the "elbow") and evaluating how well each object lies within its
cluster (the silhouette score). More specifically, for the Elbow method, we plot the sum of squared distances
from each point to its assigned center (known as inertia or within-cluster sum of squares) for a range of values
of K (e.g., K from 1 to 10) and automatically detect the "elbow" point on the plot, where the reduction in
inertia starts to slow down. For the silhouette method, we calculate its silhouette score, which measures how
similar a point is to its cluster compared to other clusters for each data point, and compute the average
silhouette score for different values of K and plot them. An algorithm is then applied to look for an optimal
value K that maximizes the average silhouette score across all data points. This process allowed us to arrive
at an optimal K value, and our extensive experimentation and analysis demonstrated that our approach
remains robust across different numbers of environments. Our empirical evaluations provide further evidence
of the effectiveness and stability of our selection method.

Table 2: Unsupervised vs. supervised environment building for ISL on synthetic data. We observe very
small difference between them, showing the efficacy of the proposed unsupervised environment construction
mechanism.

Number of nodes Metrics (↓) Supervised Unsupervised

3 (c=2, s=1)
ID MSE 0.005 ±0.0001 0.005 ±0.0001

OOD MSE 0.010 ±0.0002 0.010 ±0.0002
Average SHD 0±0 0±0

4 (c=2, s=2)
ID MSE 0.006 ±0.0002 0.006 ±0.0002

OOD MSE 0.009 ±0.0001 0.009 ±0.0001
Average SHD 0±0 0±0

5 (c=3, s=2)
ID MSE 0.004 ±0.0001 0.004 ±0.0001

OOD MSE 0.004 ±0.0001 0.004 ±0.0001
Average SHD 0±0 0±0

9 (c=4, s=5)
ID MSE 0.004 ±0.0006 0.004 ±0.0006

OOD MSE 0.005 ±0.0001 0.005 ±0.0001
Average SHD 0±0 0±0

20 (c=10, s=10)
ID MSE 0.007 ±0.0005 0.009 ±0.0005

OOD MSE 0.007 ±0.0001 0.061 ±0.009
Average SHD 1±0 2±1

C Error statistics

In this section, we present the standard deviations for the errors to highlight the statistical significance of ISL
improvements (Table. 3 and Table. 4). Overall, the improvements of ISL are much larger than the standard
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deviation values. In addition, the variance of performance is observed to be lower for ISL compared to the
other methods, indicating its superiority in robustness.

Table 3: Supervised learning experiment results on real-world data along with their standard deviations.
Note that MLP and CASTLE cannot provide DAGs (and thus don’t have SHD values).

MSE (↓) SHD (↓)

Dataset Target MLP NOTEARS-MLP CASTLE ISL (Ours) NOTEARS-MLP ISL (Ours)

Boston Housing MED 0.16 ±0.02 0.12 ±0.03 0.10 ±0.01 0.05 ±0.008 2 ±0 1±0

Insurance

‘PropCost’ 0.40 ±0.02 0.99 ±0.02 0.36 ±0.001 0.34 ±0.004 2 ±0 0±0

‘MedCost’ 0.69 ±0.09 1.03 ±0.01 0.55 ±0.03 0.52 ±0.002 2 ±1 0±0

‘LiabilityCost’ 0.94 ±0.08 0.39 ±0.01 0.38 ±0.06 0.25 ±0.0004 1 ±0 0±0

‘CarValue’ 0.23 ±0.01 0.60 ±0.05 0.23 ±0.03 0.23 ±0.0004 2 ±0 1±0

Table 4: Synthetic tabular data experiments in supervised learning setting. Note that black-box MLP and
CASTLE can’t provide DAGs. ISL yields lower MSE for ID and OOD, and lower SHD.

Number of nodes Metrics (↓) MLP NOTEARS-MLP CASTLE ISL (Ours)

3 (c=2, s=1)
ID MSE 0.008 ±0.002 0.101 ±0.010 0.016 ±0.007 0.005 ±0.0001

OOD MSE 0.016 ±0.002 0.195 ±0.005 0.017 ±0.004 0.010 ±0.0002
Average SHD - 2 ±0 - 0±0

4 (c=2, s=2)
ID MSE 0.006 ±0.009 0.087 ±0.005 0.017 ±0.002 0.006 ±0.0002

OOD MSE 0.040 ±0.022 0.174 ±0.024 0.036 ±0.010 0.009 ±0.0001
Average SHD - 2 ±0 - 0±0

5 (c=3, s=2)
ID MSE 0.004 ±0.002 0.110 ±0.018 0.025 ±0.006 0.004 ±0.0001

OOD MSE 0.004 ±0.002 0.078 ±0.020 0.019 ±0.004 0.004 ±0.0001
Average SHD - 3 ±0 - 0±0

9 (c=4, s=5)
ID MSE 0.012 ±0.006 0.070 ±0.010 0.034 ±0.010 0.004 ±0.0006

OOD MSE 0.052 ±0.024 0.201 ±0.028 0.152 ±0.022 0.005 ±0.0001
Average SHD - 4 ±0 - 0±0

20 (c=10, s=10)
ID MSE 0.009 ±0.008 0.061 ±0.011 0.121 ±0.021 0.007 ±0.0005

OOD MSE 0.094 ±0.061 0.303 ±0.050 0.272 ±0.046 0.007 ±0.0001
Average SHD - 9 ±0 - 1±0

D Time Complexity and Scalability Comparison

With respect to runtime and scalability, our runtime is 3 to 5 times greater than that of NOTEAR ? due
to the additional clustering step. The computational complexity of our framework aligns closely with that
of NOTEARS. Specifically, the complexity for NOTEARS-MLP is given by O(nd2m+ d2m+ d3) FLOPS
per iteration of L-BFGS-B, where n is the number of data samples, d is the number of nodes, and m is the
number of edges.

In our framework, as we partition the dataset into k different environments, each requiring its own convergence,
the effective runtime becomes O(k(nd2m+ d2m+ d3)). However, since k (the number of environments) is
generally a small constant—typically ranging from 3 to 5—the overall time complexity remains on the same
order as O(nd2m+ d2m+ d3).

The following table summarizes some of the quantitative results we have recorded. The time measurements
were obtained on an Apple M1 Pro chip with 16GB of memory.
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Experiment NOTEAR time (s) ISL (ours) Self-supervised ISL (ours)
x2s1 32.6 100.5 280.5
x2s2 48.1 139.7 400.2
x3s2 62.9 188.5 520.8
x4s5 139.0 420.1 1220.3
x10s10 414.5 1300.4 3600.4

Table 5: Time benchmarks for NOTEAR and our proposed methods.

E Discussion

While we have indeed demonstrated our idea through an image classification task, this example serves more to
elucidate the intuition of our algorithm rather than showcase a specific target application. Our work primarily
focuses on tabular data because most of the real world domains like economics, biology, and social social that
we are interested in applying the causal discovery algorithm gather data in structured, tabular form and
most causal discovery algorithms such as conditional independence tests and structural learning algorithms
are designed to work with structured data. We have evaluated our approach on two well-known real-world
datasets: the Sachs dataset [9] and the Insurance dataset. Both of these datasets are widely recognized and
extensively used as benchmarks in the field of causal discovery (Zheng et al., 2018; 2020; He et al., 2021; Wei
et al., 2020; Yu et al., 2019). We have clarified this in the revised manuscript.

F Limitations and the societal impact

In this paper, we propose a novel method for causal structure discovery, which can improve the explainability
and generalization of key machine learning use cases. Lack of their explainability remains to be a bottleneck
for widespread adoption of DNNs for many high-stakes applications, such as from Healthcare, Finance, Public
Sector, Insurance, Legal etc. There are other forms of explainability methods used in practice, but since they
cannot explicitly distinguish the causality from the correlations, there are many cases that they cannot satisfy
the high bar for explainability in such applications. We believe that our method constitutes an important
contribution towards this, as it can be directly adopted to applications where obtaining accurate causal
explanations is crucial. In some cases, causal explanations can uncover the undesired biases in the data such as
when the dominant factor for the output label comes from one of the features that corresponds to a sensitive
attribute such as gender. In these cases, the causal explanations can be further validated with additional
analyses (as our model is still far away from achieving the perfect SHD of 0 on complex real-world data with
many features), and if they seem to be convincing, further data manipulation or model debiasing actions can
be performed. In addition to causal explainability, the improved generalization aspect is expected to play
a major positive role, as the distribution differences between training and testing settings can sometimes
hinder the reliability of machine learning models. In some applications where the data collection is limited to
certain locations or times or subsets, our method can be utilized to enhance the performance of the trained
models when they are deployed to operate for different locations or times or subsets.

Overall, we believe there is significant room for improvement in causal structure discovery. Especially for
complex real-world data with many features, the obtained SHD values are not very low in the literature.
Further research in unsupervised environment building with better representation learning, end-to-end
approaches in combining graph discovery and supervised learning, and adding more nonlinearity to the model
to make it higher capacity in a systematic way, can be promising towards this direction. We demonstrate
the robustness of our model in various settings, but further exploration of theoretical convergence guarantee
can be useful as well. Lastly, methods to improve hyperparameter tuning and model selection with small
validation data, without relying on ground truth causal graph structure, would be of high value.
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